
Chaotic Convergence of Newton’s method

Allen, Jont B.

Monday 17th July, 2023

Abstract

Problem statement:
In 1680 Newton proposed a algorithm for finding roots of polynomials. His method has since evolved, but the

core concept remains intact. Here we briefly review this evolution, and consider the question of convergence. First,
and most important, does his method always converge? From numerical experiments, it does converge for the vast
initial guesses. Thus a key and important question: does the convergence depend on this initial guess? This question
was carefully evaluated by Willkinson, who studied conditions of sever divergence.1 Second, if not, assuming it does
converge, what are the necessary conditions for convergence. Here we investigate the conditions for convergence.
In the following we assume a monic polynomial of degree N . The fundamental theorem of algebra states that every
polynomial of degree N has N roots, which are typically complex sn ∈ C.

Methods: Newton’s method is derived in Appendix A. Newton’s method may be applied to any complex analytic
function, thus holds for solutions of linear differential equations (Allen, 2020). The derivation is based on a Taylor
series expansion in the Laplace frequency s = σ + ω. The convergence of Newton’s method depends on the
important concept known as the Region of convergence (RoC).

Because Newton’s algorithm converges within the RoC for any complex analytic function, it converges to one of
the roots of the polynomial when the nearest root sr (s ∈ C) inside the RoC out to the nearest pole. This follows
because every complex-analytic point on the complex plan has a region of convergence (Allen, 2020). We show that
on the boundaries of the RoC regions, the method becomes hyper-sensitive to the initial condition (i.e., guess s0).

Findings: Under certain conditions, non-linear (NL) limit-cycles appear, resulting in a reduced rate of conver-
gence to a root. Since Newton’s method is inherently complex analytic (that is, linear and convergent), it is important
to establish the source of this NL divergence. We show that this NL effect is due to violations of the Nyquist Sam-
pling theorem, also known as aliasing. Aliasing is a well-known concept in discrete-time signal processing, due to
the sampling a signal at less that twice its highest frequency. When a time signal is under-sampled, frequencies above
the sampling frequency are shifted down in frequency. This is the definition of this nonlinear phenomena, known as
aliasing, which follows from the reduced-sampling (Allen, 2020, p. 153,225).

Here the conditions and method for uniform convergence are explored. We propose a complex step-size η = aeφ

which we adaptively adjusted, greatly reducing, even removing the nonlinear effects of aliasing. Introducing this
adaptive step-size (η) is known as the damped Newton’s method (Galántai, 2000, p. 25). In the limit as η → 0, the
NL aliasing is avoided. This naturally follows from the complex-analytic properties of Newton’s method.

Under some special conditions, a slight change in the initial guess s0 (n = 0) can result in the n + 1 estimate
of the root (sn+1) to cross an RoC boundary, resulting in NM to divert its initial path to a alternate root. When this
happens, the change in the step δ = sn+1 − sn is unpredictable, and possibly even chaotic. It is this condition that is
the source of a convergence instabilities due to aliasing, possibly leading to a limit cycle.

This chaotic behavior is a main topic of this document.
The N regions of convergence (RoC) are investigated. From the definition of the RoC, these contiguous naturally

existing regions are defined over all s0 ∈ C < ∞. That is, every possible s0 comes from one of the N RoC
regions. This naturally happens as η → 0, since Newton’s method is complex analytic (the step size is the ratio of
two polynomials with different roots). The magnitude of the step-size a may also be reduced to avoid crossing the
boundary between two RoCs. As the step-size is reduced, the trajectory naturally moves away from the poles and the
smaller it is, the greater the effect. Thus reducing |η| is be highly effective, but in theory, could slow the convergence.
For this reason adaptively setting |η| is likely the optimum balance, to minimize the computation while avoiding NL
aliasing, which results from any crossing of RoC boundaries.

Besides reducing |η|, one can modify its angle φ, redirecting the trajectory away from any RoC boundary, to avoid
crossings it. However we have not implemented this possible method.

Conclusions: We numerically demonstrate that reducing the step-size always results in a more stable conver-
gence. The down side is that it always results in a sub-optimal convergence. It follows that a dynamic step size would
be ideal, by slowly increasing the step-size until it fails, and then decreasing it until it converges. A balance of the
two methods seems like a potential solution, but this remains unproven.

We show that when η = 1, depending on s0, the solution can cross an RoC boundary (i.e., diverge). In such cases
the target root ill change, resulting in a chaotic trajectory. Examples are provided. Depending critically on s0, as long
as the RoC region remains the same, every iteration converges.

1https://en.wikipedia.org/wiki/Wilkinson’s_polynomial

1



1 Introduction
Newton’s method (NM) a is a venerable complex-analytic mathematical algorithm for finding roots of any monic
polynomial PN (s), where N is the degree and s = σ + ω ∈ C is the Laplace frequency. However the convergence
properties of NM are controversial2 (Stewart, 2012, p. 347). In this report we shall investigate why such a controversy
developed, and discuss how to assure convergence. In our experience, given some care, the method always converges
to a root.

Every initial guess s0 on the plane of a complex analytic function is uniquely associated with one of the N roots
of that function, which in turn are associated a unique region of convergence (RoC). This follows from the complex
analytic property of a function (those that may be expanded in a complex-analytic Taylor series). When the trajectory
of NM jumps to a different RoC, corresponding to a different root, it has been interpreted as a failure to convergence.
What then happens in the examples presented here, the iteration still converges, but to a different root. NM contains
properties that are similar to dynamic analysis, a mathematical science first introduced by Poincaré.

This question of the convergence of NM was recently explored in Allen (2020), where no instability or limit-cycles
were observed. An explanation is due: Newton’s method was modified by applying an adaptive step-size η, (Galántai,
2000, p. 25), a widely recognized contemporary technique in the engineering numerical analysis literature.3

A properly chosen adaptive step-size stabilizes the convergence, by forcing the convergence to remain in the target
RoC. We show that its easy to detect when the divergence of the step, which should be monotonically decreasing. The
onset of limit cycles are easily detected, and easily stabilized by reducing the magnitude of η.

Here we show that random jumps and limit-cycles can occur when the step-size η = 1. When the adaptive step-
size η is sufficiently small, we show that the iteration always converges. The key here is to adaptively modify the
magnitude of η, thereby constraining the trajectory to the initial RoC.

In Allen (2020, Fig. 3.2), two examples were provided using a fixed step-size (η = 0.5) and a random initial guess.
The details of the step-size used by Allen (2020) was not discussed. One of these figures is presented in Fig. 1 (LEFT).

