Historic transducers: Balanced armature receiver (BAR)

Noori Kim and <u>Jont B. Allen</u> University of Illinois, Urbana-Champaign Electrical & Computer Engineering Dept.

Table of contents

- 1. Balanced Armature Receiver (BAR)
- 2. Overview: operational principle of the BAR
- 3. Illustrative case studies of the BAR
 - I=0 and I≠0 (Eddy-currents)
- 4. Force on the armature (F_m) with Hysteresis effect
- 5. Conclusions

Balanced Armature Receiver (BAR)

• The oldest telephone receiver is invented by A. G. Bell in 1876

- Attraction and release of the armature are controlled by the current from the coils, which generates electromagnetic fields
- Has evolved into the modern hearing-aid devices

An example of the modern style BAR, Knowles ED7045

Cross section of Knowles ED receiver

Inside of the BAR without case and diaphragm

Overview of the BAR's operation

diaphragm

 $\mu_0 << \mu_a$

 $\mu_0 << \mu_a$

Η μ_0 μ_a I>0

An eddy current is generated in the opposite direction of the conducting current. This phenomenon is independent of the permanent magnet.

diaphragm

 $\mu_0 << \mu_a$

 μ_0

 μ_a

I>0

Η

Due to the polarity between the permanent (DC) magnetic field and the generated AC magnetic field, the armature feels a force.

S

Ν

S

Ν

diaphragm

Magnetic force, F_m : Force between two nearby magnetized surfaces to create a magnetic image

Z

Magnet

Due to the polarity between the permanent (DC) magnetic field and the generated AC magnetic field, the armature feels a <u>force</u>.

S

Ν

diaphragm

Magnetic Image

Armature

S N

Illustrative case studies of the BAR: I = 0 and $I \neq 0$ (Eddy-currents)

- Magnetic poles always come in pairs (N and S)
- Polarity of magnetic dipoles, net magnetic density **B**=0

diaphragm

S

Ν

S

Ν

diaphragm

Eddy current 🥌

(Vanderkooy 1989)

Η $-H_z \rightarrow$ μ₀ << μ μ_0 OE H_z 10 **I>0**

 $\nabla \times H_z = J_{c\phi} + \dot{D} \approx J_{c\phi} = \sigma E_{\phi}$ (1. Ampere's law) $\nabla \times E_{\phi} = -\vec{B}_{z}$ (2. Faraday's law) $\nabla \times (\nabla \times H) = \nabla \underbrace{(\nabla \cdot H)}_{\alpha} - \nabla^2 H$ (3. Vector identity) $\nabla \times (\nabla \times \boldsymbol{H}_{z}) = -\nabla^{2} \boldsymbol{H}_{z} (::3)$ $\nabla \times \left(\boldsymbol{\sigma} \boldsymbol{E}_{\boldsymbol{\phi}} \right) = -\nabla^2 \boldsymbol{H}_{\boldsymbol{z}} (\because 1)$ $\boldsymbol{\sigma}\nabla\times\boldsymbol{E}_{\boldsymbol{\phi}}=-\boldsymbol{\sigma}\boldsymbol{B}_{\boldsymbol{z}}\,(\because\,2)$ Finally, $\nabla^2 H_z = \sigma \mu_a \frac{dH_z}{dt}$ In the frequency domain $(jk)^2 = \sigma \mu_a j \omega$ $k_o = \pm \sqrt{\sigma \mu_a \omega} e^{-\angle 45^\circ}$ (diffusion) $2H_z(\rho,t)=2H_0e^{j\omega t-k\rho}$

Force on the armature and hysteresis

- Force on the armature (F_m) exists for two opposing poles across an air gap
 - Opposite poles attract and like poles repel

• Hysteresis can be explained by describing the F_m ,

• Assumption: Core is initially not magnetized 1. Electrical energy: $W = \int v(t)i(t)dt$ [J =N·m] 2. $W_d = \int \frac{HLAdB}{LA} = \int HdB \operatorname{Enrad}_{\mu} \int WBdB_{dt}^{d} \operatorname{Epres}_{2\mu} [\frac{H}{M^3} = \frac{N}{m^2}]$ 3. Therefore $F_m = W_dA$ $F_m = \frac{AB^2}{2\mu} = \frac{A_gB_g^2}{2\mu_0} = \frac{\Psi_g^2}{2\mu_0A_g} [N]$

$$W_d = \int \frac{H l A d B}{l A} = \int H d B = \frac{1}{\mu} \int B d B = \frac{B^2}{2\mu} \left[\frac{J}{m^3} = \frac{N}{m^2} \right]$$

The green formula can be related to the famous hysteresis loop graph

- x-axis and y-axis represent H and B
- Hysteresis loss: subtraction of two regions
- A typical hysteresis phenomenon of Ferro-magnetic material

(http://info.ee.surrey.ac.uk/Workshop/advice/coils/power_loss.html#eddy)

We are interested in BAR's operational region

- Hunt 1954, Ch. 7, Moving armature transducer systems
- BAR type receivers are operating in a lens shaped region
 - The region can be linearly approximated
 - Centered at φ_0 (due to the permanent magnet)
 - Alternating φ_i

Conclusions

 Principles of the BAR's operation include the Eddy-current effect, hysteresis loss, and force on the two magnets

balancea armature receiver. nearing nescaren sor, 130-107

• This work will provide a fundamental, clearer insight into this type of BAR system

References

- Members of the Staff of the Department of Electrical Engineering, Massachusetts Institute of Technology., 1943. Magnetic Circuits and Transformers: A First Course for Power and Communication Engineers, volume 2 of Principles of Electrical Engineering Series. Wiley, New York.
- 2. Hunt, F.V., 1954. Electroacoustics: The analysis of transduction and its historical background. Harvard University Press. Harvard University, Massachusetts.
- 3. Mott, E.E., Miner, R.C., 1951. The ring armature telephone receiver. The Bell System Technical Journal , 110–140.
- 4. Jensen, J., Agerkvist, F.T., Harte, J.M., 2011. Nonlinear time-domain modeling of balanced armature receivers. J. Audio Eng. Soc 59, 91–101.
- 5. Kim, N., Allen, J.B., 2013. Two-port network analysis and modeling of a balanced armature receiver. Hearing Research 301, 156–167.
- 6. Lewin, W., 2002a. Lecture 16: Non-conservative fields do not trust your intuition. UniversityLecture, Electricity and Magnetism (Physics 8.02).
- 7. Lewin, W., 2002b. Lecture 20: Faraday's law most physics college books have it wrong! University Lecture, Electricity and Magnetism (Physics 8.02).
- 8. Vanderkooy, J., 1989. A model of loudspeaker driver impedance incorporating eddy currents in the pole structure. J. Audio Eng. Soc. 37(3), 119–128.

Thanks 😳