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A mechanical model representing an acoustic metamaterial that exhibits simultaneously negative

mass density and negative Young’s modulus was proposed. Wave propagation was studied in the

frequency range of double negativity. In view of positive energy flow, it was found that the phase

velocity in this range is negative. This phenomenon was also observed using transient wave propa-

gation finite-element analyses of a transient sinusoidal wave and a transient wave packet. In con-

trast to wave propagation in the region of positive mass and modulus, the peculiar backward wave

motion in the region of double negativity was clearly displayed.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744977]
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I. INTRODUCTION

For substances having simultaneously negative electric

permittivity (e) and magnetic permeability (l), many unusual

properties like reverse Doppler effect, reverse Cherenkov radi-

ation, and negative index of refraction may arise.1 The idea is

that when both e and l are negative, the metamaterial may

sustain waves with group velocity opposite to the phase veloc-

ity, and the waves can still propagate without attenuation.

Similar phenomena may apply to the counterpart acoustic

metamaterials owing to the mathematical analogy between

acoustic and electromagnetic waves. Theoretical or experi-

mental attempts have been made for investigation of acoustic

metamaterials possessing, for instance, negative effective

mass density,2–10 or negative effective elastic modulus,11–13 or

both simultaneously.14–19 For metamaterials with double neg-

ativity, the consequence is the behavior of negative refraction,

and, equivalently, negative phase-velocity and backward-

wave phenomena.1,20–22 Nevertheless, it has been shown that

the negative refraction can be achieved not only by metamate-

rials with double negative properties, but also by Bragg scat-

tering in periodic lattices23 and others.24,25 The similarity

between these mechanisms relies on negative slope of disper-

sion curves in the first quadrant of dispersion relations.

According to the definition, the negative slope of the

dispersion curve is related to negative group velocity. How-

ever, we agree with some references, e.g., Refs. 21 and 22,

the term “negative phase velocity” is better for describing

the negative slope of the dispersion curve than “negative

group velocity,” at least for the acoustic metamaterials with

double negativity which is discussed in the present study.

It also distinguishes the present metamaterials from the

negative group-velocity media that exhibit fast-light phe-

nomena reported in Refs. 26–29. It is noted that the subject

of negative phase velocity has, surprisingly, been discussed

since, at least, 1904 by Lamb,30 using mechanical models,

and by Schuster31 in electromagnetism. At that time, the

researchers were pessimistic about the physical applications.

The study of electromagnetic waves in anomalous dis-

persion has been extensively carried out by researchers in

recent years, but that of acoustic and elastic waves receives

much less attention. In the present study we propose a one-

dimensional (1D) elastic mass-spring system consisting of

material units exhibiting simultaneously negative effective

mass density and effective elastic modulus in a spectral

band. The local resonance acts as the central mechanisms of

the unusual behavior. Transient wave propagation is simu-

lated numerically to better observe the dynamic characteris-

tics of negative phase velocity.

II. THEORETICAL MODELS OF ACOUSTIC
METAMATERIALS

A. Model of negative mass density (NMD)

Let us begin with the mass-in-mass lattice model that

has been discussed in Refs. 6–8. As illustrated in Fig. 1(a),

the mass-in-mass unit takes the form of a rigid ring with

mass, m1, which is connected to the neighboring units by

springs with spring constant, k1. The ring contains an inter-

nal mass, m2, connected to the ring by an internal spring

with spring constant, k2. Both m1 and m2 are only allowed to

move in the x (horizontal) direction.