While most of the curves seem to converge to a root, there are some small percentage (e.g., 1%) of cases where the
trajectories take huge jumps to random locations in the complex plane. We shall show that these jumps occur when
the trajectory approaches any of the poles of Newton’s method, that is, at the roots of P ′N (s) = d

dsPN (s). They then
always converge to a different root from that new initial starting value. Near a pole the step can be arbitrarily large,
depending on how close the step comes to the pole (Boas, 1987). This be predicted if one carefully designs s0, such
that for a fixed η, the trajectory heads directly into a pole. We shall show that these poles are the source of these
divergent points, which may be easily detected, as described below.

In Fig. 1 (LEFT), the five RoC regions are color coded, with each RoC region associated with one of the N roots.
Due to the complex analytic nature of the RoCs, every point in the RoC is a valid initial condition (s0). However this
is limited by the numerical accuracy of the computer. Also the convergence depends on the size of the steps, defined as
sn+1 − sn, s ∈ C, n ∈ N, which typically decreases in magnitude with n. An exception occurs if sn+1 approach one
of the N −1 poles of NM, causing the step to abruptly diverge. The properties of this small subset of initial conditions
depends critically on the step size |η|, which is a key topic of this article.

For most initial guess s0 ∈ C the iteration simply converges to a root, independent of |η| ≤ 1. In fact for most
starting values the solution converges for |η| = 1. However for s0 values near the RoC boundary between two roots,
the dependence is highly dependent on |η|, and can even be chaotic. This happens when s0 defines a path that heads
directly for a pole. In these cases the trajectory will be hypersensitive to both so and |η|. The RoC regions are well
defined non-overlapping complex-valued analytic regions. The convergence of NM critically depends on the step-size
when s0 is close to the RoC boundary. Even when |η| � 1, the convergence can become nonlinear (NL), causing the
iteration to wildly diverge. These observations are supported by several detailed numerical examples.

Figure PN (s) = <sr =sr
Fig. 1a; LEFT s5 − (13 + 0.5)s4 + (66.2 + 5)s3 − (164.2 + 20.12)s2 [4, 3, 3, 2, 1] [1, -2, 2, -1, 1]/2

+(195 + 4.7)s+ 87.5 + 31.2

Fig. 1b; RIGHT s5 − s− 1↔ [1 0 0 0 -1 -1] [1.17, 0.18, 0.18, -0.76, -0.76] [ 0, 1.08 -1.08, 0.35, -0.35]

Table 1: Properties of the polynomials for each figure. Figures 2-4 are the same as Fig. 1b (rounded). The polynomial
coefficients must be wrong because the roots are not symmetrical. The LEFT is from ./M/Fig3dot2.m .FIGS/Newton-
JPD2.eps while RIGHT is from Demo-JPD/NewtonMS.m /FIGS/NewtonJPD2.pdf

For example, in Fig. 1 (LEFT), the red region corresponding to the root at (2.0 − 0.5) has a long narrow “RoC
stream” for initial guesses s0 south-east of (4.5 − 1). There is a second narrow neighboring related parallel (green)
stream just north of the red stream, for s0 values at (4.5− 1.0), which are the RoC for the root at (3 + 1). ERROR: The two s0 are

the same.

2https://en.wikipedia.org/wiki/Newton’s_method#Failure_of_the_method_to_converge_to_the_root
3https://en.wikipedia.org/wiki/Adaptive_step_size

2



While this may seem obvious given this figure, I am not aware of any discussion of such distortion of the RoC’s.
Presently I do not know of any method for predict this remapping of the RoC regions. The conditions for Fig. 1 are
provided in Table 1.

0 1 2 3 4 5
-2

-1

0

1

2

ℜ y

ℑy

Roots: (4, 0.5), (3, -1), (3, 1),  (2, -0.5), (1, 0.5)

Figure 1: Example LEFT: 1a This figure is taken from Allen (2020, p. 78). It is a plot of a thousand trajectories for Newton’s method, with a
random initial guess, taken from the complex plane, between [0,5] along the real axis and ±1.5 along the imaginary axis, for a polynomial having
N = 5 complex coefficients. Note the long straight lines that occasionally appear in the figure. Example RIGHT: 1b shows the poles and zeros of
the polynomial having coefficients C = [1, 0, 0, 0,−1,−1] with random starting points, for 200 iterations of Newton’s Method. In this case the
roots (o) and poles (×) are superimposed on top of the trajectories of Newton’s method. A step-size of η = 0.1 is used to reduce the NL aliasing.
RIGHT: Fix label font-size; Need to add roots in title. LEFT: Add o,x.

1.1 Convergence of Newton’s method
Given a monic polynomial of degree N ∈ N as PN (s) = sN + cN−1s

N−1 + cN−2s
N−2 + · · ·+ c0, and its derivative

define P ′N (s) ≡ dP (s)/ds, we may define Newton’s method.
Newton’s formula is derived in Appendix A as an iteration in integer n ∈ N over complex frequency values

sn ∈ C, modified with an adaptive step-size η ∈ C (|η| < 1)

sn+1 = sn − η
PN (sn)

P ′N (s)
(1.1)

With a little algebra,
sn+1 − sn

η
= −PN (sn)

P ′N (s)
.

Taking the limit η → 0 reveals the complex-analytic expression expression

ds

dη
≡ lim
η→0

(
sn+1 − sn

η

)
= −PN (s)

P ′N (s)
. (1.2)

The right hand side is the reciprocal of the log-derivative of Pn(s), and the left hand side is the pre-limit form of the
slope of the Laplace frequency (s = σ + ω) wrt η. Because the ln() function is complex analytic, the log-derivative
of polynomial PN (s), namely d

ds lnPN (s) ≡ 1
PN (s)

dPn
ds = P ′(s)/P (s), must also be complex-analytic.

When expressed as a complex-analytic function, we note that the expression, which is a limit form of Newton’s
method, always converges for sufficiently small η.

