
Reflectance of acoustic horns and solution of the inverse problem

Daniel M. Rasetshwanea) and Stephen T. Neely
Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131

Jont B. Allen
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801

Christopher A. Shera
Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114

(Received 29 June 2011; revised 19 December 2011; accepted 28 December 2011)

A method is described for solving the inverse problem of determining the profile of an acoustic

horn when time-domain reflectance (TDR) is known only at the entrance. The method involves

recasting Webster’s horn equation in terms of forward and backward propagating wave variables.

An essential feature of this method is a requirement that the backward propagating wave be contin-

uous at the wave-front at all locations beyond the entrance. Derivation of the inverse solution raises

questions about the meaning of causality in the context of wave propagation in non-uniform tubes.

Exact reflectance expressions are presented for infinite exponential, conical and parabolic horns

based on exact solutions of the horn equation. Diameter functions obtained with the inverse solution

are a good match to all three horn profiles. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

A horn is a tapered sound guide consisting of a tube of

varying cross-sectional area. The efficiency or performance

of a horn as an acoustical transporter is routinely measured

using impedance. By solving Webster’s horn equation (Web-

ster, 1919), theoretical equations for impedance have been

derived for several common cross-sectional area functions.

This problem is referred to as the direct problem. The

inverse problem determines the area function from acousti-

cal measurements made at one end of the horn. For a review

of the theory of horns see Eisner (1967).

This paper describes a solution to the inverse problem

that calculates an area function from reflectance for infinite-

length acoustic horns. An essential part of the derivation of

this solution is having a definition of reflectance that is com-

patible with the solution. Our numerical method accurately

determines horn area as a function of axial distance given

only reflectance at the horn entrance. Formulating the

inverse-solution method in terms of reflectance offers a new

perspective on the meaning of reflectance, impedance, and

causality. A better understanding of these issues may be use-

ful when measuring impedance and reflectance in the labora-

tory and when interpreting these measurements.

Salmon (1946) obtained a solution to the inverse prob-

lem that relates acoustic impedance to the shape of a family

of horns derived from the exponential horn. He showed that

some impedance functions do not result in realizable horns

of this family. Consequently, his solution to the inverse

problem is limited since it cannot be used to obtain an area

function from an arbitrary impedance function.

Schroeder (1967) described an inverse solution for

determining the shape of the vocal tract from measurements

of resonant frequencies (formant frequencies). He used per-

turbation theory based on the assumption that a small change

in the energy of an oscillator causes a small change in the

frequency of oscillation to relate the change in energy for

one of the modes of an acoustic pipe to the change in area of

the pipe and acoustic radiation pressure. The change in area

was expanded into a Fourier cosine series and some bound-

ary conditions were assumed for the radiation pressure to

shows that the Fourier series coefficients of the area function

can be determined from the resonance frequencies. These

coefficients were used in the calculation of the area function.

Since only odd coefficients were allowed and the number of

modes used in the calculations of area function were limited,

the spatial resolution of Schroeder’s area estimation was low

and the correspondence to known fixed area functions was

only fair. Schroeder suggested that the performance of his

method can be improved by including measurements of

impedance functions at the lip.

Mermelstein (1967) extended the work of Schroeder

(1967) and showed that the inclusion of the impulse response

in the determination of the shape of the vocal tract does

indeed improve the estimation of the area function. This

inclusion also makes the determined area function unique. In

Schroeder’s method, the formant frequencies correspond to

the odd terms of the Fourier coefficients of the area function.

The zeros of the admittance function of the impulse response

correspond to the even terms of the Fourier coefficients. This

additional information is responsible for the improvement in

the estimation of the area function.
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Sondhi and Gopinath (1971) proposed a solution to the

inverse problem for determining the shape of the vocal tract

from measurements of an impulse response. Their solution

starts with Webster’s horn equation relating pressure p(x,t),
volume velocity u(x,t) and cross-sectional area A(x) using

first order differential equations. They assume quiescence at

t¼ t0, that is, p(x,t0)¼ 0 and u(x,t0)¼ 0, and then reduce

Webster’s horn equations to an expression that relates vol-

ume velocity at the lips (x¼ 0) to a product of the area func-

tion and pressure:

V að Þ �
ðt0þa=c

t0

u 0; tð Þdt ¼
ða

0

A xð Þp x; t0 þ a=cð Þdx; (1)

where c is the speed of sound. If for every a one could deter-

mine an input u(0, t) such that p(x,t0þ a/c)¼ 1 for 0� x� a,
the right hand side of Eq. (1) would become equal to the vol-

ume of the vocal tract up to x¼ a, V(a). Thus the volume

V(a) and hence the area function A(a) would be determined

as a function of a. Sondhi and Gopinath showed that such

input indeed exists and can be determined from knowledge

of the impulse response alone. Based on this analysis, they

derived an expression that relates the volume velocity at

x¼ a to the impulse response of the vocal tract h(t):

u a; tð Þ þ 1

2

ða=c

�a=c

h t� sj jð Þu a; sð Þds ¼ 1; tj j � a=c: (2)

Equation (2) may also be expressed in operator notation as

I þ Hað Þu a; tð Þ ¼ 1; (3)

where I is the identity operator and Ha is the integral opera-

tor with the symmetric kernel 1
2

h t� sj jð Þ. Sondhi and Gopi-

nath showed that IþHa is positive definite and thus has an

inverse that is unique. If h(t) is known, a solution for u(a,t)
can be obtained by inverting Eq. (3), and in turn a solution

for V(a) can also be obtained from Eq. (1). Differentiation of

V(a) yields the area function A(a). Experimental results

showed that their method can accurately determine the area

function of non-uniform tubes.

Caflisch (1981) formulated a solution to the inverse prob-

lem to obtain the capacitance taper of a discrete transmission

line from the impulse response (voltage) of the line. His

method is a discrete-time version of a continuous-time method

described by Sondhi and Gopinath (1971). Caflisch started

with the telegrapher’s equations (an electrical analogue of the

horn equation) and constructed a Toeplitz matrix whose first

column is a function of the voltage of the transmission line in

response to a forcing impulse of current. The capacitance

taper is then obtained from the central mass sequence of the

Toeplitz matrix. Although Caflisch’s method reproduces accu-

rate area functions from time-domain impedances, it does not

invert time-domain reflectances and is unsuitable when impe-

dances are well-known only in the frequency-domain, such as

in the case of infinite-length horns.