The equations of motion for the jth unit cell are given by

m1

d2u
ðjÞ
1

dt2
þk1

�
2u
ðjÞ
1 �u

ðj�1Þ
1 �u

ðjþ1Þ
1

�
þk2

�
u
ðjÞ
1 �u

ðjÞ
2

�
¼0;

(1)
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m2

d2u
ðjÞ
2

dt2
þ k2

�
u
ðjÞ
2 � u

ðjÞ
1

�
¼ 0; (2)

where u
ðjÞ
c (c¼ 1 and 2) denotes the displacement of mass

“c” in the jth cell. The harmonic wave solution for the

(jþ n)th unit is expressed by

uðjþnÞ
c ¼ ~uce

iðnX�þnn�gT�Þ: (3)

In Eq. (3), n ¼ qL is the non-dimensional wavenumber, g
¼ x=xNMD

0 is the non-dimensional wave frequency, xNMD
0

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
is the local resonance frequency, X� ¼ x=L is

the non-dimensional spatial parameter with the lattice spac-

ing L, and T� ¼ xNMD
0 � t is the non-dimensional time. The

dispersion relation is obtained by substituting the harmonic

displacements in Eq. (3) and solving the resulting eigen-

value problem of the coefficients. We obtain

GNMD
latt ðg ¼ x=xNMD

0 ; n ¼ qLÞ

¼ g4 � ð1þ h21Þ þ
2h21

d21

ð1� cos nÞ
� �

g2

þ 2h21

d21

ð1� cos nÞ ¼ 0; (4)

where h21 ¼ m2=m1 and d21 ¼ k2=k1 are the non-dimensional

mass ratio and stiffness ratio, respectively.

In Ref. 8, an effective elastic solid was developed to

represent the original mass-in-mass lattice. It was found that

the effective mass density of the equivalent elastic solid is

frequency-dependent in the form

qNMD
eff ¼ qNMD

st 1þ h21

1þ h21

g2

1� g2

� �
; (5)

where qNMD
st ¼ ðm1 þ m2Þ=AL is the static mass density in

which A and L are the cross-sectional area and the lattice

spacing, respectively. This model is denoted as “NMD”

since it exhibits negative effective mass density in the range

1 < g ¼ x
xNMD

0

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h21

p
: (6)

The time-independent wave equation for plane harmonic

waves is simply given by

�qeffx
2û ¼ Eeff

@2û

@x2
; (7)

where the effective mass density qeff ¼ qNMD
eff is given in

Eq. (5), and the effective Young’s modulus, Eeff � ENMD
st

� k1L=A, is determined from the static stress-strain relation.

The harmonic wave solution for the equivalent elastic

solid is given by û ¼ ~ueinX� . Hence, the dispersion relation is

obtained as

GNMD
elast ðg;nÞ ¼ qNMD

eff ðxNMD
0 Þ2g2 � ENMD

st n2=L2 ¼ 0: (8)

B. Model of negative Young’s modulus (NYM)

Next we consider the mechanical lattice model having

lateral local resonators shown in Fig. 1(b). This model was

investigated and discussed in Ref. 13. Briefly, point masses

m1 are connected by springs with a spring constant k1. Four

rigid and massless truss members are assembled symmetri-

cally as shown to support two sets of microstructures consist-

ing of springs with spring constant, k3, and masses, m3. Point

mass m3 is allowed to move only in the y (vertical) direction.

L and D are geometrical parameters shown in Fig. 1(b).

For this lattice model, the equations of motion for the

jth unit are given by

m1

d2u
ðjÞ
1

dt2
þ k1

�
2u
ðjÞ
1 � u

ðj�1Þ
1 � u

ðjþ1Þ
1

�
þ 2k3

�
v
ðj�1Þ
3 � v

ðj�1Þ
1

� L

2D

� �

� 2k3

�
v
ðjÞ
3 � v

ðjÞ
1

� L

2D

� �
¼ 0; (9)

m3

d2v
ðjÞ
3

dt2
þ k3

�
v
ðjÞ
3 � v

ðjÞ
1

�
¼ 0: (10)

From geometrical relations based on the assumption of small

displacements, we have

v
ðjÞ
1 ¼ �

ð2L� Du
ðjÞ
1 ÞDu

ðjÞ
1

4D
þ ð2L� Du

ðjÞ
1 Þ

2ðDu
ðjÞ
1 Þ

2

16D3
þ � � �

� � L

2D
Du
ðjÞ
1 ¼ �

L

2D
ðuðjþ1Þ

1 � u
ðjÞ
1 Þ: (11)