In summary: Determining the RoCs for NM by analytic methods seems difficult, since the function SN (sn) has
poles, confounding the locations of the RoC regions. Based on Fig. 1, they are complicated. If sn approaches one
of these the poles, the update can become arbitrarily large, depending on how close sn is to the pole. If the step-size
SN (sn) is within the RoC, this does not seem occur. When the value of sn+1 falls outside the RoC there can be an
arbitrary increase in step-size. Normally this will not happen, since when sn approaches a pole, since sn+1 is naturally
“pushed” away from the pole, as may be seen in both panels. Newton’s method then becomes

sn+1 = sn − η
1

5

s5
n − sn − 1

s4
n − 1/5

. (1.3)

3



2 Examples of Newton’s method
Example 1: We start with the monic polynomial of Example 1b, Fig. 1 (RIGHT), for N = 5,

P5(s) = s5 − s− 1. (2.1)

In this case monic 1
5P
′(s) = s4− 1/5, has four roots, shown as black bold X symbols. These are the poles. The black

bold circles are the zeros we seek.
As shown in Example 1b, Fig. 1 (RIGHT), given the initial guess s0 and step-size η, as n → ∞, sn approaches a

unique root sr. Complex sn+1 is the n+1 the estimate of the root given the n estimate sn, defined by Eq. 1.1.

n=28;   S
0
= 1+0.75 i)

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: This is a zoomed-in version of Example 1b (RIGHT), presented as a colorized plot (Allen, 2020, p. 168) of SN (s), for P5(s) =
s5 − s− 1 ([1, 0, 0, 0,−1,−1]). The magnitude of each Newton-step SN (s) is coded by the brightness, and the phase (∠(LN (s))) by the color
(hue). Thus dark regions are zeros (roots of Pn(s)) while the white regions are poles of SN (s) (roots of P ′(s)). Two trajectories of Newton’s
method are shown, as the black circles and red squares. The initial value for both cases is s0 = 1+0.75. The black circles correspond to η = 0.1,
while the red squares, for η = 0.5, form a brief limit cycle. It is clear that the limit cycle depends on the step-size η, and becomes nonlinear when
η = 1. With the smaller step-size (η = 0.1) the recursion remains complex analytic, thus is linear, and converges to root s3 = −0.765+0.3525.
The vertical white lines are at {-1.0, 0 ,1.0}, and the horizontal lines are at {0, 1.0}. The polynomial coefficients are P5(s) = [1, 0, 0, 0,−1,−1]
having roots sr = [1.167, 0.181 ± 1.084], −0.765 ∓ 0.3525. The real poles (roots of P ′5(sr) = 0) are ±1/50.25 ≈ ±0.669, while the
imaginary poles are ±0.669.

The example shown in Fig. 2 is a zoomed-in version of Example 1b, Fig. 1 (RIGHT). These conditions, which
depend on both the precise value of the initial guess s0 and the step size η, result in a limit-cycle. When the step-
size is η = 0.5 (red squares), sn+1 over-shoots the pole, resulting in a limit cycle. When the step-size is reduced to
η = 0.1 (black circles), the trajectory is stable (avoids the pole) and converges smoothly to the complex-valued zero
at 0.181 + 1.084.

2.1 Discussion of Example 1b of Fig. 2
To study the convergence and limit-cycles it is helpful to use numerical methods and look at specific step-sizes and
starting points, where that the trajectory approaches a pole (root of P ′n(s)).

In practice, once near a root, it takes only a few steps to converge. In experimental trials, fewer than 10 steps can
give double-precision floating-point machine accuracy.

As discussed in the figure caption, if sn is close to a root sr of P ′N (i.e., a pole), the recursion dramatically fails,
because the step becomes arbitrarily large, forcing the next trial to a random location in the s plane, denote s̃r. In such
cases the solution typically converges to a different root (RoC). It is not difficult to detect these large random steps by
monitoring |sn+1 − sn|, which must be monotonically decreasing with increasing n.

Figure 2 shows two paths with the same initial condition s0 = 1 + 0.75 but different step-sizes. The utility of the
reduced step-size is clear from Fig. 2.

If we start the iteration with the larger step size, the path develops into a NL limit-cycle near the pole at −0.669. It
is a combination of the large steps and the proximity to the real pole that results in the nonlinear limit-cycle. On the 10
step it comes out of the limit cycle, and after 10 more steps, has converged to the root at −0.766 + 0.3525. When the
step-size η is reduced from 0.5 to 0.1, as the path approaches the positive pole, it moves away, avoid the limit-cycle.
With steps sizes of 0.2, 0.3 it becomes captured by the pole. The black circles provide an example of a smooth analytic
trajectory, while the red-squares is chaotic.

With the step-size of 0.9 (not shown), the trajectory is similar to that of 0.5, but after 5 steps it is in well within a
different RoC, corresponding to the zero at −.8− .3. After 20 steps, the error is less than 1%.

In summary, it still converges, but much more slowly, since the NL becomes greater. Thus the convergence time
may be a crude quantitative measure of the NL. The smoothness (e.g., spectral properties) of the trajectory may be
more appropriate. This NL result is due to the reduced sample step size, is known as aliasing.

4



If one assumes that the initial guess is real (s0 ∈ R) Octave/Matlab evaluates the polynomial using real arithmetic,
forcing the estimate sn+1 ∈ R (Allen, 2020). Thus the iteration cannot converge when sr ∈ R and sr ∈ C.

Example 2: This example is for P3(x) = x3 − x + 1 (C = [1, 0,−1, 1]), an example where Newton’s method
appears to fail. This example has two imaginary roots, 0.66236 ± 0.56228, and a real root -1.32472. If the initial
guess is taken to be s0 = 1, the recursion proceeds using real arithmetic (Matlab and Octave). Due to the restriction
that the computation is real, the solution is forced to the real line, where it limit cycles between 1.155 and 0.694.

If xo = , the solution converges in 3 steps to the upper complex root x3(3) = 0.639379 + 0.509792 If one starts
the iteration with an imaginary component at 1 + 10−6, the iteration converges to the imaginary root in 13 steps.4 verify!

In summary: Roots sr ∈ C may be found by a recursion that denotes a sequence sn → sr ∈ C, n ∈ N, such that
PN (sn)→ 0 as n→∞. As shown in Fig. 2, solving for sn+1 using Eq. A.3 always gives one of the roots, due to the
analytic behavior of the complex logarithmic derivative P ′N/PN = d ln(Pn(s)).

When there are no limit cycles, with every step, sn+1 is closer to the root, finally converging to the root in the
limit. As it comes closer, the linearity assumption becomes more accurate, resulting in a better approximation and
thus a faster convergence.

Equation A.3 depends on the reciprocal of the log-derivative L(s) ≡ d logP (s)/ds = P ′(s)/P (s),P ∈ C.

2.2 Newton’s method applied to functions other than polynomials
Proofed:
Monday 17th July, 2023

Example 2: Example of Plank’s formula for Black Body radiation.
Planks famous BB radiation formula is (Kuhn, 1978; Allen, 2020)

S(ν) =
ν3

ehν/kT − 1
. (2.2)

In this historically important example, because the function is real (it is not complex analytic), the spectrum only has
one pole, at ν = 0. This formula is known to match the experimental data of the smoothed (non-analytic) black-body
power spectrum (Haar, 2016).