Sondhi and Resnick (1983) described numerical proce-

dures and experiments for estimating vocal tract area functions

using the inverse solution of Sondhi and Gopinath (1971) from

time-domain impedance and step reflectance, a time integral

of reflectance. However, results presented showed only a fair

match to known area functions and a poor match for area func-

tions with constrictions.

Bube and Burridge (1983) described a solution to the

inverse problem for obtaining mechanical properties of the

earth deep underground from measurements of particle

motion at the surface. Their method was also inspired by and

extends the method of Sondhi and Gopinath (1971). Bube

and Burridge start with the isotropic elasticity equations (a

hyperbolic system of differential equations relating pressure

and particle velocity as functions of time and depth into the

ground for an isotropic medium) and then pose the inverse

problem as that of finding the coefficients of the differential

equations (depth-dependent characteristic impedance) given

initial and boundary data. They formulated their solution in

the continuum domain and then obtain several corresponding

discrete versions. Bube and Burridge discussed the accuracy

of their method and pointed out that it is limited by the dis-

cretization step and that it is exact only for layered media in

which the properties of the material are homogeneous across

each layer. The assumption of homogeneous layered media

is also a feature of the methods of Caflisch, and Sondhi and

Resnick, and is reminiscent of the Bremmer (1951) series so-

lution of the wave equation.

Milenkovic (1987) considered an acoustic tube to be

made up of a concatenation of uniform tubes and that the

acoustic pressure signal in each of these tubes can be sepa-

rated into forward and backward traveling wave compo-

nents. The separation of the total acoustic pressure into the

wave components was done using an autoregressive-moving

average. The wave components in each tube were repre-

sented using a z-transform. The sampling rate of the acoustic

signal was relative to the length of the intermediate acoustic

tube elements so that the z-transform delay operator z�1/2

represented the sound propagation time for sound to traverse

one tube section. If both the number of tube sections and the

sampling rate are high enough, his method can be used to ap-

proximate a tube of continuously varying cross section. In

order to allow his system to have non-causal input, Mile-

nkovic used a filter that transforms a non-causal system to a

causal system. The coefficients of this filter were calculated

using a least-square criterion. The ability to use a non-casual

input allowed for the formulation of an inverse solution that

does not assume zero-initial conditions.

Amir et al. (1995) described a solution to the inverse

problem that is similar to that of Milenkovic (1987). Like

the latter, they considered an acoustic tube to be made up of

a concatenation of cylindrical segments, decomposed acous-

tic pressure in each segment into forward and backward trav-

eling wave components, and assumed that reflections only

occur at the junction of two segments. They extended their

method to conical segments and to account for propagation

losses. Their method has been applied in reflectometry, a

non-invasive measurement of the cross-section area of non-

uniform ducts (e.g., Forbes et al., 2003). However, their

method requires a high bandwidth to produce a good spatial

resolution, which is a confound for reflectometry since the
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source tube used in the measurement equipment severely

limits bandwidth.

The presentation of our solution to the inverse problem

begins with the recasting of Webster’s horn equation in

terms of forward and backward traveling pressure waves.

The wave variables are obtained through decomposition of

the total acoustical pressure. This is followed by a second

definition of reflectance that is compatible with the solution,

but not necessarily causal. Then the inverse solution itself is

described. The solution to the inverse problem is applied to

infinite parabolic, conical and exponential horns. Our

approach of starting the formulation of the solution to the

inverse problem with Webster’s horn equation is similar to

that of Sondhi and Gopinath (1971), while our use of pres-

sure wave variables in the formulation is similar to that of

Milenkovic (1987) and Amir et al. (1995). Our treatment of

acoustic horns with known exact solutions is novel and focus

attention on the accuracy of the inverse solution. Our solu-

tion method has the potential of being adapted to practical

measurement situations; however, its derivation raises theo-

retical questions about the meaning of reflectance in non-

uniform horns.

II. ANALYSIS

A. Webster’s horn equation

Under the assumption of lossless plane-wave propaga-

tion in a tube of variable cross-sectional area A(x), the equa-

tions relating acoustic pressure p(x,t) and volume velocity

u(x,t) are

@xp ¼ � q
A xð Þ @tu; (4)

@xu ¼ �A xð Þ
qc2

@tp; (5)

where q is the density of air and c is the speed of sound

(Webster, 1919). This relation is known as the horn
equation.

Equations (4) and (5) may be combined to eliminate u
and produce a second-order equation in p:

@2
x pþ 2e xð Þ@xp� 1

c2
@2

t p ¼ 0; (6)

where

e xð Þ � 1

2

d

dx
ln A xð Þ; (7)

is the logarithmic gradient of the horn diameter.

We seek a formulation of the horn equation that leads to

a solution of the inverse problem. Specifically, given the

boundary condition p(0,t), u(0,t), and A(0) for t� 0 and the

initial condition that p(x,0)¼ u(x,0)¼ 0 for x> 0, we want to

calculate A(x) for x> 0. Our approach will be to decompose

p(x,t) into wave variables that represent pressure waves trav-

eling in two directions.

B. Reflectance

We start by deriving expressions for the forward and

backward travelling wave variables pþ(x,t) and p�(x,t) that

satisfy two expected properties: (1) superposition and (2)

causality. The superposition requirement is simply that their

sum is the total pressure:

p x; tð Þ ¼ pþ x; tð Þ þ p� x; tð Þ: (8)

The causality requirement is that the deconvolution of

p�(x,t) by pþ(x,t), which we will call reflectance, is zero for

t< 0 and x¼ 0. However, our inverse solution imposes a dif-

ferent restriction on reflectance at locations for x> 0. Instead

of causality, the requirement for x> 0 is that reflectance is

zero at t¼ 0. This requirement becomes important because

non-uniform tubes have an inertial component in their radia-

tion admittance that creates a time-domain step in reflec-

tance at t¼ 0. Our inverse solution requires a definition of

reflectance that eliminates this discontinuity.

