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On the Implementation of a Short-Time Spectral 
Analysis Method for Sy,stem identification 

Abstract-Recent work has demonstrated the utility of a short-time 
spectral analysis appruach to the problems of spectral estimation and 
system identification. In this paper several important aspects of the 
implementation are discussed. Included is a discussion of the computa- 
tional effects (e.g., storage, running time) of the various analysis 
parameters. A computer program is included which illustrates one 
implementation of the method. 

T 
I. INTRODUCTION 

HE problems of spectral estimation and system identifica- 
tion have been of great importance for a variety of appli- 

cations. Although classical techniques have had various 
degrees of success, particular problems often require special- 
ized techniques for the most efficient cost-effective solutions. 
Recently, a new method for spectral estimation and system 
identification was proposed based on t h e  theory of short-time 
spectral analysis [l] , [2]. This method was shown to be 
theoretically equivalent to the classical least squares method 
when the number of data points (N)  was infinite [I] For 
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finite N the method has the property that the “misalignment” 
error (between the actual and computed system impulse 
responses) tends to zero as 1/N, Le.,  the solution rapidly 
approaches the least squares solution. 

The purpose of this paper is to describe one implementation 
of the method described in [Z] Following a brief review of 
the basic method (Section II), we describe a DFT implementa- 
tion in which the relevant quantities used in the analysis 
equation are computed entirely in the frequency domain 
(Section 111). In Section IV we discuss the issues of computa- 
tion speed, storage, and accuracy and show that tradeoffs 
between these factors can be made. Finally, in Section V we 
present a flowchart of one implementation of t h e  method 
which is fairly general purpose. 

K REVIEW OF THE SHORT-TIME SPECTRAL ANALYSIS 
APPROACH TO SYSTEM IDENTI F’ICATIUN 

Assume the input tu the system to be identified is x(n)  and 
the output of the system [corrupted by additive noise q(n)] 
is y(n), is., 

Y(rr) = x(n) * W )  + 4 w  (1) 
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where h(n) is the (FIR) response of the linear system being 
identified, and q(n) is an independent [of x@), h(n)] white 
noise with zero mean and variance 0:. Assume we can observe 
x(n)  and y(n) for 0 < n < N  - 1. The short-time spectral anal- 
ysis  approach to estimating h(n) is to form overlap-add expan- 
sions of x(n) and y(n)  [3] - [SI, and then to approximate the 
classical least squares matrix equation solution for h(n) by a 
simple Toeplitz matrix equation of the form. 

A A  

&h=P (2) 

where h^ is the fi length vector 

I 4 I 

that approximates h,  the true impulse response, and 3 is 
an a X fi symmetric Toeplitz matrix with the ( l ,  m)th 
element 

where 

1 

*w(pR + I -  n)w(kR + m -  n) 

W ( d 0 )  D =  
R 

k 

1 

M= 32 
N= 1024 
t= 120 
R.32 

n 

q mu%= 4 

I 1 

P 

(4) 
Fig. 1. Typical set of points (heavy dots) comprising the set S in the 

( p ,  k )  plane which axe used in computing $ and r̂ . 

As described in [Z] the range of p ,  k E S is a strip in t he  ( p ,  k )  
plane as illustrated in Fig. 1 .  By making the substitution 

(4) and (8) reduce to the forms 
(5) 

w(n) is an L-point window used in the overlap-add expansion h a x  Pmax(CI) 
of x@), R is the shift (in samples) between adjacent windows, 
and W ( d 0 )  is the zero frequency value of the discrete Fourier q=-qmS ~ = ~ m i n ( q )  
transform of the window. Similarly, E' is the k length vector where 

? ( I ) =  
r P , P + 4  (2) 

with commonents A 

pES k € S  

where 

(7) where [x] is the integer less than or equal to x, and 

where [x1 is the integer greater than or equal to x. 
We now give a procedure for solving for h(n)  from windowed 

I "  sections of x(n) and y(n). The steps in the process are as 
= 5 y(n) x(n - I )  w(pR - n) w(kR + E - n). follows. 
u p1 =coo 

1) Choose window w(n), window length L ,  and window 
(9) shift R .  Compute D from (6). 

The set S in (4) and (8) are the integers p ,  k such that the 
p t h  and kth windows of the data are entirely in thx range 
0 < n < N - 1 and such that the overlap between the windows 
is in the range [2] 

2 )  Determine range on q [( 14)] , and p [(15)] for calcula- 

3) For each pair of ( p ,  q), determine @ p , p + 4  ( I ,  m )  and 

O < K l C i f -  1 and O < r n & ? -  1 ,  and may be realized ef- 
ficiently via fast correlation methods. (See Section 111.) 

tion of$ and 3. 

*P,P'4 (2) from (5) and (9). This computation is done for 
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Fig. 2. Generaked flowchart of the short-time spectral analysis method, 

4) Determine $(Z - m) and P ( k )  by summing over the pairs 
of (pl 4) indices of step 3. 

