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The effects of periodicity perturbations in underwater phononic crystal layers composed of nonin-

terpenetrating rows of identical shells are investigated. The results for one row are obtained by

using a multiple scattering method between shells. Then, taking into account the multiple reflec-

tions and transmissions between two adjacent rows, a Debye series method is used to calculate the

reflection and transmission coefficients by a finite number of rows. The paper focuses on three

kinds of perturbations: (i) variation of the inner radius of shells from row to row, (ii) increase in

the spacing from row to row and of the number of rows, and (iii) substitution of simple steel rows

by steel-polyethylene bilayers. It is shown by studying the transmission coefficient that the case

(i) permits the insertion of narrow pass bands in the stop band while the two other cases (ii) and

(iii) widen the stop band. The study intends to model simple underwater acoustic filters.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744976]

PACS number(s): 43.35.Gk, 43.50.Gf, 43.40.Fz, 43.20.Fn [ANN] Pages: 2834–2841

I. INTRODUCTION

The existence of band gaps in phononic crystals (one-

dimensional or two-dimensional vibrating periodic structures)

suggests various applications such as design of underwater

ultrasonic silent materials by using compliant tubes,1 nonde-

structive testing of immersed tube bundles and surveillance

techniques,2,3 design of acoustic waveguides with selective

frequencies or filters by considering square arrays of steel cyl-

inders in water containing defects created by substitution of

one row or more by hollow cylinders.4 The reflectance prop-

erties of sonic band gap materials made up of rigid cylinders

in air,5 the engineering of large acoustic band gaps by consid-

ering rigid or liquid cylinders in a liquid,6 or large elastic

band gaps by means of periodic air inclusions and aluminum

cylinders in an epoxy matrix7 are also thoroughly studied. It

should be noted that the cylinders are assumed infinitely long

in cited references.

In the present work, we investigate the influence of sev-

eral types of perturbations in phononic crystal layers com-

posed in all cases of identical steel shells placed on rows.

These perturbations include variations of the inner radius of

shells from a row to its neighbor, the spacing between rows,

the spacing between shells in a given row, and the substitu-

tion of steel rows by steel-polyethylene bilayers. The effect

of the number of gratings is also investigated.

Among the methods frequently applied to the calcula-

tions of band structures of phononic crystals and of reflection

and transmission coefficients of finite systems of phononic

crystals (slabs), we have chosen the multiple scattering

method developed for cylindrical8–10 and spherical scatter-

ers,11 exactly as presented in Refs. 1–3 and 12, for instance.

The same method has been used for fluid cavities in an elas-

tic matrix.13 The first part of the method is devoted to a mul-

tiple scattering calculation between the scatterers forming

one row and then allows us to find the scattering properties

of this row, e.g., the reflection and transmission coefficients.

The second part considers that the slab is made up of a

sequence of periodically or not arranged rows, each one with

known reflection and transmission coefficients. Between two

consecutive rows denoted as A and B, multiple reflections

and transmissions take place and the waves superimpose.

For an incident wave propagating from A to B, the reflection

coefficient directly from the row A and the transmission

through the row B are obtained in terms of geometric series.

A sequence of more than two rows can be treated iteratively

in the same way to obtain the reflection and transmission

coefficients by the slab. The multiple scattering method is

numerically efficient and allows easy variation in both geo-

metrical and physical parameters in the phononic crystal.

In Sec. II, we recall the resonant properties of a single

shell. Two types of resonance families are highlighted, either

those related to circumferential waves propagating in the

thickness of a shell, or those related to the waves propagat-

ing in the inner water column. In Sec. III, the expressions of

the reflection and transmission coefficients by single rows of

identical and regularly spaced shells are given. They are

obtained by using the multiple scattering method. Numerical

results are provided. In Sec. IV, we first present results (Sec.

