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Abstract

The Riemann sphere (RS), also know as the extended plane, was a breakthrough in complex anal-

ysis, introduced in B. Riemann’s Doctorial thesis (1851). His presentation was geometrical. We recall

the formula for stereographic projection from the Riemann sphere to C, and we derive a formula for

its inverse. This is a mapping from Z to P (x, y, z). We then discuss the physical interpretation of the

inverse mapping when the complex variable denotes an impedance.1

1 Introduction

Here we derive the mapping from a point on the finite plane Z to its “image” on the Riemann Sphere S.

We then inteperprete the meaning of this transformation when the plane defines an impedance Z(s) as a

function of the complex frequency variable s = σ + iω.

There are two sets of coordinates required to set up this problem. First there is any point in R3 denoted

R ≡ [x, y, z]. The North Pole is given by [0,0,1] and the South Pole as [0,0,−1]. Second the points

Z =X + iY on the finite plane (z = 0) are X = x and Y = y. The points on the extended plane are a subset

of R, denoted P (x, y, z), such that ∣∣P ∣∣ = 1.

The mapping from the sphere to the finite plane Z, defined as Z = P −1(x, y, z), may be expressed in

either rectangular (x, y, z) or in spherical (φ, θ) coordinates as2

Z(x, y, z) = x + iy

1 − z
= cot(φ

2
) eiθ. (1)

as shown in Fig. 1.3 We desire the mapping from Z to [x, y, z] on the unit sphere (i.e., α = P (A) of

Fig. 1).

The spherical cot(φ/2) formula comes from the “law of cotangents” described in Appendix A.

The problem then is to determine P (Z) ([x, y, z] given Z), namely find the mapping from any point

Z on the finite Z plane (indicated as A in Fig. 1), to the corresponding “puncture point” coordinates on S

α = P . Formally we may define this mapping as [x, y, z] = P (Z). In other words, given a point Z on the

finite plane, determine the points [x, y, z] on S, such that ∣∣[x, y, z]∣∣ = 1.

1Eventually we hope to discuss the Mobius transformation of the plane to the sphere.
2wikipedia.org/wiki/Riemann_sphere
3Jean-Christophe BENOIST wikipedia.org/wiki/Riemann_sphere
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Figure 1: Riemann Sphere

The solution: The final result is4

[x, y, z] = P (Z) = [2X,2Y, ∣Z ∣2 − 1]∣Z ∣2 + 1 , (2)

where X =RZ and Y = IZ.

A more compact way of stating P (Z) is to express P in terms of a complex number ζ , proportional to

Z

ζ = x + iy =
2Z∣Z ∣2 + 1 (3)

along with the corresponding z coordinate

z =
∣Z ∣2 − 1∣Z ∣2 + 1 . (4)

Equations 1-4 “make sense” in terms of the construction of Fig. 1:

• Eq. 1 and Eq. 3: θ = ∠Z(x, y) = ∠ζ . From Eq. 3 we see that ∣Z/ζ ∣ = (1 + ∣Z ∣2)/2. Thus when∣Z ∣ ≥ 1, ∣Z/ζ ∣ ≥ 1. From the construction this is easy to visualize, as ∣ζ ∣ is always inside the unit

disk. Less obvious is what happens to ∣ζ ∣ for ∣Z ∣ < 1.

• Eq. 2: This equation describes the coordinates for α in terms of Z, whereas Eq. 1 is the inverse

relationship.

• Eq. 4 is the “height” of point α(∣Z ∣). When ∣Z ∣ = 0, z = −1. When ∣Z ∣ = 1, z = 0, and when ∣Z ∣→∞,

z → 1

1.1 Mappings between the finite and extended planes

We are looking for the formula for the image point α given any point Z =X + iY on the finite plane. The

approach is to derive the formula for the mapping from the north pole of S to any point R ∈ R2.

4http://www.encyclopediaofmath.org/index.php/Riemann_sphere
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A line R(t) = p + t(q − p) is defined by two points p, q ∈ R3. When t = 0, R(0) = p and when t = 1,

R(1) = q. The line from the north pole p = [0,0,1] to point q = [x, y, z] (any point in R3) is thus given by

R(t) = [tx, ty,1 + t(z − 1)].
Line from the north pole to the finite plane Z: Note −1 ≤ z ≤ 1 is limited to be between the two poles.

We define our line P (t) to go from the North pole to the Z plane at z = 0. When z = 0, R(t) becomes

P (t) = [tX, tY,1 − t].
1.2 Restricting [x, y, z] to the Riemann Sphere

To restrict the points [x, y, z] to be on S we require that

∣∣P (t)∣∣2 = t2(X2 + Y 2) + t2 − 2t + 1 = 1.
or in terms of ∣Z ∣ ∣∣P (t)∣∣2 = t2(1 + ∣Z ∣2) − 2t + 1 = 1.

Solving this equation for t we have

t = { 2

1 + ∣Z ∣2 ,0} .
The root 0 corresponds to the north pole. Thus

P (Z) = [2X,2Y, ∣Z ∣2 − 1]∣Z ∣2 + 1 ,

which is the desired Eq. 2.
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Figure 2: Superimposed mappings. The point z = 1 is indicated on the z axis (dark-blue) and w = 1 is

indicated on the w axis (light blue). The projections of these points are then reflected to the other’s axis.

E.G., w = 1 is projected onto the z axis as indicated by the solid dark-blue filled circle.
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2 Examples of important mappings

Here we wish to discuss some important examples, mapping out P (Z) for some classic case of impedance

Z(s) and reflectance Γ(s).
We begin with the item in Fig. 2 which shows two variables, z and w which are rotated by 30○ relative

to each other.

Some ideas

• Z = 1/√(s)
• The map for various bilinear transformations.

I gratefully acknowldege helpful discussions with John D’Angelo.

A Law of cotangents

For our case, φ is the polar angle and a be the length of the chord from the North Pole (N ) to the puncture

point α, then the triangle’s sides are a,1,1. The semi-perimeter s is defined one-half the sum of the three

sides (i.e., s = 1 + a/2), while the inradius (the radius of the inscribed circle)5 is

r =

√(s − a)(s − 1)(s − 1)
s

=
a

2

√
a

2 + a
. (5)

The law of cotangents is cot(φ/2) = (s − a)/r. From Fig. 1 a is the chord form N to α.
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5http://en.wikipedia.org/wiki/Law_of_cotangents
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