
Resonant coupling of Rayleigh waves through a narrow fluid
channel causing extraordinary low acoustic transmission

Victor M. Garcia-Chocano
Wave Phenomena Group, Universidad Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
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Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid

channel is predicted and experimentally observed. Although the coupling through a fluid (water)

is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with

sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two

polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of

coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of

acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in

the design of acoustic metamaterial screens and reflectors. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

Transmission of waves through a subwavelength hole or

slit in a screen is one of the traditional problems in the theory

of diffraction.1–4 In the classical approach the walls of the

screen are assumed to be rigid, i.e., the propagating wave does

not penetrate inside.5–8 “Softened” Dirichlet or Neumann

boundary conditions for the diffracted field changes drastically

the results for the transmission. In optics it leads to highly un-

usual transmission of light through metal films perforated with

a periodic array of subwavelength holes.9,10 This effect is due

to resonant excitation of surface plasmons on the screen surface

with finite conductivity (not a perfect conductor). Acoustic

counterpart of the effect of extraordinary transmission through

a perforated metal plate has been recently reported.11–13 The

resonant enhancement of zero-order transmission was attributed

to the coupling between diffractive waves and the Fabry–Perot

resonant modes inside the apertures. As it was demonstrated in

Ref. 14 some fine details of this effect can be explained only if

the metal plate is considered as elastic material and the contri-

bution of surface modes is taken into account.

The role of surface modes in the transmission of energy

(electromagnetic or acoustic) through narrow apertures is

emphasized by the fact that the excitation of surface waves

may not only strongly enhance transmission through subwa-

velength aperture but also may suppress transmission of the

incident wave. It is well-known that even weak dissipation at

the frequency of surface plasmon resonance leads to suppres-

sion of light transmission through perforated metal films

with thickness less than the skin-depth.15 Similar effect of

suppression of specular reflection was predicted in layered

superconductors due to resonant excitation of Josephson

plasma waves.16 Suppression of transmission and also reflec-

tion is due to abnormal absorption of electromagnetic energy

at the resonance.

Here we report the effect of strong acoustic attenuation

of ultrasound through a subwavelength slit formed by plates

of two different metals—brass and aluminum—immersed in

water. Deep minima in sound transmission have been

observed at the frequencies corresponding to resonant excita-

tion of Rayleigh waves in a finite-length water channel. The

observed level of suppression of acoustic energy exceeds by

orders of magnitude the level of attenuation in pure water.

Thus, this effect may find useful applications as a metamate-

rial screener of ultrasound.

Recently we reported the effect of anomalous strong

suppression of sound transmission in a fluid channel formed

by two identical metal plates and proposed the mechanism

of absorption related to resonant excitation of coupled
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Rayleigh waves.17 Coupling between the Rayleigh waves is

weak since it is proportional to the ratio of the density of

water to the density of metal. For identical metals such weak

coupling is manifested as splitting of two degenerate Rayleigh

waves into two channel eigenmodes with different polariza-

tion (symmetric and anti-symmetric) and slightly different

phase velocities.18 At normal incidence only the symmetric

mode is excited, therefore the characteristics of this mode

only have been reported. In the present case of two different

metals the coupling between the Rayleigh waves, which is

still weak, leads to strong renormalization of the velocity of

each Rayleigh wave. Due to synchronization in propagation

of the Rayleigh waves the dispersion of two coupled modes

becomes nonlinear. In this case the phase velocities of two

channel eigenmodes lie between the velocities of the Rayleigh

wave in brass and aluminum.19 As a result, we observed the

minima corresponding to excitation of two eigenmodes

(which are neither symmetric nor anti-symmetric) but not the

resonances corresponding to excitation of the Rayleigh wave

in brass and in aluminum separately.

Eigenmodes of a fluid channel clad between two solids

have been considered in many previous publications. The

problem was formulated by Lloyd and Redwood18 for an

infinitely long channel formed by two solid plates of finite

width. It was shown that coupled vibrations of the plates and

water give rise to extremely low-frequency dispersive

eigenmodes. At high frequencies it coincides with Stoneley–

Scholte mode. This low-frequency guided mode was experi-

mentally observed and its strong dispersion was measured.20

Coupling between the Rayleigh modes in a solid-liquid-solid

waveguide was studied in Refs. 19 and 21. A dispersion equa-

tion was derived in approximation of infinite waveguide chan-

nel in Ref. 19 and dispersion characteristics of the coupled

Rayleigh modes have been measured using quartz delay line

at ultrasound frequency of 30 MHz. Approximation of geo-

metrical acoustics and good agreement between the theory

and experiment was reported in Ref. 21 for high-frequency

sound excitation. Both, symmetric and asymmetric trilayers

were studied. Acoustic transmission and Lamb-mode coupling

through ultra-thin fluid layer were reported in Ref. 22.

In all previous studies the length of the fluid channel was

practically infinite, i.e., the resonant effect at the frequencies

obtained from quantization of eigenmodes in a finite-length

channel could not be observed. In the following we report the

experimental results on acoustic transmission, derive the disper-

sion equation for the coupled Rayleigh waves and obtain the

set of resonant frequencies for each eigenmode. We also predict

and measure an interesting cut-off effect for one of the eigenm-

odes at apertures smaller than some critical value. It is com-

monly believed that longitudinal acoustic wave propagates

freely through any narrow aperture (unlike transverse electro-

magnetic wave). This conclusion is based on numerous results

obtained for rigid screens, see, e.g., Refs. 5 and 23. If, however,

the vibrations of the surface of the slit (or hole) are taken into

account, the propagating sound wave is not pure longitudinal.

