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The equivalence between a single mass-anisotropic layer and two isotropic layers is analyzed by

studying two systems: one consists of an anisotropic layer sandwiched between two arbitrarily chosen

isotropic media; and the other consists of two isotropic layers, of a total thickness equal to that of

the anisotropic layer, sandwiched between the same pair of isotropic media. The equivalence is

established by matching the transmission and reflection coefficients of the two systems for an

arbitrarily chosen incident angle. The first-order equivalence leads to exactly the same set of relations

as often quoted in the literature. However, it was concluded that a full second-order equivalence is

not possible unless the incident is normal to the surface, or the materials are isotropic. One of the

requirements for the second-order equivalence is that the two isotropic layers must have their

impedances matched. Together with the first order equivalence requirements, this gives a complete

set of conditions for determining all the materials properties of the two isotropic layers. On the other

hand, the unattainable full second-order equivalence can be alleviated by a proper placement of

layers: by placing the heavier layer adjacent to the medium of greater acoustic impedance. Numerical

examples show that this remedy in fact is more important than following the partial requirement for

the second order equivalence when the equivalent isotropic layers are used in acoustic cloaking

applications. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744927]

PACS number(s): 43.20.El, 43.20.Bi [ANN] Pages: 2915–2922

I. INTRODUCTION

Anisotropic materials are an important ingredient in the

quest for acoustic cloaking. The particular anisotropy needed

in various acoustic cloaking designs is mass-orthotropy: that

is, the mass density must be a diagonal tensor having differ-

ent values for different entries. The mass-anisotropy is not a

commonly observed feature in natural materials. This pecu-

liar anisotropy is derived from the analogy between the gov-

erning equations for electromagnetic and acoustic waves,

when cloak designs for electromagnetic waves were ported

to acoustics, such as the well-known design by Cummer and

Schurig (2007).

In the past few years, the idea that two layers of iso-

tropic materials can be combined to effectively behave like a

mass-anisotropic layer has created an intense interest in the

metamaterial research community. This idea comes from a

paper by Schoenberg and Sen (1983) that studies the equiva-

lent acoustic properties of a half space filled with periodic

layers of different isotropic media. However, the original pa-

per did not explore this equivalence in depth, except a mere

mentioning that this is the effective medium for long wave-

length propagation. It does not even contain a displayed

equation for the now often-quoted equivalent properties.

This idea was introduced to acoustic cloak design by

Cheng et al. (2008) and Torrent and S�anchez-Dehesa (2008).

Since then, many cloaking designs based on this or similar

ideas of homogenizing layered structures to achieve neces-

sary mass-anisotropy have been proposed, such as Qiu et al.
(2009), Farhat et al. (2009), Chen and Chan (2010), Ren

et al. (2010), Norris and Nagy (2010), and Urzhumov et al.
(2010). Yang et al. (2010) used the idea to design acoustic

super-scatterers, which is opposite of cloaking. Recently,

Smith (2011) applied the asymptotic homogenization

method to study periodically mixed layers of two isotropic

media, and obtained the same effective material properties in

the low frequencies; but when approaching a local resonant

frequency, the effective medium changed dramatically to

having an anisotropic modulus.

When this idea is approached from the perspective of find-

ing the isotropic materials to mimic the desired anisotropy, it

is noted that this equivalence does not provide sufficient condi-

tions to completely determine the properties of the isotropic

layers. This opens many questions such as how to best utilize

this equivalence, how to place the two layers, whether there

are limitations on the incident angle, and what are comparative

merits of different choices. Given the great interest in the

recent years, in this paper, this equivalence is analyzed in

depth in an attempt to answer these questions. Although the

equivalence can be established for any number of layers, this

paper will focus exclusively on the case of dual layers.

Specifically, the equivalence of the following two sys-

tems is considered: the anisotropic system: a thin anisotropic
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layer is sandwiched between two arbitrarily chosen isotropic

media 1 and 2; and the isotropic system: two thin isotropic

layers A and B, of a total thickness equal to that of the aniso-

tropic layer, sandwiched between the two isotropic media 1

and 2. For simplicity, this equivalence is studied in a Carte-

sian coordinate system. The equivalence will be established

based on the transmission and reflection of a planar incident

wave by the two systems. The analysis is limited to the case

when the layer’s surface is one of the principal axes of the

anisotropic layer.

