






















































































































































































62 The Active Nerve Membrane

{Compton and Langmulir, 193]; M. L T. ,1943), space—charge limited
flow is also observed in the conductors of solid-state electronics
(van der Ziel, 19 57). For current flow between two glectrodes in
which the velocity of the charge carriers depends on the voltage
as

velocity = kva (3.2.12)

Poisson's equation and the assumption of a “wvirtual cathode™ near
one electrode leads to a generalized form of Child's law

2(a-1) a+l

]:p—'—-—z—%v (3.2.13)

fa+1)y &
where 6 is the electrode separation. Thus Landowne writes the
jon currents in the form

a+l
1 = KV * (3. 2. 14)
where K is a constant. The transit time, 7, is inversely propor-
tional to carrier velocity and is thus approxima'ted as

=AYV O (3. 2.15)

where A is another constant, Trom (3. 2. 14) the jonic conduc—
tances should be given by

G, = K ve (3. 2. 16)

Landowne has used (3. 2.15) and (3. 2.16) to normalize the Hodgkin-
Huxley conductance data in Fig. 3-8. He writes

G. () -G, 0
G :-L—*-al'— (3.2.17)
Kv

t' = (3.2.18)"

with the following choice of constants:
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Potassium Sodium
2
K= 1.3 0.21 mmho/ cm
a
A= 49 49 (mV)  sec
a= 0.6 1.0 -

Then the curves A, B, D, and F of Fig. 3~8c appear as in Fig.
3-l4a, while the curves of B, G, D, F, and G from Fig. 3-8b
appear as in Fig. 3-l4b.

Whether this normalization is mere happenstance or, as
Tandowne suggests, a clue to the dominating physical mechanism
remains to be determined. The choice of a = 1.0 for sodium ions
may appear somewhat disturbing since (3. 2. 13) then implies that
the constant K should equal zero. But K is found to be consid~
erably smaller for the sodium ions than for potassium, and &
could be changed by a few percent in {3. 2. 17) and (3. 2. 18) with~
out introducing a great change into Fig. 3-14.

Strandberg {1976) has taken a more direct physical approach
to the construction of a phenomenological theory. For both the
“ godium and the potassium ions he assumes two ensembles of
states (conducting and nonconducting), each distributed over en-
ergy in a gquasicontinuous manner, Such a distribution of energy
states does not seem unreasonable because the large protein mol-
ecules that facilitate ionic conduction have many degrees of free-
dom. Strandberg shows under rather general assumptions that po-
tassium conductance should be expected to vary with applied volt-
age as

S
G = It+exp {-| AE+AF)] /kT} (3.2.19)

here AL is the unperturbed mean energy difference between con-
ucting and nonconducting conformational states and ATF(v) is
he contribution to this difference from the external voltage. With

Gg = 22.5 mmho/cmz



Huxley conductance

Normalization of the Hodgkin-

g. 3-9 by Landowne (1972);
O-A, A- B, - D, V- F

OBCJCODAP

FIGURE 3-14.
data in Fi

{a) potassium conductance:
(b) sodium conductance:
v-G.
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Membrane Electrodynamics 65
AE = 23 meV

AF(w)=[0.8v,_-9.4 exp (—vlz/l 1. 9)] meV

12

a rather good fit to the Hodgkin-Huxley steady-state potassium
conductance [ see (3. 2. 3}
4

GK = C_SKno (v) (3. 2. 20)

is obtained. The point of Strandberg's work, however, is not sim-
ply to introduce a new parameiric representation of old data. Dy-
namic effects can be treated as relaxations between the steady-
state distributions that obtain at different voliages, and the tem-
perature dependence of the rates may suggest acceptable theories
for the nature of the conduction process. Furthermore, (3, 2,19)
implies a temperature dependence of steady-state conductance
that varies with voltage in a rather complex way. In particular,
as Gg —G,,, it becomes insensitive to temperature, which is in
rough agreement with the observations of Landowne (1973) and by
Cochen and Landowne {1974). Predictions of: (&) entropy genera-
tion and heat flow, {b) pressure dependence of membrane free en-
ergy, (c) effects of dissclved inert gas, (d) extra low frequency
(ELF) clectrical polarization, and {e) membrane impedance, all
would seem to be feasible from this thermodynamic approach.
Many new opportunities thus arise for the classical physicist to
contribute to the solution of the membrane riddle,




The Nerve Fiber

our senses have widened. Membranes, webs
of nerves that lay white and limp, have filled and
spread themselves and float round us 1ike filaments,
making the air tangible and catching in them far-away
sounds unheard before.

Virginia Woolf

We are now ready to begin the discussion of level 3, namely,
the development of neuron theory from membrane dynamics and
electromagnetic theory. OQur first problem is to understand the
propagation of a solitary wave O action potential (see Fig. 1-3)
along one of Galvani's oily tubes. Thase solitary waves are sta-
ble spatiotemporal entities that arise as solutions 10 the diffusion
equation {2. 30) when it is rendered nonlinear through a suitable
representation of the ion current iy

In retrospect, it seems that applied mathematicians forewent
an unusual opportunity to make important scientific contributions.
by ignoring the study of the nonlinear diffusion equation. One ex-
ception to this generalization was the work by Kolmogoroff,
Petrovsky, and pPiscounoff (19 37) with the equation*

o — o = F®) (4. 1)

piag t

related to the biological problem of genetic diffusion. These

-

* pquation {4. 1) should perhaps be called the K. P. P equation.
66
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authors showed how steplike initial conditions would evolve into
a solitary wave solution of the form

ofx,t) = q‘:T(x—ut), u=const (4. 2)

developed phase-plane techniques for determining ¢, and de-
rived explicit formulas for the traveling-wave velocity, u. This

* important contribution was completely overlooked by electrophysi-
ologists in the United States; indeed, it is not even noted in the
otherwise exhaustive bibliography of the book by Cole (1968}, The
failure of applied mathematicians to undertake a timely study of
(4. 1) cannot be ascribed to technical inefficiency in the face of
the "enormous mathematical difficulties"” envisaged by Hermann
(1905). The studiesby Boussinesg (1872} and by Korteweg and
deVries {1895) of the hydrcdynamic solitary waves described by
Scott Russell {1844) indicate that there was ample understanding
of nonlinear PDE's even before the turn of the century. As Cohen
{1971) has suggested, the difficulty may have been the assumption
by most mathematicians that the diffusive and nonpropagating be-
havior of linear diffusion eguations would carry over to the non-
linear case.