It is convenient to define reflectance in the frequency

domain as a transfer function:

R x;xð Þ � P� x;xð Þ
Pþ x;xð Þ ; (9)

where Pþ(x,x) and P�(x,x) are the Fourier transforms of

pþ(x,t) and p�(x,t).
In a uniform tube, pþ(x,t) and p�(x,t) are not coupled to

each other by the horn equation. In this case, the ratio of

pþ(x,t) and p�(x,t) is usually called the reflection coefficient
and may be expressed as

R1 x;xð Þ ¼ Y0 xð Þ � Yr x;xð Þ
Y0 xð Þ þ Yr x;xð Þ ; (10)

where the radiation admittance is defined as

Yr x;xð Þ � U x;xð Þ
P x;xð Þ (11)

(e.g., Keefe et al., 1992). We refer to Eq. (10) as Type-I re-

flectance. In Eq. (11), P(x,x) and U(x,x) are Fourier trans-

forms of p(x,t) and u(x,t). In Eq. (10), the surge admittance,
which is also known as the characteristic admittance, may

be calculated from the radiation admittance:

Y0 xð Þ ¼ lim
x!1

1

2x

ðx

�x
Yr x;xð Þdx: (12)

The radiation and surge admittances may be determined

experimentally from measurements of P(x,x) and U(x,x). In

terms of the general horn equation, Y0(x)¼A(x,)/qc. In a uni-

form tube, Y0¼A0/qc is a constant, independent of x.
In a non-uniform acoustic horn, an inverse Fourier trans-

form of the RHS of Eq. (10) may become non-zero at t¼ 0

due to the reactive component of Yr. In order to restore conti-

nuity in the time-domain, we introduce the following expres-

sion as our definition of reflectance:
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R2 x;xð Þ ¼ Y0 xð Þ � Yr x;xð Þ � Ys x;xð Þ½ �
Y0 xð Þ þ Yr x;xð Þ � Ys x;xð Þ½ � : (13)

Subtraction of Ys from Yr restores continuity in the time-

domain by removing the step at t¼ 0 for all horn shapes. We

were surprised that accurate inverse solutions are obtained

even for the parabolic horn, where removal of the time-

domain step creates a non-causal reflectance. We refer to

Eq. (13) as Type-II reflectance. The quantity Ys is called the

step admittance because of its time-domain properties and is

defined by the following expression:

Ys x;xð Þ � Y0 xð Þ c

ix
b xð Þ; (14)

where

b xð Þ ¼ lim
x!1

ix
c

Yr x;xð Þ
Y0 xð Þ � 1

� �
: (15)

However, at x¼ 0, we require that reflectance is causal. To

incorporate both types of reflectance into a single definition,

we will use the following expression for reflectance for the

purpose of defining wave variables:

R x;xð Þ ¼
Y0 xð Þ � Yr x;xð Þ � Y0 xð Þ c

ix
B xð Þ

h i
Y0 xð Þ þ Yr x;xð Þ � Y0 xð Þ c

ix
B xð Þ

h i : (16)

In this equation, we will set B(0)¼ 0 at x¼ 0 to represent

Type-I reflectance and ensure causality; however, we will

set B(x)¼ b(x) when x> 0 to represent Type-II reflectance

and ensure continuity at t¼ 0. We refer to b(x) as the horn
inertance because it has properties that are similar to the in-

ertance defined by Olson (1947).

C. Wave variables

The following definitions of Pþ(x,x) and P�(x,x) are

derived by comparing Eq. (16) with the definition of reflec-

tance in Eq. (9):

Pþ x;xð Þ ¼ 1

2
P x;xð Þ 1� c

ix
B xð Þ

h i
þ U x;xð Þ

Y0 xð Þ

� �
; (17)

P� x;xð Þ ¼ 1

2
P x;xð Þ 1þ c

ix
B xð Þ

h i
� U x;xð Þ

Y0 xð Þ

� �
: (18)

The corresponding wave variables in the time domain are

described by the following equations:

pþ x; tð Þ ¼ 1

2
p x; tð Þ þ u x; tð Þ

Y0 xð Þ � cB xð Þ
ðt

0

p x; tð Þdt

� �� �
;

(19)

p� x; tð Þ ¼ 1

2
p x; tð Þ � u x; tð Þ

Y0 xð Þ � cB xð Þ
ðt

0

p x; tð Þdt

� �� �
:

(20)

Note that, as required for superposition,

pþ x; tð Þ þ p� x; tð Þ ¼ p x; tð Þ; (21)

and that

pþ x; tð Þ � p� x; tð Þ ¼ u x; tð Þ
Y0 xð Þ � cB xð Þ

ðt

0

p x; tð Þdt: (22)

The definition of b(x) in Eq. (15) guarantees that

lim
x!1

ixP� x;xð Þ ¼ 0; (23)

for x> 0. Likewise, in the time domain, the definition of b(x)

and the initial value theorem guarantee that

lim
t!0

p� x; tþ x=cð Þ ¼ 0; (24)

for x> 0. The inverse solution takes advantage of this prop-

erty to calculate values for b(x) when x> 0. This property

also ensures that p�(x,tþ x/c)¼ 0 for t< 0 and x> 0, pro-

vided that the boundary condition at x¼ 0 is causal.

D. Wave-variable horn equation

We want to express Webster’s horn equation in terms of

the wave variables pþ(x,t) and p�(x,t). We start by examin-

ing partial derivatives of Eqs. (19) and (20) with respect to x:

@xpþ ¼
1

2
@xpþ Z0 � @xuþ @xZ0 � u� cB �

ðt

0

@xpdt

��

�c@xB �
ðt

0

pdt

��
; (25)

@xp� ¼
1

2
@xp� Z0 � @xuþ @xZ0 � u� cB �

ðt

0

@xpdt

��

�c@xB �
ðt

0

pdt

��
; (26)

where Z0¼ 1/Y0. We use Eq. (4) to simplify the first integral

on the RHS of Eqs. (25) and (26):

@xpþ ¼
1

2

(
@xpþ

�
Z0 � @xuþ @xZ0 � u� B � Z0u

�c@xB �
ðt

0

pdt

��
; (27)

@xp� ¼
1

2

(
@xp�

�
Z0 � @xuþ @xZ0 � u� B � Z0u

� c@xB �
ðt

0

pdt

��
: (28)

We continue by examining partial derivatives of pþ and p�
with respect to t:
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@tpþ ¼
1

2
@tpþ Z0 � @tu� cB � p½ �f g; (29)

@tp� ¼
1

2
@tp� Z0 � @tu� cB � p½ �f g: (30)

We use Eqs. (4) and (5) to replace the time derivatives on

the RHS of Eqs. (29) and (30) with spatial derivatives:

