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A design of actively controlled metamaterial is proposed and discussed. The metamaterial consists

of layers of electrically charged nano or micro particles exposed to external magnetic field. The

particles are also attached to compliant layers in a way that the designed structure exhibits two

resonances: mechanical spring-mass resonance and electro-magnetic cyclotron resonance. It is

shown that if the cyclotron frequency is greater than the mechanical resonance frequency, the

designed structure could be highly attenuative (40–60 dB) for vibration and sound waves in very

broad frequency range even for wavelength much greater than the thickness of the metamaterial.

The approach opens up wide range of opportunities for design of adaptively controlled acoustic

metamaterials by controlling magnetic field and/or electrical charges.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744943]

PACS number(s): 43.40.Vn [ANN] Pages: 2866–2872

I. INTRODUCTION

Emerging metamaterials are envisioned as one of dis-

ruptive technologies that can potentially marginalize a num-

ber of existing dominant technologies. Metamaterial is a

manmade material which gains its properties from its struc-

ture rather than directly from its composition, designed to

exhibit unusual properties not available in nature. Electro-

magnetic metamaterial with negative values for both

permittivity and permeability results in structures with a

negative refractive index allowing creation of microwave

and optical cloaks, superlenses, super directional antennas,

etc.,1–5 until recently considered just science fiction. While

rapidly growing research efforts have been invested on elec-

tromagnetic metamaterials,6 the abnormal behaviors of elas-

todynamic/nonlinear/acoustic metamaterial (with negativity

of mass density/stiffness) and the design/fabrication tech-

nologies just begun to be explored.7–9 Furthermore, meta-

material research and developmental efforts mostly focuses

on passive approaches,10 i.e., the metamaterial properties

are fixed by design and cannot not be manipulated ones the

material is fabricated.

Recent efforts in developing acoustic metamaterials

have been focused on constructing mechanical structures

having so-called negative effective dynamic bulk modulus

and negative effective dynamic mass density.11–14 Here the

term “negative” is intrinsically bound with the term

“effective dynamic” as a dynamic behavior of structured ma-

terial with local resonances is treated as dynamic response of

equivalent (effective) continuum medium. The resonances

change the phase of the structural dynamic response to an

external stimulus, thus creating an appearance of negative

inertial and/or compression properties of the equivalent con-

tinuum medium. Thus, common approach for constructing

negative mass employs mass-spring oscillator build into

another mass.15,16 A lattice of such “mass-in-mass” elements

could be highly attenuative for acoustic/vibration waves

when the effective dynamic mass density becomes negative.

However, the negative mass effect takes place within a

narrow fixed frequency band determined by the oscillator

resonance frequency.

In the present paper we propose a new class of broad-

band metamaterial actively controlled using electro-

magnetic interaction. Active control of material properties

using magnetic fields is not new. For example, active mag-

netic dampers for vibration suppression have been studied

since the 1980s.17 These devices utilize magnets whose

vibrations generate eddy currents in adjacent conductor

effectively dissipating vibration energy. Another approach

for active adaptively controlled magnetic dumpers utilizes

magnetoreological elastomers.18 In this application the elas-

tic moduli of the elastomers are controlled by an applied

magnetic field allowing adaptive tuning the resonance fre-

quency of a vibration absorber. Recently, active magneto-

rheological fluids were proposed to be used for acoustic

metamaterials as well.19

Our approach for active adaptive control is fundamen-

tally different utilizing the interaction of applied magnetic

field with electrically charged nano or micro particles consti-

tuting the metamaterial lattice. The particles are attached to

compliant layers, therefore, the designed structure exhibits

two resonances: mechanical spring-mass resonance and

electro-magnetic cyclotron resonance. The last one is usually

considered in accelerators, plasma, or condense matter

physics, there very light atomic or subatomic electrically

charged particles move in a circle due to Lorentz force

a)Author to whom correspondence should be addressed. Present address:

Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783.