For one of the two eigenmodes (so-called fast mode with

quasi-symmetric polarization) vibrations in the transverse direc-

tion prevent free propagation below some critically narrow

aperture (or below some critical frequency at fixed aperture).

Recently a nonresonant acoustic metamaterial possessing

double negative effective constitutive parameters has been pro-

posed and numerically evaluated in Ref. 24. Unlike previous

examples of acoustic metamaterials, the unit cell of this one

does not contain resonant cavities. Instead, strong modification

of the index of refraction is achieved by increase of the acoustic

path length within a unit cell when sound propagates along a

zigzag waveguide. Each segment of the waveguide is a fluid

channel formed by two metal plates. Clear understanding of

sound transmission through such fluid channels is, thus, directly

related to design of nonresonant acoustic metamaterials. In par-

ticular, the cutoff of sound propagation through the channel

that we predict and observe here (and in Ref. 17 for identical

metals) may seriously modify the values24 of the effective

parameters of the metamaterial at very low frequencies.

II. EXPERIMENTAL SETUP AND RESULTS ON
ACOUSTIC TRANSMISSION

The experiment is performed in a water bath of size 50

�60� 12 cm3. The setup consists of two 1.5 in. immersion

(V392-SU, Panametrics) transducers that are placed face to

face separated by a distance of 16 cm. Slits are obtained

between two adjacent but different metal plates (of dimension

12� 12 cm2)—one of aluminum and one of brass—of equal

thickness h. The slit is aligned and centered midway between

both transducers while maintaining its aperture d with the help

of a sample holder that fixes both metal plates by their upper

part. The experimental setup is schematically shown in Fig. 1.

The emitter transducer is connected to a waveform gen-

erator Agilent 33220A, while the receiver transducer is con-

nected to a digital oscilloscope NI PXI-5105. Prior to

placing the sample, a direct measure between both trans-

duccers is performed. These data are then used as reference

to normalize the subsequent measures, thus compensating

the non-flat frequency response of the piezoelectric trans-

ducers. The last cycles of the received signal until the arrival

of the first unwanted echo are selected to be processed by a

sine fitting algorithm. This procedure ensures an echo free

measurement. In order to ensure that the response corre-

sponds to the steady state of the system, it is also important

FIG. 1. (Color online) Experimental setup showing the geometrical parameters

of the aperture (d) and length (h) of the slit.
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to make sure that the envelope of the signal remains constant

within the region where the cycles to be analyzed are

extracted.

First, we measured sound transmission through square

metal plates without the slit. It is well known that the metal-

water interface reflects most of the incident acoustic energy

at normal incidence, which implies that away from Fabry–

Perot resonances the plates are practically opaque to sound.

For the metal plates of finite thickness h, the resonant maxi-

mum occur when kl ¼ 2h=n, where n ¼ 1; 2; 3; ::: and kl ¼
cl=fn is the wavelength of the longitudinal wave of linear fre-

quency fn.

In the experiments, the maxima in the transmission are

situated exactly at Fabry–Perot resonances, which can be

seen in Fig. 2 where the transmission spectra of the water

channel with a fixed length h and different apertures d are

plotted. The spectra in Fig. 2 also exhibit sharp minima indi-

cating presence of sound absorption mechanism. Relevance

of these resonances to excitation of the metal plates follows

from simple relation giving the positions of absorption dips:

kRc
¼ cRc

=fn ¼ 2h=n; (1)

where n is an integer, kRc
and cRc

are the wavelength and

phase velocity of the eigenmode which is formed in the

channel due to coupling between the Rayleigh waves propa-

gating in the metal plates. This phase velocity is calculated

below for from the dispersion equation for the coupled Ray-

leigh waves.

When the aforementioned condition is satisfied, the fre-

quency of incident sound wave matches with one of the

eigenfrequencies of the water channel clad between elastic

surfaces. As a result, the amplitude of vibrations of the surfa-

ces reaches a maximum. The acoustic energy penetrates into

the metal plates more efficiently, giving rise to the minima

in the transmission spectra. To calculate the positions of the

minima from Eq. (1) we need to know the dispersion relation

for the propagating eigenmode.

III. DISPERSION EQUATION

An acoustic signal in the form of an ultrasonic plane

wave impinged on the channel generates surface elastic

(Rayleigh) waves, which would propagate independently

and with different phase velocities if there would be no inter-

action between them through the fluid. Due to this interac-

tion the propagation of two Rayleigh waves at the both sides

and the sound wave in the fluid channel is synchronized. The

wave that propagates in the whole system—metal plates and

fluid channel—has a phase velocity, polarization, and disper-

sion which are calculated from the corresponding eigenvalue

problem. The eigenvalue problem consists of two wave

equations in elastic metals, one wave equation for sound in

the fluid and the boundary conditions at the interfaces. In

this section we derive the dispersion equation following a

standard procedure, see, e.g., Refs. 18 and 25.