IV A) dealing with lattices composed of a finite number of

rows of identical shells with identical spacings between

shells and between rows. They are used as a reference. In

Sec. IV B, variations of the inner radius of shells from row to
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row are dealt with. In Sec. IV C, the influence of an increase

in the spacing between rows from the insonified face is

investigated. The influence of the number of rows is also

analyzed. In Sec. IV D, the steel rows are replaced by steel-

polyethylene bilayers. In each case, the transmission coeffi-

cient is studied and compared to the one of reference. We

focus particularly on the effects of periodicity perturbations

on the stop bands.

II. SCATTERING BY AN ELASTIC SHELL AT NORMAL
INCIDENCE

Consider a plane pressure wave pinc¼ ei(kx-xt), normally

incident on an infinitely long cylindrical steel shell of axis z
immersed in water of density q¼ 1000 kg/m3 and sound ve-

locity c¼ 1470 m/s. Here, x denotes the angular frequency, t
is the time, and k¼x/c is the wavenumber in the fluid. For

steel, the density is qs¼ 7900 kg/m3, the longitudinal and

transverse velocities are cl¼ 5790 m/s and ct¼ 3100 m/s.

The relative thickness of the shell is fixed by the ratio b/a
where a and b denote the outer and the inner radius of the

shell, respectively. At a fixed point P(r,h) of the plane

(Ox,Oy) and in the outer fluid [r denotes the distance from

the center O of the shell to the observation point P and h is

the angle (Ox,OP)], the acoustic pressure scattered by the

shell has the form14,15

ps ¼ e�ixt
Xþ1

n¼�1
inT nHð1Þn ðkrÞeinh: (1)

Here Hð1Þn is the Hankel function of the first kind and

T n ¼ Dð1Þn =Dn, where Dð1Þn and Dn represent 6� 6 determi-

nants depending on the reduced frequency ka. They are

determined from the boundary conditions. These are state-

ments of continuity of stresses and displacements across the

inner and the outer fluid-solid interfaces.15 In Fig. 1, the real

parts Re(ka) of the roots of equation Dn(ka)¼ 0 are pre-

sented in the form of Regge trajectories (mode number

versus resonance frequencies) for a steel shell surrounded

by and filled with water. For each mode n there appear two

multiplicities l¼ 1,2,… and lf¼ 1,2,… of resonances and the

trajectories divide up into two sets labeled l and lf, respec-

tively. Computations and analysis show that the resonances

(n,lf) can be connected to the water column and the resonan-

ces (n,l) to the empty elastic shell. Each trajectory l or lf is in

relation with a circumferential wave around the shell. The

numerical results are close to those given in Refs. 2 and 15.

As it will be seen, these waves play an important role in the

scattering by linear gratings as well as by two-dimensional

gratings. The influence of the shell’s thickness on the Regge

trajectory for l¼ 1 is presented in Fig. 2. Significant shifts

occur for high values of the modes n.

III. REFLECTION AND TRANSMISSION BY A LINEAR
GRATING OF SHELLS

A. Theoretical background

The fluid medium considered above now contains an in-

finite number of circular cylindrical shells such as described

in Sec. II, periodically spaced along the y direction with a

spacing d; see Fig. 3. This linear periodic structure, referred

to as the grating or the row can be considered as a reticular

plane in free-field. When insonified by a plane harmonic

pressure wave pinc ¼ e�ixteiðk cos axþk sin ayÞ, where a is the

angle of incidence, it generates reflected, pR, and transmitted,

pT, pressure waves of the form1–3,12

pR ¼ e�ixt
Xþ1

e¼�1
Ree

ið�kexþ‘eyÞ ðx < 0Þ; (2)

pT ¼ e�ixt
Xþ1

e¼�1
Tee

iðkexþ‘eyÞ ðx > 0Þ; (3)

representing a superposition of waves diffracted at different

angles. Here, ke ¼ ðk2 � ‘2
e Þ

1=2
, ‘e ¼ k sin aþ 2pe=d, and

Re ¼
2

ked

Xm¼þ1

m¼�1
CmLþme; (4)

FIG. 1. First Regge trajectories of the circumferential waves for scattering

by a water-filled steel shell with b/a¼ 75/85 in water.