5) Solve matrix (2) for 8 using a Toeplitz matrix solution 
method, e,g., the Trench method [6]  or a Levinson algorithm 

Fig. 2 gives a flowchart corresponding to the above pro- 
cedure. There are many ways in which the operations of the 
flo,wchart can be carried out. For example, we can consider 
several alternative methods of indexing p and q over all the 
grid points in the solution. Furthermore a variety of tech- 
niques can be used to, calculate $p, p + 4  (I, m) and,rp,p+g(l) 
far the complete range of I and m. In Section 111 we describe 
an FFT method which trades storage for  computational speed. 
Finally, the Toeplitz matrix equation can .be solved by any 
number of Toeplitz matrix' solution methods. In Section 111 
we discuss these alternative implementation techniques. 

E71 

111. DFT IMPLEMENTATION OF THE SYSTEM 
IDENTIFICATION PROBLEM 

We begin by considering the computation of the term 
% P + 4  (1 ' m) of (5) with k = p + q. We denote the pth  window 
of x as x&). It is readily shown, that ( 5 )  can be written as 

Fig. 3. Relative positions of the p t h  and ( p  + 41th windows for the 
matrix element GP P+Q (or Y ~ , ~ + ~ )  . The rangeNA < n  G N B  is the 
overlap between thi windows. 

1 00 

1 

Le., as a correlation between x@) and xP+Q(pE), whenever 
the overlap between the pth and (p + q)th data windows are 
within the closed interval [fi - 1, IV - 11. Fig. 3 illustrates 
the placement of the p t h  and ( p  + q)th windows. If we define 
NA as the lower limit on the overlap between windows, and 
NB its the upper limit of the overlap, then (16) (with s = 2 - rn) 
becomes the finite correlation 

where 

Equation (18) can be implemented using fast (FFT) correla- 
tion methods. However, we must carefully choose the FFT 
section size to guarantee no diasing for the maximurn q value 
for which (18) is valid, Le., q = qmU. It can readily be seen 
from (18) that the FFT section size NF has 3 components, 
namely the window length L ,  the- maximum shift (in samples) 
between windows qmax + R ,  and the aliasing protection for 
M - 1 values of the correlation [Le., for r = 0, 1, 4 . .  7 k -  1 
in (lS)] As such, we get 

n 

A 

NF X, + qmax + R  +(M- 1) 

For our present FFT implementations, (Le., radix 2), NF is 
chosen tu be the power of 2 greater than or equal to NF of 
(20a). We will see in Section IV that (20a), along with some 
subsequent equations for the number of FFTs which must 
be performed, provides guidance on the choice of window 
length L ,  relative to M, to minimize overall computation and 
storage. 

In the implementation of the fast correlation computation 
of (18), it is assumed that the FFT size NF is an integer multi- 

A 
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ple of the shift between windowsR. This assumption leads to 
a simple and efficient strategy for accounting for the real time 
placement of t h e  pth window within the finite FFT frame. 
The idea is based on the well-known shifting property of 
Fourier transforms, namely if 

x(n) X @  1 iw (2 la) 
x(n - pR)+tX(e  ju ) e  -jwpR 9 ( 2 W  

or for NFpoint DFT's 

xIn> x(k) W a )  

x(yt - pR)  X(k) e -j(2n/NF) kpR (2w 
If we define 

M = NF1.R (23) 

then (22b) shows that to compensate for the shift of pR 
samples we modulate X(k) by the factor e -i(z.rrllY)kP m e  
modulating function 

-j(27r/K)k G(k) = e (24) 

can be implemented as a K point complex table, and the 
modulation for a pR sample delay is implemented by ac- 
cessing every p th  point of the table, modulo K ,  Thus, to 
implement the FFT convolution we have to access the p t h  
data window and store it in x@) for y1 = 0, 1 4 5 L - 1,take 
its DFT, and modulate the DFT by the table G(k) accessed 
every pth point modulo K ,  Le., 

z(O> = X(0)  G(0) 

211) =X(1) G ( p  @ K )  

212) = X(2)  G(2p @ K )  

where p @ K  means p modulo K. 
Similarly the windowed sequence xp +&I) is accessed, trans- 

formed, and phase compensated. The desired correlation 
could be obtained as 

and its results are valid far 0 < s < M - 1.  The computation 
for & (or P), however, is clearly more efficiently done entirely 
in the frequency domain as 

A 

L p  4 J 
Le., by accumulating the lagged products in the frequency 
domain and transforming back to the time domain only as 
a final step. 

A. Summatiun Method in the ( p ,  k )  Plane 
There are several alternative ways in which the quantities $ 

and E of (1 2) and (13) can be calculated. The straightforward 
implementation of (12) is illustrated in Fig. 4(a). The com- 
putation along the path labeled 1 is fox g = -qmm and all valid 
p .  This is next followed by the path labeled 2 for q = -qmax + I  
and all valid p .  This is carried out until the q = qmax p ath is 
traced and the computation is finished. Although this sum- 

k 

k 

2 4  4 5 

1 

Fig. 4. Three possible ways of implementing the computation of tppk 
(or rpk)  for all valid sets of ( p ,  k) in the plane. 

