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The acoustic cloaking theory of Norris [Proc. R. Soc. London, Ser. A 464, 2411–2434 (2008)] per-

mits considerable freedom in choosing the transformation f from physical to virtual space. The stand-

ard process for defining cloak materials is to first define f and then evaluate whether the materials are

practically realizable. In this paper, this process is inverted by defining desirable material properties

and then deriving the appropriate transformations which guarantee the cloaking effect. Transforma-

tions are derived which result in acoustic cloaks with special properties such as (1) constant density,

(2) constant radial stiffness, (3) constant tangential stiffness, (4) power-law density, (5) power-law

radial stiffness, (6) power-law tangential stiffness, and (7) minimal elastic anisotropy.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744938]

PACS number(s): 43.20Mv, 43.40.Sk, 43.30.Wi, 43.20.El [AMJD] Pages: 2932–2941

I. INTRODUCTION

“Acoustic cloaking” refers to making an object invisible

to sound waves. This is achieved by enclosing the object of

interest with an acoustic cloak which guides waves around

the object. The cloak leaves the wave-field outside the cloak

indistinguishable from the wave-field without the object

present. The phenomenon of cloaking is not restricted to

acoustics but can occur for different types of waves such as

electromagnetic waves,1 elastic waves,2 and in a more exotic

example, quantum mechanical systems.3 We restrict our

attention here to acoustic cloaking, and specifically pentam-

ode acoustic cloaking for which the density is isotropic. The

reader is referred to the review articles by Bryan and Leise4

and Greenleaf et al.5 for a comprehensive review of different

types of cloaking, its historical development and relation to

previous work in inverse problems.6 A review dedicated to

acoustic cloaking and transformation acoustics is provided

by Chen and Chan.7

Initial work in acoustic cloaking8–10 was based on trans-

formation optics as developed by Cummer et al.8 mapped

the 2D acoustic equations in a fluid to the single polarization

Maxwell’s equations, while Chen et al.9 mapped the 3D

acoustic equation to the direct current conductivity equation

in 3D. Cummer et al.10 derived a formulation for 3D acous-

tic cloaking starting from scattering theory. These formula-

tions achieved acoustic cloaking using anisotropic density

and isotropic stiffness. Norris11 provided a formulation of

acoustic cloaking which using both anisotropic inertia and

stiffness, and as a special case, derived a formulation using

isotropic density and anisotropic stiffness.

The acoustic cloaking theory of Norris11 involves map-

ping the physical space to the virtual space using the trans-

formation f as illustrated in Fig. 1. The material properties of

the cloak can be obtained by choosing the transformation f

and using Eq. (3) to compute the material properties. In prac-

tice, however, the properties obtained may not be useful

because they are unattainable. In this paper, we derive spe-

cial forms of f which may result in physically realizable

cloaking metamaterials, which are composite materials

whose macroscopic acoustic properties are controlled by en-

gineering their microstructure. The design and fabrication of

such acoustic metamaterials is possible because of recent

advances in material science and engineering. Cloaking

metamaterials may have spatially varying anisotropic den-

sity and stiffness. We restrict our attention here to spatially

varying material properties with isotropic density and aniso-

tropic stiffness because Norris11 showed that anisotropic

density implies that the acoustic cloak has infinite mass. He

presented an alternative acoustic cloaking formulation

involving pentamode materials which have isotropic density

and a special type of anisotropic stiffness. Since cloaking is

achieved with anisotropic stiffness as opposed to density, it

is expected to have frequency independent behavior in

theory. In practice, however, the behavior is expected to be

only extremely wideband or weakly frequency dependent

because of frequency limitations arising from the following.

The size of the virtual cloak radius d as compared to the

wave-length of the incident acoustic wave k. Cloaking is

ineffective for incident acoustic waves whose wavelength is

of the same order as the virtual cloak radius d.

The length scale of periodic structures present in the

composite material used to fabricate the pentamode material.

An intrinsic frequency dependence in the properties of

the composite material.

The paper is organized as follows. Section II provides

a short review of the pentamode acoustic cloaking theory.11

Next, in Sec. III, we derive transformations f which yield

specialized spatial distributions of material properties,

namely, (1) constant density, (2) constant radial stiffness,

(3) constant tangential stiffness, and explain the wave-

propagation with ray-tracing. Such distributions may be

simple to manufacture and may also help in evaluating the
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feasibility of manufacturing material properties on Ashby

charts, as in Ref. 12. We note that in related work,

Cummer13 has derived transformations for electromagnetic

cloaking which yield constant magnetic permittivity �/. In

Sec. IV we derive transformations which yield (1) power-

law density, (2) power-law radial stiffness, and (3) power-

law tangential stiffness. In Sec. V, we derive a distribution

of elastic properties that minimizes the elastic anisotropy.

