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High efficiency of the second-harmonic and sum-frequency generation can be obtained in optical

superlattice by using the conventional quasi-phase-matched (QPM) method. Although this trick can

be played on the acoustic wave, the media with negative nonlinear parameters are not common in

acoustics. Furthermore, the QPM method used in acoustic metamaterials has been less studied. In

this work, a protocol is provided to realize the QPM method by using nonlinear complementary

media in acoustic metamaterials in order to obtain large backward second-harmonic generation.

Compared with the conventional method, the method gains a broader bandwidth and can be used in

both acoustic and electromagnetic waves. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4744978]

PACS number(s): 43.25.Cb, 43.35.Bf [ANN] Pages: 2852–2856

I. INTRODUCTION

In the last decade, metamaterials have attracted the inter-

est of thousands of researchers, and this because of their spe-

cial characteristics, such as negative refraction, invisible

cloaking, resolutions breaking the limits of diffraction, etc.1–7

All of the preceding properties are based on linear assump-

tion. After the linear characteristics of the metamaterials

became better understood, researchers expanded the research

area to the nonlinear situation and began to find unique prop-

erties that had not been explored previously, e.g. backward

second-harmonic emission, backward second-harmonic local-

ization, etc.8–10 To realize these properties, high backward

second-harmonic conversion is expected. To ensure that

energy storage is positive, the dispersion and lossy should be

the characteristics of the metamaterials;11 this means it is dif-

ficult to get a highly efficient second-harmonic conversion.

One way proposed to achieve the efficient backward second-

harmonic generation is to use the so-called phase-matched

condition (PMC) to find a special frequency point in which

the momentum conservation condition is satisfied.12 But only

some special selected frequencies can match the PMC; this

greatly reduces the application of the unique characteristics

of the nonlinear metamaterials. The quasi-phase-matched

(QPM) method was applied to electromagnetic metamaterials

to obtain large forward second-harmonic waves.13 This raises

some questions: Is there any other way to realize large back-

ward second-harmonic generation in acoustic metamaterials

in a very wide range of frequency? Can the QPM method be

applied in the acoustic metamaterials? To the best of our

knowledge, these questions are still unanswered despite their

important applications as well as the significant efficiency of

the high order harmonic conversion in acoustics.

II. THEORY

Backward second-harmonic generation has been discov-

ered in nonlinear metamaterials,9,10 and there will be many

future applications. In acoustics, backward second-harmonic

generation can be used to realize the second-harmonic imag-

ing in medical ultrasound. Developing a good way to obtain

large backward second-harmonic generation will promote

the application of the nonlinear metamaterials. Media with

negative nonlinear are not common in acoustics; therefore

the conventional QPM method used in optics is hardly used

in acoustics. In this article, we propose a new way to realize

the high efficiency of backward second-harmonic generation

by the QPM method with nonlinear complementary media.

The concept of the complementary media was proposed after

metamaterials had been discovered. In the linear case, one of

the most important applications is the perfect lens as pro-

posed by Pendry.1 Complementary media (also called anti-

object) can “cancel” the corresponding space; the result is

just like an empty space embedded in the cancelled space

and can achieve the invisible cloak. The key idea of the com-

plementary media is coordinate transformation. A wave

accumulates its wave path when it crosses a normal medium,

and the wave will experience a negative wave path when it

crosses a negative refraction medium. By connecting these

two kinds of media together in the wave path, the phase of

the wave can be restored and the corresponding region

seems nonexistent.4 Consider the source positioned on the

left x ¼ �L and an acoustic wave path consisting of two

media the mass densities of which are q0 and �q0, bulk

moduli are j0 and �j0, and lengths are L and d, respectively,

as shown in Fig. 1(a). When a wave illuminates from left to

right, the wave path is first increased by nL, where n is the

refractive index, when passing the normal medium, then

decreased by nd, when passing the negative index medium.