Yet one need not turn to Hermann's line of burning powder or
the Japanese incense mentioned by Kato {1924} for a clear physical
representation of nonlinear diffusion; the ordinary candle had been
lighting scientific study tables for centuries. Diffusion of heat
down the candle releases wax to the flame where it burns to sup-
ply the heat. If P is the power (J/sec) necessary to support the
flame and E is the chemical energy stored per unit length of the
candle (J/m}, then the flame (nonlinear wave) will travel at the
velocity u for which

P = uE (4. 3)

The rate at which energy is "eaten” (UE) must equal the rate at
which it is "digested™ by the flame (P). Equation {4. 3) is of more
than pedagogical interest; when we turn to the development of for-
mulas for the calculation of nerve-pulse propagation velocity, we
use {4. 3) to find solutions of (4. 1) with the traveling-wave char-
acter indicated in (4. 2).

Nonlinear wave problems can be divided into two main clas—
ses: a} open systems for which solitary traveling waves imply a
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balance between rate of energy release by the nonlinearity and its
consumption as is indicated by (4. 3) and (b) closed systems for
which energy is conserved through a conservation law

€t+ @ =0 (4. 4)

where £ is energy density and @ is the power flow., Wave
problems of class b} include the hydrodynamic waves that were
studied by Boussinesq (1872) and by Korteweg and devries {1895).
In this case solitary waves involve a balance between the effects
of nonlinearity and dispersion, and the propagation velocity is an
adjustable parameter in a family of solutions. Such energy-con-
serving sclitary waves sometimes exhibit and infinite number of
conservation laws and the nondestructive collisions characteris—
tics of “solitons.” Nothing further will be said here about class
b); the interested reader is referred to the paper by Scoit, Chu,
and McLaughlin (1973) for a review of this research. Although the
present discussion concentrates on nonlinear wave problems of
class a), it should not be assumed that conservation laws are un-
jmportant. Indeed, we find in Chapter 5 that an approximate con-
gservation law for electric charge can be useful in determining the
conditions necessary to stimulate a nerve fiber to the threshold of
excitation, and also in Chapter 6 that a conservation law for puls—
es may help to analyze +he evolution of a pulse burst along a fiber.

1, THE HODGKIN-HUXLEY AXON

Let us consider the nonlinear dynamics of the nerve fiber
shown in Fig. 2-2a. The first-order partial differential equations
are (2. 21), together with (3. 2.4). Combining (2. 21b) with (2. 29)
we can write these as

(4.1, la~c)
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h-h (v)
o]

R

(4.1.1d, €)

where j; in {4.1.1b) is the membrane ion current per unit length,
From here on it is typographically convenient to use the voltage
variable v = vi; = Vg defined in (3. 2. 2); evidently this makes
no difference on the left-hand sides of (4. 1. 1a) and (4. 1. 1b}. From

(3. 2. 3)

— 4
j,=g,n (v

i K

— 3
+VR VK) CIvR h(v+VR—VNa)+gL(v+VR— VL)

(4.1.2)

where gy = 2maGp, Una = 2mGyg, and g7, = 2maGp.

The "average axon" chosen for numerical study by Hodgkin
and Huxley (1952) had the following parameiers in addition to
those specified in the previous section:

Resting Axoplasm Axon Membrane
Potential Conductivity Radius Capacitance
2

VR:—65mV v = 2.9 mho/m a=.238mm C=1lpfd/cm

One approach to the analysis of these equations is to seek
traveling~wave solutions where all dependent variables (v, i,h,

m

£ =

x - ut

, and h) are functions only of a moving spatial variable

(4.1.3)

This can be considered as a special case of the more general in-
dependent variable transformation
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x —~£ = x-ut 2L
ax a9t
SO (4. 1. 4)
o = o 8 2
ot aT 9t

Assuming independence with respect to 7 in the (g ,7) system
we can replace (a/8x) by (d/d¢) and (8/8t) by (u d/dE ), where-
upon (4. L. 1} become the ordinary differential equations

gll‘~—r‘1

dag -~ s

“dl——r cui - ]

a& = s 5
n-n

dn __ 2 (4.1, 5)

d§ urrn

dm ™~ "o

de ut,

dh B ho

dg = uTy

This is an autonomous set of equations (Hurewicz, 1958; Lefschetz,
1962) since the derivatives are unigquely defined as functions of
the dependent variables. Thus phase- space technigues can be
helpful in understanding the structure of solutions (Kolmogoroff,
Petrovsky, and Piscoundoff, 1937). Itis important to note, how-
ever, that u [ the velocity of the moving spatial coordinate in
{4.1.4)] appears as an adjustable parameter in (4.1.5). In gen-
eral, one can expect the topological character of the phase-space
trajectories to depend on the value chosen for the velocity u.
Only those trajectories for which the dependent variables are
bounded are of physical interest here. In particular, & trajectory
corresponding to the action potential shown in Fig. 1-3 should
have the qualitative character indicated in Fig. 4-1. The values
v=20,1=0, and {n,m,h) = {35 .06, . b) are a solution of
{4.1.1) so the corresponding point in the phase space of (4.1.5) 1s
a singular point at which all the £ -derivatives are equal to zero.
The task of finding & pulse-like iraveling-wave solution for (4.1.1)
involves determining the proper value of the velocity u at which
a trajectory emanating from this singular point lat £ =~ o)
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eventually returns to it {@s £ — +w). Such a trajectory is some~
times called homoclinic, while a heteroclinic trajectory passes
between two different singular points.

FIGURE 4-1. {a) Phase-space trajectory corresponding to (b} an
action potential. The phase space has five dimen-
sions, but n, m, and h are indicated along a
single axis.

A homoclinic tr@jectory was determined by Hodgkin and Huxley
(using a hand calculator) in 1952. Voltage and membrane conduc—
tance are plotted as a function of time from this calculation in Fig.
4-2 to obtain the proper value of u equal to 18. 8 m/sec. This
ig in satisfactory agreement with the measured value of 2L.2 m/ sec;
and, as shown by a comparison of Figs. 1-3 and 4-2, so also are
the waveforms v(t) and Gf(t).

Theoretically, the discovery of a pulse-like traveling-wave
solution for (4. 1.1) from an investigation of the phase-space to-
pology associated with (4. 1. 5) does not imply that the pulse is
stable to perturbations of its shape. Such waveform instability in-
volves dependence on 7, and {4.1. 5) was derived with the speci-
fic assumption of independence with respect to 7. (We study this
question in detail in Chapter 5.) Another form of instability that
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u = 18.8 meters /sec

ui{my)—

G{mmhos/cm?)

TIME {m sec) —

FIGURE 4~2. Waveforms of the action potential and membrane
conductance calculated from {4.1. 5) at 18. 50C
(redrawn from Hodgkin and Huxley, 19524d).

appears in these calculations is numerical instability during the
integration of (4.1, 5). This arises because the assumed pulse
velocity, u, is an adjustable parameter in the analysis. Choosing
u slightly too small or too large may cause the computed wave-
form to diverge (see Fig. 4-1). BAs we sse later, such numerical
instability of a solutionto (4.1, 5) seems to be a necessary condi~
tion to avoid a waveform instability in the corresponding solution
of {4.1.1).