This paper is organized as the following: In Sec. II, the

mass-anisotropic acoustic media is briefly reviewed, and

reflection and transmission coefficients for the anisotropic

system are derived. Section III presents the transmission and

reflection coefficients for the isotropic system. Section IV

studies the equivalence of the two systems and the first order

approximation. Section V explores second order relations

between the two systems. Section VI discusses a strategy for

suppressing the difference of the two systems. The paper is

concluded in Sec. VII.

II. PLANE WAVE REFLECTION AND TRANSMISSION
BY ANISOTROPIC LAYER

A coordinate system is set up such that the layer is

bounded by the y-axis and the line x¼ h, where h is the

thickness of the layer. In addition, the x- and y-axes coincide

with the material’s principal directions. The governing equa-

tion in such anisotropic media consists of the following

ingredients, based on Cummer and Schurig (2007) for a po-

lar coordinate system, for waves of a constant frequency x:

ixqxtx ¼ �
@p

@x
; (1)

ixqyty ¼ �
@p

@y
; (2)

ix
K

p ¼ � @tx

@x
� @ty

@y
; (3)

where qx and qy are the mass densities in the two principal

directions, K is the bulk modulus, p is the acoustic pressure,

and tx and ty are the particle velocity components. Eliminat-

ing t gives the following governing equation:

1

qx

@2p

@x2
þ 1

qy

@2p

@y2
þ x2

K
p ¼ 0: (4)

Consider a planar incident wave of unit amplitude from

Medium 1 impinges onto the anisotropic layer. Assume the

incident wave is expressible as

pinc ¼ ei½k1ðx cos h1þy sin h1Þ�xt�; (5)

where h1 is the angle the direction of propagation of the inci-

dent wave with respect to the x-axis, and k1 is the wave num-

ber in Medium 1. The reflected wave, also in Medium 1,

propagates in a direction that forms an angle p–h1 with

respect to the x-axis. The transmitted wave in Medium

2 propagates in a direction that forms an angle of h2 with

respect to the x-axis. There are two waves in the anisotropic

layer: one propagating forward with an angle h, and one

propagating backward with an angle p–h. Note that in the

anisotropic layer, the angle is the direction normal to the line

of constant phases, which is generally different from the

direction of propagation. These waves and their associated

angles, as well as the geometry of the problem setup, are

depicted in Fig. 1.

The notational convention is the following: medium-

specific quantities belonging to isotropic media will be signi-

fied by subscripts representing the media they belong to; and

those without subscript belong to the anisotropic layer.

When the same symbol is used in both systems, the one

belonging to the anisotropic system will be signified by an

overhead tilde.

The waves in the field are expressible as

pref ¼ ~Rei½k1ð�x cos h1þ y sin h1Þ�xt�; (6)

ptrm ¼ ~Tei½k2ðx cos h2þ y sin h2Þ�xt�; (7)

pþa ¼ Aþei½kðx cos hþ y sin hÞ�xt�; (8)

p�a ¼ A�ei½kð�x cos hþ y sin hÞ�xt�; (9)

where ~R and ~T are the reflection and transmission coefficients

(since the incident wave has an unit amplitude), respectively,

A� and Aþ are the amplitudes of the waves in the anisotropic

layer. The angles are related by Snell’s law as

sin h1

c1

¼ sin h2

c2

¼ sin h
c

; (10)

where c’s are the wave speeds of different media. Snell’s

law for anisotropic media remains the same as for isotropic

media.

The interfaces at x¼ 0 and x¼ h require the continuities

of pressure p and the velocity component tx, which can be

expressed in terms of acoustic pressure using Eq. (1). These

continuity conditions can be written as

FIG. 1. Geometry of an anisotropic layer sandwiched between two isotrpoic

media.
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1þ ~R ¼ Aþ þ A�; (11)

~n1ð1� ~RÞ ¼ Aþ � A�; (12)

Aþeib þ A�e�ib ¼ ~Teik2h cos h2 ; (13)

Aþeib � A�e�ib ¼ ~n2
~Teik2h cos h2 ; (14)

where

b ¼ kh cos h; (15)

and

~n1 ¼
qxc cos h1

q1c1 cos h
~n2 ¼

qxc cos h2

q2c2 cos h
: (16)