II. REVIEW OF ACOUSTIC CLOAKING USING
PENTAMODE MATERIALS

Acoustic cloaking relies on a transformation from an

undeformed or original domain X to a current (deformed)

domain x which is given by the point-wise deformation X

� X! x � x. Using notation from the theory of finite elas-

ticity, the deformation gradient is defined F¼rXx, or in

component form FiI¼ @xi/@XI. The Jacobian of the deforma-

tion is J¼ det F, or in terms of volume elements in the two

configurations, J¼ dv/dV. The polar decomposition is

F¼VR, where R is proper orthogonal (RRt¼RtR¼ I, det

R¼ 1) and the left stretch tensor V is the positive definite so-

lution of V2¼B where B is the left Cauchy–Green or Finger

tensor B¼FFt.

For a given transformation the cloaking material is not

unique.11 For instance, the inertial cloak [Eq. (2.8)]11 is

defined by the density tensor q¼q0JB�1 and bulk modulus

K¼K0J. At the other end of the spectrum of possible materi-

als is the pentamode cloak with isotropic density, which can

be chosen if the deformation satisfies the property11 (Lemma

4.3) that there is a function h(x) for which div hV¼ 0. This

is the case for radially symmetric deformations in 2D and

3D, the cylinder and sphere, respectively. The pentamode

material is then [Eq. (4.8)]11 q¼ q0J�1, K¼K0J, S¼ J�1V,

where the fourth order elasticity tensor is C¼KS � S.

Radially symmetric deformations in 2D and 3D are

defined by R�1X¼ r�1x where R¼ jXj, r¼ jx|. If we let

R¼ f(r), then the inverse mapping is defined as X¼ f(r)r�1
x.

In this case we can identify a “radial bulk modulus” and

an orthogonal bulk modulus

Kr ¼ Crrrr ¼ K0J�1Brr; K? � K0J�1Bhh; (1)

where h denotes a direction orthogonal to the radial

direction.

The requirements on the transformation generator f(r)

admit an infinity of functions. In this paper, we will take

advantage of this fact to design transformations which result

in desirable material properties. One familiar transformation,

used frequently in acoustic cloaking work, is shown in

Fig. 1. Some examples from the infinite family of permissi-

ble transformations are

R ¼ f ðrÞ

¼

b� d
b� a

� �
r � b

a� d
b� a

� �
; ð2aÞ

b
r

b

� �lnðb=dÞ=lnðb=aÞ
; ð2bÞ

bd � dd

bd � ad

� �
rd � ad � dd

bd � ad

� �
bd

� �1=d

; ð2cÞ

8>>>>>>>>><
>>>>>>>>>:

where b, a, and d are the outer radius of the cloak, the inner

radius of the cloak, and the virtual cloak radius, as shown in

Fig. 1. The linear transformation (2a) is known as the

KSVW mapping from Ref. 14 in which it was first used

extensively in this form. Figure 2(a) shows rays passing

through a KSVW cloak. The power law mapping (2b) yields

constant qr for the inertial cloak and constant Kr for the pen-

tamode cloak in 2D. As we will see below, the transforma-

tion (2c) yields constant K for the inertial cloak or constant q
for the pentamode cloak (see Figs. 3–5).

III. TRANSFORMATIONS YIELDING CONSTANT
MATERIAL PROPERTY DISTRIBUTIONS

In this section we determine the transformations f that

yield constant spatial distributions of material properties.

We consider a constant distribution of q in Sec. III A, con-

stant Kr in Sec. III B, and constant K? in Sec. III C, respec-

tively. Both 2D and 3D cases are considered. The conditions

for feasibility are summarized in Table I.

The density q (isotropic), the radial stiffness Kr, and the

tangential stiffness K? for a pentamode cloak surrounded by

an isotropic fluid with density q0 and bulk modulus K0 sat-

isfy the following relations:

KrðrÞ ¼ K0

1

f 0
f

r

� �d�1

; K?ðrÞ ¼ K0 f 0
f

r

� �d�3

;

qðrÞ ¼ q0f 0
f

r

� �d�1

: (3)

Our procedure to determine f consists of treating Eq. (3) as

differential equations for f with the material properties

(q, Kr, K?) known. Having determined f we will prove that it

satisfies the necessary conditions f> 0, f 0> 0 for r � [a, b],

the existence of b such that f(b)¼ b, and the existence of d
such that f(a)¼ d� a.