rnation method is valid, it suffers from (small) numerical 
problems of the following type. Each term GP, + q  entering 
into the computation of (1 2) decreases in magnitude as I q f  
becomes large since the overlap between the pth and ( p  + q)th 
windows decreases. As such, the contributions of the gmax 
path [labeled 7 in Fig. 4(a)] to the total are numerically 
distorted because, by the time they are added, 3 is already 
large. As such, an alternate, numerically more  accurate, 
method of computing 3 is illustrated in Fig. 4(b). Here the 
4 = -4max and 4 =qrnax P aths are computed first, followed by 
the 4 =-qrnax + 1  andq=q,, - 1 ,  et@. While the amount of 
computation remains the same, the accuracy greatly increases. 

a total of (approximately) 
The only problem with t h e  computation of Fig. 4(b) is that 

FFT's must be performed, Le., 2 for each ( p ?  q )  pair. This 
strategy is clearly inefficient in that the total number of DFT's 
need be no more than the total number of rows (pmm (qmin)) 
and columns (pmax (qmin)). Thus, if we perform the sumrna- 
tions of (12) in the manner shown in Fig. 4(c), namely by 
indexing p from Pmin (qmax) to pmax (qmin), and then deter- 
mining the range of q (or k )  for each p ,  we can compute the 
DFT of the pth window just one time, store it, and use it for 
the computations of each of the q (or k )  windows which are 
relevant. Similarly, if we have adequate storage (enough for 

and reduce computation of each column to a single column 
DFT (for the pth window) and a single row DFT [for the 
( p  + 4max)th window]. Thus, with sufficient storage, the 

2 ~ m a x  + 1 DFT's), WE: can store a vertical strip of DFT's 
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total number of DFT's is reduced to 

which can be considerably less than NC of (27). We can also 
employ our previous argument and along each  column com- 
pute the DFT's so that the largest values of q -are done first. 
When an entire column of computations is 'accumulated, it 
is then added to the previous computations, thus assuring 
maximum overall accuracy. Fig. 4(c) shows the order in which 
the computations would be done for one simple example. 

B. Final Sulutiun of the Toeplitz Matrix Equation 

solution of the Toeplitz matrix equation 
The final step in t h e  system identification procedure is the 

3<1- m) h(m) =?(E), I =  0,1, . . .  9 f i - 1  
m =o 

The matrix6 is Toeplitz and symmetric. Two Toeplitz matrix 
solution methods were investigated, namely, the Trench 
method [6] and t h e  Levinsun method [7] . Both techniques 
require on the order A of 3' multiplications and additions, and 
on the order of M storage locations. Informal experimentation 
with both methods indicated little or no difference in the 
solution for a number of examples, Hence either technique 
appears h tu be applicable to this problem. Since, in general, 
lV>> M, the computations required in solving the Toeplitz 
matrix equation is generally negligible compared to those of 
computing & or P .  

IV. COMPUTATIONAL  CONSIDERATIONS 
We have already discussed two major e-omputational aspects 

of the  method, namely the use of high-speed correlation to 

path in the ( p ,  k )  or ( p ,  q )  plane to minimize the number of 
FFT's required for the computation of 6 or F. There re- 
mains one additional computational consideration, namely, 
the choice of window length L ,  Theoretically, any value of 
L can be chosen. However, the amount of- computation C 
in computing or 3 is approximately 

compute @p, p f q  and % P + g  terms, and a carefully chosen 

where we have used (28) and (2Oa) to give the number of 
FFT's and the FFT size. From (1 5 )  and (14) we get 

We recall from our earlier discussion that, in general, NF is 
chosen as the power of 2 greater than or equal to the quantity 
NF of (2Oa). Fig. S(a) shows a typical plot of computed 
values of N .  and the nearest power of 2 as a function of the 
variable L for the case 2 = 16, N =  1000.l We see the result 

'For simplicity we assume R = L/4. For arbitrary R ,  less' than t h i s  
value, the results do not change significantly. 

NF 

64 

I t I 
4 8 16 32 64 120 2 56 

(a) 

C 

* 
I 
t 

1 1 I ! I I I 
4 8 16 32 64 1 28 256 

4 8 16 32 64 120 256 

L 

Fig. 5 Curves of FFT size (NF), cornputation (C), and storage (S)  as 
a function of window size L for a given value for If? and N ,  with 
R = L14. 

that fox L =G the actual FFT size is closest to the  computed 
value of NF. This result is valid when & is a power of 2 (or 
slightly less than a power of 2). For arbitrary k, a slightly 
more complex picture emerges and we have to consider the 
total computation C(L) of (32). This quantity is plotted in 
Fig. 5(b) for the parameters k = 16, N = 1000. It can be seen 
that C(L) decreases sharply until L w f i ,  at which point the 
c w e s  rises only gradudlx. As such it can be argued that any 
reasonable value of L > M would serve to approximately mini- 
mize the total computation of & and ;* 

If  we now consider the storage required for t he  computa- 
tion of 6 or P, we see that we need to store a strip of width 
(2q,, + 1) DFT's, Thus the storage required is (approximately) 

S(L) = (2qmax + 1) X FFT (size) (33) 

Fig. 5(c) shows a plot of S as a function of L for the example 
of Fig. 5. It can be seen that the minimum value of S occurs 
at 1: =fi. The storage increases by 50 percent for L = 2 / 2 ,  
ox L = 2$, thus a fairly well-defined minimum of S occurs at 

Based on the above discussion, it is seen that the optimum 
computational strategy is to choose a value of L on the order 

L =&. 
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READ IN ANALYSIS PARAMETERS ’ 
~ h,L, R,N, IOF, IWTYPE A 

READ IN X-FILENAME-IXFIL 
READ IN )r-FILENAME-IYFiL 

.. 

