Riemann Sphere analytics

Jont B. Allen
University of Illinois at Urbana-Champaign

October 10, 2015

Abstract

The Riemann sphere (RS), also know as the extended plane, was a breakthrough in complex analysis, introduced in B. Riemann's Doctorial thesis (1851). His presentation was geometrical. We recall the formula for stereographic projection from the Riemann sphere to \mathbb{C}, and we derive a formula for its inverse. This is a mapping from Z to $P(x, y, z)$. We then discuss the physical interpretation of the inverse mapping when the complex variable denotes an impedance. ${ }^{1}$

1 Introduction

Here we derive the mapping from a point on the finite plane Z to its "image" on the Riemann Sphere S . We then inteperprete the meaning of this transformation when the plane defines an impedance $Z(s)$ as a function of the complex frequency variable $s=\sigma+i \omega$.

There are two sets of coordinates required to set up this problem. First there is any point in \mathbb{R}^{3} denoted $R \equiv[x, y, z]$. The North Pole is given by $[0,0,1]$ and the South Pole as $[0,0,-1]$. Second the points $Z=X+i Y$ on the finite plane $(z=0)$ are $X=x$ and $Y=y$. The points on the extended plane are a subset of R, denoted $P(x, y, z)$, such that $\|P\|=1$.

The mapping from the sphere to the finite plane Z, defined as $Z=P^{-1}(x, y, z)$, may be expressed in either rectangular (x, y, z) or in spherical (ϕ, θ) coordinates as ${ }^{2}$

$$
\begin{equation*}
Z(x, y, z)=\frac{x+i y}{1-z}=\cot \left(\frac{\phi}{2}\right) e^{i \theta} \tag{1}
\end{equation*}
$$

as shown in Fig. 1. ${ }^{3}$ We desire the mapping from Z to $[x, y, z]$ on the unit sphere (i.e., $\alpha=P(A)$ of Fig. 1).

The spherical $\cot (\phi / 2)$ formula comes from the "law of cotangents" described in Appendix A.
The problem then is to determine $P(Z)([x, y, z]$ given $Z)$, namely find the mapping from any point Z on the finite Z plane (indicated as A in Fig. 1), to the corresponding "puncture point" coordinates on S $\alpha=P$. Formally we may define this mapping as $[x, y, z]=P(Z)$. In other words, given a point Z on the finite plane, determine the points $[x, y, z]$ on \mathbf{S}, such that $\|[x, y, z]\|=1$.

[^0]

Figure 1: Riemann Sphere

The solution: The final result is ${ }^{4}$

$$
\begin{equation*}
[x, y, z]=P(Z)=\frac{\left[2 X, 2 Y,|Z|^{2}-1\right]}{|Z|^{2}+1} \tag{2}
\end{equation*}
$$

where $X=\mathfrak{R} Z$ and $Y=\mathfrak{I} Z$.
A more compact way of stating $P(Z)$ is to express P in terms of a complex number ζ, proportional to Z

$$
\begin{equation*}
\zeta=x+i y=\frac{2 Z}{|Z|^{2}+1} \tag{3}
\end{equation*}
$$

along with the corresponding z coordinate

$$
\begin{equation*}
z=\frac{|Z|^{2}-1}{|Z|^{2}+1} . \tag{4}
\end{equation*}
$$

Equations 1-4 "make sense" in terms of the construction of Fig. 1:

- Eq. 1 and Eq. 3: $\theta=\angle Z(x, y)=\angle \zeta$. From Eq. 3 we see that $|Z / \zeta|=\left(1+|Z|^{2}\right) / 2$. Thus when $|Z| \geq 1,|Z| \zeta \mid \geq 1$. From the construction this is easy to visualize, as $|\zeta|$ is always inside the unit disk. Less obvious is what happens to $|\zeta|$ for $|Z|<1$.
- Eq. 2: This equation describes the coordinates for α in terms of Z, whereas Eq. 1 is the inverse relationship.
- Eq. 4 is the "height" of point $\alpha(|Z|)$. When $|Z|=0, z=-1$. When $|Z|=1, z=0$, and when $|Z| \rightarrow \infty$, $z \rightarrow 1$

1.1 Mappings between the finite and extended planes

We are looking for the formula for the image point α given any point $Z=X+i Y$ on the finite plane. The approach is to derive the formula for the mapping from the north pole of \mathbf{S} to any point $R \in \mathbb{R}^{2}$.