FIG. 1. (Color online) The transformation f from physical space (right) to

virtual space (left). The particular mapping shown is the linear mapping of

Eq. (2).
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We remark that Eq. (3) is consistent with the connection

between the three parameters which is independent of the

transformation:

K�d
0 KrK

d�1
? ¼ ðq=q0Þd�2: (4)

Equation (3) also implies that at the edge of the cloak, the

cloak is impedance matched in the radial direction but not in

the tangential direction:

ZrðrÞ �
ffiffiffiffiffiffiffiffi
Krq

p
) ZrðbÞ ¼

ffiffiffiffiffiffiffiffiffiffi
K0q0

p
� Z0;

Z?ðrÞ �
ffiffiffiffiffiffiffiffiffi
K?q

p
) Z?ðbÞ ¼ Z0f 0ðbÞ: (5)

In contrast, at the edge of the cloak, the wave speeds are

matched in the tangential direction, but not in the radial

direction:

crðrÞ �
ffiffiffiffiffiffiffiffiffiffi
Kr=q

p
) crðbÞ ¼ c0=f 0ðbÞ;

c?ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
K?=q

p
) c?ðbÞ ¼ c0: (6)

A. Transformations yielding constant cloak density q

We assume that we are given the cloak geometry

b> a> 0, and using Eq. (3) and q(r)¼qc, a constant, we

determine f and prove that f> 0, f0> 0 for r � (a, b). Solving

(3) for f yields

FIG. 2. (Color online) Rays for KSVW, constant density, constant stiffness, and optimal anisotropy cloaks in 2D, a¼ 1, b¼ 3.
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f ¼ bd þ qc

qd

ðrd � bdÞ
� �1=d

; (7)

and differentiating implies f 0> 0 for qc> 0, showing that f is

monotonically increasing. Since f(a)¼ d> 0, f> 0 � (a, b).

Enforcing d¼ f(a)< a yields qc> q0. This result makes

physical sense because the deformation f�1 compresses the

volume of fluid into a smaller volume. Kr, K? are determined

by using f in Eq. (3) and are given by

Kr ¼ K0

q0

qc

f

r

� �2ðd�1Þ
; K? ¼ K0

qc

q0

r

f

� �2

: (8)

Similarly d and its sensitivity can be determined by

d ¼ bd þ qc

q0

ðad � bdÞ
� �1=d

;
@d
@qc

¼ ad � bd

q0ddd�1
< 0: (9)

Finally, note that, Kr / d2(d�1) and K? / d�2 In 3D this

implies a very strong decrease in Kr with d.

We note that rays in the cloak are straight lines in

deformed space.11 This allows us to trace the rays for the con-

stant density cloak by deforming the straight rays correspond-

ing to a plane wave traveling through a homogeneous

medium by the inverse transformation f�1. Ray-tracing results

FIG. 3. (Color online) Rays for power law Kr, with parameters a¼ 1, b¼ 3,

a¼ 3.

FIG. 4. (Color online) Rays for power law q, with parameters a¼ 1, b¼ 3,

a¼ 3.
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are shown in Fig. 2(b), from which we can see that the rays

curve gently in the outer region of the cloak and sharply close

to the inner radius. In our experience, the smooth nature of

this propagation makes it easy for this to be simulated with

standard linear finite elements.15

B. Transformations yielding constant radial stiffness
Kr

We formulate the problem by assuming that we are

given a> d> 0 and Kr constant. As before, start with the

expression for Kr from Eq. (3), and treat it as an ordinary dif-

ferential equation for f and get

ð
f 0

f d�1
dr ¼ K0

kr

ð
dr

rd�1
: (10)

The solution is different for 2D and 3D and is determined

separately in the next two subsections

1. Transformation yielding constant Kr in 2D

The transformation f in 2D can be determined by solving

Eq. (10) to get

f ¼ b
r

b

� �K0=Kr

> 0; f 0 ¼ K0

Kr

f

r
> 0: (11)

The cloak parameters then follow from Eq. (3) as

q ¼ q0

K0

Kr

r

b

� �2ðK0=Kr�1Þ
; Kr ¼

K2
0

K?
¼ K0

ln a=b

ln d=b
;

d ¼ a
a

b

� �K0=Kr�1

;
@d
@Kr
¼ d

Kr
ln

b

d

� �
> 0: (12)

We prove that given a> d> 0, it is possible to find b such

that b > a > d > 08Kr ¼ const > 0; Kr 6¼K0. Since d=a
< 1 and a< b, the exponent K0=Kr � 1 in Eq. (12) must

be positive to ensure b> a, i.e., 0<Kr<K0 must hold

for constant Kr cloaks in 2D. This shows that the cloak

outer radius is greater than the inner radius, making the

cloak physically realistic.