If we replace the real frequency ν with the negative Laplace frequency −s = −σ − ω, Eq. 2.2 becomes

S(−s) =
−s3

e−~s/kT − 1
, (2.3)

which is complex analytic, thus has a causal inverse Laplace transform. To use Newton’s method we must compute
NM updateL(sn) where sn is the present estimate of the root, defined as the the reciprocal of the logarithmic derivative
(see derivation in Apdx. A). Taking the log followed by its derivative wrt s ∈ C, gives Needs a careful verification

1

L(s)
≡ d

ds
lnS(−s)

=
d

ds
[−3 ln s+ ln(e−~s/kT − 1)],

= −3

s
− ~
kT
· e−~s/kT

e−~s/kT − 1
,

or as reported by Arbab (personal communication)

1

L(s)
= −3

s
− ~
kT
· 1

1− e~s/kT
. (2.4)

The inverse LT of the causal expression is (Allen, 2020, p. 321)

−3u(t)− ~
kT

∞∑
n=1

δ(t− n ~
kT

)↔ −3

s
− ~
kT
· e−~s/kT

1− e−~s/kT
. (2.5)

Thus there is a first order pole at s = 0 and poles at hνn/kT = 2πn for n ∈ N. The discrete frequencies account for
the eigen-modes in the black body radiation, as discussed by Kuhn, Plank and Einstein (Haar, 2016).

The most important result here is that Eq. 2.3 is causal, since it has a causal inverse LT (Allen, 2020). The
application of NM to Plank’s famous formula can be used to make it complex analytic, by replace ν with the Laplace

4Octave program: ./DEMO-MATHINSIGHT/NEWTONEXP1.M

5



frequency s = 2πνn and h by ~, making the real frequency ν complex analytic. It is well established that complex
analytic functions of the Laplace frequency s are causal (zero for negative time). In the case of Eq. 2.3, S(−s) is
causal, due to the Laplace transform relation of the exponent (Allen, 2020)

δ(t− τo)↔ e−sτo .

Here the time delay τo = ~/kT = (6.63/2πk) · 10−11 [s], 6,280 [GHz], λ ≈ π
2 10−11 [m], or π

20 [Å], and T ° [K] is
the temperature.

Newton’s method uses the reciprocal of L(s) to find the sr (S(sr) =∞), given by

N(sr) = 1− e−~sr/kT = 0. (2.6)

There are an infinite number of such roots, since the roots are ~sr/kT ≈ 2π. These poles are the missing discrete
spectral lines (atomic resonances), required by quantum mechanics.

Applying Newton’s method gives

xn+1 = xn −
exn − 2

exn
= sn − (1− 2e−sn).

Since ex is entire, there are no convergence issues.5 Since x ∈ C, the imaginary part quickly decays to zero, and
depending on the starting condition, approaches one of the infinite number of solutions, within a few steps.

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
NewtonDemo, eta = 0.1

ℑ
 x

ℜ x

 1+0.25j

  <---   1+0.102 j

 1+ 0.4j

  <--- 1.2+6.95e-11 j

 1+0.95j

  <---0.016+0.817 j

 1+0.99j
  <---0.18+ 1.08 j  1+ 1.1j

  <---0.19+0.953 j

 1+0.69j

  <----0.76+0.352 j

 1+0.92j

  <----0.48+0.289 j

 1+0.93j

  <---0.081+0.361 j

 1+0.65j

  <----0.76+-0.352 j

 1+0.63j

  <----0.23+-0.492 j

 1+0.63j

  <---0.47+-0.791 j

 1+0.63j

  <---0.44+-0.67 j

 1+0.63j

  <---0.25+-0.983 j

 1+0.63j

  <---0.66+-1.06 j

 1+0.63j

  <--- 1.1+-1.06 j

 1+0.63j

  <--- 1.3+-0.968 j

 1+0.62j

  <--- 1.5+-0.806 j

Figure 3: This numerical experiment for polynomial coefficients [1, 0, 0, 0,−1,−1] (the same as shown on the right panel of Fig. 1) having a
step-size of 0.1), reveals the inner workings of Newton’s method. We number the roots counter-clockwise from 1-5, with s1 = 0.18123+1.08395
and s5 = 1.2. Seventeen different starting values (s0) have been carefully chosen, to determine the RoCs associated with each s0. All the starting
values are of the form s0 = 1+ β, where each β and the converged root are indexed in Table 2. The root index goes from 1 to 5, counting counter
clockwise from the northern most root. The scattering angle is determined by the residue of the scattering pole. Each curve is labeled twice, once
at the starting point and once at another point somewhere along the trajectory. The carefully evaluated case is for starting points between 1+ 0.62
and 1 + 0.5999, which converge to dramatically different RoCs due to squarely hitting the positive real pole at 0.6 (s0 = 1 +  0.6 ± 0.001).
NewtonDemo-5thOrder; Code: ./M/NEWTONDEMO.M

2.3 Example 3:
The effect of s0 is shown in greater detail in Example 3, as shown in Fig. 3. When the value to s0 is finely tuned, such
that the trajectory intercepts a pole, a NL limit-cycle will result.

The Gauss-Lucas theorem6 comes into play at this point (Allen, 2020). This theorem says that the convex hull of
the roots of a polynomial bound the roots of its derivative. This theorem is relevant to the convergence of Newton’s
method. Galántai (2000) has 75 relevant citations, many citing the same problems addressed here. The key to avoiding
the troublesome limit-cycles is to detect them, and then reduce the step-size.