Electronic mail: vsmalinovsky@gmail.com

2866 J. Acoust. Soc. Am. 132 (4), Pt. 2, October 2012 0001-4966/2012/132(4)/2866/7/$30.00 VC 2012 Acoustical Society of America

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 11 Sep 2015 23:01:57



induced by static magnetic field. The frequency of this circu-

lar motion (cyclotron frequency) is determined as

xH ¼ qH=m; (1)

where m is the particle mass, q is its electrical charge, and

H is the magnetic field amplitude. Charged nano or micro

particles may experience the same cyclic motion. It is shown

that if their cyclotron frequencies are greater than the me-

chanical resonance frequencies, the designed structure could

be highly attenuative (40–60 dB) for vibration and sound

waves in a very broad frequency range even for wavelengths

much greater than the thickness of the metamaterial.

II. NEGATIVE EFFECTIVE MASS MODEL OF FORCED
HARMONIC OSCILLATOR

Consider a charged nanoparticle of mass m connected to

a base by a spring with a stiffness constant k placed into an

external magnetic field ~H and electric field ~E. The particle is

a subject to some external mechanical force ~F. The general

equation of the particle motion has the form20

m _~v ¼ �k~r þ q~E þ q~v � ~H þ~F; (2)

where q is the charge on the particle and~v is the velocity.

Equation (2) can provide very complicated three-

dimensional trajectory of the particle depending on the val-

ues of the external parameters. To demonstrate the concept

of the proposed approach we consider simplified model

when a homogeneous magnetic field is applied only in the z
direction ~H ¼ ð0; 0; HÞ, the electric field is zero, ~E ¼ 0,

and the mechanical force is applied in the x direction only,
~F ¼ FðtÞ, as shown in Fig. 1. For this configuration vector

product ~v � ~H ¼~i _yH �~j _xH and, respectively, the particle

trajectory is two-dimensional in the x, y plane.

Introducing new variables x0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
(the natural

mass-spring frequency) and xH ¼ qH=m (the cyclotron fre-

quency) the equations of motion can be rewritten in the

following form:

€x ¼ xH _y � x2
0x� c _x þ FðtÞ

m
;

€y ¼ �xH _x � c _y;

(
(3)

where c is the damping coefficient.

Examples of the trajectory and dynamics of the charged

particle governed by Eq. (3) is shown in Fig. 2. In the ab-

sence of the magnetic field, H¼ 0, the particle oscillates

along the mechanical force direction (the x axis), Fig. 2(a),

with the sinusoidal waveform shown in Fig. 2(b) by the solid

line. There is no motion in the y direction. As the magnetic

field is turned on such that H> 0, the trajectory becomes

elliptical in the x, y plane with dominant motion along the y
axis, as illustrated in Figs. 2(c) and 2(d). Figure 2(d) shows

the particle oscillation vs time along the y axis by the dashed

line, and along the x axis by the solid line, with the respec-

tive amplitude ratio about 100:1 for this example. That is,

the particle oscillates primarily in the direction perpendicular

to the direction of mechanical (acoustical/vibrational) force,

and the oscillation in the x direction is considerably sup-

pressed in the presence of the external magnetic field.

In order to provide some insight of the x-direction

amplitude suppression effect, the Eq. (3) is solved for the

steady-state spectral amplitude, AxðxÞ, of the particle

x-direction oscillation, assuming FðtÞ ¼ F cos xt, where F is

the constant amplitude. The solution is

AxðxÞ ¼
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þx2

p
m

½ðc2þx2Þx4
0

� 2x2x2
0ðc2þx2�x2

HÞ þx2½ðc2þx2Þ2

þ 2ðc2�x2Þx2
H þx4

H��
�1=2: (4)

Figure 3 shows the particle spectral amplitude responses

(with and without the external magnetic field) computed

with the Eq. (4). In the absence of the magnetic field, the fre-

quency response exhibits the mass-spring resonance with os-

cillation suppression above the resonance frequency x0.