This case is of interest because the only parameter that

varies with r is the density. At the outer radius

qðbÞ ¼ q0ðK0=KrÞ > q0, and the value at the inner radius is

q(a)¼ q(b)(d/a)2.

The rays for a constant Kr cloak in 2D are shown in Fig.

2(c). Unlike the rays for the constant density cloak shown in

Fig. 2(b), the rays for constant stiffness curve sharply at the

outer surface of the cloak. In our experience, the propagation

of waves near the surface is extremely hard to capture with

standard linear, time-domain, finite elements, possibly due to

sharp change in the direction of propagation. The required

element density is in the order of hundreds of elements per

shortest wavelength. This is contrast to the rule of thumb in

transient, explicit finite element analysis in which typically

sixteen elements per shortest wavelength are used.

FIG. 5. (Color online) Rays for power law q, with parameters a¼ 1, b¼ 3,

a¼�3.

TABLE I. Feasibility of constant material properties in 2D (d¼ 2) and 3D

(d¼ 3).

Constant d¼ 2 d¼ 3 Conditions other than q0, K0> 0

q � � qc>q0

Kr � � Conditional in 3D, Kr <
K0d

a ; Kr > 0

K? � � Conditional in 3D, K0<K?
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2. Transformation yielding constant Kr in 3D

Treating Eq. (10) with d¼ 3 as a differential equation

for f with Kr known and constant, gives

f ¼ 1

b
þ K0

Kr

1

r
� 1

b

� �� ��1

and f 0 ¼ K0

Kr

f

r

� �2

> 0:

(13)

Using the above definition of f in Eq. (3) we get

q ¼ q0

K0

Kr

bKr

bK0 þ rðKr � K0Þ

� �4

; (14a)

K? ¼ Kr
bK0

bK0 þ rðKr � K0Þ

� �2

; (14b)

d ¼ f ðaÞ ¼ abKr

bK0 þ aðKr � K0Þ
: (14c)

We now prove that under certain conditions it is possible to

find b such that b> a> d> 0, meaning that the cloak outer ra-

dius is greater than the cloak inner radius. As a consequence

we prove that f> 0. We start by rewriting Eq. (14c) as

b

a
¼ K0

Kr
� 1

� �	
K0

Kr
� a

d

� �
: (15)

To ensure b=a > 1, we require Kr < K0ðd=aÞ. Since, f0> 0 �
(a, b) and f(a)¼ d> 0, it follows that f is monotonic in the

interval (a, b) and therefore f> 0 � (a, b). Note that, if d� a
) Kr�K0. Since K? ¼ K2

0=Kr , this means K? � Kr . Thus,

to ensure a small scattering cross section we need a material

which is very stiff in one direction (?) as compared to the other

(r). We expect that such a material will require careful engi-

neering, and such practical constraints may restrict the amount

of reduction in the scattering cross section that can be achieved.

C. Transformations with constant tangential
stiffness K?

1. Transformations yielding constant K? in 2D

In two dimensions, constant K? is the same as constant Kr

(which was previously considered), because KrK? ¼ K2
0 in 2D.

2. Transformations yielding constant tangential
stiffness in 3D

We formulate the problem as follows. We consider that

we are given a> d> 0. We need to find a f> 0, f0> 0 satisfy-

ing f(a)¼ d, f(b)¼ b, b> a. We treat Eq. (3) as a differential

equation for f and obtain after using the boundary condition

f(a)¼ d,

f ðrÞ ¼ dþ K?
K0

ðr � aÞ > 0 and f 0 ¼ K?
K0

> 0; (16)

for r� a. Using b¼ f(b)> a yields the condition K?>K0.