5https://www.quantamagazine.org/how-mathematicians-make-sense-of-chaos-20220302/
6https://en.wikipedia.org/wiki/Gauss-Lucas_theorem

6



-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

traced path 1

traced path 2

steps 1

steps 2

roots

poles

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

traced path 1

traced path 2

steps 1

steps 2

roots

poles

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

traced path 1

traced path 2

steps 1

steps 2

roots

poles

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

traced path 1

traced path 2

steps 1

steps 2

roots

poles

Figure 4: Four colorized plots for PN = [1, 0, 0, 0,−1,−1] showing the N = 5 regions of convergence and two trajectories, for s0 =
1.8− 1.5 and−1.95− 0.1. The four step-sizes are η = {1.0, 0.5, 0.2, 0.1} (note that the imaginary axis is reversed). The fractal regions reside
on the RoC boundaries, the sizes of which depend on the step-size, with the step-size of η = 1.0 (Upper-Left) resulting in large fractal regions.
Reducing the step-size to η = 1/2 dramatically reduces the fractal regions. For η = 0.1 they almost disappear, except at 0.5 + 0. In the dark
RoC (purple) corresponding to root −0.76 − 0.352, two trajectories are shown. For the step-size of 1, a limit cycle is seen, for both trajectories.
For the other step-sizes [0.5, 0.2, 0.1], there are no limit cycles. As the trajectories approach the negative real pole, labeled as the red ×, they head
for the root at −0.76 − .352. In summary: 1) limit cycles are wasted steps, easily fixed by reducing the step-size. 2) Given a smaller step-size,
the fractal regions shrink, but never totally disappear. 3) Detecting a limit cycle is easy because the path reverses (oscillates). An obvious method
for avoiding limit cycles is to detect that the boundary has been crossed, corresponding to a different root, and restart the iteration with a reduced
step-size, at step sn (or sn−1). fig:LPC1

7



The following quote is from Galántai (2000, p. 39):

The possibility that a small change in s0 can cause a drastic change in convergence indicates the nasty
nature of the convergence problem. The set of divergence points of the Newton method is best described
for real polynomials.

As demonstrated in Fig. 3, we agree with Galántai’s first point. His second remains open. Is a “real polynomial” one
with real coefficients or real roots?

For example in Fig. 1, the red “stream” corresponding to the root near (2 − 0.5) has an interesting long narrow
“RoC-stream,” converging from the lower-right quadrant, first seen at (4.5−1). There is a second neighboring parallel
(green) RoC-stream just north of the red stream, first seen at (4.5− 0.9).

I am not aware of any discussion in the literature of this distortion of the RoC regions, bound to Newton’s method.
Presently I know of no way to predict the conformal remapping of the RoC regions for NM, other than tracking them,
as done here. It seems likely that methods for doing must exist using modern analysis techniques, as discussed in
Appendix B.

Table 2: Table of starting values s0 = 1 + β use in Fig. 3, along with the RoC targeted root index,
defined as #1 for the real root at 0.21/4. Root #1 converges from s0 = 0+1.25, Root #2 is defined
by counting counter-clockwise from #1, at 0.18 + 1.08, starting fro s0 = 1 + 0.69. Root #3 also
converges from three values of β. Root #5 is the most carefully explored, starting from 1 + β. It
is shown to converge to roots 1, 3, 4, 5, but not 2, which is reachable from very selective values of
β. For other choices of β0, all 5 roots can be reached, as shown in Fig. 3 for η = 1.
./M/ZvizDemo.m.

β root
0.25, 0.4 #1
0.95, 0.99, 1.1 #2
0.69, 0.92, 0.93 #3
0.65, 0.632 #4
0.63, 0.631 #5

In the example of Fig. 3,

sn+1 = sn −
0.1

5
· s

5
n − sn − 1

s4
n − 1/5

,

for 17 carefully chosen initial guess s0 ∈ C. For readability, each trajectory is color-coded either red or blue.

Nonlinear limit cycles: It is well documented that limit cycles are nonlinear. Newton’s method on the other hand
is a linear recursion equation, with poles and zeros in the complex plane. The research question is “Why does the
complex-analytic linear equation become nonlinear?” We show how the these NL limit-cycles may be easily avoided
by removing (linearizing) the NL recursion once it is detected.

The suggested procedure will result in a net convergence speed-up, because the NL limit-cycle adds meandering
rambling NL steps to the recursion. Thus removing the NL behavior will speedup the iteration. Initially these appear
to be conflicting requirements. We seek to convince the reader that there is no conflict, once the behavior is explained.

Ratios of monics as NM: It can be notationally useful to define the step SN (s) as the ratio of the two monic
polynomials

SN (sn) =
sNn + cN−1s

N−1
n + · · ·+ c0

sN−1
n + N−1

N cN−1s
N−2
n . . .+ 1

N c1
=

1

N

PN (sn)

P ′N (sn)
. (2.7)

As before, the poles and zeros of the step-size are both unmodified and simplified by the use of monic ratios, and it
reduces the step-size by 1/N , which can dramatically improve the convergence for the important case of large N , as
demonstrated graphically in Fig. 2. When SN (s) is expanded as a partial fraction expansion, the RoC regions for this
case are circles about the poles (the roots of monic P ′(s)), having a radius out to the nearest pole.

We would like to determine how are the RoC regions of Fig. 1 map to the s plane. By reducing the step-size η from
0.5 to 0.1, the black circles smoothly converged. For the larger step size, the trajectory of red squares in Fig. 2 limit
cycle. This natural reduction in step-size by N , due to expressing the step-size as the ratio of monics, is especially
important when mapping out the RoC regions for large values of N for Eq. 1.1. Given sn, everything on the right is
known; thus when sn is within the RoC, sn+1 will converge to a unique root of PN (s) as n→∞.

8



For sufficiently small step-size, the roots of Eq. 2.7 are the solution to a linear difference equation, the simplest
example being (Galántai, 2000)

sn+1 = sn −
η

N
SN (sn). (2.8)

By introduced an adaptive step-size gain |η| < 1 ∈ C, which can linearize the iteration when sn is in the neighborhood
of a pole.

Near any pole, the step-size |SN (sn)| can become arbitrary large, introducing non-linearity into the iteration.

2.4 Limits on the use of small η
We shall show that reducing the step-size is not a panacea. While it dramatically reduces the probability of limit-
cycles, it cannot entirely remove them. When s0 lies “exactly” on the boundary between two RoC’s, it is not clear
what will happen. One likely outcome is that the trajectory will come close to the pole where it will “leap” from from
that location, forcing a restarting of the iteration. It seems intuitively obvious that the probability of this repeating is
incredibly small, likely even zero (but surely never zero). However the RoC condition (Eq. A.4) will always fail if
the value of sn+1 crosses an RoC boundary, stepping into a different RoC region, forcing a new target root. This is
likely to occur when sn is close to the RoC boundary. Fortunately this condition is easily detected by monitoring the
magnitude of the step-size, which must always decrease, due to the RoC condition (Eq. A.4). The concept of “exact”
depends on the computer software, not the mathematics.

These RoC regions are labeled by different colors in Fig. 1, each of which is centered on one of the five complex
roots.

Rational complex analytic functions, such as SN (s), consisting of poles and zeros, which may be expanded into
partial fractions, have RoCs that are circles in the complex plane, centered on the poles, with an RoC out to the nearest
pole. The RoC’s of Fig. 1 are obviously quite different. The circle to the nearest pole rule only specifies the limit,
but not the entire RoC. Within the RoC circle (Eq. A.4) holds, and Newton’s method is guaranteed to converge. The
remaining RoC region is unspecified.