The displacement of the metal plates in terms of velocity

potentials can be expressed as w ¼ rnþr� a for metal 1

(z > d=2) and u ¼ r/þr� b for metal 2 (z < d=2), where

a ¼ ð0; a; 0Þ and b ¼ ð0; b; 0Þ, see Fig. 1. The gradient and

curl components of the displacement vectors correspond to

longitudinal and transverse waves respectively, and satisfy the

conditions that the divergence of transverse component and

the curl of longitudinal component vanish.

The components of the velocity potentials are obtained

from four wave equations

r2aþ x2

c2
1t

a ¼ 0; (2)

r2nþ x2

c2
1l

n ¼ 0 (3)

for metal 1 (z > d=2), and

r2bþ x2

c2
2t

b ¼ 0; (4)

r2/þ x2

c2
2l

/ ¼ 0 (5)

for metal 2 (z < d=2). Here (c1t; c1l) and (c2t; c2l) are shear

and compressional velocities (which we assume to be real)

in metal 1 and metal 2, respectively. We are looking for the

solutions of these equations in the form of plane waves prop-

agating along axis x and evanescent waves away from the

channel along axis z:

/ðx; zÞ ¼ ePz�ixtðA1eiqxþB1e�iqxÞ; P¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�x2=c2

2l;
q

nðx; zÞ ¼ e�Qz�ixtðA2eiqxþB2e�iqxÞ; Q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�x2=c2

1l;
q

bðx; zÞ ¼ eRz�ixtðC1eiqxþD1e�iqxÞ; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�x2=c2

2t;
q

aðx; zÞ ¼ e�Sz�ixtðC2eiqxþD2e�iqxÞ; S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�x2=c2

1t:
q

(6)

FIG. 2. (Color online) Transmission spectra obtained for several apertures d
of the slit separating two water-immersed unidentical (brass and aluminum)

metal plates for a channel length h ¼ 3 mm. The maxima in the transmission

are Fabry–Perot resonances. The minima are the frequencies where extraordi-

nary absorption of sound occurs, corresponding to the frequencies of resonant

excitation of coupled Rayleigh waves. Two resonances with n ¼ 1 and n ¼ 4

fall within the shown range of sound frequencies.
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The dynamical equation for the velocity potential

bðx; zÞ in the fluid channel (�d=2 < z < d=2) is given by

r2b þx2=c2
f b ¼ 0, where cf is the compressional wave ve-

locity in water. The solution for bðx; zÞ is a pure plane wave

with components of the wave vector along axes x and z,

bðx; zÞ ¼ e�ixt½eijzðK1eiqx þ L1e�iqxÞ
þ e�ijzðK2eiqx þ L2e�iqxÞ�;

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cf Þ2 � q2

q
: (7)

The oscillating pressure produced by sound wave in the fluid

is obtained from the continuity equation

qf

@v

@t
þrp0 ¼ 0; (8)

where vðx; zÞ ¼ rbðx; zÞ.
Solutions (6) and (7) of the wave equations in three dif-

ferent media are coupled through the boundary conditions at

z ¼ 6d=2. At these interfaces the normal and shear stresses

are continuous

rzz z ¼ 6
d

2

� �
¼ �p0 z ¼ 6

d

2

� �
; rxz z ¼ 6

d

2

� �
¼ 0;

(9)

and the normal components of the velocity are continuous

vz ¼
@b
@z

����
z¼þd=2

¼ _wz ¼ �ixwz z ¼ d

2

� �
; (10)

vz ¼
@b
@z

����
z¼�d=2

¼ _uz ¼ �ixuz z ¼ � d

2

� �
: (11)

Thus, these boundary conditions give 6 linear relations

for 12 unknown constants in Eqs. (6) and (7). However, the

unknown constants for the wave propagating to the right and

the constants for the wave propagating to the left form two

independent groups and can be considered separately. For

each group there are six homogeneous equations for six

unknowns. Equating the corresponding determinant to zero,

we obtain, after some cumbersome algebra, the following

dispersion relation between x and q:

tan
jd

2

� �
¼ ðAB� CDÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ C2ÞðB2 þ D2Þ

p
ADþ BC

;

(12)

where A, B, C, and D are functions of x and q given by

A ¼ ðS2 þ q2Þ2 � 4SQq2;
B ¼ ðR2 þ q2Þ2 � 4RPq2;

C ¼
qf x

2

q1c2
1tj

� �
QðS2 � q2Þ;

D ¼
qf x

2

q2c2
2tj

� �
PðR2 � q2Þ:

(13)

Here q1, q2, and qf are the densities of the metals and the

fluid, respectively.

Relation (12) defines two eigenmodes, “plus” and

“minus.” They have different polarizations and propagate

with different phase velocities. We refer to them as “slow”

and “fast” modes since the plus mode has lower phase veloc-

ity. If the channel is empty, qf ¼ 0, then C ¼ D ¼ 0 and

Eq. (12) is reduced to two equations A ¼ 0 and B ¼ 0 which

give the linear dispersion relations for the Rayleigh waves in

metal 1 and metal 2, respectively. Solutions for independ-

ently propagating Rayleigh modes are shown in Fig. 3.

The coupling between the Rayleigh waves occurs when the

parameters qf=q1 and qf=q2 are different from zero. This cou-

pling leads to nonlinear dispersion of the channel eigenmodes.