Machine computations for the space clamped membrane were
first reported by Cole, Antosiewicz, and Rabinowitz {1955), and
for the propagating axon, by FitzHugh and Antosiewicz (1959} and
Huxley (19 59), Huxley demon strated the existence of a second
pulse solution (shown in Fig. 4- 3) that propagates with only 30%
of the velocity of the full action potential, This pulse has an un-
stable waveform; it will either decay to zeroc or rise to the full ac—
tion potential and thus represents a boundary or threshold state of
the fiber. Huxley (1959) also indicated the possibility of aperiodic
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wave train that would correspond to a closed cycle in the phase
space scetched in Fig. 4-1. The observation of a threshold pulse
was confirmed by Cooley and Dodge (1966) through direct integra-
ticn of (4. 1. 1}, who extended the result by assuming that the ef-
fect of a narcotic agent would be to lower Tz and Gy by a fac-
tor m. The results are plotted in Fig. 4-4, where it can be seen
that no attenuationless propagation or threshold effect obtains for
. m <m.= .26l Atsmaller values of this "narcotization factor” a
"decremental” pulse (Lorente de No and Condouris, 1959) propa-
gates with slowly diminishing amplitude as shown in Fig, 4-28.
Since this pulse is not a function only of the argument x - ut, it
is not represented by solutions of {4. 1. 5} and requires the com—
plete set (4. 1. 1) for its description.

S0~

80~ _—~u=1B.8B meters/ sec

701-
80—
{a)
501

u =5.66 meters / sec
40~

vimy) —=

30

1 I i { | g
T

5
TIME (msec) ——

FIGURE 4-3. {a) A full-sized action potential and (b) an unstable
threshold pulse for the Hodgkin-Huxley axon at
18. 5°C  (redrawn from Huxley, 1959).

Impedance bridge measurements by Cole and Baker {1941) in-
dicated that the membrane appears to have an inductive current
component at small ac amplitudes between 30 Hz and 200 kHz.
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Vinox (MV) —=
u (m/sec) —

08 08
']7 —

FIGURE 4-4. Amplitude and velocity for & traveling wave pulse on
a Hodgkin—-Huxley axon plotted against & "narcotiza-
tion factor, " n, which reduces the sodium and po-
tassium conductances (redrawn from Cooley and

Dodge, 19 b6},

Tor the membrane equivalent circuit representing 1 cm2 of mem-~
brane shown in Fig., 4-5a, they found C = 1uF, R = 400 ohm,
and L = 0.2 H. Hodgkin and Huxley (1952) jnvestigated the dy-—
namical relation between small changes in voltage and current in
(3. 2. 3} and directly calculated the values R = 820Q and L= 0.39
H with a threefold increase in L for a 10° fall in temperature.
Such an inductance is much too large to have any connection with
magnetic fields, and a physical interpretation 1s illustrated in
Fig. 4-5Db that is contingent ch the experimental fact that mem-
pbrane conductance [G in (3,1.12)] remains constant for times of
the order of <100 psec (Maurc, 1961). 1f the current curve is
concave in the direction of depclarization, a sudden change of
current from T} to ], must he associated with a change of volt-
age from v; to v2‘ . The voltage will then slowly relax toward a
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smaller difference v.,. These conditions are met by the n and h
dependencies in (3. 2, 3), both of which contribute to the induc-
tance indicated in Fig. 4-5a. Extensive studies of this "phenom-
enological® inductance include those by Chandler, FitzHugh, and
Cole (1962) and Mauro, Conti, Dodge, et al. (1970). Recently
Guttman, Feldman, and Lecar (1974) have measured squid mem-
brane response to. various levels of white noise from which they

~ have computed the cross correlation of input with response. Again
a parallel RLC representation of the membrane seemed appropriate
(Fig, 4~5a) with a resonant frequency varying from aboui 100 Hz
at 109C tc 250 Hz at 20°C. This approach has the experimental
advantage that response is measured simultaneously at all fre-
quencies, thus eliminating errors caused by axon fatigue.

The phenomenological inductance also influences the propa-
gation of alternating subthreshold waves on the axon; this is evi-
dent from the "overshoot" in the return to rest of the action poten-
tial in Fig. 4-2. Subthreshold oscillatory propagation has been
studied in detail by Sabah and Leibovic (1969), and Leibovic and
Sabah {1969}, and Leibovic {1972) using Laplace transform tech-
niques and by Mauro, Freeman, Cooley, et al. (1972), who use
both numerical analysis of {4, 1.1} and experimental observations
on squid axons to show that phase velocity of an oscillatory sub-
threshold wave is rather closely related to the pulse velocity of an
potential, Opatowski (1950) has also studied this relation. In
electronic jargon the squid axon resembles a low Q, bandpass
filter tuned to about 100 Hz when it is stimulated by a subthres-
hold, oscillatory current.

Cooley and Dodge {1966) also computed the response of a
Hodgkin-Huxley axon to a steady stimultation by longitudinal cur-
rent {1(0, t) = const in Fig. 2-2a]. For a steady current around
3.4 uA, a periodic train of spikes was generated with a fregquency
rather insensitive to the stimulation, This result is in contrast to
the real axon, which generates a burst of spikes. FitzHugh (1969)
has suggested that the real axon exhibits an "adaptation" effect
that tends to decrease excitability with a time constant of the or-
der of a second. Such an effect, which is not represented by the
Hodgkin-Huxley equations, may be connected with slow changes
in ion concentration or in temperature.
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FIGURE 4-5. (a) Membrane small signal equivalent circuit
measured by Cele and Baker (1941); (b) physical
explanation for the phenomenological inductance.