To solve the equation we can form the partial fraction expansion (residue expansion) about the N roots sp of
P ′(sp) = 0, which are the poles of SN (s), and solve for the eigen-vectors, which form the basis for the linear solution
of Eq. A.3. However this then requires the roots of P ′(s), which are unknown. More about this approach in Sec. B.1.1.

2.5 Source of the limit-cycles
Based on the examples of Figs. 2 and 4, it is clear that the NL limit-cycles are critically dependent on the step-size,
and are significantly reduced for a smaller step-size (η = 0.1). However by taking a slightly different initial value s0,
the limit-cycle problem can return, if the modified trajectory comes closer to the pole.

Limit-cycles can occur if the initial condition s0 is close to an RoC boundary, or even worse, on top of (i.e., very
close to) a root of P ′(s) (a pole). The natural convergence factor 1/N in Eq. 2.8 can improve the convergence, but
it will not remove the problem when the trajectory comes close to a pole. This is the case of these “rare” (seeming-
random) circumstance, which depend on s0 and η.

While both trajectories start at s0, the influenced by the two poles at ±0.669, is much greater for the larger step-
size (red squares). The smaller step-size (black-circles) result in a linearized trajectory, which drifts smoothly away
from both real poles, eventually converging on the zero of SN at −0.766 + 0.352. The large step-size (red square)
trajectory jumps erratically over the pole at −0.766 + 0.35j, resulting in a nonlinear limit-cycle oscillation.

3 Summary and Discussion

3.1 The role of the step-size
In the derivation of NM, we modified Eq. A.3 by introducing a step-size η < 1, we obtained Eq. 2.8. The effect of
the reduced step-size is to force the trajectory to be more sensitive to the influence of the poles, rather than stepping
over them. The addition of the step size is an important modification to Newton’s method. The smaller step-size can
eliminate the nonlinear limit-cycles, as seen in the example of Fig. 4.

When the initial value for the iteration s0 is close to the cross-over of two RoCs, sn → sn+1 can cross over an
RoC boundary, changing the limit point (root it converges to). A limit cycle can happen when sn comes close to one
of the poles of SN (sn). At a pole, the value of SN can become arbitrary large, causing the unmodified (η = 1) update
SN = sn+1 − sn to fail to satisfy the required RoC convergence condition (Eq. A.4).

One strategy for detecting the pole is to look at the magnitude of the step (|η|). If |ŝn+1 − sn| > 1, the RoC
condition has failed. The step must then be reverted back to sn, and the step-size reduced, and sn+1 recomputed. This
then repeated until the RoC condition (|sn| > |sn+1|), thus avoiding a possible limit cycle.

9



Based on our numerical results, the addition of the convergence factor η seems unnecessary when the the initial
value is well within the RoC, as required by Eq. A.4. The main question is when (and why) the limit-cycles are created
with Newton’s method. This question is at least partial explored in the example of Fig. 2. As long as the RoC condition
is maintained, each step will progress closer to a root, and in the limit, as n→∞,

PN (sn)

P ′N (sn)
→ 0, (3.1)

since sn → sr as n→∞.
We don’t understand many observations in science (math and physics), which with some analysis, can eventually

be explained. It is the reductionist method in science that explains the success of the scientific method. This might be
viewed as a form of evolution: success begets more success, while failure eventually dies off, perhaps slowly.

The process of systematically exploring these seemingly tiny discrepancy, almost always leads to new knowledge.
Seeking out these idiosyncratic inconsistencies and trying to explain them is at the heart of the scientific method.
When a problem is longstanding and considered fundamental, its resolution can even lead to a paradigm shift. Not
surprisingly such deep insights are rarely welcomed by the scientific community, rather they are viewed with great
skepticism. This can be good when if doesn’t go on for 50 years.

The problem of finding roots using Newton’s method is an excellent example. It is a case that can be explained only
after careful thought and iterative analysis. I feel we are either close to that understanding, or it has been explained
clearly enough that the debate can be stopped, and final conclusions may be reached. However, realize that there is no
“final.”

Limit cycles do exist in Newton’s method, but in my view, they are due to under-sampling the complex plane.
This is an example of aliasing, in the Nyquist sense, (Allen, 2020, p. 153,262). An under-sampled process becomes
nonlinear when the “high frequencies” alias into the “base-band” frequencies. This nonlinear effect is easily removed
by increasing the sampling rate above the Nyquist sampling frequency, defined as twice the highest frequency in the
signal. While that concept is not clear in the context of Newton’s method, it can explain limit-cycles, and slightly
(2x-3x) increasing the computation, by decreasing the step-size η, the aliasing may be brought under control, and the
problem becomes linear and well behaved. The onset of aliasing is easily detected. This leads to a well know method
in signal processing called the adaptive step-size, which has been successfully applied in many engineering problems.
It is, I believe, well understood and characterized in terms of aliasing (Allen and Sondhi, 1979; Rinzel and Miller,
1980, Sec. V, p. 126).

The linear prediction algorithm: An interesting alternative to stabilize NM is to use the linear prediction method,
a causal recursion method invented in the 1940’s (Vaidyanathan, 2007). It seems likely to me that the use of Linear
Prediction (LP) could greatly improve the convergence properties of NM. The down side is that the LP method assume
the step-size only has poles, which in our case is clearly not true. The zeros of PN (s) bias the estimate in a negative
manner. However when the trajectory steps near a pole, the LP algorithm should fit the data extremely well, thus
removing the influence of the pole. This approach could be especially effective if there were several poles in proximity.

The LP method uses a least squares minimization of the residual error, given an adaptively determined zeros, to
cancel any poles. Research has shown that LP is highly effective at identifying and removing poles in a time series
(Vaidyanathan, 2007). The added computational overload is likely small.

10



Appendix

A Derivation of Newton’s method
Consider the polynomial PN (s), with s, sr, cn ∈ C and N ∈ N:

PN (s) = cN (s− sr)N + cN−1(s− sr)N−1 + · · ·+ c1(s− sr) + c0, (A.1)

where Taylor’s formula is used to determine the coefficient vector C = [cN , , cN−1, · · · c0]T

ck =
1

k!

dk

dsk
PN (s)

∣∣∣∣
s=sr

. (A.2)

Here s = σ + ω is called the Laplace frequency, as defined by the Laplace transform (Allen, 2020). Depending on
physical considerations, the coefficients cn may be real or complex.