For a fluid channel clad between two identical metals Eq. (12)

is reduced to two dispersion equations obtained in Ref. 17. In

this particular case, the slow and fast modes become the modes

with antisymmetric and symmetric polarization, respectively.

IV. SPECTRUM OF RESONANT FREQUENCIES

The dispersion relation Eq. (12) was obtained for an infi-

nite channel where x changes continuously with the wave vec-

tor q. In a finite-length channel this relation is not valid for all

wave vectors. Resonant frequencies should be obtained from a

complete solution for sound wave passing through the dissipa-

tive inhomogeneous metal-fluid-metal medium. Of course, this

problem could not be solved analytically. We, however, found

an approximate solution (which is in a good agreement with

the experiment and numerical simulations) by quantizing the

wave vector. The quantized values of q are obtained from the

boundary conditions at the ends of the channel, x ¼ 0 and

x ¼ h. Here the acoustic energy which is concentrated in a nar-

row channel enters into infinite fluid medium. The oscillating

part of pressure pðx; zÞ is strongly reduced within a narrow

transition layer at the channel openings. Then, an approximate

boundary condition can be written as follows:26

FIG. 3. (Color online) Plots of the functions AðXÞ and BðXÞ [see Eq. (13) vs

dimensionless parameter X ¼ x=qct1]. Normalized phase velocity for

uncoupled Rayleigh wave in the absence of fluid in the channel (C ¼ D ¼ 0)

for brass (aluminum) is given by the root X ¼ XR of the dispersion equation

AðXÞ ¼ 0 [BðXÞ ¼ 0]. The roots obtained from the graph are XRBr
¼ 0:936

and XRAl
¼ 1:456, respectively. The phase velocity of uncoupled Rayleigh

wave cR ¼ XRc1t for brass is cRBr
¼ 1:87 km/s (<c1t ¼ 1:997 km/s) and for

aluminum is cRAl
¼ 2:9 km/s (<c2t ¼ 3:13 km/s).
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pðx ¼ 0; zÞ ¼ pðx ¼ h; zÞ ¼ 0: (14)

This equation is widely used in calculation of the resonant fre-

quencies of pipes open at both ends. It ignores the presence of

the transition layer. The corresponding correction grows with

the widths of the pipe, therefore Eq. (14) becomes invalid for

wide apertures. There are more limitations related to this

approximation which we discuss in Sec. V.

Equation (14) together with Eq. (7) for the potential b
and relation (8) gives that the wave vector takes only dis-

crete values, qnh ¼ pn, n ¼ 1; 2; 3;… . The eigenfrequen-

cies fn ¼ xn=2p of the channel can be written in the form

fn ¼ qct1X=2p, which is equivalent to Eq. (1). Substitution

of this frequency into dispersion equation (12) leads to two

equations (with plus and minus signs) for the dimensionless

unknown parameter X (for each integer n).

In the special case when the metal plates on both sides of

the fluid channel are identical, the incident acoustic wave

propagating parallel to the axis of the channel excites only the

symmetric mode.17 However, for the general case when the

metal plates on both sides of the fluid channel are not identi-

cal, both slow and fast modes are excited though the excita-

tion of the fast mode is relatively more pronounced. It is now

convenient to express Eq. (12) in terms of unknown X:

F6ðXÞ ¼
ðAB� CDÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ C2ÞðB2 þ D2Þ

p
ðADþ BCÞtan jd

2

� � ¼ 1;

(15)

where A, B, C, D, and j are transformed functions of X
given by

AðXÞ ¼ q4 ð2� X2Þ2 � 4ð1� X2Þ1=2
1� c2

1t

c2
1l

X2

� �1=2
" #

;

BðXÞ ¼ q4 2� c2
1t

c2
2t

X2

� �2

� 4 1� c2
1t

c2
2t

X2

� �1=2
"

� 1� c2
1t

c2
2l

X2

� �1=2
#
;

CðXÞ ¼ �q4
qf

q1

� � 1� c2
1t

c2
1l

X2

� �1=2

c2
1t

c2
f

X2 � 1

� �1=2
;

DðXÞ ¼ �q4
qf

q2

� �
c1t

c2t

� �4 1� c2
1t

c2
2l

X2

� �1=2

c2
1t

c2
f

X2 � 1

� �1=2
;

jðXÞ ¼ q
c2

1t

c2
f

X2 � 1

 !1=2

;

(16)

where q ¼ qn ¼ np=h and X ¼ 2pfn=qct1.

The solutions for X in F6ðXÞ are obtained when F6ðXÞ
¼ 1 (see Fig. 4). Hence the solutions for FþðXÞ ¼ 1 and

F�ðXÞ ¼ 1 are denoted by Xþ and X�, respectively. It is clear

from Fig. 4 that for a given aspect ratio d=h that F�ðXÞ
> FþðXÞ. Since the velocity of coupled Rayleigh wave is pro-

portional to the root X, it is appropriate to label FþðXÞ as the

slow mode and F�ðXÞ as the fast mode. Therefore, the phase

velocities of coupled Rayleigh wave for the fast and slow

modes are c�Rc
¼ c1tX� and cþRc

¼ c1tXþ, respectively.