They can be solved to give

~R ¼ ð
~n1 � ~n2Þ cos bþ ið1� ~n1

~n2Þ sin b

ð~n1 þ ~n2Þ cos b� ið1þ ~n1
~n2Þ sin b

; (17)

~T ¼ 2~n1e�ik2h cos h2

ð~n1 þ ~n2Þ cos b� ið1þ ~n1
~n2Þ sin b

: (18)

This set of expressions appears to be identical to the one

for an isotropic layer. The difference for an anisotropic layer

is that its wave speed c, and in turn any parameters that are

related to the wave speed, is a function of angle h. Substitut-

ing the wave expression in either Eqs. (8) or (9) into Eq. (4)

gives the following angular dependence of the sound speed

in the anisotropic layer

c2 ¼ K
cos 2h

qx

þ sin 2h
qy

" #
: (19)

It is also noted that, although media 1 and 2 have been

assumed to be isotropic, the derivation above remains

unchanged if either or both media are anisotropic.

III. PLANE WAVE REFLECTION AND TRANSMISSION
BY TWO ISOTROPIC LAYERS

For the two isotropic layers sandwiched between two iso-

tropic media, the process of finding the transmission and reflec-

tion coefficients is the same as the case for an anisotropic layer,

except that this case has one more interface, giving two more

boundary conditions. For brevity, the derivation is omitted.

Denote the thicknesses of the layers as hA and hB. The waves

and the geometry of this problem setup are depicted in Fig. 2.

The reflection and transmission coefficients are found to be

R ¼ DR

D
T ¼ DT

D
; (20)

where

D ¼ 2eik2h cos h2fcos bA½ðn3 þ n1n2Þ cos bB

� ið1þ n1n2n3Þ sin bB� þi sin bA½�ðn2

þ n1n3Þ cos bB þ iðn1 þ n2n3Þ sin bB�g; (21)

DR ¼ 2eik2h cos h2f cos bA½ð�n3 þ n1n2Þ cos bB

þ ið1� n1n2n3Þ sin bB�þi sin bA½ðn2

� n1n3Þ cos bB þ ðn1 � n2n3Þ sin bB�g; (22)

DT ¼ 4n1n2; (23)

and

bA ¼ kAhA cos hA bB ¼ kBhB cos hB; (24)

n1 ¼
cos h1

cos hA

qAcA

q1c1

n2 ¼
cos hA

cos hB

qBcB

qAcA
n3 ¼

cos h2

cos hB

qBcB

q2c2

;

(25)

angles hA and hB represent the directions, as angles between the

propagation directions and the surface normal, of the forward-

traveling waves in layers A and B, respectively. Furthermore,

the propagation angles are also related by Snell’s law as

sin h1

c1

¼ sin h2

c2

¼ sin hA

cA
¼ sin hB

cB
: (26)

IV. THE ZEROTH- AND THE FIRST-ORDER
EQUIVALENCES

It can be readily shown that, as the zeroth order approxi-

mation, that is, setting sin a¼ 0 and cos a¼ 1, where a repre-

sents any of bA, bB, and b, the two sets of reflection and

transmission coefficients become identical by noting that

~n2

~n1

¼ n3

n1n2

¼ cos h2 q1c1

cos h1 q2c2

¼ f: (27)

Essentially, f characterizes the acoustic properties of the sur-

rounding media, and is independent of the sandwiched

layer(s).

As the first order approximation, setting sin a¼ a,
cos a¼ 1 gives, for the anisotropic layer,

~R ¼ ð1� fÞ þ i ~P�

ð1þ fÞ � i ~Pþ
~T ¼ 2e�ik2h cos h2

ð1þ fÞ � i ~Pþ
; (28)

FIG. 2. Geometry of two isotropic layers sandwiched between two isotrpoic

media.
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and, for the two isotropic layers,

R ¼ ð1� fÞ þ iP�
ð1þ fÞ � iPþ

T ¼ 2e�ik2h cos h2

ð1þ fÞ � iPþ
; (29)

where the following parameters have been introduced:

~P6 ¼
1

~n1

6~n2

� �
b; (30)

P6 ¼
1

n1

6
n3

n2

� �
bA þ

1

n1n2

6n3

� �
bB: (31)

For the two systems to behave equivalently, it is neces-

sary that P6¼ ~P6 for an arbitrary incident angle h1 and arbi-

trary choices of materials for media 1 and 2. Also, for the

two systems to be geometrically compatible, the total thick-

ness must be equal; that is, h¼ hAþ hB. Denote hB¼ rhA,

then, h¼ (1þ r)hA.