If our initial guess for the root s1 is close to a root sr |(s1− s0)k| � |(s1− s0)| for k ≥ 2 ∈ N, (i.e., εn = s1− s0

is within its RoC), we may truncate Eq. A.2 to its linear term c1 = dPN (s)
ds

∣∣∣
sn

, resulting in the approximation

PN (s1) ≈ (s1 − s0)
d

ds
PN (s)

∣∣∣∣
s0

+ PN (s0)

= (s1 − s0)P ′N (s0) + PN (s0).

Here P ′N (s) is shorthand for dPN (s)/ds.
Replacing s0 by sn and s1 with sn+1, and letting sn+1 → sr, the LHS goes to zero, giving

(sn − sn+1)P ′N (sn) + PN (sn) =���
��:0

PN (sn+1).

Solving for sn+1 gives Newton’s method:

sn+1 = sn −
PN (sn)

P ′N (sn)
. (A.3)

Starting from n = 0 everything on the right is known, and sn+1 → sr, as n → ∞. The difference |sn+1 − sn| is
useful in detecting the stopping rule. When the error εn = sn+1 − sn = 0, the numerical-based lower bound has been
reached, and the iteration naturally terminates.

Importantly, if sn approaches a root of P ′(s), the denominator can become arbitrarily large, resulting in a restart
of the entire procedure. We shall demonstrate that this is the source of the chaotic lack of convergence.

On the other hand, if any guess for the root sn is close to a root of PN (sr ± ε), (i.e., ε = sn − sr is within the
RoC), then

|(sn − sr)k| � |(sn − sr)| (A.4)

for k ≥ 2 ∈ N. This complex analytic linearization step is the key to Newton’s method. It will only be true if the
difference equation remains linear, which requires the RoC condition Eq. A.4.7 Namely Newton’s method is a linear
approximation that critically depends on the RoC condition (Eq. A.4). Add Balakrishnan ref.

B A proof of convergence

We define a monic polynomial PN (s) = sN+
∑0
n=N−1 cns

n (i.e, cN = 1) having roots rk ∈ C, such that PN (rk) = 0

where s = σ + ω is called the Laplace frequency. We also define the adaptive step-size η = |η| e∠η (see Eq. A.3),
or in terms of polar coordinates a, φ ∈ R, a ≡ |η| < 1, and φ ≡ ∠η where 0 ≤ φ ≤ 2π. Here we present the
hypothesis we wish to prove true, and outline a proof, which can be verified numerically, but only within the limits
of the computers numerical accuracy. Thus we have only proved the hypothesis for IEEE-754 floating point numerics
(Allen, 2020, p. 26), namely rational roots rk ∈ Q which is defined in Octave/Matlab as eps = 2.2204×10−16, which
is the smallest floating point number on Intel computers (IEEE-754).

However we believe it to be true within these numerical limits (rational roots) (rk ∈ F ≡ n/m), where n,m ∈ N,
Pn(s) = ΠN

k=1(s− rk) and PN (rk) = 0. We seek a generalization for irrational roots rk ∈ I.
7Given some basic algebra, Eq. A.4 is equivalent to | sn

sr
| < 1, which follows from the triangle inequality for Hilbert vectors sr − sn and

sr − sn+1 within the RoC (Allen, 2020, p. 130). This needs to be verified, not simply stated. Specifically, is ||s/sn|| < ||sn/sn−1||? For
example, is sn+1 − 2sn + sn−1 “small”? See Mathematical physics, Balakrishnan (2020), page 508, Eq. 22.32, on the Ratio test for the RoC of
any analytic function. This should to be tested numerically, for verification.

11



Theorem 1
Given a monic polynomial PN (s) we apply Newton’s method (Eq. 2.8) starting with n = 0

sn+1 = sn −
η

N
SN (sn) (B.1)

n = n+ 1,

and an arbitrary starting point s0 ∈ C, including the point at s0 → ∞. We shall prove that every s0 lines within a
unique Region of convergence (RoC). There are N of these regions, one for each root rk.

This follows from the basic property of every complex analytic function, that its inverse must also be complex
analytic. For the case in point, the inverse of P5(s) must have N branch cuts, with N R0C’s. It cannot not have 6
RoCs, since every point in s must fall in one of these 6 RoCs, shown by the color codes. The only exceptions are
the results of numerical errors. The boundaries of the RoC are on the branch-cuts of s(n, φ) = P−1

5 (φ). Here we set
|η| = 1. The step-size is η/N because both PN and P ′N are monics.

After the first step we have s1 = s0 − 1
N SN (s0). If |s1/s0| < 1 we have satisfy the RoC assumption built

into Newton’s method, thus we have moved closer to the root rk associated with s0. Thus s1 is in the same RoC as
s0. In this case we must repeat this calculation for n > 1, and at each step we must verify that the RoC condition
(|sn+1/sn| < 1) holds.

If the RoC condition fails for n, we must repeating Eq.B.1, restarting from sn, the last point inside the RoC. At
this point we have three options:

1. reduce the step-size an, and recompute sn+1 using Eq. B.1

2. change φn ≡ ∠ηn, leaving an the same.

3. vary both an < 1 and φn.

This third more aggressive option is to vary both a and φ to minimize | ηNL(sn)| < 1. As the angle φn = ∠ηn is
varied, the RoC condition should vary from greater than 1 at φn+1 (because with φn+1, the RoC condition failed) to
less than 1. The locus of such points such that |η| = 1 identifies the RoC boundary.

This appears to be a variant on the conjugate-gradient method for Newton’s Method. It seems likely (but is
presently untested), that the best approach is to vary φ to minimize |sn+1/sn| < 1, and then step in that direction.
Such an approach will, we believe, give a faster convergence, because the RoC condition will be smaller. Varying the
angle eliminates the need to reduce |ηn| < 1, yet improving the rate of convergence.

Our claim is, that by changing the angle of the step-size, we will find a range of angles that optimize the RoC
condition (find the smallest ratio with respect to φ).

Moving in the direction that |sn+1/sn| ≤ 1 delineates the RoC boundary. The prediction is, that by moving in
the direction where RoC is 1, will trace out the RoC boundary region. Crossing the boundary and starting with sn+1,
Eq. B.1 should converge to a different root.

Numerically this is easily demonstrated, providing an empirical proof of our hypothesis (theorem).
The RoC regions may be seen in Fig. 4 as the different colored regions. The long dashed lines indicate when the

trajectory jumped from on RoC to another due to coming under the influence of a pole of SN (s) (zero of P ′(s)).