The final result is just like the wave passing a normal

media through length L-d. If we set L¼ d, then the phases at

x ¼ �L and x¼ d are equal. It looks as if the wave travels

through empty space if the attenuation of the metamaterials
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is neglected. Now we replace the previous media with quad-

ratic nonlinear media the properties of which at the funda-

mental frequency are the same as before. But at the second-

harmonic frequency, their mass densities become �q0 and

q0, and their bulk moduli become �j0 and j0, respectively,

as shown in Fig. 1(b). The left media behave with right-

handed properties at angular frequency x but left-handed

properties at angular frequency 2x, and the right media

behave left-handed at x, but right-handed at 2x. So we can

still call this complementary media and in this pair of media,

backward second-harmonic emission can be expected.14,15

Now we can consider whether the second harmonic will be

cancelled or enhanced through the nonlinear complementary

media. Assume that L¼ d. First, we consider the second har-

monic generated by the left media. At x ¼ �L, the second

harmonic generated by the infinitesimal element at point x
equals Acos½2xðtþ t0Þ � 2k1x�dx. Here, A is proportional to

the nonlinearity parameter and the square of the amplitude

of the sound pressure, t0 ¼ ðxþ LÞ=c2, k1¼x/c1, and

k2¼ 2x/c2 represent the wave number of the fundamental

frequency and the second harmonic, c1 and c2 represent the

wave speed of the fundamental frequency and the second

harmonic, respectively. We choose the sign of t0 to be posi-

tive because its energy flux is in the negative direction

though the wave vector of the second harmonic is positive in

these kinds of metamaterials.9 So the energy accumulates in

the negative direction. For simplicity, we assume that the

quasi-linear approximation, such that A is taken to be a con-

stant and the total length of the structure to be relatively

short. In our assumption, the phase matching condition is

established, so we can make superposition of the infinitesi-

mal second harmonic and obtain the pressure at the second-

harmonic frequency at x ¼ �L : P2x ¼ A cosð2xtþ 2k1LÞL.

Now we consider the second harmonic generated by the right

media. The phase of the fundamental wave at point x equals

the phase at point –x because of the complementary media

effect. So the phase of the second harmonic generated at

point x is also the same as the phase at point –x. In such

media, the second harmonic is generated backward, and the

energy flux of the second harmonic accumulates in the nega-

tive direction. When the second harmonic generated at point

x propagates to the point –x, the phase does not change

because of the complementary media effect at 2x. Finally

all the second harmonics are added at points x ¼ �L, and the

sound pressure at the second-harmonic frequency should be

2P2x instead of zero. So the pair of the complementary

media is not regarded as empty if the nonlinear effect is con-

sidered because the second harmonic is generated. On the

contrary, we can take advantage of it to realize the QPM

method in fluids to enhance the second-harmonic generation.

In the PMC media, the phase of the second harmonic gen-

erated at any point is the same when superposed at x ¼ �L as

shown in Fig. 2(a), where the direction of the small arrow rep-

resents the phase of the second harmonic generated at x propa-

gating to the position x ¼ �L. All the arrows are in the same

direction, meaning that the second harmonic is enhanced as

shown in Fig. 2(b). Now we extend the analytical procedure to

the phase-mismatched situation. As shown in Fig. 2(c), the pa-

rameters of the left media are q1 and j1 at x and �q2 and �j2

at 2x, and the right media behave �q1 and �j1 at x and q2

and j2 at 2x, respectively. Because of dispersion, the phase of

the second harmonic generated at different locations is differ-

ent when propagating to the position x ¼ �L. Defining coher-

ence length l0 ¼ p=jk2 � 2k1j, if we change the media to its

complementary media each time the wave passes through l0,
then the QPM condition can be satisfied. Setting L ¼ l0, we

can obtain the phase of the second harmonic generated at

each position represented by the direction of the small arrows

[Fig. 2(c)]. Making superposition of the infinitesimal

second harmonic, we have P2x ¼ 4A cosð2xtþ 2k1l0Þl0=p at

x ¼ �L if there is only one period for the structure. Figure

2(d) is obtained from the vector superposing of the small

arrows of Fig. 2(c). The length of the big arrow represents the

amplitude of the second harmonic and its direction represents

the phase of the second harmonic. If we cascade n period of

this structure, the total length of which is 2nl0, then the total

FIG. 1. (a) A pair of linear complementary media. (b) A pair of nonlinear

complementary media.