The equations for jðXÞ, AðXÞ, and BðXÞ impose a strict

condition that the real solutions corresponding to coupled

Rayleigh waves described by Eq. (15) must fall within the

interval cf =c1t<X<1.27 This means the velocity of coupled

Rayleigh mode cRc
¼Xc1t cannot exceed the shear velocity

c1t. Otherwise, when cRc
>c1t the coupled mode becomes a

leaky Rayleigh mode and radiates part of its energy into the

metal with the corresponding shear velocity c1t. In that case,

the solutions for F6ðXÞ¼1 become complex: XLR takes the

form XLR¼X0LRþiX00LR, where the imaginary part X00LR charac-

terizes the attenuation length, which gives the depth and

width of the resonant minimum. Further theoretical study on

leaky Rayleigh waves radiating from metal-liquid interface

can be found in Refs. 25, 28, and 29. Strong attenuation of

Rayleigh waves has been recorded in a seismic study.30 Ray-

leigh waves leaking into fluid from metal-fluid interface

have also been experimentally studied.31

V. CORRESPONDENCE BETWEEN THEORY AND
EXPERIMENT

The resonant frequency fn scales as 1=h with the channel

length. This is the same geometrical factor that defines also

the Fabry–Perot resonances. There is, however, much

weaker dependence of fn on the channel aspect ratio d=h
which enters through X. This dependence is shown in Fig. 5

for both eigenmodes and for resonances n ¼ 1 and n ¼ 4. It

is clear that there is a tendency for the root X, corresponding

to the fast mode to approach the critical value X ¼ 1 as d=h
decreases. Substituting X ¼ 1 into equation F�ðXÞ ¼ 1, we

FIG. 4. (Color online) A typical plot showing the roots of the dispersion equa-

tions F6ðXÞ ¼ 1 for slow and fast modes for n ¼ 4, channel length h ¼ 3 mm,

and aperture d ¼ 4:5 mm. F6ðXÞ are related to the slow and fast modes.

The plot is obtained for a metal combination of brass (c1t ¼ 1:997 km/s,

c1l ¼ 4:25 km/s, q1 ¼ 8:5 gm=cm3) and aluminum (c2t ¼ 3:13 km/s,

c2l ¼ 6:32 km/s, q2 ¼ 2:7 gm=cm3). The compressional velocity of sound in

fluid (water) in the channel is taken as cf ¼ 1:48 km/s.
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obtain the following minimal aspect ratio below which the

fast mode cannot propagate:

d

h

� �
min

¼ 1

np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1t=cf Þ2�1

q
(

arctan
qf

q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðc1t=c1lÞ2

ðc1t=cf Þ2�1

s !

þ arctan
qf

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(17)

Though longitudinally traveling acoustic waves can prop-

agate through any narrow aperture, it follows from Eq. (17)

that it is not true for one of the coupled Rayleigh waves. This

is because Rayleigh wave, unlike typical acoustic wave, also

consists of a transverse component which limits propagation

through narrow apertures. For the channel clad between brass

and aluminum plates, the first resonance n ¼ 1 does not exist

if ðd=hÞ < ðd=hÞmin¼ 1.06. Since in the experiment we

always deal with narrow channels with small apertures,

d=h < 1, we did not observe the cutoff of the fast mode

for the primary resonance n ¼ 1. However, for the resonance

n ¼ 4 the critical aspect ratio is 0.26. For this case we observe

the cutoff of the fast mode.

The slow mode, unlike the fast one, can propagate in a

channel with any small aspect ratio. As shown in Fig. 5 the

corresponding value of X does not exceed 1 when d=h! 0.

In a channel with d=h > ðd=hÞmin the both modes can be

excited but if d=h > ðd=hÞmin it is only the slow mode that

transfers acoustic energy from fluid to metal. The cutoff fre-

quency in the spectrum of the fast mode is related to its

quasi-symmetric polarization when a maximum in the trans-

verse displacements on one side occurs at the same coordi-

nate x as a minimum on the other side of the channel. For the

slow mode (with quasi-antisymmetric polarization) the max-

ima and minima occur at the same x.

For the case of identical metals17 only the symmetric

(fast) mode can be excited. Therefore no minima in the

transmission spectra were observed for any channel with as-

pect ratio less than the critical one. In our experiment with

different metals we observed minima for the channels with

d=h < ðd=hÞmin. Apparently, these minima are due to excita-

tion of the slow mode.

To better understand the transition from slow mode to

fast mode in the vicinity of the critical aspect ratio we plot in

Fig. 6 the shift of the resonant frequencies with n ¼ 4 and

h ¼ 3 mm with channel aperture d. This plot was obtained

FIG. 5. (Color online) Dimensionless parameter Xn plotted as a function of

the aspect ratio d=h for slow and fast modes at different resonances n ¼ 1

(a) and n ¼ 4 (b).

FIG. 6. (Color online) Frequency f versus aperture d of the water channel

for slow (solid line) and fast (dashed line) modes obtained using Eq. (15).

While the slow mode does not have a critical minimum aperture, the fast

mode has a critical minimum aperture at d ¼ 0:78 mm. For the case of a

water channel clad between identical metal plates, the fast and slow modes

become symmetric and antisymmetric modes, respectively, see Ref. 17.
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using the dispersion equation (15). It follows from this figure

that the transition occurs at d � 0:8 mm. Around this value

one may expect a discontinuous jump due to reduction of

frequency when the fast mode is replaced by a slow mode.