FIG. 1. (Color online) (a) 1D lattice model and the

continuum representative having negative effective

mass density (NMD), and (b) 1D lattice model and

the continuum representative having negative effec-

tive Young’s modulus (NYM).
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In a similar manner, the dispersion relation is obtained as

GNYM
latt ð�g ¼ x=xNYM

0 ; n ¼ qLÞ

¼ �g4 � 1þ 2h31

d31

1þ d31l
2

� �
ð1� cos nÞ

� �
�g2

þ 2h31

d31

ð1� cos nÞ ¼ 0; (12)

where h31 ¼ m3=m1, d31 ¼ k3=k1, �g ¼ x=xNYM
0 , xNYM

0

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k3=m3

p
, and l ¼ ðL=DÞ2. The relation of the non-

dimensional wave frequencies reads

�g ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh31d21Þ=ðh21d31Þ

p
: (13)

If this lattice system is represented by an equivalent elastic

solid, the effective Young’s modulus of the solid is found

frequency-dependent in the form13

ENYM
eff ¼ ENYM

st 1þ d31l
2

�g2

�g2 � 1

� �
; (14)

where ENYM
st ¼ k1L=A is the static Young’s modulus. This

model, denoted as “NYM,” exhibits negative effective

Young’s modulus in the rangeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2þ d31l

s
< �g ¼ x

xNYM
0

< 1: (15)

The wave equation takes the form of Eq. (7), in which the

effective Young’s modulus, Eeff ¼ ENYM
eff , is given by Eq.

(14) and the effective mass density is the static formulation,

qeff ¼ qNYM
st ¼ m1=AL. (Note that the masses m3 in this

model are assumed to move only in the y direction so that

they contribute zero inertia forces in the x direction.) The

dispersion relation is given by

GNYM
elast ð�g;nÞ¼qNYM

st ðxNYM
0 Þ2�g2�ENYM

eff n2=L2¼ 0: (16)

C. Model of double negativity (DN)

Consider a 1D infinite lattice shown in Fig. 2. This

model is a combination of the two models in Fig. 1 such that

mass m1 in the NYM model is replaced by the mass unit in

NMD. This model is denoted as “DN” as it will be shown to

possess double negativity. Let the displacements of masses

m1, m2, and m3 at the jth unit be u
ðjÞ
1 ðtÞ, u

ðjÞ
2 ðtÞ, v

ðjÞ
3 ðtÞ, respec-

tively. The equations of motion of the system at the jth cell

are readily obtained as

m1

@2u
ðjÞ
1

@t2
¼ k1ðuðj�1Þ

1 � u
ðjÞ
1 Þ þ k1ðuðjþ1Þ

1 � u
ðjÞ
1 Þ

þ k2ðuðjÞ2 � u
ðjÞ
1 Þ � 2k3ðvðj�1Þ

3 � v
ðj�1Þ
1 Þ L

2D

� �

þ 2k3ðvðjÞ3 � v
ðjÞ
1 Þ

L

2D

� �
; (17)

m2

@2u
ðjÞ
2

@t2
¼ k2

�
u
ðjÞ
1 � u

ðjÞ
2

�
; (18)

m3

@2v
ðjÞ
3

@t2
¼ k3

�
v
ðjÞ
1 � v

ðjÞ
3

�
: (19)