INITIALIZE WINDOW, COMPUTED 
PARAMETERS,STORAGE TABLES 

* 

1 

L 
I I 

4 

t p =  p +  1 

Fig. 6 .  Flowchart of the implementation described in this paper. 

of $2 tu simultaneously minimize total computation and total 
value of NF. 

V. FLOWCHART, COMPUTER PROGRAM, AND 
TEST EXAMPLES 

A flowchart of the implementation used to realize the 
system identification methods described in Sections 11 and 111 
is given in Fig. 6. A Fortran implementation of the flowchart 
is given as the test program TESTSTSPEST, the subroutine 
STSPEST, and its associated subroutines. The program as- 
sumes the sequences x@) and y(n) are stored in disk files. 
Thus, it first reads in the disk fde names fur the input (x@)) 
and output (y(n)) sequences. Channels are assigned to the 
disk fdes for reading values of x@) and y(n). Next, the basic 

analysis parameters of the method are read in including M, L ,  
R ,  and N .  Other parameters requested include an initial. 
sample (IOF) in the fdes at which the sequences begin, Le., 
the sample number corresponding to n = 0 in the equations, 
the window type, IWTYPE (1 fur Hamming window, 0 fox 
rectangular window), and the maximum value of 4 (IQCO) tu  
be used in the analysis. 

The subroutine computes 3 and P using the FFT fast con- 
volution method of Section 111 on the path of Fig. 4(c). Then 
the Toeplitz matrix equation is solved using the Levinson 
method 171, and the resulting estimate sf the system impulse 
response is returned to the main program. At this point the 
user can insert code to plot the impulse response estimate ox 
the resulting frequency response estimate. 

For maximum flexibility., all parameters and data arrays are 
passed in the calling statement to STSPEST. Although cum- 
bersome, this ensures that the routine uses the minimum 
storage for implementation. 

Two of the subroutines called within STSPEST are not pro- 
vided in the Appendix. Qne is the machine dependent disk 
read routine RSECT, which reads in samples (in fxed  point 
format) of x(n> or y(n)  (depending on channel number) into 
a buffer beginning at a designated sample number on the fde. 
The calling statement for the routine is 

A 

CALL RSECT (NCH, IBUF,  NRD, XST, IER) 

where 

NCH = Channel number for reading, Le., 0 fur reading input 
samples, 1 fox reading output samples. 

IBUF = Buffer for storing integer input or output samples. 
N RD = Number of samples of x(@ or y(n) to be read. 
XST = Starting sample number in disk file. 
IER = Error code. 

The second set of missing routines are the FFT subroutines 
FAST and FSST, which are described in [8]. The calling 
sequences are 

CALL FAST (X, N )  

CALL FSST (X, N )  

where FAST is used fox a direct FFT of the real sequence 
x@) stored in array X of size N (where N must be a power 
of 2). The trmsfurm X(k)  is stored in the array X ( is . ,  the 
input data is overwritten) in the format 

Re Cx(0)l +x(o 

Im [X(O)l +x(2) 

Re cx(01 +X(3) 

hl [x(l)l j X ( 4 )  
0 

1 

Re [X(N/2)] + X(N + 1) 

Im [X(N/2)] + X(N + 2). 

A total of N + 2 locations are required for an N point FFT. 
The subroutine FSST does the inverse FFT and expects input 
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1 

W 
3 
J 
4 > 

0 
TIME IN SAMPLES 63 

I' ' I  ' I  

Fig. 7. Actual and estimated impulse responses [parts (b) and (d)], 
and log magnitude frequency responses [parts (a) and (c)] for a 
64 paint example, 

data in the format obtained from FAST, and writes the real 
N point output over the first IV input values. 

Figs. 7 and 8 show examples of the use of the program, 
There are four parts to each of these figures, Parts (b) and  (d) 
show h(n), the true impulse response, and &I), the estimate, 
whereas parts (a) and (c) show the true and estimated log 
magnitude responses. Fig. 7 is for a 64 point impulse response 
where 

h(n) = 1 pt = 0 , 1 , 3 , 7 ,  15,31,62 

= 0 otherwise, 
h 

with analysis parameters N = 1024, R = 16, L = M = 64, 
IOF = 500, and XWTYPE = 1 (Hamming window). The param- 
eter IQCO specifies the largest value of qmm in the implemen- 
tation. For full accuracy, IQCO is set to - 1 ,  or any large 
integer (e.g., 1000). The error in E@) can be seen for values 
of n such that h(n) = 0 where &(n) is a small random value. 