This jump at d ¼ 0:75 mm was indeed observed in the

experiment.

Figure 7 shows experimental data for the shift of the res-

onant frequency with aperture. The shift was obtained from

the series of transmission spectra shown in Fig. 2. The fre-

quency of this transition f � 1:34 MHz is also in a good

agreement with the theoretical value of 1.33 MHz.

In the experiment the frequencies of the resonances for

the both modes increase as the aspect ratio decreases, in

agreement with the theory. This behavior is a direct evidence

of the coupling of the Rayleigh waves. Without coupling the

frequency should exhibit a tendency to grow with d. This

follows from the fact that the phase velocity of a surface

mode propagating along a contact of a solid elastic medium

with a fluid layer growth with the thickness d of the layer.25

As shown, the resonant frequencies obtained from the

experiments and from theoretical calculations are about 91%

(at d ¼ 0:2 mm) in agreement (fexp ¼ 1:38 MHz, fth ¼ 1:26

MHz) for slow mode and about 95% (at d ¼ 1 mm) in agree-

ment (fexp ¼ 1:335 MHz, fth ¼ 1:275 MHz) for fast mode.

Hence the close agreement between experiment and theory

shows that extraordinary low transmission appears at the res-

onant frequencies corresponding to the excitation of coupled

Rayleigh waves along both surfaces of the water channel.

Such a good agreement is observed in spite of the fact that

we used approximate boundary condition (14) for quantiza-

tion of the wave vector. This boundary condition assumes

that the Rayleigh waves are completely reflected from at the

edges of each plate and a standing wave is formed inside the

channel. In real situation there is only a partial reflection at

the channel openings. Some part of acoustic energy goes

around the corner and the surface wave continues to propa-

gate along the vertical surfaces at the right side in Fig. 1. A

numerical method for evaluation of the reflection coefficient

for Rayleigh wave from a right corner was proposed in

Ref. 32. It was evaluated that for Rayleigh wave propagating

along a metal-vacuum interface the reflection coefficient

does not exceed 50%. It, however, may be higher for metal-

water interface, due to resonant coupling.

An interesting effect of sound screening in low imped-

ance periodic slit array has been recently predicted in numer-

ical study of the transmission coefficient.33 This effect is due

to diffraction of sound at narrow elastic apertures and it is of

non-dissipative nature. Strong reduction of the transmitted

sound occurs due to so-called hydrodynamic short circuit

when a surface wave excited at the vertical surfaces at the

right edge moves in anti-phase with the fluid at the right

edge of the slit. In this situation Eq. (14) is not valid at all

since pressure at the right end has a negative value instead of

zero. The position and the sharpness of the minima caused

by the hydrodynamic short circuit strongly depend on the ra-

tio of the impedances of the metal and the fluid. Therefore, it

is hard to determine whether some of the deeps in the trans-

mission observed in our experiments are due to hydrody-

namic short circuit. There are two minima in Fig. 2, one near

0.7 MHz and another near 1.1 MHz, which cannot be

explained by resonant excitation of coupled Rayleigh waves.

These minima strongly overlap with Fabry–Perot resonances

that makes their analysis more difficult. According to our

preliminary data the minimum at 1.1 Mhz is due to excita-

tion of leaky Lamb (or Rayleigh) wave. This, however,

require further and more detailed study.

VI. POLARIZATIONS OF THE EIGENMODES

In this section we explore the properties of transverse and

longitudinal displacements of the metal plates corresponding

to different polarizations of coupled Rayleigh waves. Since

the displacement vectors of metal plates are expressed in

terms of velocity potentials as w ¼ rnþr� a for brass

(z > d=2) and u ¼ r/þr� b for aluminum (z < d=2),

their corresponding longitudinal and transverse components

are found to be wxðx; zÞ ¼ @n=@x� @a=@z, wzðx; zÞ
¼ @n=@zþ @a=@x for brass, and uxðx; zÞ ¼ @/=@x� @b=@z,

uzðx; zÞ ¼ @/=@zþ @b=@x for aluminum. Once the relations

between the unknown constants in velocity potentials a, n, /,

and b are obtained from a set of homogeneous equations fol-

lowing from the boundary conditions as shown earlier, the

displacements turn out be ux; wx / cos qx, uz; wz / sin qx.

Although the longitudinal and transverse displacements

depend on position x along channel length h, the ratio of lon-

gitudinal displacements ux=wx and that of the transverse

displacements uz=wz taken at the metal surfaces are independ-

ent of x. In general, for any metal combination, the ratio

uz=wz > 0 for slow mode and uz=wz < 0 for fast mode.

In particular, it can be calculated that for a channel of length

h ¼ 3 mm and aperture d ¼ 2:5 mm, the ratio of the trans-

verse displacements of aluminum to brass uz=wz ¼ �1:3, and

the ratio of the longitudinal displacements ux=wx ¼ 0:91.

These values are in a good agreement with numerical simula-

tion shown in Fig. 8.