The constant K? cloak in three dimensions is characterized

by f of Eq. (16) and

q ¼ q0

K?
K0

d
r
þ K?

rK0

ðr � aÞ
� �2

;

Kr ¼
K3

0

K2
?

q
q0

; d ¼ b� K?
K0

ðb� aÞ: (17)

Note that this is the same transformation as the KSVW trans-

formation in Eq. (2)

IV. TRANSFORMATIONS YIELDING POWER LAW
PROPERTY VARIATION IN 2D

We now consider more complicated spatial distributions

for the material properties, namely, power law variations of

density, radial stiffness tangential stiffness, and a case in

which density is proportional to stiffness. This treatment is

restricted to two dimensions.

A. Transformations yielding power law density

Consider the following strategy: Given b> a> d> 0,

a 6¼ 0, we determine q(a)¼qa that ensures f(b)¼ b and prove

that qa> 0. The power law for density we consider is as follows:

qðrÞ ¼ qa

r

a

� �a
)

ð
ff 0dr ¼ qa

q0

ð
raþ1

aa
dr; (18)

where the latter is a consequence of Eq. (3). The cases

a 6¼�2 and a¼�2 need to be considered separately. To

summarize, the power law density cloak in two dimensions

is characterized by Eq. (18), with

f 2 ¼ d2 þ 2
qa

q0

ðraþ2 � aaþ2Þ
aaðaþ 2Þ ; for a 6¼ �2;

qa ¼ q0

ðaþ 2Þ
2

aaðb2 � d2Þ
ðbaþ2 � aaþ2Þ ; (19)

and

f 2 ¼ d2 þ 2a2 qa

q0

ln
r

a

� �
; for a ¼ �2;

qa ¼ q0

ðb2 � d2Þ

2a2ln
b

a

; (20)

and in both cases,

f 0 ¼ raþ1qa

faaq0

; Kr ¼ K0

q0

qa

aaf 2

raþ2
: (21)

Note that the a¼ 0 corresponds to the special case of con-

stant density in 2D, considered in Sec. III A. To prove qa> 0

for a 6¼�2, consider the two cases a>�2 and a<�2. In

the first case we have, baþ2> aaþ2, and therefore qa> 0. In

the second case, we have, baþ2< aaþ2. In addition, aþ 2< 0

and therefore (aþ 2)/(ba þ 2� aa þ 2)> 0. Hence qa> 0 in

this case as well. The same argument, substituting r for b
can be used to prove f2> 0, and choosing the positive root,

we get f> 0. The positivity of f0 follows. A similar analysis

can be performed for a¼�2. The rays resulting from this
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power law density transformation are shown in Figures 4

and 5, respectively.

B. Transformations yielding power law radial stiffness
Kr

Here, we consider the following power law for Kr

KrðrÞ ¼ Ka
r

a

� �a
; a 6¼ 0: (22)

The case a¼ 0 (constant Kr) was considered in Sec. III B.

Given b> a> d, a 6¼ 0, we find what value of Ka ensures that

f(b)¼ b. We then prove this Ka> 0. Using Eqs. (3) and (22)

plus the boundary conditions f(a)¼ d and f(b)¼ b, we get

f ¼ d exp
K0

Kaa
1� a

r

� �a� �
 �
; (23a)

f 0 ¼ f
K0

Ka

aa

raþ1
; (23b)

Ka ¼
K0

a ln
b

d

� � 1� a

b

� �a� �
; (23c)

q ¼ q0

f 2

r

K0

Ka

aa

raþ1
; (23d)

each of which is clearly positive. The rays resulting from

this power law radial stiffness transformation are shown in

Figure 6.

C. An acoustic concentrator

Motivated by the form of Eq. (23a), we consider the trans-

formation r¼ b(R/b)(10) or equivalently, R¼ f(r)¼ b(r/b)1/10,

yielding the rays shown in Fig. 6. The focus of the rays can

be made arbitrarily tight. The process can also be reversed:

one can place a source at the focus and convert a cylindrical

wavefront generated by a point source into a plane wave-

front. Similar work on designing acoustic concentrators

using transformation acoustics has been recently reported in

Wang et al.16 Previously, Rahm et al.17 reported the design

of electromagnetic concentrators.

D. Transformations yielding power law tangential
stiffness

In two dimensions, this is equivalent to power law Kr,

because K? ¼ K2
0=Kr.