FIG. 2. Evolution of the Regge trajectory l¼ 1 for a water-filled steel shell

at different b/a when the inner radius b varies by step of 0.5: b/a¼ 75/85

(�) to 73/85 (*).
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Te ¼ d0e þ
2

ked

Xm¼þ1

m¼�1
CmL�me (5)

are the reflection and transmission coefficients in the diffrac-

tion order e, respectively, with L6
me ¼ ð‘e 6 ikeÞm=km and

d0e¼ 1 if e¼ 0 and d0e¼ 0, otherwise. In Eqs. (4) and (5),

Cm represents the multiple scattering coefficient1,12 of order

m for the grating. For a fixed angle of incidence, a, the coef-

ficients Cm are calculated by means of the following linear

system:

Xm¼þ1

m¼�1
½dmn � T nrðm� n; aÞ�Cm ¼ T nAn; (6)

where T n is the scattering coefficient for one shell in free

field and An¼ ine�ina. This infinite system is actually trun-

cated to obtain a finite system, but the number of terms

retained must be sufficient to ensure the stability of the solu-

tions. The function r denotes the Schl€omilch series16 defined

as

rð2q; aÞ ¼ 2ð�1Þq
Xþ1

p¼1

H
ð1Þ
2q ðpkdÞ cosðpdk sin aÞ; (7)

rð2qþ1;aÞ¼ 2ð�1Þq
Xþ1

p¼1

H
ð1Þ
2qþ1ðpkdÞsinðpdksinaÞ; (8)

where q¼ 0, 61, 62,…. These series converge very slowly,

so it is necessary for purposes of numerical calculations (du-

ration and error reductions) to transform them into analytical

expressions.17

When d< k, where k denotes the fluid wavelength, the

grating is characterized by the zeroth order reflection and

transmission coefficients R0 and T0, i.e., only one direction

of propagation exists for the scattered waves (e¼ 0). At nor-

mal incidence where a¼ 0 (the incident pressure is exactly

as defined in Sec. II), one obtains L6
me ¼ i6m and

R0 ¼
2

kd

Xþ1

m¼�1
imCm; (9)

T0 ¼ 1þ 2

kd

Xþ1

m¼�1
i�mCm: (10)

B. Numerical results

Computations of the reflection coefficient R0 for steel

shells with b/a¼ 75/85 and d/a¼ 2.65 are presented in Figs.

4(a) and 4(b), respectively, for the reduced frequency range

0.1–7. The resonances (n,l) of individual shells presented in

Sec. II can be identified easily on the curves. The resonances

(n,lf) occur for relatively higher frequencies, the first being

located at ka ’ 2:33 (near the first cutoff frequency ka
’ 2:37 separating the domains d< k and d> k). The

resonances (n,1) (n¼ 2,3,4) of the Rayleigh wave have a

nonnegligible influence2 on the reflection and transmission

properties of the row, especially in the frequency range 0.1–

2.2. No significant shift is observed between resonance fre-

quencies of one row and those of a single shell. An extension

of computations for the reflection coefficient beyond the cut-

off frequency is presented in Fig. 4(b). Note that from the

results presented in Fig. 2, if a ratio b/a¼ 73/85 were consid-

ered in place of b/a¼ 75/85, the resonances observed in the

reflection coefficient would be shifted from the low frequen-

cies to higher ones within the frequency range 0.1–2.2, the

largest shifts occurring for the resonances (3,1) and (4,1).

IV. ENGINEERING PASS BANDS AND STOP BANDS

In this section, we analyze the properties of several

kinds of two-dimensional gratings. Three of these structures

FIG. 3. Geometry for a linear grating of cylindrical shells.