For the anisotropic layer, substituting ~n’s and b in Eqs.

(15) and (16) gives

~P6 ¼ xh
q1c1

cos h1

cos 2 h
qxc2

6
cos h2

q2c2

qx

� �
: (32)

Combining the Snell’s law in Eq. (10) with the expression

for c2 in Eq. (19) gives

cos h
c

� �2

¼ qx

K
� qx

qy

sin 2 h1

c2
1

: (33)

Then, Eq. (32) becomes

~P6

k1hA
¼ ð1þ rÞ K1

cos h1

1

K
� 1

qyc2
1

 !"

þ q1

qy

cos h16
qxc1

q2c2

cos h2

#
; (34)

where K1¼q1c2
1 has been used.

For the dual isotropic layers, substituting the expres-

sions for n’s and b’s in Eqs. (24) and (25) into Eq. (31) gives

P6 ¼ x
q1c1

cos h1

cos 2hA

qAc2
A

hA þ
cos 2hB

qBc2
B

hB

� ��

6
cos h2

q2c2

ðqAhA þ qBhBÞ
�
: (35)

Expressing angles hA and hB in terms of the incident angle h1

via Snell’s law in Eq. (26) gives

P6

k1hA
¼ K1

cos h1

1

KA
þ r

KB
� 1

c2
1

1

qA

þ r

qB

� �� �

þ cos h1q1

1

qA

þ r

qB

� �
6

c1

q2c2

cos h2ðqAþ rqBÞ;

(36)

where cos h2 has not been converted to h1 because medium 2

is also arbitrary.

The equivalence would require matching the coefficients

for cos h1, 1/cos h1, and cos h2 terms in Eqs. (34) and (36),

which gives the following well-known set of three conditions:

ð1þ rÞqx ¼ qA þ rqB; (37)

1þ r

qy

¼ 1

qA

þ r

qB

; (38)

1þ r

K
¼ 1

KA
þ r

KB
: (39)

This also shows that the equivalence at the first order is com-

plete; that is, there is no any other restriction besides the

obvious low frequency limitation.

The first two conditions completely determine the mass den-

sities of the two isotropic layers. They appear to have two sets of

solutions, but one of the sets is the same as the other by replacing

r with 1/r, which is merely swapping the two layers. Further-

more, they yield real and positive mass densities for the isotropic

layers only when qx> qy. Imposing the condition qA>qB to

give the layers the essential identifiable characteristics, one set of

the solutions drops. The remaining set can be written as

qA ¼
1

2

�
ð1þ rÞqx þ ð1� rÞqy

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqx � qyÞ½ð1þ rÞ2qx � ð1� rÞ2qy�

q �
; (40)

qB ¼
1

2r

�
ð1þ rÞqx � ð1� rÞqy

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqx � qyÞ½ð1þ rÞ2qx � ð1� rÞ2qy�

q �
: (41)

The mass densities of the two isotropic layers as determined

by this equivalence are shown in Fig. 3 for three different

thickness ratios: r¼ 0.5, 1, and 2. It is always true that

qA > qx and qB < qy: (42)

FIG. 3. (Color online) Mass densities of the equivalent two isotropic layers

determined by those of the anisotropic layer, at three different thickness

ratios. Solid curves: r¼ 1. Dashed curves: r¼ 0.5, Dot-dashed curves: r¼ 2.

Thicker curves: qA; thinner curves: qB.
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In general, using a thicker lighter layer requires a heavier

heavier layer, and vise versa. The extremes of the mass den-

sities are reached when qy! 0, leading to

qmax
A ¼ ð1þ rÞqx qmin

B ¼ 0: (43)

For the special case r¼ 1,

qA;B ¼ qx6
ffiffiffiffiffi
qx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx � qy

p
: (44)

However, this set of conditions is not sufficient to com-

pletely determine the bulk modulus for the two isotropic

layers. This means there is an infinite number of choices for

the bulk modulus for the two layers. Alternatively, it is possi-

ble to trade the freedom for higher order equivalence such that

the equivalence would work over a broader frequency range.