E. Transformations yielding proportional density
and radial stiffness

Since density is usually associated with stiffness, we

consider a power law linking density with stiffness in the ra-

dial direction. This power law is defined as

Kr ¼ bqa; (24)

for a, b(> 0) constant. Using the pentamode relations (3) for Kr

and q in the above equation, we get a differential equation for f

f k�1f 0 ¼ xkrk�1; (25)

where

k ¼ ad þ 2� d

aþ 1
; x ¼ K0

bqa
0

� �1=ðaþ1Þk
: (26)

FIG. 6. (Color online) Rays for an acoustic concentration f(r)¼ b(r/b)1/10.
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When k 6¼ 0, Eq. (25) yields

f ðrÞ ¼
�
dk þ xkðrk � akÞ

�1=k
: (27)

This equation is not consistent with the constraint that

f(b)¼ b> a if k< 0, in general. For k> 0, setting f(b)¼ b
yields

d ¼
�

bk � xkðbk � akÞ
�k
: (28)

Requiring that 0< d< a implies the a range of possible val-

ues for b. The special case of k¼ 0, i.e., a¼ (d� 2)/3, needs

to be distinguished. In 2D, this means a¼ 0 and therefore

Kr¼ const, and is therefore not interesting. In 3D, this

implies, a ¼ 1=3, and Eq. (25) can be integrated to give a

power law solution for f(r),

f ¼ b
r

b

� �l
; l ¼ K0

bq1=3
0

 !3=4

d ¼ 3; a ¼ 1

3

� �
: (29)

In this case, d ¼ bða=bÞl, which is clearly positive, satisfies

the constraint d< a only if l> 1 or, equivalently,

b < K0=q
1=3
0 , setting an upper limit on b.

In summary, Eq. (24) has cloak-like solutions for a� 0

in 2D, and a � 1=3 in 3D, with associated limits on the pos-

sible range in value of the parameter b.

V. TRANSFORMATIONS YIELDING MINIMAL ELASTIC
ANISOTROPY

Here, we consider acoustic cloaks which have minimal

elastic anisotropy in a certain sense. We are motivated by

the fact that extremely anisotropic materials are hard to

design and manufacture. Minimizing anisotropy therefore

may lead to a practical cloak. We begin by defining two

measures of anisotropy in equation (31) and prove that only

one of them yields physically meaningful transformations.

A. Optimal transformations in cylindrical cloaks

We define the following parameter to be a local measure

of the anisotropy in the cloak:

c ¼ aþ 1

a
; where a ¼ cr

c?
: (30)

This is the same anisotropy parameter introduced in Ref. 18.

It can be shown that the minimum value of Eq. (30) is 2 and

it occurs for a¼ 1, i.e., when there is no anisotropy. Based

on Eq. (30) we introduce two global measures of cloak

anisotropy,

c1 ¼ V�1
x

ð
X
cdV; c2 ¼ V�1

X

ð
x
cdv; (31)

where Vx, VX, are the volumes (areas) in the physical and

virtual domains, respectively. It follows from Eq. (1) and the

identity (4) for d¼ 2 ðK2
0 ¼ KrK?Þ that

J�1 tr B ¼ Kr

K0

þ K?
K0

¼
ffiffiffiffiffiffiffi
Kr

K?

r
þ

ffiffiffiffiffiffiffi
K?
Kr

r
¼ c: (32)

Similarly,

J tr B�1 ¼ K0

Kr
þ K0

K?
¼

ffiffiffiffiffiffiffi
Kr

K?

r
þ

ffiffiffiffiffiffiffi
K?
Kr

r
¼ c: (33)

Based on the identities (32) and (33), it follows that

c1 ¼ V�1
x

ð
x

tr B�1dv ¼ V�1
x

ð
x

@Xi

@xj
;
@Xi

@xj
dv; (34a)

c2 ¼ V�1
X

ð
X

tr BdV ¼ V�1
X

ð
X

@xi

@Xj
;
@xi

@Xj
dV: (34b)

The parameter c1 is therefore the average in the current con-

figuration of the sum of the principal stretches of the map-

ping from the original (virtual) domain. Conversely, c2 is the

average in the original configuration of the sum of the princi-

pal stretches of the inverse mapping from the current (spa-

tial) domain.

The global anisotropy measures c1 and c2 are minimized

by the Euler–Lagrange equations. Consider c1, then assum-

ing x is fixed, we have

dc1 ¼ 2V�1
x

ð
x

@Xi

@xj
d
@Xi

@xj

� �
dv

¼ 2

Vx

ð
@x

@Xi

@xj
dXinjds�

ð
x

@2Xi

@xj@xj
dXi

� �
dv:

The surface integral vanishes because, by assumption, the

value of X on the boundary of Vx is constant (in fact X¼ x

is required on @x), and therefore we deduce

min c1 () r2X ¼ 0 in x; (35a)

min c2 () r2
Xx ¼ 0 in X: (35b)

It is interesting to note that these equations are satisfied by

conformal transformations, a large class of potential trans-

formations. Here, however, we restrict attention to purely ra-

dial transformations.