FIG. 4. Modulus of the reflection coefficient for a linear grating of steel

shells with b/a¼ 75/85 and d/a¼ 2.65 for the diffraction order e¼ 0.
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are presented in Figs. 5(a)–5(c). They are often referred to as

phononic crystals, or as two-dimensional lattices. We con-

sider N parallel rows of infinite extent along the Oy direction

perpendicular to the direction of the incident waves material-

ized by the thick arrows in Figs. 5(a)–5(c). To obtain the

reflection and transmission coefficients at normal incidence

by N rows, one must first calculate the reflection and trans-

mission coefficients Rj and Tj by the individual rows

(1< j<N), bearing in mind that the physical parameters can

differ from row to row. One can build the reflection and

transmission coefficients of a sequence of j rows, R(j) and

T(j), by using a recurrence relationship involving the reflec-

tion and transmission coefficients of (j� 1) rows together

with the coefficients Rj and Tj. We use either R(j� 1) and

T(j� 1) if the incident wave propagates in the direction of

increasing values of x or Rdj, Rd(j� 1) and Td(j� 1)

� T(j� 1) when the incident wave propagates in the oppo-

site direction [see Eqs (11)–(13)]. Between the set of (j� 1)

rows and the jth row separated by the distance Dj�1, there

exist multiple reflections and transmissions. By superimpos-

ing all the contributions for the reflection on the one hand

and the transmission on the other, and next by using a recur-

rence method, it can be shown that

RðjÞ ¼ Rðj� 1Þ þ RjT
2ðj� 1Þeiuðj�1ÞR

1� Rdðj� 1ÞRje
iuðj�1ÞR

; (11)

TðjÞ ¼ Tðj� 1ÞTje
iuðj�1ÞT

1� Rdðj� 1ÞRje
2iuðj�1ÞT

; (12)

RdðjÞ ¼ Rdj þ
T2

j Rdðj� 1Þeiuðj�1ÞR

1� Rdðj� 1ÞRje
iuðj�1ÞR

; (13)

where u(j�1)R¼ 2u(j�1)T with u(j�1)T¼ kDj�1 (case of normal

incidence). This is the essence of the Debye series method

very similar to the Fabry-P�erot method used in optics. These

relationships remain valid in the case where all the rows are

identical, the coefficients being Rj¼Rdj � R0, Tj � T0, 8j> 1

or in the case where the period is a multilayer (a set of several

rows) with coefficients for the zeroth diffraction order ~R0,
~R0d , and ~T 0. This implies Rj � ~R0, Rdj � ~R0d , Tj � ~T0. Such

a method is a version of that described in Ref. 3, and further

details concerning a generalization can be found in Ref. 11.

A. Stop bands of periodic phononic crystals

We consider first the phononic crystal described in

Fig. 5(a) made up of ten identical rows containing shells

with b/a¼ 75/85. A regular spacing D/a¼ 3 between rows is

accounted for. Figure 6(a) presents the transmission coeffi-

cient versus the reduced frequency ka for a spacing between

shells in a row d/a¼ 2.65. A stop band corresponding to a

frequency domain of null transmission can be observed in

the range of ka 0.8–1.3. Figure 6(b) obtained with a spacing

between shells d/a¼ 2.3 shows that the stop band is wid-

ened. We observe undulations on both sides of the stop

bands. We also observe the steel row resonances (2,1), (3,1),

and (4,1). Except for the appearance of the resonances, simi-

lar results are shown in Fig. 11 of Ref. 18.

For an infinite number of any kind of period with reflec-

tion coefficients ~R0 at one face and ~R0d at the opposite face

(the transmission coefficient ~T0 is the same whatever face is

insonified), the dispersion equation is required for the study

of the wave propagating through the infinite structure. By

applying the periodic conditions for the pressure and for the

displacement fields in points located exactly one period

apart, it can be shown that the dispersion equation for the

Bloch wavenumber keq versus ka is given by

FIG. 5. Geometry for the two-dimensional phononic crystals. (a) Rectangu-

lar lattice, (b) lattice with inner radius of shell b varying from row to row:

73/85� b/a� 75/85, (c) lattice with irregular spacing D/a between rows.

FIG. 6. Modulus of the transmission coefficient for a two-dimensional pho-

nonic crystal made up of ten identical rows with b/a¼ 75/85 and D/a¼ 3.