@tpþ ¼ �
1

2
c Z0 � @xuþ @xpþ B � p½ �f g; (31)

@tp� ¼ �
1

2
c Z0 � @xu� @xpþ B � p½ �f g: (32)

Combining Eqs. (27) and (28) with Eqs. (31) and (32) gives

the following result:

@xþ
1

c
@t

� �
pþ ¼ �

1

2
Bp� e� 1

2
B

� �
� u

Y0

þ g �
ðt

0

pdt

� �
;

(33)

@x �
1

c
@t

� �
p� ¼ �

1

2
Bpþ e� 1

2
B

� �
� u

Y0

þ g �
ðt

0

pdt

� �
;

(34)

where e was defined in Eq. (7) and

g xð Þ � c

2

d

dx
B xð Þ: (35)

Equations (33) and (34) represent Webster’s horn equation

as a pair of directional derivatives operating on pþ and p�. A

corresponding pair of line integrals along the paths described

by these directional derivatives may offer a potential solu-

tion to the horn equation.

E. Inverse solution

We want to solve for A(x) for x> 0 given pþ, p�, A, and

B at x¼ 0. We begin by considering a finite-difference

approximation of Eqs. (33) and (34):

pþ xnþ1; tmþ1ð Þ � pþ xn; tmð Þ
cDt

��Bnpnm

� en�Bnð Þunmþ gnqnm½ �;
(36)

p� xnþ1; tm�1ð Þ � p� xn; tmð Þ
cDt

�� Bnpnm

� en � Bnð Þunm þ gnqnm½ �;
(37)

where n and m are integers, xn¼ ncDt, tm¼mDt,
Bn ¼ 1

2
B xnð Þ, pnm¼ p(xn,tm), unm ¼ uðxn; tmÞ=Y0ðxnÞ; en

¼ eðxnÞ; gn ¼ gðxnÞ; and qnm ¼ Dt
Pm

v¼0 pðxn; tvÞ: We need a

procedure to calculate pþ, p�, and A at x¼ xnþ1 given these

variables at x¼ xn.

The first step is to calculate intermediate variables pn

and un using Eqs. (21) and (22). Next, we enforce the bound-

ary condition that requires the reflected pressure to vanish at

the wave-front:

p� xnþ1; tnþ1ð Þ ¼ p� xnþ1; tnð Þ ¼ 0: (38)

Combined with Eq. (37), this boundary condition imposes

the following constraint for both m¼ n and m¼ n � 1:

enunm þ gnqnm½ � ¼ Bn � pnm þ unm½ � � p� xn; tmð Þ
cDt

: (39)

Equation (39), when applied at two points in time, provides

sufficient information to calculate the two variables en and

gn. Once en and gn are known, rearrangement of Eqs. (36)

and (37) allows evaluation of pþ and p� at x¼ xnþ1:

pþ xnþ1;tmþ1ð Þ¼ pþ xn; tmð Þ� Bnpnmþ en�Bnð Þunm½f
þgnqnm�gcDt; (40)

p� xnþ1; tm�1ð Þ ¼ p� xn; tmð Þ � Bnpnmf
� en � Bnð Þunm þ gnqnm½ �gcDt; (41)

for m¼ n,…,tmax/Dt. Finally, finite-difference approxima-

tions of Eqs. (7) and (35) provide a way to calculate A(xnþ1)

and B(xnþ1):

A xnþ1ð Þ � A xnð Þ exp 2cenDtð Þ; (42)

B xnþ1ð Þ � B xnð Þ þ 2gnDt: (43)

Successive repetition of these steps allows calculation of

A(x) and B(x) for 0< x� xmax given pþ(0,t) and p�(0,t) for

0� t� tmax, where xmax¼ tmax/2 c.
Note that when pþ(0,t) is a Kronecker delta function,

pþ(0,t)¼ 1 at t¼ 0 and pþ (0,t)¼ 0 for t= 0, then p�(0,t) is,

by definition, the time-domain reflectance. This makes

knowledge of the time-domain reflectance at x¼ 0 over the

range 0� t� tmax sufficient to calculate A(x) and B(x) over

the range 0< x� xmax.

III. APPLICATION

The inverse solution has been used to generate area

functions of infinite horns from their reflectance functions.

Three specific horn shapes are presented as examples—para-

bolic, conical and exponential. Figure 1 shows the diameter

as a function of axial distance x obtained for these three

horns from the equations listed in Table I. In each case, the

diameter is 1 cm at x¼ 0 cm and expands to make the cross-

sectional area A(10)¼ 10 cm2. Values of a required to

achieve the specified area expansion are listed in Table I for

all horn shapes, as are values for e(x), the logarithmic gradi-

ent of horn diameter that appears in Eq. (6).

The inverse solution described in Sec. II E was imple-

mented using MATLAB software (MathWorks) with a sam-

pling rate of 1 MHz. If our inverse solution is successful we
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expect the diameter functions it generates to match those

shown in Fig. 1.

Frequency-domain reflectance at the entrance (x¼ 0) of

the three horns are shown in Fig. 2. Specifically, Fig. 2

shows the magnitude (top panel) in decibels, the phase (mid-

dle panel) in cycles, and the group delay, defined as

s xð Þ ¼ �@R 0;xð Þ=@x, (bottom panel) in units of ms of the

reflectance. These reflectance functions were obtained from

theoretical equations presented in the Appendixes, i.e.,

Type-I reflectance. Some useful information can be drawn

from the frequency-domain reflectance. The arrow at a fre-

quency of fc¼ 694 Hz shows what is referred to as the cutoff

frequency of the exponential horn. The cutoff frequency is

related to a by fc ¼ ac=2p. Below fc the reflectance magni-

tude is 0 dB (or nearly 0 dB for the parabolic and conical

horns), which indicates complete (or nearly complete) reflec-

tion, so there is no wave propagation. Above the cutoff the

reflectance magnitude has a slope of about �20 dB/decade

and there is wave propagation. For this reason, horns are

sometimes characterized as high-pass lines, in analogy to

high-pass filters. The non-constancy of the reflectance above

fc tells us that wave propagation is dispersive, i.e., depends

on frequency. The group delay is greater than zero at all fre-

quencies for all the horns, suggesting that the reflectance is

causal. The group delay for the exponential horn is highest

near the cutoff frequency.

Time-domain reflectance was obtained from frequency-

domain reflectance by using the inverse Fourier transform.