With the magnetic field acting on the charged particle such

that xH > x0, there is much more significant suppression

effect in a very broad frequency range including frequencies

below and within mass-spring resonance.

For an undamped oscillator, c¼ 0, the Eq. (4) is

reduced to

Axðx; c ¼ 0Þ ¼ F

m

1

jx2
0 þ x2

H � x2j : (5)

Equation (5) evaluates the resonance frequency of the mass-

spring electro-magnetic oscillator, which is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

H þ x2
0

p
. It also shows that the electro-magnetic interac-

tion suppresses the vibration amplitude of the mechanical os-

cillator by a factor of

S ¼ x2
0 � x2

x2
0 þ x2

H � x2
: (6)

At the frequencies below x0 the amplitude suppression fac-

tor S ffi x2
0=x

2
H, provided that xH � x0.

The effect of the amplitude suppression of the particle

motion in the x direction can be interpreted by invoking the
FIG. 1. Schematic of a charged particle which is a subject to a periodic

external force in a uniform magnetic field.
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negative effective mass paradigm, mentioned in the intro-

ductory section. To demonstrate this idea we consider further

simplified model neglecting the damping terms in Eq. (3)

and address the case with the external force in the x direction

as ~F ¼ Fe�ixt. In this case, the general solution of the Eq.

(3) has the form x ¼ Ae�ixt and y ¼ Be�ixt, where

A ¼ F

k � meffx2
; (7)

B ¼ �i
xH

x
F

k � meffx2
; (8)

meff ¼ mð1� x2
H=x

2Þ: (9)

The expressions for the coefficients A and B are written in

the form which provides a standard solution of the forced

one-dimensional harmonic oscillator problem21 when the

effective mass, meff, is replaced by the oscillator mass m.

Here the effective mass accounts for the interaction of the

charged particle with the external magnetic field leading to

the two-dimensional x-y trajectory of the mass. Note that the

effective mass, meff, becomes negative in the wide range of

frequencies x < xH, as per Eq. (9). The “negative mass”

translates into high attenuation of vibration or acoustic

waves.

III. LINEAR CHAIN OF IDENTICAL EFFECTIVE
MASSES

In this section we consider a one-dimensional lattice

consisting of the effective masses connected by the linear

springs as shown in Fig. 4. For simplicity we consider propa-

gation of an elastic wave in an infinitely long lattice system

with the goal to describe a steady-state harmonic motion of

FIG. 2. Trajectory of a charged par-

ticle which is a subject to a periodic

external force in a uniform magnetic

field. (a),(b)—xH=x0 ¼ 0; (c),(d)—

xH=x0 ¼ 10; x=x0 ¼ 0:1, F=k ¼
0:1, and c=x0 ¼ 0:3 [in (b) and (d)

panels: x—solid line, y—dashed

line].

FIG. 3. Spectral response (in the x-direction) of a charged particle which is

a subject to a periodic external force in a uniform magnetic field;

c=x0 ¼ 0:3.

FIG. 4. Schematic of one-dimensional chain of the effective masses with the

equilibrium distance L between them.
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the masses and to investigate the attenuation mechanism of

the wave propagating along the lattice.

Using the quasi elastic approximation, the equation of

motion takes the following form:

meff €uj þ kð2uj � uj�1 � ujþ1Þ ¼ 0; (10)

where uj is the displacement of the j-th mass.

Since the Eq. (10) does not change if we shift the whole

system by the equilibrium distance between the masses, L,

multiplied by an integer, the solution of this infinite set of

equations can be written in the form

uj ¼ uðgÞ expfiðgjL� xgtÞg; (11)

where g is the wavenumber.