FIG. 2. (a) A pair of nonlinear complementary media without dispersion

and (b) its second harmonic. (c) A pair of nonlinear complementary media

with dispersion and (d) its second harmonic. (e) A normal media with dis-

persion and (f) its second harmonic. (g) A pair of normal nonlinear polariza-

tion media consists together and (h) its second harmonic.
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second harmonic is P2x ¼ 4A cosð2xtþ 2k1l0Þnl0=p at the

initial point (x ¼ �L). As shown in Fig. 2(e), if we use normal

media instead of complementary media, after a wave passes

two times the coherence length without using the QPM

method, then all the second harmonic can be added in a circle;

as shown in Fig. 2(f) the total second harmonic turned out to

be zero. If we allow the length of the media shown in Fig. 2(e)

to be 2nl0, the second harmonic is still zero. Our scheme is to

arrange a pair of nonlinear complementary media periodically,

in the order ABABABAB…, as shown in Fig. 3(a), to obtain

large second-harmonic generation. We can also calculate it

through the conventional QPM method as shown in Fig. 2(g).

As shown in Fig. 2(g), the parameters of the left and the right

media are q1 and j1 at x and q2 and j2 at 2x, in common, but

the nonlinearity parameters of the left and the right media are

a and –a, respectively. In this case, a forward second-

harmonic wave appears, and the second harmonic at x ¼ L is

P2x ¼ 4Acosð2xtþ 2k1l0Þl0=p as shown in Fig. 2(h), the am-

plitude of which is the same as that of our QPM method. The

difference between our trick and the conventional QPM

method16,17 is that our trick is played by introducing nonlinear

complementary media to restore the phase difference caused

by dispersion, which doesn’t require the existence of the anti-

parallel 180� domains or negative nonlinearity parameter.

To compare the difference between our scheme and the

conventional QPM method, we set the period of the struc-

ture described in Fig. 3(a) to be l0 and the length of each

single element to be l0/2. First, we apply our QPM method

by introducing a couple of nonlinear complementary media.

After a wave passes 2l0, the second harmonic turns out to

be P2x ¼ 4
ffiffiffi
2
p

Acosð2xtþ 2k1l0Þl0=p at the initial point, as

shown in Fig. 3(b). Turning our view to the conventional

QPM method, if we introduce a pair of antiparallel 180�

domains in our structure marked A and B, instead of the

complementary media, as shown in Fig. 3(a), then after a

wave passed 2l0, the second harmonic turns out to be zero

as shown in Fig. 3(c). We define the normalization coeffi-

cient as g ¼ jP2xj=AL, indicating the efficiency of the

second-harmonic emission, where P2x is the amplitude of

the second harmonic at source point, L is the length the

wave has passed. If we set the period to be 2l0, as described

in the last paragraph, the efficiency coefficient of our

method and conventional QPM method turns to be 2/p
equally. If we set the period to be l0, as described in this

paragraph, then the efficiency coefficient turns out to be

2
ffiffiffi
2
p

=p and zero, respectively. Figure 4 shows the relation-

ship between the period D of the structure and the effi-

ciency coefficient.

For the conventional QPM method:

g ¼ f
D

2l0

� �
¼ f ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL

0

sign sin
2px

l

� �
cos 2pxdx

� �2

þ
ðL

0

sign sin
2px

l

� �
sin 2pxdx

� �2
s

L
(1)

where sign is the sign function reflecting the phase of the

second harmonic with respect to the periodic length of the

structure. L is the total length of the structure, in our calcula-

tion, we choose L¼ 50. The first and the second integrations

represent the real part and imaginary part contributions of

the second-harmonic wave, respectively.

For the QPM method by using complementary media:

g ¼ f
D

2l0

� �
¼ f ðlÞ ¼

sin
pl

2
pl

2

�������
�������: (2)

FIG. 3. (a) A pair of nonlinear complementary media or antiparallel 180�

domains is arranged in the periodic structure, according to ABABABAB…

and (b) its second harmonic. (c) The second harmonic in the structure with a

pair of antiparallel 180� domains instead of the nonlinear complementary

media.