Fig. 8 is for an equiripple 25-point FIR linear-phase low-pass 
fdter with a peak sidelobe ripple of -55 dB. The analysis A 

parameters here were N =  1024, R = 8, L = 32, M = 25, 
IOF = 100, IWTYPE = 1, and al l  g values retained. A peak 
log magnitude error of about 5 dB (relative to the maximum 
of the sidelobes) is seen in this figure. 

" t  
1 

- 
-80 

FREQUENCY IN HZ 

Fig. 8. Actual and estimated impluse responses [,parts (b) and (d)] 
and log magnitude frequency responses [parts (a) and (c)] for a 
25 point low-pass filter example. 

V, SUMMARY 
In this paper we have described one implementation of the 

method described in [2]. We have attempted to make the 
implementation as efficient (in terms of speed and memory) 
and as accurate as possible, within the framework that was 
given. The implementation resides as a Fortran callable 
subroutine, and a simple main program was given which 
provides a fnst-level application of the routine. 
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COMMON WIN(I2s),XW(NM),YTAB(NML~,Z~~NM) 
COMPLEX XWC(NHF),aTABC(NHFL),ZWC(NHF) 
EQUIVALENCE  (XW(1),XWC{I~),(YTAB(l),YTABC(l)~,(ZW(1),~WC(~)~ 
COMPLEX TMPINHF) 
COMPLEX XMI64; 
DINENSION IFlL(fG),YFIL(lO) 
DIMENSION P H l H A T ( 1 2 8 ) , R H A T ( 1 2 8 ) , H ( 1 2 8 )  
INTEGER T T I  ,TTO 
INTEGER P , R  
PARAMETER NM=514, NHF=NM/2,  MNL=NM*g, NHFL=NHF*9 

DEFINE TELETYPE INPUT AND TELETYPE OUTPUT DEVICES 

TTI=7 1 
TTO='! 0 

DEFINE MAXIMUM ARRAY SIZES FOR COMPUTATION 

READ IN X-DATA FILENAME AND Y-DATA FILENAME 
SUBROUTINE GNAME READS IN AN ASCII FILENAME FROM TELETYPE 

WRITE ( TTO, 1 1 

CALL GNAME(IFLL1 
OPEN 0,ZFIL 
WRITE ITTO, 2 
FORMATl"*++Y-DATA FILENAME***"] 
CALL GNAME ( J F I L  
OPEN 1 , J F I L  

FORMAT("***X-DATA F I L E N A M E * + * " )  

BEAD m ANALYSIS PARAMETERS, MHAT,R,L,N,IOF,IWTYPE,IQCO 

( 7  FOR HW, 

C CALL SPECTRAL ANALYSIS ROUTINE 
C - 

CALL STSPEST(PHIHAT,RHAT,~,I,~~RR,MHAT,R,L,N,~O~, 
1 IWTYPE,IQCO,NM,9,NHF,NML,NHFL,WIN,XW,YTAB,Z~,T~P,XM, 
2 XWC,YTABC,ZWC) 

C 
C H(Z) ARRAY CONTAINS THE ESTIMATE OF THE SY5TEM.IMPULSE RESPONSE 
C USER CAN INSERT CODE FOR PLOTTING IMPULSE RESPONSE OR ITS 
C FREQUENCY RESPONSE HERE 
C 

GO TO 7 0  
END 

C 
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
C SUBROUTINE: STSPEST 
C SHORT TIME SPECTRAL ANALYSIS ROUTINE 
C GENERALIZED  SYSTEM IDENTIFICATION ANALYSIS 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -~ - - - - - - - - - - - - - - - - - - - - - - - - - - -  
C 

SUBROUTINE STSPEST(PHIHAT,RHAT,N,IPRT,IERR,MHAT,R,L,NqIOF, 
1 IFSrYPE,IQCO,NM,MAXFFT,NHF,NML,NHFL,WIN,XW,YTA~,~W,~MP,XM, 
2 XWC,YTABC,ZWC) 

DIMENSION  PHIHAT(1) ,RHAT(l) , H I 1  1 
DIMENSION W I f l ( 1 )  ,XW(l] , Y T A B { ? }  ,ZW(1 ) ,TMP(I ) ,XM(1) ,XWC(q) 
DIMENSION YTABC( 1 1 ,ZWC( 1 
COMPLEX TMP,XM,XWC,YTABC,ZWC 
INTEGER P , R  