2. PROPAGATION OF THE LEADING EDGE

Comparison of numerical results reported in the previous sec~
tion with corresponding experimental data indicates that the
Hodgkin-Huxley equations (4. L. 1) are of considerable value in de~
scribing the facts of electrophysiclogy, but it is also of interest
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to consider approximate forms that are amenable to analytic in-
vestigation. Physical motivation for one such approximation stems
from the following observations (see Fig. 4-2):

1. The most rapid dynamical change occurs on the leading
edge of an action potential.

2. This leading edge transition carries the membrane poten~
tial from its resting potential to approximately the sodium
diffusion potential, Vi3 -

3. The velocity of the leading edge determines the velocity
of the entire action potential.

For the squid giant axon the functions ny,mg, by, 7, 7, and
Ty are sketched in Fig. 3-12a from which it is evident that the re-
laxation time, Tms for sodium turn-on is about an order of magni-
tude less than Th and 7 for potassium turn-on and sodium turn-—
off, respectively. Thus it is interesting to consider the approxi-—
mation (FitzHugh, 1969)

where the ion current through the membrane (4. 1. 2) becomes sim-
ply a function of voltage j; ® j{v) with

i) = EKn:(vR)(v PV V) gNamj(v) h (7 )4V, = V)

R R Na

R VL) 4. 2.1)

+ gL(V +V
This approximation is valid only for dynamic processes that occur
in times long compared with Tm and short compared with 7, and
Th, but, as reference to Fig. 4-2 indicates, the leading edge
transition comes close to fulfilling these requirements. Eguation
{2.32) then takes the form™

vxX - rsc Vt = rsJ (v) (4, 2. 2)

From this point on in the present text the conventional subscript
notation for partial differentiation is used wherever it is typo-
graphically convenient,
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which is the K. P. P. equation for nonlinear diffusion. Together
with (4. 2.2) it is convenient to write (2.21) in the form

(4. 2. 3a,b)
- Loy
i +c vy i (v)

as an eguivalent set of first-order PDEs.

Equation (4. 2.1) does not have a particularly convenlent an=
alytic form, but we expect it to go through zero at the origin (the
resting potential) at a higher voltage Vp = Va = VR, and at a
voltage, Vi, somewhere between. With this in mind, let us apply
the transformation (4.1 4) discussed in the previous section to
(4. 2. 3) with the assumption that (8/87) = 0, Then the set of
ordinary equations that are equivalent to .(4. L. 5} becomes

dv -r i
de =~ s
(4. 2.4a,b)
i
e r cui j{v)

Singular points in the (v s i) phase plane for this set occur where
i=0 and jlv) = 0, thatis, at v = 0, V) and V. If we define

g(v) = %j; {4. 2. 5)

then g{0) and g(Vp) will be positive and g{vy)) will be negative
(see Fig. 4-6a). From this one can show (Scott, 1962) that the
singular points at {i,v) = (g, 0} and {0 ,Vz) are saddle points,
while the intermediate singular point at {(0,vy) is an inward {out-
ward) node or focus for u > 0 (<0). Kunov {1967) used uRendixon's |
negative criterion® {Andronov, Vitt, and Khaikin, 1966) to show that
(4,2.4) has a homoclinic trajectory, corresponding tc @ Ypulse-
like" solution of (4. 2.3), only for zero velocity, Thus the basic
solutions with nonzero velocity are the "eyel-change " waves
shown in Fig. 4-6b. From the phase-space point of view, the
velocity of such a transition is fixed by the condition that an iso-
lated trajectory leaving oné saddle point {at § = ~w} must become
an isolated trajectory approaching the other saddle point (as &—'00)-
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Yoshizawa (1971) has demonstrated that these waves can either
charge the membrane capacitance when area A; 1s greater than
area A, or discharge the capacitance for A} > A;. In either
case the power balance condition (4. 3) must be satisfied.

o} (b}

FIGURE 4-6. ({a) A representation of j(v) as in (4. 2.1};
(v} propagating waves that change the voltage level,

If A = B, these velocities are equal to zero, which is a
special case of the zero velocity pulse indicated in Fig. 4-7 for
the case Ay > Aj. From (4. 2.4) with u = 0, it is easily seen that
a pulse like solution is obtained by substituting into (4. 2. 4a) the
homoclinic trajectory

Tof=

2 2
P=a [ [ it av'] (4. 2. 6)
0

s

Although this solution is unstable, as we see in the following
paragraphs, it is of interest because it specifies the condition for

t}‘lreshold stimulation of a fiber, Lindgren and Buratti {(1969) have
shown the pulse velocity to be nonzero for a tapered fiber.
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jlul

(a) (b}

FIGURE 4-7. (a) jlv) with A2>Al; {b) stationary pulse
solution. .

A family of analytic solutions for the wave forms and veloci~
ties indicated in Fig. 4-6 can be obtained by writing (Scott, 1976)

2—‘; - T() (4. 2.7)

where (4. 2. 4) requires that T must satisfy

T = rsl—(\,fl ~rou (4.2.8)

For u = 0, the pulse-like trajectory of (4. 2. 6). Now suppose
u#0 and

j{v) is a polynomial of order n, and
T(v} is a polynomial of order m

Then T' is of order (m-1) and from 4.2.8)
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n=2m-1 (4.2.9)
The case m = 2 implies n =3 so j(v} must be approximat-
ed by a cubic polynomial (Nagumo, Yoshizawa, and Arimoto, 1965 ;
FitzHugh, 1969)
jlv) = Bvlv - Vl) (v - VZ) (4. 2. 10)
where B is a constant (with units of mho/VZ) chosen to make
j{v) approximate 2waJ, from Fig. 3-l0a or {4.2.1). Since m=2,
a suitable quadratic trajectory is
i= Kv(v- vz)

which on differentiation gives

di
Al e -
av Kv KV?_

However, (di/dv) can alsc be evaluated by dividing left- and
right~hand sides of {4, 2. 4) to obtain

di_ B
dv_cu_i—rK(V vl)

1
Thus K = - (B/er)E SO

{_B
u = Y
\’(erc‘2 2

-2v) (4. 2. 11)
and {4. 2. 4a} can be integrated to the logistic function

V2

v = 4. 2.12}

1+exp [(BrS/Z)%(x—ut—xo]

Note that the velocity given by (4. 2. 11) changes sign as Vl be-
comes greater than (VZ/Z)‘ This corresponds to the area condi-
tion indicated on Pig, 4~6éb. Similar results have been obtained
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for other nonlinear wave systems gimulating the nerve axon by
11'inova and Khokhlov {1963} and by Parmentier (1969).