Substituting Eq. (11) into Eq. (10) we find the character-

istic equation

�meffx
2
g þ 2kð1� cos gLÞ ¼ 0; (12)

and obtain a dispersion relation for an elastic wave of wave-

number g and the respective frequency xg

xg ¼ 2

ffiffiffiffiffiffiffiffi
k

meff

r
sin

gL

2

� �
: (13)

Taking into account Eq. (7) with x¼xg and expressing

k ¼ mx2
0, Eq. (13) can be rewritten as follows:

xg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

0 sin2 gL

2

� �
þ x2

H

s
: (14)

Figure 5 shows a general dispersion curve for the linear

chain of the effective masses. As expected, there is only an

acoustic branch in the spectrum of the chain, similar to the

spectrum of a monoatomic linear chain.22 However, in our

case there is a possibility to control the band gap width

which is determined by the cyclotron frequency, xH. The

frequency range of the acoustic wave which can propagate

in the linear chain depends on both the cyclotron and the me-

chanical resonance frequencies. The low and upper bounda-

ries of the propagating range are determined by xH andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

0 þ x2
H

p
, respectively. Variation in frequency band

structure is shown in Fig. 6 for several values of the xH/x0

ratio. The frequency range of the elastic waves propagating

in the chain becomes narrower as the xH/x0 ratio is

increasing.

The dispersion relationship, Eq. (14), points to appreci-

able attenuation of the wave propagating through the chain of

the effective masses. This attenuation can be explained using

the negative mass or the band gap paradigms. We focus

on the long wavelength limit gL� 1 since the waves of the

short wavelengths are attenuated in any case due to the mass-

spring vibration isolation effect illustrated in Fig. 3.

In the long wavelength limit, gL� 1, Eq. (13) becomes

xg ¼
ffiffiffiffiffiffiffiffi

k

meff

r
gL: (15)

Therefore the group velocity is

c ¼ dxg

dg
¼ L

ffiffiffiffiffiffiffiffi
k

meff

r
: (16)

When x2
H � x2

g the effective mass becomes negative meff �
�mx2

H=x
2
g and the wave vector, g, becomes purely

imaginary

g ¼ 1

L
xg

ffiffiffiffiffiffiffiffi
meff

k

r
¼ i

xH

Lx0

: (17)

That implies that there is no propagation of the elastic waves

in the lattice.

The same conclusion can be reached using the band

structure analysis. Thus, at gL� 1, Eq. (14) yields

xg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0g
2 L2 þ x2

H

q
: (18)

For x2
H � x2

0, the dispersion relationship becomes

xg � xH, that is, the frequency of the elastic wave is inde-

pendent of the wave vector and the wave group velocity

c ¼ dxg=dg ¼ 0. Therefore there is no wave propagation.

IV. LINEAR CHAIN OF “MASS 1 EFFECTIVE MASS”
UNIT CELLS

Now we consider a propagation of an acoustic wave in a

linear chain of masses where each second mass is replaced by
FIG. 5. Dispersion relation for one-dimensional chain composed of effective

masses.

FIG. 6. Controllability of frequency band gap by external magnetic field in

the linear chain of the effective masses.
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an effective mass analyzed in the previous section. Figure 7

shows a fragment of the “massþ effective mass” chain.

The equations of motion of the linear chain in the quasi

elastic approximation has the form

M€u2j þ kð2u2j � u2j�1 � u2jþ1Þ ¼ 0; (19)

meff €u2jþ1 þ kð2u2jþ1 � u2j � u2jþ2Þ ¼ 0; (20)

where uj is the displacement of the j-th mass.

Using the basic wave form solution

u2j; g ¼ uðgÞ expfið2jgL� xgtÞg; (21)

u2jþ1; g ¼ vðgÞ expfi½ð2jþ 1ÞgL� xgt�g; (22)

where L is the equilibrium distance between the masses, we

obtain the characteristic equation

2k �Mx2
g �2k cos ðgLÞ

�2k cos ðgLÞ 2k � meffx2
g

� �
uðgÞ
vðgÞ

� �
¼ 0: (23)

For a none-trivial solution the determinant of the matrix in

Eq. (23) has to be equal to zero, yielding the following dis-

persion relation:

x2
g ¼ k

1

M
þ 1

meff

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1

M
þ 1

meff

� �2

� 4k2

Mmeff

sin2ðgLÞ

s
: (24)

Taking into account that meff ¼ mð1� x2
H=x

2
gÞ and k ¼

mx2
0 we obtain

x2
g ¼ x2

Mþx2
0þ

x2
H

2

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

M�x2
0�

x2
H

2

� �2

þ 4x2
Mx2

0 cos2ðgLÞ

s
; (25)

where x2
M ¼ k=M.