C 
C PKIHAT=ARRAY TO XOLD PHIHAT 1) , I = 7  , MHAT 
C RHAT=ARRAY TO HOLD RKAT(I.1 ,I=l,MHAT 
C H=ARRAY TO HOLD H(I),I=q,MHAT 
C IPRT=PRINTIMG PARAMETER--IPRT=l TO PRINT, OTHERWISE NO P R I N T I N G  
C IERR=ERRQR FLAG 
C IERR=O MEANS ALL IS OK WITHIN STSPEST 
C IERR=? MEANS REQUIRED FFT S I Z E  IS TOO LARGE 
C IERR=2 MEANS MODULATION FACTOR (IMD) IS TOO LARGE 
C IERR=3 MEANS INSUFFICIENT STORAGE FOR YTAB 
C 
C ******ANALYSIS PARAMETERS*****+ 
C MHAT=TMPULSE RESPONSE LENGTH 
C R=NO OF SAMPLES BETWEEN WINDOWS 
C L=WINDCIW LENGTH IN SAMPLES 
C N=NUMBER OF SAMPLES FOR LEAST SQUARES SOLUTION 
C I . E ,  N PRIME=N-MHAT+l 
C IOF=STARTING SAMPLES IN BOTH X-DATA AND Y-DATA FILES 
C IWTYPE-WINDOW TYPE--? FOR HAMMING WINDOW,  0 FOR RECT WIND 
C IQCO=MAXIMUM RANGE ON Q CALCULATION--SET IQCO TO -1 FOR NO L I M I T  
C NM=MAXIMUM SIZE OF LOCAL ARRAYS FOR SHORT TIME SPECTRA 
c NHF=NM/ 2 
C NML=MAXIMUM STORAGE AVAILABLE FOB RECURSIVE ESTIMATION PART 
C NHFE=NML/2 
C MAXFFT=MAXIMUM POWER OF 2 FOR FFT 
C WIN=ARRAY TO HOLD WINDOW 
C XW=X STORAGE ARRAY--EQUIVALENCED TO XWC 
C YTAB=Y STORAGE TABLE--EQUIVALEHCED TO YTABC 
C ZW=RESULTS STORAGE AHRAY--EQUIVALENCED TO ZWC 
C TMP=TEMPQRARY STORAGE FUR ACCUMULATION OF RESULTS 
C XMzPHASE FACTOR TABLE--COMPLEX 
C 
C CREATE APPROPRIATE (HAMMING OR RECTANGULAR) WINDOW OF LENGTH L 
C AND CALCULATE D=W(O)/R NORMALIZATION CONSTANT 

C 
C 
C DEFINE OUTPUT DEVICE FOR PRINTING ( L P T )  
C 

LfT=l2 
IERR=O 
IF(IQCO.LT.0) IQCO-1000 
IF(IWTYPE.EQ.1) CALL CHAM(WIN,L) 
IF(IWTYPE.EQ.0) CALL CRECTIWIN,L) 
WQ=G. 
DO 20 I=1 ,L 

20 WO=WD+WIN(I) 
D=WO/FLOAT(R) 

C 
C CALCULATE FFT SIZE AND PHASE FACTOR TABLE 
C 

XF=FLOAT(MHAT-2+L)/FLOAT(R) 
NFFT=L+ICEIL(XF)*R+(M~AT-~) 
DO 3 0  1=2,MAXFFT 
MTST=2+*I 
IF(MTST.GE.NFFT) GO TU 40 

SERR=1 
RETURN 

30 CONTINUE 

40 C O N T I N U E  
C 
C NFFT I5 SIZE OF FFTS USED IN COMPUTATION 
C NF2 AND NFHF ARE EXTENDED AND HALF FFT SIZES FOR REAL 
C AND COMLEX ARRAYS 
C IMD IS MODULO PHASE FACTOR FOR TIME SHIFTING SEQUENCES 
C 

NFFT=MTST 
NF2=NFFT+2 
MFHF=NF2/2 
IMD=NFFT/R 
IF(IMD.LE.64) GO TO 45 
IERR=2 
RETURN 

45 TWOPI=8.*ATAM{I . O )  
C 
C CREATE PHASE FACTOR TABLE TO MODULATE EACH SHORT TIME TRANSFORM TO 
C ACCOUNT FOR PROPER TIHE SEQUENCING 
C 

DO 50 I=t  ,IMD 
T=TWOPraFLoAT(I-I)/FLOAT(TMD) 

50 XM(I)=CKPLX(COS(T),-SIN~TII 
C 
C DETERMINE GIMIN, QMAX AND QRGNGE=QMIN-QMAX+I 
C 

XF=FLoAT(z-MHAr-L)~FLOAT(R) 
IQMIN=ICEIL(XF) 
IF(IQMIN.LT.(-IQCOI) IQMIN=-IQCO 

IQMAX=IFLOR(XFI 
IF(IQMAX.GT.IQC0) IQMAX=IQCO , 

X F = F L ~ A T ( M H A T - ~ + L ) / F ~ U A T ~ ~ ~  

IQR=IQMAX-IQMIN+I 
C 
C NML IS MAXIMUM AVAILABLE STORAGE FOR RECURSIVE  COMPUTATION OF PAIHAT 
C AND R 
C 

IF(IQR+NF2.LE.NML) GO TO  55 
IERR=3 
RETURN 

C 
C DETERMINE PA AND PB RANGE 
C 
55 XF=I?LOAT(L+MHAT-~)/FLOAT(R) 

IPA=ICEIL(XF) 
XF=FLOAT(N-MHAT)/FLOAT[R} 
IPB=IFLOR(XF) 

C 
C LOOP FOR COMPUTING PHIHAT AND RHAT 
C JJr? FOR PHIKAT 
C JJ=2 FOR RHAT 
C 

DO 220 JJ=1 ,2 
CALL ZERO(YTAB,NF2*IQR) 
CALL ZEEO[ZW,NFZ) 