Figure 3 shows the time-domain reflectance (solid lines) for

the three horns. The inverse Fourier transforms were

FIG. 1. (Color online) Horn diameter (D) as a function of axial distance (x)

for various horn shapes. In the selected examples, the diameter is 1 cm at

x¼ 0 and expands to make the cross-sectional area A¼ 10 cm2 for all horn

shapes at x¼ 10 cm.

TABLE I. Horn diameter and its logarithmic gradient for various horn

shapes. The value of a was selected (for parabolic, conical, and exponential

horns) to make area A(10)¼ 10 cm while diameter D(0)¼ 1 cm. The units of

a and e are cm�1, while the unit of D is cm.

a D(x) e(x)

uniform — 1 0

parabolic 1.173
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax
p 1

2

a
1þ ax

conical 0.257 1 þ ax
a

1þ ax
exponential 0.127 exp(ax) a

FIG. 2. (Color online) Reflectance in the frequency-domain R(0,2p f). The

reflectance functions were obtained from theoretical equations presented in

the Appendixes. The arrow indicates the cutoff frequency.

FIG. 3. (Color online) Reflectance in the time domain. The inverse Fourier

transforms of frequency-domain reflectance were multiplied by the sampling

rate to display values that are independent of sampling rate (solid lines) and

are superimposed over the expressions for time-domain reflectance r(0,t)
that are presented in the Appendixes (dashed lines). Good agreement

between these two sets of curves completely obscures the dashed lines

except for the parabolic horn. The inverse solution used only the time-

domain reflectance calculated by inverse Fourier transform.
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multiplied by the sampling rate in order to display reflec-

tance values that are independent of sampling rate. For com-

parison, the dashed lines represent explicit expressions for

the time-domain reflectance presented in the Appendixes.

Good agreement between these two sets of curves com-

pletely obscures the dashed lines except for the parabolic

horn, where the expression for time-domain reflectance is

only approximate. The time-domain reflectance functions

obtained from the inverse Fourier transform display some os-

cillatory behavior near t¼ 0. This “ringing” artifact is a form

of Gibbs phenomena due to restriction of the frequency-

domain reflectance to a finite bandwidth. Theoretically,

time-domain reflectance should be causal (i.e., zero for

t< 0).

To generate an area function using our inverse solution

requires the knowledge of pþ(0,t), p�(0,t), and A(0). A(0)

can be obtained from measurement of Y0¼A(0)/qc and

using AðxÞ ¼ pðDðxÞ=2Þ2. We selected pþ(0,t) to be a delta

function and, by definition, when pþ(0,t) is a delta function,

p�(0,t)¼ r (t), the time-domain reflectance. Figure 4 shows

diameter functions (solid line) for the three horns obtained

from the inverse solution with initial parameter values

selected as described. The diameter functions obtained from

equations listed in Table I are also plotted as dashed lines for

comparison. The match is very good, except above x � 8 cm

where the generated diameter functions for the parabolic and

conical horn deviate slightly from the true values.

The solid lines in Fig. 5 represent values of B(x) that

were calculated along with A(x) as part of the inverse solu-

tion. For comparison, the dashed lines represent the logarith-

mic gradient of the horn diameter e(x). The numerical

agreement between B and e was unexpected and suggests

that b(x)¼ e(x). However, we have no proof that this relation

generalizes to all horn shapes.

Figures 1–5 showed results for application of our

inverse solution to horns with A(x) that increase with

increasing x. Our inverse solution also works well for an

exponential horn with decreasing A(x). This horn is still an

infinite horn since A(x) never equals zero as x increases, it

only approaches zero. Our inverse solution works for the

decreasing exponential horn because the reflectance magni-

tude still asymptotes to 1/f as f ! 1. For the parabolic and

conical horns with decreasing A(x), A(x)¼ 0 at some finite

value of x, which causes reflectance magnitude to not

approach zero as f!1. Although our solution method may

be extended to finite-length horns by applying a frequency-

domain window to the reflectance, no such results are pre-

sented in this paper.

Simulation results were obtained for the exponential

with decreasing A(x). The frequency-domain reflectance

magnitude and delay for this horn (not shown) are identical

to those of the exponential horn with increasing A(x). The

phase of the former is shifted by one-half cycle relative to

that of the latter at all frequencies. The time-domain reflec-

tance of the exponential with decreasing A(x) (not shown) is

a mirror image of the time-domain reflectance of the expo-

nential with increasing A(x) about the ordinate zero. Figure 6

shows the diameter function (solid line) for the exponential

horn with decreasing A(x) obtained from the inverse solu-

tion. The diameter functions obtained from D(x)¼ e�ax is

also plotted as dashed lines, for comparison. The match is

very good. Horn diameter inverse solution and true values

for the exponential horn with increasing A(x) (presented in

Fig. 4) are reproduced in Fig. 6 for comparison.

IV. DISCUSSION

The formulation of our inverse solution is based on

Webster’s horn equation, which assumes lossless plane-

wave propagation. We chose to restrict our solution to Web-

ster’s horn equation because exact solutions are available. In

actual physical horns, wave propagation is not one-

dimensional; higher order modes (HOM) of wave propaga-

tion are present at high frequency or when the diameter of

the horn is no longer small compared to the wavelength of

the propagating wave. Webster’s horn equation does not

FIG. 4. (Color online) Horn diameter inverse solution (solid lines) com-

pared with true values (dashed lines), which were calculated from the

expressions listed in Table I. The curves in this figure represent D(x).

FIG. 5. (Color online) Horn inertance B(x) inverse solution (solid lines)

compared with e(x) (dashed lines), which was calculated from the expres-

sions listed in Table I. The agreement between B(x) and e(x) was

unexpected.
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account for HOM and therefore cannot accurately describe

wave propagation (Morse and Feshbach, 1953, p. 1352). In

addition to HOM, there are viscous and thermal propagation

losses in physical horns. Under these conditions, the current

formulation of our solution to the inverse problem will pro-

duce errors in the area functions obtained. It may be possible

to improve the accuracy of our inverse solution by using

horn equations that better model the geometry of wave prop-

agation, such as the curvilinear horn equation (Agullo et al.,
1999), and by modeling for viscous and thermal losses (fol-

lowing, e.g., Keefe, 1984).