B.1 The inverse Laplace transform of LN(s)
To find the exact solution to Newton’s method we must take the inverse Laplace transform of Eq. 2.7

~%
N

(t) =
1

2π

∮
PN (sn)

P ′N (s)
estds

↔ 1

2π

N−1∑
p=1

Rpe
λptu(t).

Here u(t) is the Heaviside step function, Rp are the residues and λp are the roots of P ′N (λp) = 0.
Each term in %

N
(t) requires an initial condition, such as %(0) = 0. To evaluate the inverse Laplace transform, one

must use Cauchy’s integral theorem, following the residue expansion of SN (s) under the integral sign.
As discussed in Sec. 1.1

ds ≡ (sn+1 − sn) = − lim
η→0

η

(
1

N

PN (sn)

P ′N (sn)
,

)
(B.2)

thus
d

ds
SN (s) =

N−1∑
n=1

Rn
s− snp

↔
N−1∑
n=1

Rne
−snp t. (B.3)

12



Here snp is the n power of the pth root of P ′(s), and↔ indicates the inverse Laplace transform.
The inverse Laplace transform of this residue expansion is the solution to this linear difference equation. An

alternative is to seek the inverse z transform, which gives the exact solution to the linear difference equation. In both
cases the eigen-values are the N − 1 roots of P ′(sp) = 0.

To complete the proof of the failure to converge, one may take the inverse Z transform of Eq. B.3. Under certain
conditions, as η → 1 the imaginary poles can become real, at which point they are no longer conjugate pairs. When
this happens, the pole pair split and one pole goes to 0 and the other to∞. This is the condition which results in an
unstable limit cycle (Allen and Sondhi, 1979, Sec. V, p. 126).

B.1.1 Use of the companion matrix method:

This seems like very little progress, since we don’t know the roots of P ′N (λp) = 0, thus we cannot form the partial
fraction expansion.

However we do know the coefficients of both PN (s) and P ′N (s). Given the coefficients of a polynomial P ′n(s),
we may form its companion matrix, which by definition, has the same eigen-values as the roots of monic polynomial
P ′N (s) C ′N (Allen, 2020).

Proceeding with this approach, based on Eq. 1.2, we form the vector relation for sk(η)

d

dη
~%
N

(t) = eηC
′
NRp. (B.4)

This method is demonstrated via the following example:

P4(s) =
1

4
s4 − 1

3
s3 − 1

2
s2 − s− c0 ↔ [1/4,−1/3,−1/2,−1,−c0].

Thus P ′4 = s3 − s2 − s− 1↔ [1,−1,−1,−1]. The companion matrix for P ′4(s) is

E = C ′4 =

0 0 1
1 0 1
0 1 1


3×3

,

which has the same eigen-values λp of the monic polynomial P ′4(s) [λp = 1.83929,−0.41964± 0.60629]. This has
one unstable real pole and two stable poles with radian frequencies ±0.60629 [rad/s].

The residues for this example areRp = [−0.68437, 0.17552±0.19742] and the poles are λk = [1.83929,−0.41964±
0.60629].

It follows that if the initial conditions for each root is 1 then

~%3(η) =
1

3

3∑
1

eηC
′
4 =

1

3

3∑
1

e
E

[
ηλ1 0 0
0 ηλ2 0
0 0 ηλ3

]
E−1

Recall that the matrix eigen equation is ~%
3
(t)E = tEΓ (Allen, 2020, p. 305), thus

~%3(η) = eE ηΓE−1

= eE · eηΓ · eE
−1

.

Importantly, it is still necessary to use a numeric method to find the N − 1 eigenvalues of the matrix C ′. The
above is an interesting description of the solution for ~%3(η), but of questionable value since it requires the computation
λn which is almost the problem we started with for C4. Thus we still need to find the roots of the characteristic
polynomial, which are the 3 roots of P ′

3
(λn) = 0. Thus it is minor simplification of the original approach, but it seems

to not be useful.

Summary: By way of summary, the eigen-matrix E and its inverse E−1 play a major role in the eigen analysis
mechanics. Since ~%

3
E = EΓ, if follows that ~%

3
= EΓE−1. Thus ΓE−1 rotates the eigenvalues off the diagonal such

that when operated on by E they equal ~%
3
.

For reference

ΓC ′3 =

λ1, 0, 0
0, λ2, 0
0, 0, λ3

−1, 1, 0
−1, 0, 1

1, 0, 0

 =

 −λ1, λ1, 0
−λ2, 0,−λ2

λ3, 0, 0



13



On last point: Mention the importance of the partial fraction expansion, which raises P ′N (s) as the characteristic
polynomial of the system being analyzed. From this view, P ′(s) has a more important role than P (s). Perhaps this is
critically important, but was not properly noted.

An famous example is the case of f(s) = e3s + 2s cos(s)− 1, mentioned in The ZerSol Library by Ivan B. Ivanov
2012.

A great example of a divergence of NM when f(x) = tan−1(x), x ∈ R.8

References
Allen, J. B. (2020). An Invitation to Mathematical Physics and Its History. Springer, New York, New Delhi.

Allen, J. B. and Sondhi, M. M. (1979). Cochlear macromechanics: Time-domain solutions. Journal of the Acoustical
Society of America, 66(1):120–132.

Boas, R. (1987). Invitation to Complex Analysis. The Random House, New York.

Galántai, A. (2000). The theory of Newton’s method. Journal of Computational and Applied Mathematics, 124(1-
2):25–44.

Haar, D. (2016). The Old Quantum Theory. Elsevier Science.

Kuhn, T. (1978). Black-Body Theory and the Quantum Discontinuity, 1894-1912; (371 pages). Oxford University
Press (1978) & University of Chicago Press (1987), Oxford, Oxfordshire; Chicago, IL.

Rinzel, J. and Miller, R. N. (1980). Numerical calculation of stable and unstable periodic solutions to the Hodgkin-
Huxley equations. Mathematical Biosciences, 49(1):27–59.

Stewart, J. (2012). Essential Calculus: Early Transcendentals. Cengage Learning, Boston, MA.
https://books.google.com/books?id=AcQJAAAAQBAJ.

Vaidyanathan, P. P. (2007). The theory of linear prediction. Synthesis lectures on signal processing, 2(1):1–184.

/NOW-NewtonMethod.22/NewtonRoots.tex Version 1.0e Monday 17th July, 2023 @ 13:50
8https://web.archive.org/web/20120615221147/http://math.fullerton.edu/mathews/a2001/Animations/

RootFinding/NewtonMethod/Newtonff.html

14