C 
C INTTIALIZE YTAB FOR Y WINDOWS FROM 1 TO -1QMIN 
C 

JJK=JJ-I 
JQMIN=-IQMIN 
DO 110 I=1 ,JQMIK 
II=NF2*(1-1)+1 
12=NFHF*(I-?)+I 

110  CALL GETSrG(YTAB(r~~,XM,YTABC{I2~,~~~,~,NFFT, 
1 L,R,N,IOF,IMD,JJK,q 1 

IND=-fQMIN*l 
C 
C LOOP ON P INDEX AND F I N D  ALL Q (OR Kj .VALUES 
C 

IPAI=IPA+IQMIN 
TPAZ=IPB+IQMAX 
DO 170 IP=IPAI,IPA2 

C 
C READ IN X ARRAY DATA FOR IP-TK WINDOW 
C 

C 
C READ IN Y ARRAY FOR {IP-IQMTNJ-TH WINDOW 
C 

CALL GETSIG(XW,XM,XWC,WIN,IP,NFFT,L,R,N,IOF,IOF,IMD,O,O) 

INDY=IP-IQMIN 
rF{IN~Y;GT*(IaB+IQMAx)) GO TO 1 4 0  

IZ=NFWF+ ( IND-I I +1 
I 1 = N F 2 *  (IND-1 ) + I  

CALL GETSXG(YTABIJl),XM,YTABC(~2),WIN,INDY,NFFT,~,~,N, 
'1 IOF, IMD, JJK, 1 )  

140  CALL ZERO(TMP,NF2) 
C 
c ACCUMULATE RESULTS FOR EACH VALUE OF P(Ip) BY SUMMING ACROSS 

C 
C VALUES OF G(IQ) 

IQQ=-XQMIN+I 
DO 160 JQ=I,IQQ 
IQ-JQ-IQQ 
IQL = IQ 
DO 160 JCT=1,2 
ICT= JCT- 1 
IF( ICT,EQ. 1 )  XQL=-IQL 
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I F ( I C T , E Q , 1 . A N D . I Q L . E Q . O )  GO TO 160 
IP1 =IPA-MAXO I Q L ,  0 1 
IP2=IPB-MINO(IQL,O) 
I F ( I P . L T . T P l . O R . T P , G T . X P 2 )  GO TO 140 
INDP=MOD~IQL+IP-1,IQR)+7 
INDPl =NFHF+ ( I N D P - 1  1 
DO 750 I=l,NFHF 
INDPI=INDPl+l 

150 TMP (I 1 =TMP ( 1  1 +YTABC ( I N D P l  1 
160 CONTINUE 

C 
C ACCUMULATE SUM OVER VALUES OF P(IP) ACROSS RANGE OF P 
C 

DO 165  I = 1  ,NFHF 

IND=XND+I 
IF(XND.GT,IQR) IND=1 

'165 ZWC(I)=ZWClI)+XWC{I)*TMP~~~ 

170 CONTTNUE 
C 
C COMPLEX CONJUGATE RESULTS 
C 

DO 175  I=I,NFHF 
175  ZWC(I)=CUNJG(ZWC(II) 

C 
C PERFORM INVERSE FFT TO OBTAIN SEQUENCES PHIHAT AND RHAT 
C 

1 8 0  

21 0 
220 

C 
C SET 
C 

230 
C 

CALL FSST( ZW ,NFFT) 
DO 180 I=I,NFFT 
ZW(I)=ZW(I)/(D*Dl 
DO 2'10 I=l,MHAT 
IF(JJ.EQ,l) PHIHAT(I)=ZW(I) 
IFCJS.EQ.2) RHAT(I)=ZW(I} 
CONTINUE 
CONTINUE 

UP LEVINSON SOLUTION OF TOEPLITZ 

XC=PHIHAT ( 1 1 
DO 230 1=1 ,MHAT 
PHIHAT(I)=PHIHATII)/XC 
RHAT(I)=RHAT(I)/XC 

MATRIX 

8 1FIIXY.EQ.O) CALL RSECTIO,IBUFIIST),NRD,XST,~~~F} 
IF(IXY.EQ.lJ CALL RSECT(1,13UF~IST),NRD,XST,IEOF) 
DO 9 1=1 ,L 

CALL WIND(XW,L,WIN,XW) 
9 XW(I)=FLOAT(IBWF(I))/XSCAL 

C 
C PERFORM FFT CALCULATION 
C 

1 1  

12 

C 
c PUT 
C 

10 

C 

CALL FAST(XW,MFFT) 
JND=IND 
IF(JND.GE.1) GO TO 1 2  
JND=JND+IMD 
Go TO 11 
JDXzMOD (JND- 1 , IMD) 
JX= 1 
JFFT=NFFT/2+1 

IN PHASE FACTOR FROM TABLE 

DO 1 0  1=1 ,JFFT 
XWC(I)=XWC(I)+XM{JX} 
IF(ICJ.EQ.1) XWC(l)=CONJG(XWC{I)) 
JX=JX*JDX 
IF(JX.GT.1MD) JX=JX-IMD 
CONTINUE 
RETURN 
END 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C- 
C 