Our solution to the inverse problem recasts Webster’s

horn equation in terms of forward and backward traveling

pressure waves obtained through the decomposition of the

total acoustical pressure. This decomposition is important

since the definition of reflectance itself relies on these defi-

nitions of wave variables, and may provide further insights

into the meaning of reflectance. Wave variable decomposi-

tion has also been shown to facilitate the computation of a

less complex and more stable impulse responses in model-

ing of the bore of wind instruments (e.g., Martinez et al.,
1988).

To explore limitations of our inverse solution, we exam-

ined the influence on its accuracy of two variations in the

method: (1) lower sampling rate and (2) alternate boundary

condition at x 5 0. Deviation of the reconstructed diameter

from the actual diameter for the results described above

[with a sampling rate 1 MHz and B(0) 5 0] is about 0.5% at

5 cm from the horn entrance [see Fig. 7(a)]. When the sam-

pling rate is decreased by a factor of 10 (to 100 kHz), the di-

ameter deviation increases by about a factor of 10 for all

three horns [see Fig. 7(b)]. When the sampling rate is

increased by a factor of 10 (to 10 MHz), the diameter devia-

tion decreases by about a factor of 5 for conical and para-

bolic horns, but doubles for the exponential horn at 10 cm

from the entrance (not shown).

When the sampling rate is 1 MHz, much of the error in

the inverse solution is apparently due to the discontinuity in

B(x) at x 5 0. This discontinuity could be removed by setting

B(0)¼ b(0), which specifies Type-II reflectance at the horn

entrance instead of Type-I reflectance. However, this

approach fails for the parabolic horn because Type-II reflec-

tance is not causal. As a compromise, we can specify B(0) in

a way that removes as much of the TDR step as possible,

while still remaining causal:

B 0ð Þ ¼ min
x>0
< ix

c

Yr 0;xð Þ
Y0 0ð Þ � 1

� �� �
; (44)

where < denotes the real part. This equation selects

B(0)¼ b(0) for the exponential and conical horns and

B(0)< b(0) for the parabolic horn. The diameter deviation is

reduced by this boundary condition for all three horns [see

Fig. 7(c)]. However, the inverse solution is apparently less

stable for this boundary condition because the inverse solu-

tion fails for all three horns when the sampling rate is

reduced to 100 kHz. For this reason, the boundary condition

B(0)¼ 0 seems to be the best choice.

Our definition of Type-II reflectance, which subtracts the

step admittance from the radiation admittance, was previously

suggested (with different notation) by Farmer-Fedor and Rab-

bitt (2002) in the context of horn acoustics. However, they did

not use Type-II reflectance to obtain an inverse solution and

made no notice of the fact that Type-II reflectance is non-

causal for horn profiles with negative curvature.

Although our definition of Type-II reflectance introdu-

ces new concepts, such as step admittance Ys and horn

FIG. 6. (Color online) Horn diameter inverse solution (solid lines) com-

pared with true values (dashed lines) for exponential horn with decreasing

area function. The diameter functions obtained from D(x)¼ e�ax is also plot-

ted as dashed lines, together with reproductions of increasing diameter func-

tion of Fig. 4 for comparison. The curves in this figure represent D(x).

FIG. 7. (Color online) Evaluation of the limitations of the inverse solution.

(a) A sampling rate of 1 MHz results in good diameter estimation and com-

putational efficiency. (b) Decrease of the sampling rate to 100 kHz results in

increased diameter deviation. (c) Using Type-II reflectance at x¼ 0 reduces

the diameter deviations but makes the inverse solution less stable.
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inertance B, these terms are useful in imposing a condition

of continuity on TDR for non-uniform horns, and thereby

facilitate a functional inverse solution with reasonably accu-

rate results. Although we attempted to derive an inverse so-

lution in terms Type-I reflectance, to alleviate concerns

about the non-causality of Type-II reflectance, these attempts

were unsuccessful. Continuity in the wave variables is appa-

rently essential to the inverse solution, while causality (of re-

flectance) is only required at the horn entrance.

We were surprised to observe (for the three horn shapes

we studied) that B(x)¼ e(x) for x> 0. We suspect that this

relationship holds for all horn shapes; however, we are

unable to provide a mathematical proof at this time. Our

hybrid approach of using Type-I reflectance at x¼ 0 and

Type-II reflectance for x> 0 allows a solution without

requiring such a proof This boundary condition at x¼ 0 rep-

resents a “matched” acoustic source in that reverse propagat-

ing waves are not reflected back at x¼ 0. In practical

measurement situations, the surge admittance Y0(0) can be

estimated from the measured radiation admittance Yr(0) at

the horn entrance and provides sufficient information for

estimating horn profiles (i.e., diameter functions) according

to our inverse-solution method.

The definition of reflectance for finite-length horns

requires additional consideration of the boundary condition

at the location where the horn terminates. When this bound-

ary condition is expressed as a termination admittance Yt,

such that Yr¼ Yt at the termination point, then it is of interest

to know what value of Yt minimizes reflection from this

point. We derived the termination admittance by setting our

expression for the backward travelling wave variable,

Eq. (18), to zero to obtain

Yt L;xð Þ ¼ Yo xð Þ 1þ e xð Þ
j xð Þ

� �
; (45)

where e(x)¼B(x) and j xð Þ ¼ ix
c . If P�(L,x)¼ 0 for a length

L horn, then there is no reflection at the termination of the

horn. We refer to the admittance of Eq. (45) as the wave

variable (WV) terminal admittance. In a numerical simula-

tion solving a finite-difference approximation of the second-

order horn equation, we observed that terminating an expo-

nential horn with the WV terminal admittance results in less

reflection when compared to terminating with the character-

istic admittance Y0. Examples of root-mean-square of the

time-domain reflectance computed over an interval that

includes the reflected wave are (0.079, 0.131, 0.197

0.333)	 10�3 for termination with WV and (0.102, 0.214,

0.395, 0.773)	 10�3 for termination with Y0 for L¼ 12, 24,

48 and 96 cm. Our observation that the WV admittance pro-

vides a better admittance match at the horn termination than

Y0 supports the validity of the WV decomposition, independ-

ent of the inverse solution.