Another approximation for jv)} that permits an analytic solu-
tion for (4. 2.4) corresponds to the case m = 1, so from (4. 2. 9)
n =1 and we have 2 piecewise linear curve indicated in Fig. 4-8.
Below a voltage V] the membrane is assumed to remain in a rest-
ing state with low conductance; above V)] it is assumed to switch
into an active state of much higher conductance. Such an approx-
imation is certainly suggested by geveral of the curves plotting Ip
against vjp in Fig. 3-10. Using the notation of Tasaki {1968), we
write

jlv} = g9,V for v <V,
(4, 2. 13)

)y for v>V

=g v-V 1

a 2

The discontinuity at V] is acceptable because (4. 2.2) and (4,2,3)
do not involve derivatives of jlv). With jlv} approximated as in
(4.2.13), (4.2. 2) is linear both above and below V. Thus the
nonlinearity in the problem manifests itself only where VvV = Vl‘
To simplify the discussion we begin by assuming that g, = 0.
Equation {4. 2. 4) can be written

2
d v dv
d¥ . euo-r vt =0
dgz s dé s
which becomes
2 -
_ci_y_+r cug‘l:O for - v <V (4. 2. 14a)
2 s df 1
dg
and
dzv dv
d—gg +r ou gy " rSga(v - V2)= 0 for v >V (4. 2. 14b)

If, for convenience, we choose £ =0 tobe where v = V), @
leading edge that makes a transition between zero and VZ {see
Fig. 4-6) and satisfies (4. 2. 14) is easily constructed.
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Thus
v=Ve for v <V 4. 2.15a)

and

Y, &

2
v o= V2 (‘\/’2 Vl)e for v > Vl (4. 2.15Db)

1
where y =r_cu and y,= (rscu/Z)[—l +{ +4ga/rsczu2)3] . The
velocity of propagation is not yet determined in {4. 2. 15) but may
be computed in either of two ways {Scott, 1962): {a) by equating
the total power being produced by j{v) and absorbed by r_. over
the waveform to %c\lzu, the power being absorbed by the mem-
brane capacitance at velocity u, or (b) demanding continuity in
the longitudinal current, i, at § = 0. Approach)is employment
of the power balance idea behind (4. 3). The leading edge must
absorb energy {electrical energy in the membrane capacitance) at
the same rate it is being produced for a steady traveling wave to
exist. Approach (b) is equivalent to (a} and somewhat more con-
venient, From {4. 2.15) and (4. 2. 4a), i{£) is easily calculated
for theranges § >0 and § <0, and current continuity at £ = 0
implies yp{V, = Vi) = y]V), which is readily solved for the velo-
city as

(ga : v,-v)

u :l_ 2 1
]
r.c (V2 Vl)

{4. 2. 16)

The case g, #0 has been studied in detail by Kunov (1966) and by
Vorontsov, Kozhevnikova, and Polyakov (1967), who find

2

(VZ—Vl) _—
Vl a r

u == T (4.2.17)

_- . —_ 2
r CZ VZ v Vl) VZ Vl + J
Ja T 9%

oo

Y1
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(see also Kompaneyets, 1971). Tt can be seen that a necessary
condition for a sigady wave of transition from v = 0 to V, is
v, - Vl)zga >V 9. This again implies again that the areas Ay
and Al in Fig. 4-8 must satisfy the inequality

AZ > Al (4. 2.18)

The effect of “narcotization”, discussed in the previous section
in connection with Fig. 4-4, is to reduce dg- Eventually the in-
equality (4. 2. 18) is violated and only decremental conductance
can take place.

jlu) {

FIGURE 4-8. “Piecewise linear" approximation for j{v)
(Tasaki, 1268).

The value of (4. 2,16) can be assessed by using it to calculate
the velocity of the action potential for the Hodgkin-Huxley axon 4
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shown in Fig. 4-2., From the Hodgkin~Huxley axon parameters
given on page 6% ang taking Gy =33 mmho/cm2 from Fig, 4. 2,
the factor (ga/rscz)i is equal to 33.7 m/sec. Taking V, = Vg~
Vp = 115 mV and {from Fig. 3-10) V| = 30 mV gives u = 48 m/sec,
which is more than a factor of two higher than that calculated by
Hodgkin and Huxley. The main source of this error is the assump-
tion made at the beginning of this section that Tm = 0. This as-
sumption implies that sodium current will begin to flow fully as
soon as the membrane voltage changes by 30 mV. But inspection
of Figs. 3~12 or 4~2 indicates that this is not so. The time de-
lay associated with sodium turn on requires the membrane voltage
tc change by about 60 mV before the membrane conductance rises
to half of its full active value. Taking vy = 60 mV gives

u = 22 m/sec

which is satisfactory considering the nature of the approximations
that have been made.

A more flexible procedure for taking account of the sodium
turn on delay has recently been developed by Rissman {1377). He
assumes T(v) defined in (4. 2.7) to have the form

T() = A sin =& (4. 2.19)
\
2
which ensures a transition wave of amplitude V, as indicated in
Fig, 4-6. Then from (4. 2. 8) the form of j(v) can easily be com-
puted as

jtv) = K sin f]—‘i +K, sin %}—T-‘i (4. 2. 20)
2 2

where the adjustable constants Kl and K, are related to the un~-
known constants A and u by

E.I‘S VZKZ TrKlZ
A= [T and  u = fomoe (4. 2. 2la,b)
ZKerc VZ

Now K and KZ can conveniently be chosen to fit (4. 2. 20} to the
experimental measurement of ion current plotted against membrane
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voltage as obtained from Figs. 1-3 or 4-2. Rissman finds in gen-
eral that the ratio

(KZ/KI) = 0.6

gives good fit to such data. Their magnitudes, of course must be
adjusted to account for the axon circumference. For the Hodgkin-
Huxley axon with a maximum ion current per unit length of 107 X
1072 A/m he calculates

u = 23.7m/sec

A somewhat similar (piecewise linear) model for jlv) has recently
been studied by Pastushenko, Chizmedzhev and Markin (1975a).

Donati and Kunov (1976) have discussed the application of
velocity formula (4. 2. 17) to measuremenis on eight squid giant
axons. They assumed Vp = Vya = YR and took V] to be at the
point of maximum rise on the leading edge. yalues for V| ranged
between 52 mV and 69 mV with an average of 57 mV. S8ince the
active state conductance, dg, is difficult to measure, this equa-
tion is not particularly useful for an absolute estimate of the con-
duction velocity. However, itis quantitatively useful in predict-
ing small changes in velocity due to changes in such parameters
as external lonic concentrations, temperature, and drug content.
Donati and Kunov, for example, use calculations of the change of
membrane conductance in the wake of a pulse together with (4.2.17)
to predict the conduction velocity of a second pulse. The agree-
ment that they display between predicted and measured velocity
changes 1s quite impressive.