The steady-state solution of the equations of motion (17)–

(19) is determined by letting the displacements be

u
ðjþnÞ
1 ¼ û1eiðnX�þnn�gT�Þ; u

ðjþnÞ
2 ¼ û2eiðnX�þnn�gT�Þ; and

v
ðjþnÞ
3 ¼ v̂3eiðnX�þnn�gT�Þ; (20)

where, again, n ¼ qL is the non-dimensional wavenumber,

X� ¼ x=L and T� ¼ xNMD
0 � t are the non-dimensional para-

meters in space and time, respectively. Substituting these

harmonic displacements in Eqs. (17)–(19) and solving the

resulting eigenvalue problem of the coefficients, we obtain

the dispersion relation

GDN
latt ðg; nÞ ¼ � g6 þ 1þ d31h21

d21h31

þ h21

d21

2 1þ d31l
2

� �
ð1� cos nÞ þ d21

� �	 

g4

� ð1þ h21Þ
d31h21

d21h31

þ 2
h21

d21

d31h21

d21h31

þ 1þ d31l
2

� �
ð1� cos nÞ

� �
g2 þ 2

d31h
2
21

d2
21h31

ð1� cos nÞ ¼ 0: (21)

On the other hand, the equation of motion of the equivalent

1D elastic solid is given by Eq. (7). In this formulation

the effective mass density and the effective Young’s modu-

lus are given by Eq. (5), qeff ¼ qDN
eff ¼ qNMD

eff , and Eq. (14),

Eeff ¼ EDN
eff ¼ ENYM

eff , respectively. Consequently, the disper-

sion relation of the representative elastic solid is obtained

as

GDN
elastðg; nÞ ¼ qDN

eff ðxNMD
0 Þ2 g2 � EDN

eff n2=L2 ¼ 0: (22)

III. EFFECTIVE DYNAMIC PARAMETERS AND
DISPERSION RELATION

For numerical illustrations, we present two cases with

the following assumed material constants:

(Case 1) h21 ¼ m2=m1 ¼ 1:5, h31 ¼ m3=m1 ¼ 1, d21

¼ k2=k1 ¼ 0:1, d31 ¼ k3=k1 ¼ 1, l ¼ ðL=DÞ2 ¼ 2:78,

and

(Case 2) h21 ¼ 2:25, h31 ¼ 0:4, d21 ¼ 0:3, d31 ¼ 0:25,

l ¼ 25.
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As has been mentioned in Sec. II C, the model in Fig. 2

is denoted as “DN” because for some range of wave frequen-

cies it could exhibit double negativity. This range can be

obtained from the negative modulus and mass density prop-

erties and their corresponding spectral regions. The effective

mass density in Eq. (5) and the effective Young’s modulus

in Eq. (14) with respect to the non-dimensional wave fre-

quency for Case 1 and Case 2 are illustrated in Figs. 3 and 4,

respectively.

In Fig. 3 for Case 1, the material constants are selected

so that the frequency range of the negative quantity of the

NMD model lies apart from that of the NYM model. In other

words, for the frequency range in-between the two regions

with negative quantity (e.g., g approximately ranges in 1.6

and 2.5 in Fig. 3), both the effective mass density and the

effective Young’s modulus are positive. On the other hand,

in Fig. 4 for Case 2, the material constants are chosen so that

the frequency ranges of both negative quantities of the NMD

and the NYM models overlap.

Next, the dispersion curves for both cases obtained

using the exact formulation [Eqs. (4), (12), and (21) for

NMD, NYM, and DN models, respectively] of the lattice

model are shown in Figs. 5 and 6, respectively, with solid

lines. In each figure, three columns labeled DN, NMD, and

NYM represent the dispersion curves of the double negativ-

ity model, the negative mass density model, and the negative

Young’s modulus model, respectively. For each diagram,

bandgaps, where waves attenuated and stopped, exist due to

the effect of the local resonance.

The accuracy of the elastic solid representation can be

verified by comparing the dispersion curves obtained with the

lattice and the elastic solid models. In Figs. 5 and 6, the dis-

persion curves of the equivalent elastic solid are obtained

using Eqs. (8), (16), and (22) for the NMD, NYM, and DN

models, respectively. Good approximation is observed for the

lower branch for all models. For the higher branch some devi-

ation is seen at the high frequency range. The reason is that

the equivalent elastic solid employs an approximate formula-

tion from the original lattice system based on a long wave-

length approximation. It is noted that the shaded areas in the

figures indicate the negative properties derived from Eqs. (6)

and (15) for the NMD and NYM model, respectively. For

both cases and for the DN model, the bandgaps closely match

the shaded areas of the separate models.