Figure 8 shows dispersion curves in the one-

dimensional chain of the massþ effective mass unit cells for

the case M� m and xH > xM. Now there are two branches

in the spectrum: optical and acoustic vibration branches,

similar to the phonon vibrations in a crystal lattice.23 The

band gap between branches as well as band gap of acoustic

branch is controllable by the external magnetic field

amplitude.

Figure 9 shows variations in the frequency band struc-

ture of the chain for several values of the xH=x0 ratio. The

wave frequency xg of the acoustic and the optical branches

becomes independent of the wave vector when xH � x0.

The acoustic branch becomes a horizontal line at xg ¼ffiffiffi
2
p

xM while the optical branch becomes a horizontal line at

xg ¼ xH. The frequency range of the acoustic waves propa-

gating in the chain is getting narrower as the xH=x0 ratio is

increasing. For xH=x0 � 1 the wave propagation is almost

completely suppressed.

V. CONTINUOUS MEDIA MODEL

The one-dimensional chain models discussed in the pre-

vious Sections are based on discrete elements but they can

be adopted to introduce continuous elastic medium with

effective mass density and elastic moduli. Here we consider

a one-dimensional elastic medium with frequency-dependent

effective mass density. The wave equation of the one-

dimensional elastic medium can be written in the form15

Eeff

@2uðx; tÞ
@x2

¼ .eff

@2uðx; tÞ
@t2

; (26)

where Eeff ¼ Lk is the effective Young’s modulus which is

determined by the stress-strain relation for a unit cell, and

.eff ¼ meff=L is the effective mass density.

Using the separation of variables method we obtain

FIG. 7. Schematic of one-dimensional chain of the “massþ effective mass”

unit cells.

FIG. 8. Dispersion relation for one-dimensional chain composed of

“massþ effective mass” unit cells.

FIG. 9. Variations in the frequency band structure of the one-dimensional

material representing by “massþ effective mass” chain; m=M ¼ 0:25, (a)

xH=x0 ¼ 0, (b) xH=x0 ¼ 1, (c) xH=x0 ¼ 3, (d) xH=x0 ¼ 5.
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uðx; tÞ ¼ A exp 6i x

ffiffiffiffiffiffiffiffi
.eff

Eeff

r
x 6 xt

� �� �

¼ A exp 6i
x
c

x 6 xt
� �n o

; (27)

where

c ¼
ffiffiffiffiffiffiffiffi
Eeff

.eff

s
¼ L

ffiffiffiffiffiffiffiffi
k

meff

r
¼ Lx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
H=x

2
p (28)

is the wave propagation velocity.

Equation (28) shows that the elastic wave propagation

velocity is purely imaginary when the effective mass is nega-

tive, x2
H � x2,

c � iLx0

x
xH

; (29)

and per the Eq. (27) the wave form is determined by

uðx; tÞ ¼ A exp �xH

x
x

L
6 ixt

n o
; (30)

showing exponential attenuation of the elastic wave ampli-

tude in a very broad range of frequencies determined by the

cyclotron frequency xH.