5 

C 
C 
C 
C 
C 
c 
C 
C 

SUBROUTINE GETSfG~XW,XM,XWC,WIN,IND,NFFT,L,R,N,IOF,~MD*~XY,~CJ) 
DIMENSION XW(ll,WIN(?) 
COMPLEX XWC(I),XM(l) 
DIMENSION IBUF (1 28 1 
INTEGER R 

XW=ARRAY IN WHICH TO PUT SPECTRUM OF SIGNAL 
XM=PHASE FACTOR ARRAY TO ACCOUNT FOR POSITION OF WINDOW 
XWC=COMPLEX ARRAY EQUIVALEMCED TO XW IN MAIN PROGRAM 
WIN=WINDOW ARRAY--1,E. HAMMING WTNDOW 
IND=INDEX OF WINDOW TO BE ACCESSED 
NFFT=SIZE OF FFT TO BE PERFORMED 
L=WINDOW DURATION IN SAMPLES 
R=SHIFT BETWEEN WINDOWS IN SAMPLES 
N=TOTAL NUMBER OF SAMPLES FOR ANALYSIS 
IOF=INITIAL SAMPLE IN FILE FOR READTNG 
IMD=RATIO BETWEEN NFFT AND R--USED FOR PHASE FACTOR TABLE 
IXY=VARIABLE INDICATING WHICH INPUT TU BE USED 

Ixy=a WSES x ARRAY 
IXY=1 USES Y ARRAY 

ICJ=VARIABLE TO CHOOSE WHETHER TO TAKE COMPLEX CONJUGATE OF SPECTRAL 
ESTIMATE--XCJ=I TAKES CONJUGATE--OTHERWISE NOT 

CALL XZERO(IBUF,L) 
CALL ZEROIXW,NFFT+21 

SCALE FACTOR IS MACHINE DEPENDENT 
SCALE FACTOR USED HERE (FOR A 16-BIT MACHINE) 
IS 32000. 

XSCAt=32000. 
11 =IND*R-L+7 
IST= 1 
NRD=L 
IF(I1.GE.OI GO TO 5 
IST=L-IND+R 
11 =o 
NRD=L-IST+1 
XST=(IOF+X?) 
I1 = I N D + R  
IF(I1.LT.N) GO TO 8 
NRD=N-? +L-IND*R 

RSECT IS A SUBROUTINE TO READ DATA FROM THE D I S K  F I L E  
FIRST ARGUMENT IS CHANNEL NUMBER (0 FOR INPUT, 1 FOR OUTPUT) 
IBUF IS THE ARRAY WHICH HOLDS THE DATA READ FROM DISK 
NRD IS THE NUMBER OF SAMPLES READ FROM THE DISK FILE 
XST IS THE STARTING SAMPLE IN THE DISK F I L E  FOR READING 
IEOF IS AND ERROR FLAG FOR READING 

C COMPUTER PROGRAMS, SECOND EDITION, P 44 
C HOLDEN-DAY, SAN FRANCISCO, CA, 1976 
C 
C.......**.1.C................*,~*,......,.*....,~* 
C INPUTS: 
C 
C LR=LENGTH OF FILTER=M 
C R=AUTOCORRELATION COEFS=(RO,R1,R2,..,,RM) 
C G=RIGHT-HAND SIDE CoEFS=(GO,Gl,G2, . . . .  G M ~  
C 
C 
C OUTPUTS : 
C 
C F=FILTER COEFS= (FO ,FI,. .. ,FMJ 
C PREDICTION ERROR COEFS=(I,Al,A2.. .,AM) 
C 
C . . . . . . . . * * l . ~ . . l . . . . . . . . . . . . . I . * 1 . . . . . . . . . . . . . . . . , * *  

SUBROUTINE EUREKA(LR,R,G,F,A) 
DIMENSION R I 1  1 , G ( 1 1  , F i l l  , A ( l )  
V=R( 1 ) 
D=RI2) 
A ( ?  )=l. 
F ( 1  ) = G ( 1  ) / V  
Q=F(1 )wR(2) 
IF(LR.EQ.1 IRETURN 

DO 4 L=2,LR 
A(L)=-D/V 
IF(L.EQ.2)GO TO 2 
Cl=IL-2)/2 
L 2 = L l  +I 
IF(L2.LT.2)GO TO 5 
DO 1 J=2,L2 
HOLD=A( J) 
K*L- J+1 
AIJ}=A(J)+A(L)+A(K) 
A(RJ=A(K)*A(L)*HOLD 
CONTINUE 
CONTINUE 
IF(Z*Ll.EQ,L-2)GO TO 2 
A ( L Z + l  )=A(L2+1  )*AIL)*A(L2+1) 
CONTINUE 
V=V+A{L)*D 
FIL)=(G(L)-Q)/V 
L3=L-l 
DO 3 J = l  ,L3 

F ( J ) = F ' ( J ) + F ( L ) + A ( K )  
K=L- J+ 1 
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3 CONTINUE 
IF(L.EQ.LRIRETURN 
D=O 
Q = O  
DO 4 I=l ,I, 
K=L-I+2 
D=D+A(I)*R(K) 
Q=Q+F(I)+R(K) 

STOP 
END 

4 CONTINUE 

14 1 

15 1 

171 
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