V. SECOND ORDER APPROXIMATION

As the second order approximation, setting sin a¼ a and

cos a¼ 1 – 1/2a2 gives, for the anisotropic layer,

~R ¼ ð1� fÞ þ î ~P� � ~Q�

ð1þ fÞ þ î ~Pþ � ~Qþ
; (45)

~T ¼ 2e�ik2h cos h2

ð1þ fÞ þ î ~Pþ � ~Qþ
; (46)

and for the dual isotropic layers,

R ¼ ð1� fÞ þ îP� � Q�
ð1þ fÞ þ îPþ � Qþ

; (47)

T ¼ 2e�ik2h cos h2

ð1þ fÞ þ îPþ � Qþ
; (48)

where the following new parameters have been introduced,

~Q6 ¼
1

2
ð16fÞb2; (49)

Q6 ¼
1

2
ð16fÞðb2

A þ b2
BÞ �

1

n2

6
n3

n1

� �
bAbB: (50)

Through a similar process, ~Q6 and Q6 can be expressed

in terms of the incident angle h1 as

~Q6

ðk1hAÞ2
¼ 1

2
ð16fÞð1þ rÞ2 qxc2

1

K
� qx

qy

sin 2 h1

" #
(51)

and

Q6

ðk1hAÞ2
¼c2

1

1

2

1

c2
A

þ r2

c2
B

� �
þ r

qA

KB

� ��

6f
1

2

1

c2
A

þ r2

c2
B

� �
þ r

qB

KA

� ��

� sin 2h1

1

2
ð1þ r2Þ þ r

qA

qB

� ��

6f
1

2
ð1þ r2Þ þ r

qB

qA

� ��
: (52)

Note that all the terms added at the second order appear in

the real parts of either the denominator or the numerator;

while the first order equivalence conditions are derived from

the imaginary parts. This means that enforcing the equiva-

lence at the second order does not interfere with the first

order equivalence. Thus, the additional requirement is

Q6¼ ~Q6. Since both f and h1 are arbitrary, the equivalence

would require the following 4 conditions

1

c2
A

þ r2

c2
B

þ 2r
qA

KB
¼ ð1þ rÞ2 qx

K
; (53)

1

c2
A

þ r2

c2
B

þ 2r
qB

KA
¼ ð1þ rÞ2 qx

K
; (54)

1þ r2 þ 2r
qA

qB

¼ ð1þ rÞ2 qx

qy

; (55)

1þ r2 þ 2r
qB

qA

¼ ð1þ rÞ2 qx

qy

: (56)

The first two conditions require

qAKA ¼ qBKB or qAcA ¼ qBcB: (57)

That is, the two layers must be impedance-matched. This

gives one more condition on the bulk modulus of the two

layers. Combined with the first order equivalence conditions,

the bulk modulus of both layers can now be completely

determined as

KA ¼
qx

qA

K KB ¼
qx

qB

K: (58)

Then, Eqs. (53) and (54) become identical, which can be fur-

ther reduced to Eq. (37). In other words, they do not add

more conditions.

Unfortunately, Eqs. (55) and (56) require qA¼ qB, and

in turn, qx¼qy. This means that a full second-order equiva-

lence can be achieved only in one of the following two sce-

narios: (1) when the anisotropic layer degenerates to an

isotropic layer, by which the two equivalent isotropic layers

would also be identical to the “anisotropic” layer, or (2)

when the incident is normal to the surface: h1¼ 0, as the

unmatched term is modulated by sin2 h1. For any real aniso-

tropic layer, it cannot be fully imitated with two isotropic

layers up to the second order accuracy.

VI. PROPER LAYER PLACEMENT FOR ERROR
SUPPRESSION

With the unavailability of a full second-order equiva-

lence, an alternative is to suppress the effects of the

unmatched terms. One of the mechanisms is limiting the

incident angle h1 to small angles, while requiring the anisot-

ropy not too strong, that is qx/qy � 1. These two conditions

can be combined to suppress unmatched term to the second

order smallness. Such limitations may make this mechanism

impractical in many situations.