Consider (35a) first. Assuming the inverse mapping

X¼ f(r)r�1x then it is straightforward to show that

r2
X¼ [r(rf0)0 � f](fr2)�1

X, and Eq. (35a) is satisfied if

f¼ArþBr�1, for constants A and B. As before, we assume

the cloak occupies R � [d, b], r � [a, b] with 0< d< a< b.
The constants are then found from the conditions f(a)¼ d
and f(b)¼ b, yielding

f ðrÞ ¼ ðb2 � a2Þ�1 ðb2 � adÞr � ða� dÞb2 a

r

h i
: (36)

The same result can be found by noting that the anisotropy

parameter of Eq. (34a) reduces for radially symmetric trans-

formations to
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c1 ¼
d

bd � ad

ðb

a

ðf 0Þ2 þ ðd � 1Þ f

r

� �2
" #

rd�1dr; (37)

for d¼ 2 or d¼ 3. The minimizer satisfies the Euler–

Lagrange equation r3�d(rd�1f0)0 � (d � 1)f¼ 0, which for

d¼ 2 gives Eq. (36). In the same way, we find that Eq. (35b)

is satisfied if r¼ARþBR�1, for constants A and B. The end

conditions r(d)¼ a and r(b)¼ b imply that the transforma-

tion which minimizes c2 is

r ¼ ðb2 � d2Þ�1 ðb2 � adÞRþ ða� dÞb2 d
R

� �
: (38)

However, this transformation function is generally not one-

to-one. The problem is illustrated in Fig. 7, and comes from

the fact that dr/dR¼ 0 at some value of R � (d, b).

This cannot occur for the mapping function (36). Conse-

quently equation (36) is a valid transformation for acoustic

cloaking while equation (38) is not.

B. Optimal transformation for spherical cloaks

We now take Eqs. (34a) and (34b) as the definition of the

global anisotropy measures. Using again the inverse mapping

X¼ f(r)r�1x it follows that r2X¼ [(r2f0)0 � 2f](fr2)�1X. The

transformation which minimizes c1 is therefore

f ðrÞ ¼ ðb3 � a3Þ�1 ðb3 � a2dÞr � ða� dÞb3 a2

r2

� �
: (39)

The transformation which minimizes c2 is

r ¼ ðb3 � d3Þ�1 ðb3 � ad2ÞRþ ða� dÞb3 d2

R2

� �
; (40)

but this again has the unphysical nature found for the 2D

case. We conclude that minimization of c2 using a single val-

ued function does not appear to have a single or unique

solution. C. Numerical examples

The minimizing value of c1 may be found by integrating

Eq. (34a) by parts, and using Eq. (35a),

c1min ¼

1

pðb2 � a2Þ ð2prff 0Þ
���b
a
; 2D;

1

4

3
pðb3 � a3Þ

ð4pr2ff 0Þ
���b
a
; 3D:

8>>>><
>>>>:

(41)

Thus,

c1min ¼
2ðb2 � a2Þ�2½ðb2 � adÞ2 þ ða� dÞ2b2�; 2D;

3ðb3 � a3Þ�2½ðb3 � a2dÞ2 þ ða� dÞ2b4�; 3D:

(

(42)

The relative value of the anisotropy parameter c1 is shown in

Fig. 8 for the three mappings of Eq. (2). In all cases, the

value of c1 exceeds the minimum c1min for the optimal trans-

formations in Eqs. (36) and (39). The KSVW mapping in 2D

has anisotropy.

FIG. 7. (Color online) The solid curve shows the transformation defined by

Eq. (36) for {d, a, b}¼ {0.1, 0.8, 1.0}. The dashed curve is the mapping

(38) for the same cloak parameters.