(a) d/a¼ 2.65, (b) d/a¼ 2.3.
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cosðkeqDÞ ¼ 1

2 ~T0

½cos kDð ~T2

0 � ~R0
~R0d þ 1Þ

þ i sin kDð ~T2

0 � ~R0
~R0d � 1Þ�: (14)

In the case where the period contains only one row for

instance, we have ~R0 ¼ ~R0d and Eq. (14) becomes Eq. (39)

of Ref. 2. We present in Fig. 7 dispersion curves, i.e., the

real part of the normalized Bloch wavenumber keqD/p versus

ka. We consider two rectangular lattices with D/a¼ 3, the

one with d/a¼ 2.65 (solid curve), the other with d/a¼ 2.3

(dotted curve). In each case, there exist two band gaps: the

first gap is a confirmation of results observable in Fig. 6(b),

the second is a consequence of the dip in the transmission

coefficient in the reduced frequency range 2–2.25. Computa-

tions of the transmission coefficients not presented here

showed us that the depth of the dip increases with the num-

ber of rows and that the stop bands do not change when the

inner radius of the shell is modified. Further, each dispersion

curve in Fig. 7 exhibits resonances at the same locations as

the ones for single rows in Fig. 4.

B. Engineering multiple narrow pass bands in large
stop bands with irregular shell thicknesses

Some treatments can be carried out4 to create selective

frequency filters in the stop band of phononic crystals by

using square lattices. In this paper, we consider graded rec-

tangular lattices as sketched in Fig. 5(b) with D/a¼ 3,

d/a¼ 2.65, and b/a successively equal to 75/85 (insonified

face, first row), 74.5/85, 74/85, 73.5/85, and 73/85 (symme-

try line of the crystal). Thus, the outer radius of the shells

remains constant while the inner radius varies from row to

row. The transmission coefficient of this graded phononic

crystal is presented in Fig. 8. It exhibits four narrow pass

bands in the frequency domain 0.9–1 included in the large

stop band presented in Fig. 6(a). The fifth narrow pass band

is located at the left border of the stop band. It corresponds

to the resonance (3,1) of the rows with shells of b/a ranging

from 73/75 to 75/85. The five minimums in the frequency

ranges 0.25–0.35 and 1.55–1.8 are related to the resonances

(2,1) and (4,1), respectively, for the different values of b/a.
These observations are in agreement with the evolutions of

the Regge trajectories shown in Fig. 2. So, when the lattice

contains rows with five different values of shell thickness,

FIG. 7. Dispersion curves for infinite two-dimensional phononic crystals.

Case of steel shells with b/a¼ 75/85 and D/a¼ 3. Solid curve: d/a¼ 2.65,

dotted curve: d/a¼ 2.3.

FIG. 8. Modulus of the transmission coefficient for the lattice sketched in

Fig. 5(b) with d/a¼ 2.65 and D/a¼ 3.

FIG. 9. Transmission coefficients for two-dimensional phononic crystals

made up of shells with b/a¼ 75/85 and d/a¼ 2.65 showing the evolution of

the stop band. (a) 100 rows regularly spaced of D/a¼ 3, (b) 100 rows spaced

according to the rule D/a¼N� 0.1þ 3 (0�N� 99).
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there is a degeneracy at order five of the resonances. It can

be generalized to any value of b/a. Khelif et al.4 reported

that the transmission coefficient of a mixed structure com-

posed of a square lattice of shells with different inner radii

(same outer radii) arranged in successive rows may be con-

structed from the transmitted signal of one of the rows with

several narrow pass bands inside the stop band. It can be

noted also that the lattice with b/a varying from 73/85 (inso-

nified face, first row) to 75/85 (symmetry line of the crystal)

leads to the same conclusions.

C. Widening of stop band using increasing spacing
between rows

Transmission coefficients by lattices with different pat-

terns of increasing spacings between 20 rows were first stud-

ied in Ref. 12. They showed that a fixed spacing strategy

rather than a variable spacing strategy improves transmission

in the incident direction over the full range of frequencies.

This gave us the idea that the strongest modification of the

transmission can occur for a greater number of rows. To this

end, calculations of the transmission coefficients are per-

formed for lattices with increasing spacings D/a between

rows sketched in Fig. 5(c). Our example accounts for shells

with b/a¼ 75/85, d/a¼ 2.65, and the rule D/a¼N� 0.1þ 3,

with N¼ 0 between the two first rows. Quantitatively, this

means that with shells of outer radius a¼ 0.2 cm the lattice

is 6.1 cm long with 10 rows and 1.6 m long for 100 rows.