Historical interest in solutions of the inverse problem

for determination of vocal tract shape was reviewed in

Sec. I. Another potential application of the inverse solution

is in estimation of ear canal shape from measurements of re-

flectance. However, the current solution method does not

work well when the bandwidth of the measured reflectance

extends beyond the Nyquist frequency (i.e., half the sam-

pling rate). Ear canal reflectance measurements are increas-

ingly being made for clinical purposes but sampling rates are

typically less than 48 kHz and estimates of ear-canal admit-

tance are error prone even within the limited bandwidth

from 20 Hz to 20 kHz. Ear canal reflectance is not a decreas-

ing function of frequency over this range of frequencies due

to reflection of incident pressure at the eardrum. For these

reasons, additional signal processing steps are necessary

when the inverse solution described here is used to deter-

mine ear-canal shapes. The signal processing steps required

for application of the inverse solution to actual data are

beyond the scope of this article. However, preliminary

results have shown good agreement between average ear-

canal area function obtained with the current method and

previous reports (Rasetshwane and Neely, 2011).

The two, first-order differential equations that describe a

one-dimensional transmission line, long-wave model of the

cochlea (e.g., Zweig et al., 1976), can be expressed in the

frequency-domain as

@xP x;xð Þ ¼ �Zf x;xð ÞU x;xð Þ; (46)

@xU x;xð Þ ¼ �Yb x;xð ÞP x;xð Þ; (47)

where P(x,x) is the scala fluid pressure and U(x,x) is the

longitudinal volume velocity. Zf (x, x)¼ 2ixq0/As(x) is the

fluid impedance, where As(x) is the cross-sectional area of

the fluid chambers—the scala vestibuli and scala tympani—

with fluid density q0. Ybðx;xÞ � ix=KðxÞ is the basilar

membrane (BM) admittance, where K(x) is the stiffness of

the BM. The horn equations of Eqs. (4) and (5) can be writ-

ten in the frequency-domain using an expression that is anal-

ogous to Eqs. (46) and (47):

@xP x;xð Þ ¼ � qs

A xð ÞU x;xð Þ; (48)

@xU x;xð Þ ¼ �A xð Þix
qc2

P x;xð Þ; (49)

where P(x,x) and U(x, x) are the Fourier transforms of

p(x,t) and u(x,t), respectively.

Given the similarity between the transmission line

model of the cochlea [Eqs. (46) and (47)] and the horn equa-

tions [Eqs. (48) and (49)], and the success of our inverse so-

lution in obtaining the A(x) parameter of the horn equations,

one can expect that it may be possible to apply our inverse

solution to obtain As(x) and K(x) when an input to the stapes

end the cochlea is known. This is an interesting application

and possible extension of the current inverse solution. Allen

(1979) derived the cochlear input impedance for frequencies

less than the characteristic impedance (CF). An extension of

this approach would be the application of inverse-solution

methods to reveal mechanical properties of the cochlea

based on ear-canal measurements. Sondhi (1980) investi-

gated a similar application of the inverse problem of Sondhi

and Gopinath (1971) to obtain BM stiffness from measure-

ments of an impulse response at the stapes.
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V. CONCLUSION

A solution to the inverse problem is described and used

to determine the area function of various types of infinite

acoustic horns from reflectance. An essential part of this so-

lution is having a definition of reflectance that is compatible

with the solution. Formulating the inverse solution in terms

of reflectance may offer a better understanding of reflectance

and impedance which may in turn be useful when measuring

reflectance and impedance in the laboratory. Our inverse so-

lution calculates numerical area functions with reasonable

accuracy for infinite parabolic, conical, and exponential

horns. We believe that our inverse solution can be adapted to

be useful in practical applications, such as in estimating ear-

canal shape, given measurements of ear-canal reflectance.
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APPENDIX A: RADIATION ADMITTANCE AND
REFLECTANCE FOR THE PARABOLIC HORN

The equation expressing the diameter of the parabolic

horn as a function of the axial distance is

D xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax
p

: (A1)

The logarithmic gradient of the horn diameter, as defined in

Eq. (7), evaluates to

e xð Þ ¼ 1

2

a
1þ ax

: (A2)

The radiation admittance for the infinite parabolic horn is

Yr x;xð Þ ¼ i
A xð Þ
qc

H1 �
1þ ax

ac
x

� �

H0 �
1þ ax

ac
x

� � ; (A3)

where H� is the Hankel function of the first kind and order �
(Olson, 1947).

When x¼ 0 the radiation admittance and reflectance

become

Yr 0;xð Þ ¼ i
A 0ð Þ
qc

H1 �x=acð Þ
H0 �x=acð Þ ; (A4)

R1 0;xð Þ ¼ H0 �x=acð Þ � iH1 �x=acð Þ
H0 �x=acð Þ þ iH1 �x=acð Þ : (A5)

In the time domain, an approximate expression for reflec-

tance at x¼ 0 is

r1 0; tð Þ ¼ � ac

4
exp

�act

2þ act

4þ act=16

0
BB@

1
CCA: (A6)

APPENDIX B: RADIATION ADMITTANCE AND
REFLECTANCE FOR THE CONICAL HORN

The equation expressing the diameter of the conical

horn as a function of the axial distance is

D xð Þ ¼ 1þ ax: (B1)

The logarithmic gradient of the horn diameter, as defined in

Eq. (7), evaluates to

e xð Þ ¼ a
1þ ax

: (B2)

The radiation admittance for the infinite conical horn is

Yr x;xð Þ ¼ A xð Þ
qc

1� ac

ix 1þ acð Þ

� �
: (B3)

When x¼ 0 (see Table II) the radiation admittance and re-

flectance become

Yr 0;xð Þ ¼ A 0ð Þ
qc

1þ ac

ix

	 

; (B4)

R1 0;xð Þ ¼ ac

acþ 2ix
: (B5)

In the time domain, an explicit expression for reflectance at

x¼ 0 is

r1 0; tð Þ ¼ � ac

2
exp

�ac

2
t

	 

: (B6)

APPENDIX C: RADIATION ADMITTANCE AND
REFLECTANCE FOR THE EXPONENTIAL HORN

The equation expressing the diameter of the exponential

horn as a function of the axial distance is

D xð Þ ¼ eax: (C1)

The logarithmic gradient of the horn diameter, as defined in

Eq. (7), evaluates to

TABLE II. Radiation admittance and reflectance evaluated at x¼ 0.