The importance of time delay in the conductance rise was em=
phasized by Offner, Weinberg, and Young (1940), who developed a
velocity formula similar to (4.2, 16) shortly after Cole and Curtis
(1939) recorded the waveforms displayed in Fig. 1-3. This delay
is also of theoretical importance since (4. 2.16) and (4. 2. 17) imply

[ga ——Vzwl —~ow as V,—0 (4. 2.22)
: 2 v 1 o
r c 1

o

but with 7, # 0, the effective value of V] cannot reach zero.
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Thus an infinite propagation velocity is prevented by the nonzero
value of T

Farly attempts to calculate the propagation velocity of an ac-
tion potential have been reviewed by Offner, Weinberg, and Young
{1940). Since that time, additional approaches have been develop~
ed by Rosenblueth, Wiener, Pitts, et al. (1948), Huxley (1959),
Scott (1962), Kompaneyets and Gurovich {1965}, Balakhovskii (1968),
‘Namerow and Kappl (1969), Smolyaninov (1969), Pickard {1966} and
Markin and Chizmadzhev (1867), of which the last two references
relate propagation velocity to the rate of rise on the leading edge
of the action potential. Such a relation is easily obtained from
(6. 15a) since

av R \'4 - vV
9 =Y
t dg le=0 1
Thus
1
Vt max 2
= —_—
u " CVl I (4. 2. 23

as is readily verified for the waveform in Fig. 4-2. This is the
formula used by Zeeman (1972),

Quite recently Pastushenko, Chizmedzhev and Markin {197 5b)
have indicated how sodium turn-on delay can be included in a vel-
ocity formula. They continue to assume 7, = 7y = 0 but approx-~
imate mg(v) as a step function and take 7, = const. {# 0). Then
they integrate the third order system {v,i,m) to find

1 1
2l h (V. -V)l2
0(2 1)

(%)
r 02 Vl

where vy is the positive real root of

2,2 2 2 3
v (v +a)ly +2a){y +3a) = 6a
and
Cvl
a = -
"mgNaho(Vz Vl)
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Note that in the limit T ™ 0, v —1 and the velocity formula {*}
becomes similar to (4. 2. 16). For the Hodgkin-Huxley axon at

18. 59C, they take Vp = ll5mV, V) = 30mYy, T = L 3L x 107% sec
and Gya = L2 ml’lo/cm'2 (see Fig. 3-12a) together with the para-
meters listed on page 69, Then a = .045 and

y=.295 so u=13 m/sec

We now turn our attention briefly to the effect of magnetic
fields, whaich are associated with the longitudinal currents and
represented as the inductors 1+ lg = Ly in Fig. 2-4b, on the
propagation velocity. This question arises because it has been
suggested (Lieberstein, 1967a, b, 1973; Brady 1970, Isaacs 1970,
Lieberstein and Mahrous 1970, Lieberstein, 1973} that (2. 30) could
be augmented to the form™

azv 2v av ji
- - — = — 4 — 4,.2.2
2 ﬂ'sc 27 s (c 8t+Ji)+£s at (2.2, 24)
ox ot

Then they erroneously assume that the numerical instability dis-
cussed in connection with Fig. 4-1is related to physical instabi-
lity, and they set both sides of (4. 2. 24} to zero at a velocity

u = [ﬁ.sc]

ol

4. 2.25)

To examine this guestion (see Scott, 1971b) we again ignore
turn-on delay and assume Ty = 0. The first-order PDEs corres-
ponding to Fig. 2-4b and (4. 2. 24) become

v =-41i-ri
X st S
(4.2, 26)

i = -ov, - i)
Taking j{v} as in Fig. 4-8 with g, = 0 and assuming a steady

wave of propagation, vix-ut) = v{£), then yields (Scott, 1963, 1970)

e e

*Van Der Pol (1957) has proposed & similar model for propagation
on a nerve fiber.
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(O

u = (4. 2. 27)

This implies that series inductance will have a negligible effect
on velocity if it satisfies the inequality

(rsc ) ( VZ )
<< | = o (4. 2. 28)
S 9a vy W,

The left-hand side of {4. 2. 28) can be evaluated from (2. 12} and
2. 14), using small argument approximations for the Bessel func-
tions, as ‘
S N B (4. 2. 29)
i ] lw - [ og {pa)] .2

2 #_2
a
1T(!'l

the second term of which gives the series reactance from magnet-
ic flelds both inside and outside the fiber. Thus

n

)
1= [1-2log (Ba)]

where p, (=47 x 1077 H/m) is the MKS magnetic permeability
of nonmagnetic materials. Taking pa ~ 1072 implies £_~ 1076
H/m. The right-hand side of (4. 2. 28) is greater than 100 H/m;
thus the inequality is satisfied by eight orders of magnitude and
magnetic energy storage will have no measurable effect on the
normal propagation of an action potential. This conclusion is fur-
ther supported by the numerical studies of Kaplan and Trujillo
{1970). Solutions of (4. 2. 24]) at the velocity given in (4. 2. 25)
for which both sides of the equation go to zero represent nothing
more than a decoupling of high-frequency electromagnetic waves
from the membrane. Although this may have been what Newton
(1718) had in mind when he posed his "twenty-fourth question, ” it
-does not correspond to normal nerve activity.
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3. THE FITZHUGH—NAGUMO EQUATION

Sections 4-1 and 4-2 have bracketed {in the sense of an ar—
tilleryman) the representation of a propagating nerve fiber. The
Hodgkin-Huxley equations (4.1.1) and (4.1.2), give a fairly ac~
curate description of spike propagation but are somewhat difficult
to analyze without the aid of an automatic computer. The nonlin-
ear diffusion equation (4. 2.2) is simple enough for analvtical in-
vestigation and yields some useful results [ 2. 9., (4. 2.17) for the
conduction velocity], but it fails to reproduce the qualitatively
jmportant feature of pulse recovery that is necessary for repeated
firing of the fiber. In this situation FitzHugh (1961} and Nagumo,
Arimoto, and Yoshizawa (1962} proposed @ modification of the non=
linear diffusion eguation that would retain its simplicity but allow
the action potential to return to a resting level. In properly chos-
en units of space, time, and voltage, (. 2. 2) can be written
Vg = V& 7 F(V), where F(V) is a function with the character in-
dicated in Tig. 4-ba or 4-8. Augmenting this equation with a new
urecovery” variable R to (FitzHugh, 19639)

v -V = E{v)+R (4.3, 1a,b)
.08 t

where

R = e(V+a-bR)
L
yields the desired effect. To see this note that R in (4.3.15) acts
as an outward icn current tending to decrease the area Ay in
Pigs. 4-b6a or 4-8. With reference to the Hodgkin-Huxley equa-
tions (4.1.1} and (3. 2. 4a), there is a correspondence between

R~n
-1

eb ~ KT
n

eV rown T
o n

where x 1s the “temperature factor” indicated in (3. 2.6). The
constant a in (4. 3.-1b) can be absorbed into the definition of R
and F so there Is no loss of generality in setting it to zero. The
constant b is often arbitrarily assumed egqual to zero. Since €
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is proporticnal to «, it can be considered as a parameter that in-
creases with temperature,

Eguations (4. 3. 1) are beginning to assume the role with re-
spect to nerve-fiber propagation that the equaticn of Van Der Pol
(1926, 1934} has played with respect to oscillator theory. "Van
Der Pol's equation” displays the qualitative features of many os~
cillators (spontaneous excitation, limit cycle, continuous transi-

- tion between sinusoidal and blocking behavior, etc. } without ne-
cessarily being an exact representation of any particular dynami-~
cal system. As recent studies (Cohen, 1971; Hastings, 1972;
1976a), Greenberg, 1973) indicate, such a model is very stimulat-
ing and useful for the applied mathematician. Equations (4. 3.1)
are often called "Nagumo's equation” (McKean, 1970; Greenberg,
1973}, although FitzHugh (1363) refers to it as the "B. V. P. equa-
tion" in recognition of the introduction by Bonhoeffer (1948) of
phase-plane analysis to study the passive-iron nerve model, and
of Van Der Pol. The reference to Van Der Pol, however, is some-
what unfortunate for in 1957 he introduced his own modification for
application to nerve problems that failed to emphasize the diffu-
sive character of a nerve fiber. Thus the term "FitzHugh~Nagumo
equation” assigned by. Cohen (1971), Rinzel and Keller {1973}, and
Hastings {I976b) seems most appropriate.