The difference in the polarizations of slow and fast

mode appears as a phase shift between the vibrations of the

FIG. 7. (Color online) Measured resonant frequencies of the minima of

transmission at different apertures d of the water channel. It is clear from

the above figure that the fast mode has a critical minimum aperture at

around dmin ¼ 0:75 mm. On the contrary, the slow mode does not have a

critical minimum aperture.
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metal plates. It is easy to demonstrate that the phase shift

between the vibrations of the plates is independent of the

elastic properties of the plates. However, the relative ampli-

tudes of the displacements (longitudinal, ux; wx and trans-

verse, uz; wz) change with the type of metals. For the plates

of identical metals the amplitudes of longitudinal and trans-

verse vibrations possess the following symmetry: uxðx; zÞ
¼ �wxðx;�zÞ, uzðx; zÞ ¼ wzðx;�zÞ for slow mode, and

uxðx; zÞ ¼ wxðx;�zÞ, uzðx; zÞ ¼ �wzðx;�zÞ for fast mode.

Relating polarization of the mode to the symmetry of its

transverse displacement, we conclude that the slow mode is

antisymmetric and the fast mode is symmetric. In the case of

different metals the symmetry is broken and we refer to the

polarizations as being quasi-antisymmetric and quasi-

symmetric. At this point it is worthwhile to note that the ab-

sence of resonances n ¼ 2,3 in Fig. 2 could be attributed to

the fact that the metal plates are fixed in place by sample

holder (see Fig. 1). It is possible that the fixation of metal

plates by their upper part allows longitudinal and transverse

displacements in a way that does not permit certain resonances

to manifest. However, to verify this possibility, it is desirable

to carry out further experimental investigation and analysis of

the displacements of the center of mass of the metal plates.

VII. CONCLUSION

We have studied extraordinary attenuation of acoustic

energy due to resonant excitation of Rayleigh waves in a fi-

nite length water channel clad between two unidentical metal

plates. We derived the dispersion equation for the channel

eigenmodes and calculate the resonant frequencies which

coincide with those observed in the experiment. Two

eigenmodes with different polarizations and phase velocities

are obtained from the dispersion equation. For the case of

unidentical metals these modes do not possess definite sym-

metry (like symmetric and antisymmetric modes for a chan-

nel formed by identical metals) and we label them by slow

and fast modes. For the fast mode we observe an interesting

effect of cutoff at certain critical aperture. This cutoff is un-

usual for sound wave which penetrates freely through any

narrow aperture. Precise measurements of a slight shift of

the resonance minima in the transmission spectra with the

channel aperture confirm the theoretically predicted effect of

coupling and synchronization of the Rayleigh waves. Due to

high level of attenuation this effect may be used in designing

of metamaterial acoustic screeners. To increase the width of

the attenuation band we plan to study similar effect in a set

of subwavelength periodic slits. The methods discussed in

this paper may also be used in non-destructive testing for

layered media.

ACKNOWLEDGMENTS

Work supported by the DOE Grant No. DE-FG02-

06ER46312, and by the ONR Grant No. N00014-12-1-0216.

A.K. acknowledges the support from the Spanish MEC

under Grant No. SAB2009-0006 and the UPV program

“Ayda para Estancia de Investigadores de Prestigio.” We

thank Ciprian Sarl for technical support. T.L.-R. acknowl-

edges useful discussions with P. Halevi and A. Wirgin.

1P. M. Morse and P. J. Rubenstein, “The diffraction of waves by ribbons

and by slits,” Phys. Rev. 54, 895–898 (1938).
2H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66,

163–182 (1944).
3A. Sommerfeld, Optics (Academic, New York, 1954), pp. 207–246.
4J. W. Strutt and B. Rayleigh, The Theory of Sound (Dover Publications,

New York, 1945), pp. 1–480.
5S. Tinti, “Diffraction by a thick slitted screen,” J. Acoust. Soc. Am. 65,

888–895 (1979).
6G. P. Wilson and W. W. Soroka, “Approximation to the diffraction of

sound by a circular aperture in a rigid wall of finite thickness,” J. Acoust.

Soc. Am. 37, 286–297 (1965).
7A. N. Norris and H. A. Luo, “Acoustic radiation and reflection from a peri-

odically perforated rigid solid,” J. Acoust. Soc. Am. 82, 2113–2122

(1987).
8B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, “Tuning

Fabry–Perot resonances via diffraction evanecent waves,” Phys. Rev. 76,

054303–054308 (2007).
9T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff,

“Extraordinary optical transmission through sub-wavelength hole arrays,”

Nature 391, 667–669 (1998).
10H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbeson, and H. J. Lezec,

“Surface plasmons enhance optical transmission through subwavelength

holes,” Phys. Rev. 58, 6779–6782 (1998).

FIG. 8. (Color online) Numerical (COMSOL) simulations for the longitudinal

(ux, wx) (a) and transverse (uz, wz) (b) displacements of the both metal plates

induced by propagating plane wave with f ¼ 368:5 kHz in water channel

with h ¼ 3 mm and d ¼ 2:5 mm. This frequency corresponds to the first

minimum in the transmission spectra in Fig. 2. The ratios of longitudinal to

transverse displacements plotted using COMSOL and the theory are in a good

agreement.