VI. IMPLEMENTATION EXAMPLE

As an implementation example of the acoustic metama-

terial, we consider a spherical electrically conductive parti-

cle coated with a dielectric material. The particle can be

charged via attached to it energized electrode. The charge, q,

carried by the particle is determined by its capacitance, C,

and applied voltage, V,

q ¼ CV: (31)

For a spherical conductor the capacitance is

C ¼ 4pe0eR; (32)

where R is the radius of the sphere, e is the dielectric con-

stant (relative permittivity) of the sphere coating, and e0 ¼
8:85� 10�12 F/m is the vacuum permittivity. Now consider

layer(s) of the particles attached to mechanically compliant

layers as shown in Fig. 10. The particles are in magnetic

field created by constant magnets. Such a structure could be

used to reduce sound radiation from structure (due to struc-

tural support vibration) or protect the structure from incident

sound waves.

The stiffness of the compliant layer is characterized by

its Young’s modulus, E, and it is subject of the Hook’s law

r ¼ EDnL0; (33)

where r is the normal stress (in the direction perpendicular

the layer), Dn is the layer’s deformation, and L0 is its thick-

ness. From Eq. (33) it follows that the stiffness per unit area,

K, is

K ¼ E=L0; (34)

and the mechanical resonance frequency of the particle layer

loaded with mass per unit area, M, is

x0 ¼
ffiffiffiffiffiffiffiffiffiffi
K=M

p
¼

ffiffiffiffiffiffiffiffiffi
E

L0M

r
: (35)

Assume that the particles are uniformly distributed within

the particle layer and spaced at the distance 2R from each

other. Then M ¼ m=ð4pR2Þ, where m is the particle mass.

For solid sphere m ¼ .4pR3=3. Here . is the density of the

sphere and mass of the dielectric coating is neglected. Under

these assumptions the mechanical and cyclotron resonance

frequencies are

x0 ¼
ffiffiffiffiffiffiffiffiffiffi
3E

L0.R

s
; (36)

xH ¼
3e0eVH

.R2
: (37)

Note, that the sound or vibration suppression is taking place

if

x0 � xH: (38)

As an example consider an aluminum (. ¼ 2700 kg=m3)

sphere with the diameter 2R ¼ 0:1 lm, coated with polyani-

lene/polyurethane blend,24 e ¼ 1120, charged with 400 V,

and placed in magnetic field of 0.25 T produced by a typical

permanent rare-earth magnet. The cyclotron frequency for

this particle is xH=2p ¼ 70:15 kHz. In order to satisfy

vibration suppression condition Eq. (38), we assume x0 ¼
0:1 xH and from Eq. (36) obtain requirements for the com-

pliant layer parameters

E=L0 ¼ x2
0.R=3 ¼ 0:01x2

H.R=3: (39)

In our example E=L0 ¼ 87 331 Pa=m. For E ¼ 225 Pa (glass

fiber), the thickness of the layer will be 2.6 mm as follows

from Eq. (39). Using the metamaterial described above

(xH ¼ 10 x0) we see from Fig. 3 that the intensity of the

acoustic waves below frequency 7 x0 are reduced by 40–60 dBFIG. 10. Schematic diagram of the implementation example.
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just within a single layer structure. This exhibits the possibility

of constructing a multi-layer metamaterial based on this

design. The multi-layered structure relaxes the condition Eq.

(38) allowing for the decrease of the external magnetic field

and particle charges (which can be more favorable in practice)

without loss of attenuation efficiency.

VII. CONCLUSION

This paper is an initial step toward development and

implementation of the proposed concept. There are still

many interesting but unanswered questions. For example,

two- or three-dimensional lattice and its response to external

stimulus (vibration or acoustic waves) with arbitrary angular

dependence, structural response to time/space dependent

magnetic field or electric charges, electrical interaction

between charged particles, and many others.

These questions emphasize that the proposed approach

with combined electro-magnetic cyclotron and mechanical

resonances offers many opportunities for innovative design

of acoustic metamaterials. As discussed, it could be utilized

as a superior sound and vibration suppressor in a very broad

frequency range. Controlling applied voltage and magnetic

field may enable even more advanced capabilities such as re-

programmable acoustic characteristics of the material, super-

lensing, and cloaking.
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