[^1]A line $R(t)=p+t(q-p)$ is defined by two points $p, q \in \mathbb{R}^{3}$. When $t=0, R(0)=p$ and when $t=1$, $R(1)=q$. The line from the north pole $p=[0,0,1]$ to point $q=[x, y, z]$ (any point in \mathbb{R}^{3}) is thus given by

$$
R(t)=[t x, t y, 1+t(z-1)] .
$$

Line from the north pole to the finite plane Z : Note $-1 \leq z \leq 1$ is limited to be between the two poles. We define our line $P(t)$ to go from the North pole to the Z plane at $z=0$. When $z=0, R(t)$ becomes

$$
P(t)=[t X, t Y, 1-t] .
$$

1.2 Restricting $[x, y, z]$ to the Riemann Sphere

To restrict the points $[x, y, z]$ to be on \mathbf{S} we require that

$$
\|P(t)\|^{2}=t^{2}\left(X^{2}+Y^{2}\right)+t^{2}-2 t+1=1 .
$$

or in terms of $|Z|$

$$
\|P(t)\|^{2}=t^{2}\left(1+|Z|^{2}\right)-2 t+1=1 .
$$

Solving this equation for t we have

$$
t=\left\{\frac{2}{1+|Z|^{2}}, 0\right\}
$$

The root 0 corresponds to the north pole. Thus

$$
P(Z)=\frac{\left[2 X, 2 Y,|Z|^{2}-1\right]}{|Z|^{2}+1}
$$

which is the desired Eq. 2.

Figure 2: Superimposed mappings. The point $z=1$ is indicated on the z axis (dark-blue) and $w=1$ is indicated on the w axis (light blue). The projections of these points are then reflected to the other's axis. E.G., $w=1$ is projected onto the z axis as indicated by the solid dark-blue filled circle.

2 Examples of important mappings

Here we wish to discuss some important examples, mapping out $P(Z)$ for some classic case of impedance $Z(s)$ and reflectance $\Gamma(s)$.

We begin with the item in Fig. 2 which shows two variables, z and w which are rotated by 30° relative to each other.

Some ideas

- $Z=1 / \sqrt{(} s)$
- The map for various bilinear transformations.

I gratefully acknowldege helpful discussions with John D'Angelo.

A Law of cotangents

For our case, ϕ is the polar angle and a be the length of the chord from the North Pole (N) to the puncture point α, then the triangle's sides are $a, 1,1$. The semi-perimeter s is defined one-half the sum of the three sides (i.e., $s=1+a / 2$), while the inradius (the radius of the inscribed circle) ${ }^{5}$ is

$$
\begin{equation*}
r=\sqrt{\frac{(s-a)(s-1)(s-1)}{s}}=\frac{a}{2} \sqrt{\frac{a}{2+a}} . \tag{5}
\end{equation*}
$$

The law of cotangents is $\cot (\phi / 2)=(s-a) / r$. From Fig. $1 a$ is the chord form N to α.

[^2]
[^0]: ${ }^{1}$ Eventually we hope to discuss the Mobius transformation of the plane to the sphere.
 ${ }^{2}$ wikipedia.org/wiki/Riemann_sphere
 ${ }^{3}$ Jean-Christophe BENOIST wikipedia.org/wiki/Riemann_sphere

[^1]: ${ }^{4}$ http://www.encyclopediaofmath.org/index.php/Riemann_sphere

[^2]: ${ }^{5}$ http://en.wikipedia.org/wiki/Law_of_cotangents