2814 J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012 Garcia-Chocano et al.: Resonant coupling of Rayleigh waves

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 11 Sep 2015 22:56:16



11M.-H. Lu, X.-K. Liu, L. Feng, J. Li, C.-P. Huang, Y.-F. Chen,Y.-Y. Zhu,

S.-N. Zhu, and N.-B. Ming, “Extraordinary acoustic transmission through

a 1D grating with very narrow apertures,” Phys. Rev. Lett. 99, 174301

(2007); Y. Zhou, M.-H. Lu, L. Feng, X. Ni, Y.-F. Chen, Y.-Y. Zhu, S.-N.

Zhu, and N.-B. Ming, “Acoustic surface evanescent wave and its dominant

contribution to extraordinary acoustic transmission and collimation of

sound,” ibid. 104, 164301 (2010).
12H. Estrada, P. Candelas, A. Uris, F. J. Garcia de Abajo, and F. Meseguer,

“Extraordinary sound screening in perforated plates,” Phys. Rev. Lett.

101, 084302–084305 (2008).
13J. Christensen, L. Mart�ın-Moreno, and F. J. Garc�ıa-Vidal, “Enhanced

acoustical transmission and beaming effect through a single aperture,”

Phys. Rev. 81, 174104–174109 (2010).
14H. Estrada, F. J. Garcia de Abajo, P. Candelas, A. Uris, F. Belmar, and

F. Meseguer, “Angle-dependent ultrasonic transmission through plates

with subwavelength hole arrays,” Phys. Rev. Lett. 102, 144301–144304

(2009).
15I. S. Spevak, A. Yu. Nikitin, E.V. Bezuglyi, A. Levchenko, and A. V.

Kats, “Resonantly suppressed transmission and anomalously enhanced

light absorption in periodically modulated ultrathin metal films,” Phys.

Rev. 79, 161406–161409 (2009).
16T. M. Slipchenko, D. V. Kadygob, D. Bogdanis, V. A. Yampolskii, and

A. A. Krokhin, “Surface and waveguide Josephson plasma waves in slabs

of layered superconductors,” Phys. Rev. 84, 224512 (2011).
17V. M. Garcia-Chocano, T. Lopez-Rios, A. Krokhin, and J. Sanchez-Dehesa,

“Resonant excitation of coupled Rayleigh waves in a short and narrow

fluid channel clad between two identical metal plates,” AIP Adv. 1, 041501

(2011).
18P. P. Lloyd and M. Redwood, “Wave propagation in a layered plate

composed of two solids with perfect contact, slip, or a fluid layer at their

interface,” Acustica 16, 169–173 (1965).
19P. W. Staecker and W. C. Wang, “Propagation of elastic waves bound to a

fluid layer between two solids,” J. Acoust. Soc. Am. 53, 65–74 (1973).

20W. Hassan and P. B. Nagy, “On the low-frequency oscillation of fluid layer

between two elastic plates,” J. Acoust. Soc. Am. 102, 3343–3348 (1997).
21J. Laperre and W. Thys, “Mode coupling in solid/liquid/solid trilayers,”

J. Acoust. Soc. Am. 96, 1643–1650 (1994).
22O. Lenoir, J-L. Izbicki, M. Rousseau, and F. Coulouvrat, “Subwavelength

ultrasonic measurement of a very thin fluid layer thickness in a trilayer,”

Ultrasonics 35, 509–515 (1997).
23J. Christensen, L. Mart�ın-Moreno, and F. J. Garc�ıa-Vidal, “Theory of reso-

nant acoustic transmission through aubwavelength apertures,” Phys. Rev.

Lett. 101, 014301–014304 (2008).
24Z. Liang and J. Li, “Extreme acoustic metamaterial by coiling up space,”

Phys. Rev. Lett. 108, 114301 (2012).
25I. A. Viktorov, Rayleigh and Lamb Waves (Plenum, New York, 1967),

Chap. 1.
26L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-

Heinemann, London, 1987), pp. 1–552.
27An eigenmode propagating slower than sound in fluid has been predicted

in Ref. 19.
28C. T. Schr€oder and W. R. Scott, Jr., “On the complex conjugate roots of

the Rayleigh equation: The leaky surface wave,” J. Acoust. Soc. Am. 110,

2867–2877 (2001).
29N. E. Glass and A. A. Maradudin, “Leaky surface-elastic waves on both

flat and strongly corrugated surfaces for isotropic, nondissipative media,”

J. Appl. Phys. 54, 796–805 (1983).
30E. Smith, P. S. Wilson, F. W. Bacon, J. F. Manning, J. A. Behrens, and

T. G. Muir, “Measurement and localization of interface wave reflections

from a buried target,” J. Acoust. Soc. Am. 103, 2333–2343 (1998).
31Q. Qi, “Attenuated leaky Rayleigh waves,” J. Acoust. Soc. Am. 95,

3222–3231 (1994).
32A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic quarter space

revisited,” Wave Motion 35, 91–98 (2002).
33H. Estrada, J. M. Bravo, and F. Meseguer, “High sound screening in low

impedance slit arrays,” New J. Phys. 13, 043009 (2011).

J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012 Garcia-Chocano et al.: Resonant coupling of Rayleigh waves 2815

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 11 Sep 2015 22:56:16


	s1
	n1
	s2
	f1
	d1
	s3
	d2
	d3
	d4
	d5
	d6
	f2
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	s4
	d14
	f3
	d15
	d16
	s5
	f4
	d17
	f5
	f6
	s6
	f7
	s7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	f8
	c11
	c11a
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33