Yr 0;xð Þ=Y0 0ð Þ R1 0;xð Þ

uniform 1 0

parabolic i
H1 �x=acð Þ
H0 �x=acð Þ

H0 �x=acð Þ � iH1 �x=acð Þ
H0 �x=acð Þ þ iH1 �x=acð Þ

conical 1þ ac

ix
� ac

acþ 2ix

exponential ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ac

ix

	 
2
r

þ ac

ix
�

acþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acð Þ2�x2 � ix

q
acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acð Þ2�x2 þ ix

q
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e xð Þ ¼ a: (C2)

The radiation admittance of an infinite exponential horn is

Yr x;xð Þ ¼ A xð Þ
qc

ac

ix
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ac

ix

	 
2
r !

: (C3)

When x¼ 0 (see Table II) the radiation admittance and re-

flectance become

Yr 0;xð Þ ¼ A 0ð Þ
qc

ac

ix
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ac

ix

	 
2
r !

; (C4)

R1 0;xð Þ ¼
ix� acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acð Þ2�x2

q� �

ixþ acþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acð Þ2�x2

q� � : (C5)

In the time domain, an explicit expression for reflectance at

x¼ 0 is

r1 0; tð Þ ¼ � J1 actð Þ
t

; (C6)

where J1 is a Bessel function of the first kind, order 1.

Agullo, J., Barjau, A., and Keefe, D. H. (1999). “Acoustic propagation in

flaring, axisymmetric horns: I A new family of unidimensional solutions,”

Acustica 85, 278–284.

Allen, J. B. (1979). “Cochlear models-1978,” in Models of the Auditory
System and Related Signal Processing Techniques, edited by M. Hoke and

E. de Boer, Scand. Audiol. Suppl. 9, 1–16.

Amir, N., Shimony, U., and Rosenhouse, G. (1995). “A discrete model for

tubular acoustic systems with varying cross-section—The direct and

inverse problems. Part 1: Theory,” Acustica 81, 450–462.

Bube, K. P., and Burridge, R. (1983). “The one-dimensional inverse prob-

lem for reflection seismology,” SIAM Rev. 25, 496–559.

Bremmer, H. (1951). “The W.K.B. approximation as the first term of a

geometric-optical series,” Commun. Pure Appl. Math. 4, 105–115.

Caflisch, R. E. (1981). “An inverse problem for Toeplitz matrices and the

synthesis of discrete transmission lines,” Lin. Alg. Appl. 38, 207–225.

Eisner, E. (1967). “Complete solutions of the Webster horn equation,”

J. Acoust. Soc. Am. 41, 1126–1146.

Farmer-Fedor, B. L., and Rabbitt, R. D. (2002). “Acoustic intensity, imped-

ance and reflection coefficient,” J. Acoust. Soc. Am. 112, 600–620.

Forbes, B. J., Sharp, D. B., Kemp, J. A., and Li, A. (2003). “Singular system

methods in acoustic pulse reflectometry,” Acustica 89, 743–753.

Gopinath, B., and Sondhi, M. M. (1971). “Inversion of the telegraph equa-

tion and the synthesis of nonuniform lines,” Proc. IEEE 59, 383–392.

Keefe, D. H. (1984). “Acoustical wave propagation in cylindrical ducts:

Transmission line parameter approximations for isothermal and noniso-

thermal boundary conditions,” J. Acoust. Soc. Am. 75, 58–62.

Keefe, D. H., Ling, R., and Bulen, J. C. (1992). “Method to measure acoustic

impedance and reflection coefficient,” J. Acoust. Soc. Am. 91, 470–485.

Martinez, J., Agullo, J., and Cardona, S. (1988). “Conical bores. Part II:

Multiconvolution,” J. Acoust. Soc. Am. 84, 1620–1627.

Mermelstein, P. (1967). “Determination of the vocal-tract shape from meas-

ured formant frequencies,” J. Acoust. Soc. Am. 41, 1283–1294.

Milenkovic, P. (1987). “Acoustic tube reconstruction from noncausal

excitation,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35,

1089–1100.

Morse, P. M., and Feshbach, H. (1953). Methods of Theoretical Physics
(McGraw-Hill, New York), Vols. I and II, pp. 1352.

Olson, H. F. (1947). Elements of Acoustical Engineering (Von Nostrand,

New York), pp. 87–88.

Rasetshwane, D. M., and Neely, S. T. (2011). “Inverse solution of ear-canal

area function from reflectance,” J. Acoust. Soc. Am. 130, 3873–3881.

Salmon, V. (1946). “A new family of horns,” J. Acoust. Soc. Am. 17,

212–218.

Schroeder, M. R. (1967). “Determination of the geometry of the human vocal

tract by acoustic measurements,” J. Acoust. Soc. Am. 41, 1002–1010.

Sondhi, M. M. (1980). “Acoustical inverse problem for the cochlea,”

J. Acoust. Soc. Am. 69, 500–504.

Sondhi, M. M., and Gopinath, B. (1971). “Determination of vocal-tract

shape from impulse response at the lips,” J. Acoust. Soc. Am. 49,

1867–1873.

Sondhi, M. M., and Resnick, J. R. (1983). “The inverse problem for the

vocal tract: Numerical methods, acoustical experiments, and speech syn-

thesis,” J. Acoust. Soc. Am. 73, 985–1002.

Webster, A. G. (1919). “Acoustical impedance, and the theory of horns and

of the phonograph,” Proc. Natl. Acad. Sci. 5, 275–282.

Zweig, G., Lipes, R., and Pierce, J. R. (1976). “The cochlear compromise,”

J. Acoust. Soc. Am. 59, 975–982.

J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Rasetshwane et al.: Horn inverse solution 1873

Downloaded 04 Apr 2012 to 50.40.118.138. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


	s1
	cor1
	E1
	E2
	E3
	s2
	s2A
	E4
	E5
	E6
	E7
	s2B
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	s2C
	E17
	E18
	E19
	E20
	E21
	E22
	E23
	E24
	s2D
	E25
	E26
	E27
	E28
	E29
	E30
	E31
	E32
	E33
	E34
	E35
	s2E
	E36
	E37
	E38
	E39
	E40
	E41
	E42
	E43
	s3
	F1
	T1
	F2
	F3
	s4
	F4
	F5
	E44
	F6
	F7
	E45
	E46
	E47
	E48
	E49
	s5
	EA1
	EA2
	EA3
	EA4
	EA5
	EA6
	EB1
	EB2
	EB3
	EB4
	EB5
	EB6
	EC1
	T2
	EC2
	EC3
	EC4
	EC5
	EC6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25