The results are presented for ka ranging from 0.1 to 2.37;

this is equivalent to the frequency domain 11.7–277.2 kHz.

In Fig. 9(a), the transmission coefficient for 100 rows regu-

larly spaced (D/a¼ 3) shows a stop band similar to that

found for 10 rows in Fig. 6(a). Further, by increasing the

spacing between the rows the stop band of reference given in

Fig. 9(a) widens on its two sides, Fig. 9(b). At low frequency

the stop band is approximately bounded by the shell reso-

nance (2,1) (ka¼ 0.27) and at high frequency by the reso-

nance (4,1) (ka¼ 1.56). For a higher number of rows, the

right limit of the stop band shifts toward higher frequencies.

Narrow pass bands are located at ka ’ 0:8 [shell resonance

(3,1)] and at ka¼ 1.56. The peak located at ka ’ 1:50 is not

a resonance and vanishes as the number of rows increases.

So, in the stop band, the only way for transmitting acoustic

waves is to select the frequencies of the resonances (2,1),

(3,1), and (4,1) of the single shell. We have thus demon-

strated that a large band gap can be created from the stop

band of reference of a regular lattice by considering an irreg-

ular spacing between rows of shells.

FIG. 10. Transmission coefficients for a two-dimensional phononic crystal

made of 100 bilayers of one steel row and one polyethylene row of same

d/a: (a) d/a¼ 2.65, (b) d/a¼ 2.3; shells with b/a¼ 75/85 and D/a¼ 3.

FIG. 11. Dispersion curves for infinite two-dimensional phononic crystals

using bilayers. b/a¼ 75/85, d/a¼ 2.65, and D/a¼ 3. (a) Real part and (b)

imaginary part of the normalized Bloch wavenumber keqD/p versus ka.
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D. Widening of stop band using increasing spacing
between rows of bilayer materials

By bilayers, we mean a structure made of two parallel

rows of shells of different materials. The analysis is carried

out by considering steel shells in the first row and polyethyl-

ene shells in the second row. The physical parameters of the

latter material are qp¼ 940 kg/m3 (density), and cl¼ 2370

m/s and ct¼ 800 m/s (longitudinal and transverse velocities,

respectively). All the shells have a thickness ratio b/a¼ 75/

85. Two values of the spacing d/a between shells in a given

row are chosen for our computations.

At first, the transmission coefficients for a phononic

crystal made of 100 bilayers containing a steel row and a

polyethylene one with the same spacing between rows

(D/a¼ 3) are presented. In Fig. 10(a) it is plotted for the

same d/a¼ 2.65 and in Fig. 10(b) for the same d/a¼ 2.3 in

each row. In Fig. 10(a), we observe five stop bands, and the

steel row resonances (2,1) and (3,1) are located in the first

two wide pass bands. No resonances of the polyethylene row

are detected in the studied frequency range. A priori, accord-

ing to the study of a single polyethylene row, resonances

(1,1) and (2,1) could be observed. However, the half-widths

of those resonances are very small compared to the half-

widths of the steel row resonances, so they do not appear in

the transmission coefficient by one or several bilayers. We

can observe similar results in Fig. 10(b). However, only four

stop bands are detected. We also note a widening of the stop

bands with regard to the first four in Fig. 10(a). The disper-

sion curve for an infinite lattice of bilayers can be obtained

from Eq. (14). In Figs. 11(a) and 11(b) the real part and the

imaginary part of the normalized Bloch wavenumber keqD/p
are plotted versus ka for bilayers with d/a¼ 2.65. Five stop

bands are observed in the ka intervals 0.45–0.65, 0.96–1.23,

1.54–1.63, 1.92–1.99, and 2.03–2.10, on the plots of the real

and the imaginary parts. They correspond to the stop bands

exhibited in the plot of the transmission coefficient in Fig.