Another mechanism is through a proper layer place-

ment. Since P6 and Q6 are the first order and second order,
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respectively, small terms, the second-order approximations

for the reflection and transmission coefficients for the two

isotropic layers can be alternatively written as

R� 1� f
1þ f

þ îP�
1þ f

� îð1� fÞPþ
ð1þ fÞ2

þ P�Pþ
ð1þ fÞ2

� Q�
1þ f

þð1� fÞQþ
ð1þ fÞ2

; (59)

T � 2e�ik2h cos h2
1

1þ f
� îPþ
ð1þ fÞ2

þ Qþ
ð1þ fÞ2

" #
: (60)

As f is always positive, the factor (1þ f) in the denominator

serves to suppress the effects due to Q6 (as well as ~Q6). The

larger the f value, the smaller the influences Q6 would have.

Recall that f essentially represents the impedance ratio of

Medium 1 to Medium 2. If the two surrounding media are

different, one way of layer placement, which shall be

referred to as the proper placement, always achieves a larger

f than the other way. The proper placement is to place the

heavier layer adjacent to the medium of higher impedance.

As an example to demonstrate the significance of the

layer placement, consider an acoustic cloak following the

design of Cummer and Schurig (2007). In this design,

the material properties vary in the following manner: the

radial sound speed remains a constant, but the radial mass

density increases and approaches to infinity as the radius

decreases, from the outer rim of the cloak to the interface

between the cloak and the cloaked object. That is, the radial

impedance increases in the direction of approaching to the

cloaked object.

In this example, a rigid cylinder of radius a is being

cloaked, in a host medium of water, of mass density of

q0¼ 1000 kg/m3, and a sound speed of c0¼ 1350 m/s. The

cloak has an outer radius of b¼ 1.5a, and is comprised of 5

anisotropic layers, which are then converted into 10 isotropic

layers of equal thickness. The conversion uses the first-order

equivalence conditions in Eqs. (37)–(39), as well as the im-

pedance match of the second-order in Eq. (57). The material

properties of both anisotropic and the equivalent isotropic

layers are listed in Table I. In Table I, all properties are nor-

malized by those of the host medium, and K0¼q0c2
0 is the

bulk modulus of water. The layers are numbered inwards,

with Layer 10 being the closest to the rigid cylinder.

The normalized total scattering cross section, denoted

as r, is a scalar quantity that describes the overall scattering

strength of a scatterer. It is the total energy scattered by the

scatterer over a closed surface enclosing the scatterer, nor-

malized by the power of the incident wave and the geometric

cross section (in the two-dimensional case, the diameter) of

the scatterer. The computation procedure has been discussed

elsewhere (Cai and Sanchez-Dehesa, 2007, 2008). The com-

putation gives analytically exact values of the T-matrix for

the scatterer comprising of multiple uniform layers of either

mass-anisotropic or isotropic media. The T-matrix represent

the linear transformation from wave expansion coefficients

of the incident wave to those of the scattered wave. For an

axisymmetric scatterer, the T-matrix is a diagonal matrix,

and the normalized total scattering cross-section can then be

calculated from

r ¼ 2

pk0a

X1
n¼�1

j½T�nj
2; (61)

where [T]n is the T-matrix entry at the nth row and the nth

column (n runs from �1 to1), and k0 is the wave number

in the host.

The normalized scattering cross section of the cloaked

rigid cylinder by the aforementioned isotropic cloaks with

different layer placements is compared with the anisotropic

cloak in Fig. 4 over the frequency range from k0a¼ 0 to 5.

One of the layer placements, shown as the solid curve, is as

suggested in this paper, which, for the case of cloaking, is to

place the heavier layer of the pair closer to the object. This is

the layer placement listed in Table I. The other layer place-

ment, shown as the dashed curve, is the opposite: placing the

softer layer of the pair closer to the cloaked object.

First and the foremost, Fig. 4 shows that the equivalence

works at low frequencies as expected. The computed scatter-

ing cross section for all the three cloaks coincide, up to a fre-

quency k0a � 0.5. Afterwards, the curves for the isotropic

cloaks start to deviate from the one for the anisotropic cloak,

TABLE I. Material Properties for Cloaks Comprising of 5 Anisotropic

Layers and 5 Pairs of Impedance-Matched Isotropic Layers

Anisotropic Layers Isotropic Layers

Layer qr/q0 qh/q0 K/K0 qA,B/q0 KA,B/K0

1
3.2222 0.31345 0.35802

0.15910 7.2510

2 6.28534 0.18354

3
3.8571 0.25926 0.42857

0.13188 12.5342

4 7.5824 0.21801

5
5.0000 0.20000 0.55556

0.10102 27.497

6 9.8990 0.28061

7
7.6667 0.13044 0.85185

0.065497 99.712

8 15.268 0.42775

9
21.000 0.047619 2.3333

0.023823 2056.8

10 41.976 1.1673

FIG. 4. (Color online) Normalized total scattering cross section r of a rigid

cylinder cloaked by cloaks comprising of 5 isotropic layer pairs. Each pair

is impedance-matched. Solid curve: anisotropic cloak. Dot-dashed curve:

proper placement—placing heavier layer in each pair closer to the object.