FIG. 8. (Color online) The relative value of the global anisotropy parameter

for the three transformations defined by Eq. (2) for {a, b}¼ {0.8, 1.0}. The

curves show log(C1� 1) where C1¼ c1/c1 min, with c1min given by Eq. (42)

and c1 calculated based on the mappings in Eq. (2).
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VI. CONCLUSION AND DISCUSSION

Transformation acoustics, like its close analog transfor-

mation optics, possesses a huge freedom in the way that the

transformation can be chosen. This paper sheds some light

on potential choices. We have shown that is possible to

always fix at least one of the three material parameters rele-

vant to radially symmetric deformations. Starting from the

theory of Norris,11 we have derived several forms of the

transformation f which yield specialized distributions of ma-

terial properties such as constant and power law density, ra-

dial stiffness, and tangential stiffness. This was achieved by

reinterpreting the governing equations for the material prop-

erties as differential equations for the transformations. We

derived a functional form of f that minimizes elastic anisot-

ropy in a certain sense.

ACKNOWLEDGMENT

We acknowledge funding from the Office of Naval

Research (Contract No. N00014-10-C-260) through their

SBIR (Small Business Innovative Research Program) under

the supervision of Dr. John Tague and Dr. Jan Lindberg.

1J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic

fields,” Science 312(5781), 1780–1782 (2008).
2A. N. Norris and A. L. Shuvalov, “Elastic cloaking theory,” Wave Motion

49, 525–538 (2011).
3S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter

waves,” Phys. Rev. Lett. 100, 123002-(1-4) (2008).
4K. Bryan and T. Leise, “Impedance imaging, inverse problems, and Harry

Potter’s Cloak,” SIAM Rev. 52(2), 359–377 (2010).

5A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices,

electromagnetic wormholes and transformation optics,” SIAM Rev. 51(1),

3–33 (2009).
6A. Greenleaf, M. Lassas, and G. Uhlmann, “Anisotropic conductivities

that cannot be detected by EIT,” Physiol. Meas. 24(2), 413–419 (2003).
7H. Chen and C. T. Chan, “Acoustic cloaking and transformation

acoustics,” J. Phys. D 43(11), 113001–113014 (2010).
8S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J.

Phys. 9(3) (2007).
9H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using

acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518-(1-3) (2007).
10S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm,

and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking

shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
11A. N. Norris, “Acoustic cloaking theory,” Proc. R. Soc. London, Ser. A

464, 2411–2434 (2008).
12Y. Urzhumov, F. Ghezzo, J. Hunt, and D. R. Smith, “Acoustic cloaking trans-

formations from attainable properties,” New J. Phys. 12, 073014 (2010).
13S. A. Cummer, R. Liu, and T. J. Cui, “A rigorous and nonsingular two-

dimensional cloaking coordinate transformation,” J. Appl. Phys. 105,

056102 (2009).
14R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, “Cloaking via

change of variables in electric impedance tomography,” Inverse Problems

24(1), 015016 (2008).
15Our finite element simulations were carried out with WAI’s commercial finite

element code PZFLEXVR , http://www.pzflex.com (Last viewed April 28, 2012).
16Y.-R. Wang, H. Zhang, S.-Y. Zhang, L. Fan, and H.-X. Sun, “Broadband

acoustic concentrator with multilayered alternative homogneous materi-

als,” JASA Express Lett. 131(2), EL150–EL155 (2012).
17M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and

J. B. Pendry, “Design of electromagnetic cloaks and concentrations using

form-invariant coordinate transformations of Maxwell’s equations,” in

Photonics and Nanostructures—Fundamentals and Applications, The Sev-

enth International Symposium on Photonic and Electromagnetic Crystal

Structures PECS-VII, Vol. 6, pp. 87–95.
18J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for

cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).

J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012 Gokhale et al.: Special transformations for acoustic cloaking 2941

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 11 Sep 2015 23:06:23


	s1
	n1
	s2
	d1
	d2
	s3
	d3
	f1
	d4
	d5
	d6
	s3A
	d7
	f2a
	f2b
	f2c
	f2
	d8
	d9
	f3
	f4
	s3B
	d10
	s3B1
	d11
	d12
	f5
	t1
	s3B2
	d13
	d14a
	d14b
	d14c
	d15
	s3C
	s3C1
	s3C2
	d16
	d17
	s4
	s4A
	d18
	d19
	d20
	d21
	s4B
	d22
	d23a
	d23b
	d23c
	d23d
	s4C
	s4D
	s4E
	d24
	d25
	d26
	f6
	d27
	d28
	d29
	s5
	d30
	d31
	d32
	d33
	d34a
	d34b
	s5A
	d35a
	d35b
	d36
	d37
	d38
	s5B
	d39
	d40
	s5C
	d41
	d42
	f7
	f8
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18