IV. PHASE VELOCITY AND GROUP VELOCITY

A. Phase velocity

In the present study, we adopt the definition of the phase

velocity of a harmonic wave as32–34

vp ¼
x
q
: (23)

All points of the same phase propagate in space with this

velocity. In the dispersion x-q diagram, the phase velocity

FIG. 2. (Color online) One-dimensional lattice

model exhibiting DN.

FIG. 3. (Color online) Effective dynamic non-dimensional parameters for

Case 1 using Eqs. (5) and (14). The bounds of negative quantities are

described in Eqs. (6) and (15).

FIG. 4. (Color online) Effective dynamic non-dimensional parameters for

Case 2. Descriptions as in Fig. 3.
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is given by the slope of the straight line connecting the origin

and a certain point on the dispersion curve. Since negative

wave frequency is not in our consideration, it is obvious that

the wave vector, q
*

, points in the direction of phase velocity.

For an effective elastic solid of an acoustic metamate-

rial, the dispersion relation can be obtained by, for instance,

employing Eq. (7) together with qeff in Eq. (5) and Eeff in

Eq. (14), and substituting the harmonic plane-wave solution

into Eq. (7). The dispersion relation reads

Gðx; qÞ ¼ qeffx
2 � Eeffq

2 ¼ 0: (24)

From the dispersion relation, one can immediately conclude

that in order for the elastic medium to have wave propaga-

tion without attenuation (i.e., a real solution for q), the me-

dium must have either both positive qeff and Eeff or both

negative qeff and Eeff .

The phase velocity is thus given by

vp ¼
x
q
¼ 6

ffiffiffiffiffiffiffiffi
Eeff

qeff

s
: (25)

It is still not possible to determine the direction of a wave in

the acoustic metamaterial from the sign of phase velocity,

or the wave vector, based on the given dispersion relation,

since the real wave vector q could be either positive or nega-

tive. We shall proceed to the next subsections for further

investigation.

B. Group velocity of DN acoustic metamaterial

Of particular interest is to investigate the sign of group

velocity of a wave group or packet in an acoustic metamate-

rial. This wave group or packet corresponds to a superposi-

tion of harmonic waves with very similar wave frequencies,

x, and wavenumbers, q. In the dispersion x-q diagram, the

group velocity of a wave group or packet is given by the

slope of the dispersion curve. By using the implicit differen-

tiation, the final expression of the group velocity reads

vg ¼
dx
dq
¼ � @G

@x

� ��1 @G

@q

� �

¼ 2Eeffq

2qeffxþ @qeff

@x �
@Eeff

@x
qeff

Eeff

� �
x2
: (26)

From the expressions given by Eqs. (5) and (14), it can be

shown that

@qeff

@x
¼ 2qNMD

st k
xNMD

0

g

ð1� g2Þ2
� 0 (27)

and

@Eeff

@x
¼ �ENYM

st d31l
xNYM

0

�g

ð�g2 � 1Þ2
� 0; (28)

where k ¼ h21=ð1þ h21Þ. The term ½�ð@Eeff=@xÞðqeff=
EeffÞ	x2 in the denominator in Eq. (26) is always positive if

qeff and Eeff are of the same sign. Substituting Eqs. (5) and

(26) in the remainder of the denominator of Eq. (26),

2qeffxþ ð@qeff=@xÞx2, we obtain

2qeffxþ
@qeff

@x

� �
x2

¼ 2qNMD
st x

ð1� g2Þ2
½ð1� kÞð1� g2Þ2 þ k	 � 0: (29)

Since 0 � k � 1 is always true, this inequality holds for all

frequencies. It is, therefore, proved that the denominator of

Eq. (26) is positive for identical signs of qeff and Eeff .