The general utility of {4. 3, 1) can be appreciated by consider—
ing the design of a neuristor or electronic analog of the active
nerve fiber proposed by Crane (1962). Equations (4, 3,1) describe
the most natural technique for achieving pulse return in an elec~
tronic neuristor (Nagumo, Arimoto, and Yoshizawa, 1962; Crane,
1962; Scott, 1962, 1964; Berestovskii, 1963; Noguchi, Kumagai,
and Oizumi, 1963; Yoshizawa and Nagumo, 1964; Satc and Miya-
moto, 1967) and are closely related to the dynamical equations for
active superconducting transmission lines that employ tunneling
of either normal electrons {Giaever type) or superconducting elec—
trons (Josephson type) {Scott,1964, 1976; Parmentier, 1969, 1970;
Johnson, 1968; Nakajima, Yamashita, and Onodera, 1974; Naka-
jima, Onodera, Nakamura, and Sato, 1974; Reible and Scott, 1975;
Nakajima, Onodera, and Ogawa, 1876). Considered as a model
for the nerve axon, (4. 3.1) neglects: (a} turn-on delay for the
sodium current, (b} the fourth-power dependence of potassium
current on n, and {¢) the dependence of Th on v. More exact
second-order systems have recently been considered by Krinskii

and Kokoz (1973)., A good general survey of these problems is
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given in the thesis by Kunov (19696), and a particular example is
presented in Section 4-8.

The analysis of (4.3.1) was begun by Nagumo, Arimoto, and
Yoshizawa (1962), who considered the ordinary differential equa~
tions for traveling-wave solutions of the form Vo= V(g = ut) = V(E)
and R= Rlx~- ut) = R(E) as indicated in (4. L 3), Thus V and R
must then satisfy

av _

dg—w

‘ddlg: F(V) + R~ uW {4.3.2a,b,c)
dR _&qp-v-

di;—u(bR V- a)

Nagumo and coworkers agsumed F{V) to be cubic, took b =0
and obtained numerical evidence for the existence of two homo—
clinic trajectories for sufficiently small values of . Ata criti-
cal value, e, these solutions merged and for ¢ > ¢, no homo-
clinic orbits were found, just as in Fig. 4-4. Such results sug-
gest the existence of two pulse-like {raveling-wave solutions to
(4.3.1) {as in Fig. 4-3), and experiments on an electronic analog
indicated only the pulse with higher velocity to be stable. These
results were confirmed by FitzHugh (1969) through numerical stud-
jes of (4.3.1) and (4.3, 2) with b # 0 and

FV) = —é—v3 -V {4.3.3)

Velocities of -the two branches are plotted against the Mtem=
perature parameter” e in Fig. 4-9. FitzHugh also made a motion
picture entitled “Impulse propagation in a nerve fiber" ¥ based on
numerical integration of (4. 3.1). Some selected frames from this
film are reproduced in Fig. 4-10, which shows the propagation of
two pulses away from a point of stimulation. In the fully develop~
ed pulses (Figs. 4-10f - h) the recovery variable, R, follows behind-
the voltage, V. These pulses correspond to the upper velocity (&)

e

" pvailable on loan from the National Medical Audiovisual Center
(Annex) Station K, Atlanta, Georgia 30333,
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at € = 0.08 in Fig. 4-9. The lower velocity pulse (B') is un-
stable, The locus of allowed iraveling-wave velocities in the
{u,c) plane indicates where the power balance condition (4. 3) is
satisfied. For e > e., only decremental conduction is possible.

e . Uniform _.Decrementol
conductian canduction
9863 ‘i\ @
Srab, '
A € A p
- i P
| N
f I
E] ) @ B l
uns\O“\e |
|
3 © |
8 !
o] I b 1 [
o C.1c
€

FIGURE 4-9. Propagation velocity for traveling wave pulse solu-
tions of the FitzHugh-Nagumo equations (4. 3. 1)
plotted against the "temperature parameter” ¢ for
a= 0.7 and b= 0.8 (redrawn from FitzHugh, 1969).

Arima and Hasegawa (1963) have considered a generalized form
of (4. 3.1) with R = G(V). With suitable restrictions on F, G, and
the smoothness of the initial data, they show that a unique solu~-
tion exists in the half space fx] > and t> 0. Expanding this
result, Yamaguti (1963) showed that solutions of (4. 3.1) with a =
0, b= 0, and VF> CV2 tend uniformly to zero. A related result
was obtained by Yoshizawa and Kitada (1969), who consider (4.3.1)
“with b = 0 but F{V) a cubic polynomial. They confirm the exist-
ence of a threshold by showing that every solution in some neigh-
borhood of zerc converges to zero with increasing time.

The existence of homoclinic trajectories (which begin and end
at the same singular point) for (4. 3. 2) has been studied in detail
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FIGURE 4-10. Frames from the computer movie of FitzHugh show-
ing resulis of a local stimulation of (4. 3. 1} 5%
above threshold with ¢ = 0.08, a= 0.7, and b= 0.8

by Carpenter (1974, 1977a) and Hastings (1976b); and important an-
alytical results have been obiained by Casten, Cohen, and Lager-
strom {1975) using singular perturbation methods. Consider Fig. 4~
11, which shows two homoclinic orbits in the limit e = 0, imply-
ing (4.3.2c} R= const Orbit B corresponds to point B in Fig.
4-9 and is just the trajectory given in {4. 2. 6) for the zero velocity
sshreshold pulse” shown in Fig. 4-7. Orbit A, which corresponds
to point A in Fig. 4-9, is somewhat more complex. Itis the sing—
ular orbit approached as e —~ 0 of a family of homoclinic orbits
that correspond to the pulse shown in Fig. 4-12. Coing backward
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in £, or forward in time, this pulse can be described as follows
(encircled numbers correspond to branches in Figs. 4-lla and 4-12%

O The "leading edge" involves a rapid transition between

the outer zeros of F{V} as was discussed in detail in the
previous section.