10(a). The steel row resonances (2,1) at ka¼ 0.27, (3,1) at

ka¼ 0.8, and (4,1) at ka¼ 1.56 are detected. It is also the

case for the polyethylene row resonances (1,1) at ka¼ 1.08

and (2,1) at ka¼ 2.08, which are not present in the transmis-

sion coefficient in Fig. 10(a).

Now we study the transmission coefficients of 100

bilayers differently spaced according to the rule D/a
¼N� 0.1þ 3 (0�N� 99). Transmission coefficients are

plotted in Fig. 12(a) for the same d/a¼ 2.65 and in Fig.

12(b) for the same d/a¼ 2.3. In each figure, very large stop

FIG. 12. Transmission coefficients for a two-dimensional phononic crystal

of 100 bilayers spaced according to the rule D/a¼N� 0.1þ 3 (0�N� 99):

(a) d/a¼ 2.65, (b) d/a¼ 2.3; shells with b/a¼ 75/85.

FIG. 13. Transmission coefficients for a two-dimensional phononic crystal

made of 100 bilayers spaced according to the rule D/a¼N� 0.1þ 3

(0�N� 99): (a) one steel row with d/a¼ 2.65 and one polyethylene row

with d/a¼ 2.3, (b) one steel row with d/a¼ 2.3 and one polyethylene row

with d/a¼ 2.65; shells with b/a¼ 75/85.
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bands are observed in frequency intervals ranging from 0.2

to values greater than 2 as well as a thin pass band linked

with the resonance (2,1) of a steel row. We also note that the

pass bands between 1.5 and 2.3 in Fig. 12(a) disappear in

Fig. 12(b).

We can also break the symmetry in the bilayer by

choosing different spacings d/a in each row. In this context,

transmission coefficients are plotted in Fig. 13(a) for

d/a¼ 2.65 in the steel row and d/a¼ 2.3 in the polyethylene

row, and in Fig. 13(b) for d/a¼ 2.3 in the steel row and

d/a¼ 2.65 in the polyethylene row. Nearly the same observa-

tions as in Figs. 12(a) and 12(b) can be made, namely, the

widening of stop bands compared to those of Figs. 10(a) and

10(b). However, as shown by comparing Figs. 12(a) and

13(a), quite large pass bands are no longer detected at high

frequency. The study of this type of media at oblique inci-

dence (a¼ 0� to a¼ 45�) shows similar results.

V. CONCLUSION

The combination of a multiple scattering technique

between shells and of a Debye series method between rows

provides a numerically efficient tool for the study of reflec-

tion, transmission, and band gap engineering of phononic

crystals. This tool remains stable under perturbations of the

periodicity of phononic crystals. We perform computations

for structures containing up to 100 rows. The first example

concerns a structure in which the inner radius of shells is var-

ied from row to row. As a result, it is shown that several

acoustic narrow pass bands created in the existing stop bands

permit transmission at multiple selective frequencies. The

second example deals with structure arranged in such a way

that the spacing from row to row increases or decreases from

the insonified row. It is observed that the stop bands of refer-

ence of regular lattices are enlarged when we consider irregu-

lar spacings between rows. In the third example, we consider

structures made up of steel-polyethylene bilayers instead of

single steel rows. For the same spacing rule between rows,

the high contrast existing between the two materials ensures

a widening of the stop bands with regard to the case where

only steel rows were used. In the last example, it has also

been observed that the difference in spacing between the

shells forming a bilayer can modify the stop band.

The aim of this theoretical study is to verify the feasibil-

ity of underwater silent materials or acoustic filters. Our

work involves monolayer shells in order to obtain very large

stop bands. Other practical solutions exist. For instance, steel

shells coated with silicone rubber can be used to create

strongly attenuating devices, as presented in Ref. 19.

The study presented in this paper deals with the fre-

quency domain, and the case of higher diffraction orders

occurring beyond the first cutoff frequencies relative to each

row is not investigated. Further simulations in the time do-

main have been carried out and make it possible to predict

that these kinds of phononic crystals may be used for acous-

tic beam focalization or deviation. These results are out of

the scope of this paper and will be presented later.
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