Obviously, from Eq. (26), group velocity, vg, is propor-

tional to Eeffq. The sign of group velocity is, hence, affected

by the sign of the effective Young’s modulus, Eeff , and the

wavenumber, q. From Sec. IV A, in order for an elastic me-

dium to have wave propagation without attenuation, the me-

dium must possess either both positive qeff and Eeff or both

FIG. 6. (Color online) Dispersion curves for Case 2. Solid lines: mass-

spring lattice model; Circles: elastic solid model; detailed description as in

Fig. 5.

FIG. 5. (Color online) Dispersion curves for Case 1. DN model, NMD

model, NYM model; solid lines: mass-spring lattice model from Eqs. (4),

(12), and (21) for NMD, NYM, and DN models, respectively; circles: equiv-

alent elastic solid from Eqs. (8), (16), and (22) for NMD, NYM, and DN

models, respectively.
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negative qeff and Eeff . If qeff and Eeff of the medium are both

positive, group velocity, vg, is obviously positive for a posi-

tive wavenumber. On the other hand, if qeff and Eeff are

simultaneously negative, waves, therefore, propagate in the

medium with opposite signs of phase velocity, vp, and group

velocity, vg.

C. Negative phase velocity

For waves in a lossless elastic medium the energy veloc-

ity is identical to the group velocity.35 In view of positive

energy flow for a lossless elastic medium, the group velocity

is always positive. Once again, we exclude the negative

group-velocity media resulting in fast-light phenomena dis-

cussed in, for instance, Refs. 26–29. That negative group-

velocity phenomenon is beyond the scope of the present

study.

For the acoustic metamaterial with frequency-dependent

effective mass density, qeff , and Young’s modulus, Eeff , if

qeff and Eeff are both positive, a positive group velocity

results in a positive wavenumber. On the other hand, ifqeff

and Eeff are negative simultaneously, in order to have a posi-

tive group velocity, wavenumber must be negative. This

means that in the double negativity frequency region, the

sign of phase velocity, vp, in Eq. (25) must be negative.

V. DYNAMIC CHARACTERISTICS OF WAVE
PROPAGATION BY SIMULATION

A. Harmonic waves

To investigate how a group of waves of essentially the

same wavelength propagates with a negative phase velocity,

we perform numerical simulations of transient wave propa-

gations. One of the reasons the transient wave propagation

rather than steady-state wave propagation is studied is

because the direction of disturbances, hence the direction of

group velocity, can be ensured.

Dynamic simulations are implemented by use of

the ABAQUS Explicit solver (Dassault Systèmes, Vèlizy-

Villacoublay, France). In each simulation, a lattice model

shown in Fig. 2 is constructed with a sinusoidal displace-

ment, UðtÞ ¼ U0 sinðxtÞHðtÞ, applied at the left end of the

lattice. The material properties of Case 2 listed in Sec. III

together with xNMD
0 ¼ 115:47 rad=s are used. If the lattice

system is long enough, the reflected wave does not appear in

the window of numerical results.

Figures 7 and 8 show the snapshots of the displacement

fields in space with two different wave frequencies,

g ¼ x=xNMD
0 ¼ 0.346 and 1.559, respectively. U� denotes

the normalized amplitude of the displacements with respect

to U0. In each figure, a typical propagation mode is demon-

strated. Three consecutive sections of time, T� ¼ ts � DT�

with the non-dimensional time increment DT� ¼ 0:462,

show the behavior of wave propagation. For now, let us

assume that the time increment DT� is sufficiently small in

capturing the dynamic behavior of the model. We shall

come to this point immediately in the following paragraph.

Note that, again, T� ¼ xNMD
0 � t is the non-dimensional

parameter in time domain and t is in seconds. “ts” denotes

the time steps hereafter. Section 1 (ts¼ 1–4), for instance, is

the initial state and section 3 (ts¼ 101–104) is considered

close to steady state.