FIG. 4. The relationship between the efficiency coefficient and the period D
of the structure with respect to 2l0.
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From Fig. 4, we find that our method can be realized in a

very wide range of the period of the structure; this implies

our method can realize large second-harmonic emission at a

very broad bandwidth. The physical nature of the conven-

tional QPM method is coordinate translation, while our

QPM method is coordinate reversion [as shown in Figs. 2(c),

2(d), 2(g), and 2(h)]. When using our QPM method, the

phase of the second harmonic generated at point x is the

same as that at point –x when superposed as the directions of

the small arrows shown in Fig. 2(c). But when using the con-

ventional QPM method, the phase of the second harmonic

generated at point x is the same as that at point x-L when

superposed, as the directions of the small arrows as shown in

Fig. 2(g), and most of the second harmonic generated at x
and –x are cancelled out by each other when the period of

the structure is smaller than 2l0. This is why our QPM

method can enlarge the bandwidth of the second-harmonic

generation. In addition, we can see that if in our method we

reduce the period of the structure, then we can obtain larger

second-harmonic generation. But it is worth mentioning that

the period of the structure to realize the QPM method cannot

be very small because the lattice period to realize the double

negative materials must be one order smaller than the wave-

length in the media, so the period of the structure to realize

the QPM method must be one order larger than the lattice

period of the double negative materials; this confirms the

assumption of the homogeneous medium.

III. RESULTS AND DISCUSSIONS

To demonstrate the performance of our QPM method,

we set q1¼ 998 kg/m3 and j1¼ 2.19 GPa, q2¼ 1594 kg/m3,

and j2¼ 1.40 GPa, f¼ 0.1 MHz as described in Fig. 2(c).

Then we have c1¼ 1481 m/s, c2¼ 938 m/s, k1¼ 424 m�1,

k2¼ 1340 m�1, and l0¼ 6.39 mm. We set A¼ 1 N/m3, the pe-

riod of the structure to be 2l0¼ 12.78 mm, and the total

length of the media to be 20l0¼ 127.8 mm. Figure 5(a)

shows the fundamental field of the wave in the periodic

structure media consisting of nonlinear complementary

media. Figure 5(b) shows the second-harmonic field by the

QPM method with nonlinear complementary media. Figure

5(c) shows the second-harmonic field without any QPM

method. Comparing these figures shows that using the QPM

method with nonlinear complementary media, large second

harmonic can be obtained, which is one or two orders larger

than that generated without any QPM method.

Our method can also be used in forward second-

harmonic generation as long as one of the media is charac-

terized with positive refraction at both the fundamental and

second-harmonic frequencies, and its complementary media

is characterized with negative refraction at fundamental and

second harmonic, simultaneously. Furthermore, if the perfect

phase match cannot be realized with complementary media

at both the fundamental and second harmonic, the QPM

method can also be effective if the phase difference at the

fundamental frequency can be restored with the complemen-

tary media, and the right-handed medium should then be

nonlinear and the left-handed medium should be linear.

Apparently, all the metamaterials in the real world are

lossy, but the influence on the high order harmonic is very

small.18 So we neglected the attenuation of the metamaterials

in our model. Our scheme is sufficiently simple for experi-

mental realization in practice, and it is crucial to seek an effi-

cient method to realize the nonlinear metamaterials. A

periodic structure has been proposed to realize the double

negative and double positive properties in different frequency

ranges.19 Also if the structure is filled by media with strong

nonlinearity, such as the porous medium and ultrasound con-

trast agents,20 large second harmonic can be obtained.

IV. SUMMARY

In conclusion, we have proposed a brand new QPM

method to obtain large second-harmonic generation in a very

FIG. 5. (a) The field of the funda-

mental wave in the periodic structure

consisting of nonlinear complemen-

tary media. (b) The distribution of the

backward second-harmonic field gen-

erated by the QPM method with the

nonlinear complementary media. (c)

The distribution of the backward

second-harmonic field generated

without any QPM method.
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wide bandwidth. Our method can be widely used in indus-

trial and medical fields where the large high harmonic is

expected. Moreover, we have discussed that the complemen-

tary media become invalid if the nonlinear effect is consid-

ered. That is to say, if the “perfect” cloak effect can be

realized one day, nonlinear technology may be a good choice

to detect the object.
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