Dashed curve: improper placement—placing softer layer in each pair closer

to the object.
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indicating that the second order effects have become noticea-

ble. The curves for the two isotropic cloaks start to deviate

after k0a � 1.5. Second, Fig. 4 shows clearly that the effect

of layer placement is rather significant, especially after

k0a> 1.5. For example, at k0a¼ 2, the scattering cross sec-

tion is reduced by one third merely by a proper placement of

the layers without any change of other parameters; at

k0a¼ 3, the reduction is by a half, and at k0a¼ 4, the reduc-

tion is by two thirds. In other words, with a proper layer

placement, it is possible to maintained a relatively small

scattering cross section over an extended frequency range.

The significance of the layer placement also suggests that

meeting the partial requirement for the second order equivalence

in Eq. (57) may not be as important as the layer placement. An

observation to support this hypothesis is that, according to Eqs.

(59) and (60), a large f suppresses Q6 entirely, not just those

unmatched terms. If this is the case, it might be better to keep

the choices for bulk modulus open for more, if any at all for

cloak design, material choices. While pondering this prospect, it

must be pointed out that, in fact, the requirement in Eq. (57)

may bring a problem of its own. As indicated in Table I, the

mass densities in each pair of the isotropic layers can differ by

one or even three orders of magnitudes. Having both layers

impedance-matched means that the wave number in one of the

layers is much greater than the other. This may cause the layer

with the larger wave number (the heavier layer) prematurely

exceeding the low frequency limit (the small bA, bB, and b
assumption), which would be the opposite of what seeking the

second-order equivalence attempts to achieve.

In light of this, two other convenient yet simple alterna-

tives are evaluated and observed. One is to require both

layers to have the same bulk modulus, which, according to

Eq. (39), would be equal to that of the anisotropic layer. This

is the assumption used by Cheng et al. (2008). Another is to

require the bulk modulus of the two layers proportional to

their respective mass densities, which gives both layers the

same sound speed and the same wave number. This is the

assumption used by Torrent and Sanchez-Dehesa (2008).

The resulting normalized total scattering cross section for

the two alternatives are shown in Figs. 5 and 6, respectively.

In each of these figures, two layer placements are compared

with the anisotropic cloak. One of the layer placement is

called the proper layer placement as suggested in this paper,

whose result is shown in dot-dashed curve. The other, the

improper placement, is shown in dashed curve. In both cases,

the proper layer placement consistently produces better

cloaking effects. The case with matched wave speeds gives a

slightly better performance in higher frequencies beyond

k0a¼ 3. It is also important to note that, both alternatives

perform better than the one that follows the partial require-

ment for the second order equivalence.

However, a cautionary note might be in order here. The

above observations are limited to cloaking applications, which

presents some extreme challenges, such as extremely high ma-

terial property gradients near the cloaked object, where extreme

anisotropy is required. For other applications when the material

requirements are not so extreme, partial fulfillment of the sec-

ond order equivalence may still be a worthy effort.

VII. CONCLUSIONS

In this paper, the equivalence between a single mass-

anisotropic layer and two isotropic layers is studied. The first

order equivalence is derived from the wave transmission and

reflections by the layer(s). Second order equivalence is

explored. One more equivalence requirement is obtained

from the second order approximations: that the two isotropic

layers must have their impedance matched. Together with

the first order equivalence requirements, this gives a com-

plete set of conditions for determining all the materials prop-

erties of the two layers. However, it is concluded that full

second order equivalence is not possible unless the incident

is normal to the surface, or the materials are isotropic. On

the other hand, the unattainable second order equivalence

can be alleviated by a proper placement of layers: by placing

the heavier layer adjacent to the medium of greater acoustic

impedance. Numerical examples show that this remedy in

fact is more important than following the partial requirement

for the second order equivalence when the equivalent iso-

tropic layers are used in acoustic cloaking applications.
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