Selection of the time increment, DT�, for visualization

of simulation results is nontrivial. An improper selection of

the increments may, on one hand, produce incorrect simula-

tion results, or, on the other hand, simply cause expensive

computation. Here we provide a simple guide for the balance

of accuracy and efficiency. The definition of the time incre-

ment reads

DT� ¼ xNMD
0

t

ts
¼ xNMD

0 � Dt; (30)

where Dt is the time step in seconds. Substituting the non-

dimensional wave frequency g ¼ x=xNMD
0 in Eq. (30) and

using the relationship of angular frequency and period of

time we obtain

FIG. 7. (Color online) Snapshots of sinusoidal wave propagation in

finite DN model with excitation frequency g ¼ x=xNMD
0 ¼ 0:346 and

xNMD
0 ¼ 115:47 rad=s (in the double-positivity region; ts ¼ time step; T�

¼ xNMD
0 � t ¼ ts � DT� with DT� ¼ 0:462).

FIG. 8. (Color online) Snapshots of sinusoidal wave propagation in

finite DN model with excitation frequency g ¼ x=xNMD
0 ¼ 1:559 and

xNMD
0 ¼ 115:47 rad=s (in the double-negativity region; ts ¼ time step;

T� ¼ xNMD
0 � t ¼ ts � DT� with DT� ¼ 0:462).
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DT� ¼ 2p
g

Dt

Tp
: (31)

For a harmonic wave, Dt � Tp=8 should be sufficient in cap-

turing the dynamic behavior of the models in the present

study. For Case 2, for instance, this inequality Dt � Tp=8

and the wave frequency, g ¼ 1:559, together with Eq. (31),

result in DT� � 0:504. Clearly, the time increments chosen

for both cases are satisfactory.

In Fig. 7, given the first section from ts¼ 1–4, the prop-

agation direction of the front of the dynamic disturbance is

seen pointing from left to right, indicating the direction of

the energy flow. However, due to the nature of transient

wave propagation, the forerunner of the dynamic disturbance

may contain frequencies other than the excitation frequency,

x. Further time steps, in the middle and bottom windows of

Fig. 7, need to be carried out in order to make sure the

energy direction of the sinusoidal wave with exactly the ex-

citation frequency, x. In the second section, ts¼ 51–54, it is

seen that the transient part of the wave already propagates to

the right side of the spatial window, leaving the transition to

steady state at the left part of the window. From the third

section, ts¼ 101–104, a more complete configuration

approaching the steady-state wave propagation can be

observed. At this stage, the propagation direction of the

wave phase is observed pointing from left to right.

Figure 8 shows the profile of wave propagation with a

frequency in the region of double negativity. Noticeable dif-

ference to Fig. 7 is the negative propagation direction of the

wave phase with respect to positive energy flow. In the second

and third windows, the phase direction is clearly seen pointing

from right to left during the sequence of time evolution.

B. Wave packets

Group velocity is the velocity of the envelope of a wave

group or packet. For a wave packet corresponding to a super-

position of harmonic waves with a finite frequency band, the

propagation behavior in a dispersive media like DN acoustic

metamaterial should be of particular interest. One great

advantage of considering the wave packet is that the fre-

quency content of the packet can be controlled and the

energy propagation direction can be easily identified as the

propagation direction of the wave packet.

To this end, wave packets propagating in the metamate-

rial with double negativity are simulated in a similar fashion.

Two wave packets in time as well as in frequency domain

used for the simulation are illustrated in Fig. 9. In Fig. 9(a),

the wave packet possesses a frequency band approximately

from g ¼ x=xNMD
0 ¼ 0:22 to g ¼ 0:47 (in the double posi-

tivity region) with the central frequency at g ¼ 0:346, while

in Fig. 9(b), the wave packet possesses a frequency band

approximately from g ¼ x=xNMD
0 ¼ 1:10 to g ¼ 2:10 (in the

double negativity region) with the central frequency at

g ¼ 1:559. Each packet is sent from the left end of the

model. Same material properties are chosen so that the dis-

persion relation of the model is shown in Fig. 6.

Figure 10 shows a few snapshots of wave propagation of

the wave packet shown in Fig. 9(a), of which the central fre-

quency is located at the positive effective mass density and

positive effective elastic modulus region as shown in Fig. 4.

The wave packet propagates without much distortion since

most of the spectral content travel with approximately the same

speed, which is also evident in view of the dispersion curves

shown in Fig. 6. The energy flow direction is the moving direc-

tion of the wave packet, which is clearly from left to right.

Note that a wave packet contains not just a single frequency,

FIG. 9. (Color online) Two typical wave packets in time and frequency do-

main with (a) frequency band approximately from g ¼ x=xNMD
0 ¼ 0:22 to

g ¼ 0:47 with the central frequency at g ¼ 0:346, and (b) frequency band

approximately from g ¼ x=xNMD
0 ¼ 1:10 to g ¼ 2:10 with the central fre-

quency at g ¼ 1:559.

FIG. 10. (Color online) Snapshots of wave-packet propagation in finite

DN model. Wave packet consists of frequency band approximately from

g ¼ x=xNMD
0 ¼ 0:22 to g ¼ 0:47 with the central frequency at g ¼ 0:346

and xNMD
0 ¼ 115:47 rad=s (in the double-positivity region; ts¼ time step;

T� ¼ xNMD
0 � t ¼ ts � DT� with DT� ¼ 0:462).
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but a finite frequency band. It is therefore difficult to identify

the phase velocity of the propagation of the wave packet.

Next, consider the case when the frequency components

of the wave packet are selected in the frequency region of

double negativity. A wave packet of Fig. 9(b) is generated

for simulation. The frequency band of this wave packet is

inside the double negativity region shown in Fig. 4. The

wave packet is sent from the left end and is clearly seen to

propagate in the positive direction (left to right) from the top

and bottom windows of Fig. 11. Negative phase direction of

the packet is expected and can be verified from the middle

window of Fig. 11.

C. Discussion

The region of the dispersion curve with negative slope

means a spectral range where the phase and group velocities

are opposite in direction. Some researchers25,30,36–38 have

termed the backward-wave phenomenon along with “negative

group velocity” simply because, perhaps, in the x-q diagram

the slope of the dispersion curve is negative. For example, let

us refer to the dispersion diagram in Fig. 12 for illustration.

The dispersion curves are reproduced from Fig. 6, Case 2 in

Sec. V, for the DN model. Usually the first quadrant of the

diagram is considered where x and q are both positive. For

the first lowest propagation mode, both phase velocity and

group velocity, according to the definition in Sec. IV, are posi-

tive. However, for the second lowest propagation mode in the

first quadrant, the phase velocity is positive while the group

velocity is negative. The misleading and confusing conclusion

of the “negative group velocity” may have come from the

fact that energy velocity is not directly provided by the disper-

sion curves in the first quadrant. In fact, the second branch

of the dispersion curve should be plotted in the second quad-

rant where x is positive and q is negative. By so doing, the

group velocity is positive while the phase velocity is, hence,

negative.

VI. CONCLUSION

We have proposed a 1D mechanical model representing

an acoustic metamaterial. The system can be modeled with an

equivalent elastic solid which exhibits simultaneously nega-

tive effective mass density and effective Young’s modulus in

a certain frequency range. In this double negativity frequency

range, harmonic waves propagate without attenuation. How-

ever, the phase velocity becomes opposite to the energy flow

direction. In view of positive energy direction, it is the back-

ward wave that propagates with negative phase velocity.

Transient wave simulation results not only agree well with the

analytical prediction, but also clearly illustrate the unusual

wave phenomenon.
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