@ A "slow relaxation"” from R = 0 to a new value R, deter-
mined by (4. 3. 2c) with the condition F{V) + R~ 0.

@ Arapid downward voltage transition between the two cuter
zeros of F{V) + Ry. The value of Ry must be such that
this trailing edge will have the same velocity as the lead-
ing edge (see Fig. 4-6).

@ Finally, there is a slowrelaxation from R= Ry back to zero.

The velocity, ug, of the singular orbit A is just that velocity
discussed in the previcus section. Assuming a = 0, b# 0 and
¢ >0 we can write

L N
El Euz

U:UO
2

V:V0+cvl+s VZ+"' (4.3.4a,b,c)
A

R = RO+€R1+E R2 oo

and equate powers of ¢ 1o obtain

dZVO av
> tuy T ~[F(V)+R =0

ag? 0 dt 0 4

2
v, av, A

—_— 1 = _ — =

2 Ty, dt /| F (VO) R -y at {4.3.5a,b, ¢c)
dg

R bR_-

O PRy

dg ~ u

0

Ry () is readily obtained from integration of (4. 3. 5¢). Then




0,U = Ug

m
]

= ¢const. J

R+ F(V)=

(o)

€ =0, U=Ol R

é

(b)

FIGURE 4-1 1. Stereoscopic phase space sketches of homoclinic
trajectories for {4, 3.2) with e = 0.
(a) u=uy>0;: ) u=0.

96
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£= x-ut
@

FIGURE 4-12. Voitage pulse corresponding to orbit @ in
Fig. 4-ila with ¢ > 0.

ulA can be determined in the following way. Note that (4. 3. 5b)

can be written in compact form as

LVi = f (4. 3. 5b"}

2
where L= {d /déz) +u,_ (d/dg) - F' (VO) is a linear operator and
f= R - ulA(dVO/dg) is an inhomogenéous term. Define an inner
product of two square integrable functions as

o0

v,w) = [ viE)w(E)de

~00

angd recall that the adjoint (L} of an operator L satisfies the
condition

~

{Lv,w) = (v, Lw) {4,3. 6)
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Then the left-hand side of {4. 3. 5b) must be orthogonal to a func-
tion ¢ that satisfies

T&=0 4. 3.7)

To prove this, check that (LVl,g) = (Vl,’i.‘ci?) = {V1,0) = 0. From
differentiation of (4.3.5a} it is seen that & = {dVU/dg) is a square
integrable solution of the homogeneous equation Lé = 0. Then

$ = (dVO/d?E,) exp (upél is easily shown to be a solution of the ad-
joint homogeneous equation (4.3.7). Thus the right-hand side of
(4. 3. 5b) must also be orthogonal to $. This condition, (3,0 =
[exp (agt) avy/de), (R - ufdvy/de)] = 0, determines ul® as

S ) dav
J \:j <v0<g'>—bRO(g*))da'}—d‘,::'%exp(uoadg
o R £ ; (4. 3. 8)
0 oo [ dV
J (_d,ég) exp (u,£)dE

where it has been assumed in integrating {4.3.5c)that Rl—*O as
£ — 4o, From Fig. 4-9 it is seen that the approximation

A
umuo-}-ule (4.3.9}

is useful over a substantial portion of the upper {stable) branch.
In computing ulA from (4. 3. 8) it is convenient to choose
£ = 0 along the leading edge of the pulse ((D in Figs. 4-lla and
4-12}. The weighting function, exp (uo.i), then eliminates all con-
tributions to the inteqgrals from branches @ ) ® , and @ of the
singular orbit. Purthermore, since Ry = 0 along branch €D} , the
constant b [introduced in (4. 3.1b)] does not enter into the cal-
culation of ulA. As an example of the application of (4. 3. 8), take
F(v) to be as in Fig. 4-8 with gz =1 and gr = 0 and note that
the normalizations in (4. 3. 1) imply, rg = 1 and c¢ = 1. Then,
from (4. 2.16), upg = V- vl)/(v?_vl)i, and substitution of Vg (£)
from (4. 2.15) into (4. 3. 8) gives (4.3.9) as
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2
V. -3V.V
weu - LA oY (4. 3. 10)
G 3 4V2
Y0 2

This expansion is useful only if ¢ << u04. ‘
For the orbit ® in Fig. 4-11, ug = 0 and (4. 39) cannot be
used. In this case Casten, Cohen, and Lagerstrom (1975) write

V=V o+ \feVl+"'

0
_R:\fch+'-- {4.3.1la,b,c}
w=euBa
to obtain
dz\/O
— - P(VO) =0 {4.3.12)
dg
dzv1 B dVO
—-VFWV)}=R -u —I° (4. 3,13)
2 2
at 1 0 1 1 df
de i —VO (4. 3. 14)
d¢ ~ B
,Ul

The left~hand side of (4. 3. 13} is now orthogonal to (dVO/dg), S0

1

[se] 2
[ viae
b}
B —G0
ul = 4+ > {4. 3. 15}
fGO dVG
I

* Note that in (4. 3.10) Vy and V, are constant voltages defined
in Fig. 4-8.
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Bhgain we see that the approximation
B
u e u (4, 3.16)

is useiul over much of the lower branch in Fig. 4-9.

Closed trajectories satisfying (4. 3. 2) correspond to the peri-
odic wave solutions originally suggested by Huxley (1959) for the
Hodgkin—Huxley eguations. The existence of such closed orbits
for the Fitz Hugh-Nagumo equation has been studied by Hastings
{1974) and by Carpenter (1974, 1977a) using the concept of "isolat-
ing blocks™ (Conley and Easton, 1971) around & singular orbit.

Periodic solutions for the FitzHugh-Nagumo eguation can be
readily appreciated with reference to Tig. 4-13, which is closely
related to Fig. 4-7. It is assumed that R = 0, =19 and u =20
so (4.3.2a,b) imply

av W
Tw = W) (4. 3.17)
which can be solved for the trajectory
v 1
w = [2f F(v)av']® (4. 3. 18)

just as in (4. 2. 6). Then from (4. 3. 2a), V({x) can be expressed as
the elliptic integral

x= ] A (4. 3.19)
(2 [ Fwav']®

<

where simple zeros of

v
[ F@)av

lead to turning points in the function VG(X) defined by {4. 3. 19).
This situation is sketched in Fig. 4-13, where the necessary zeros
are insured by equal positive and negative areas under F(V) be-
tween the turning points. A closed trajectory corresponding to one
of a family of such periodic solutions is indicated as C in Fig.4~
ilb. For the case ¢ >0, the perturbation technique of Casten,
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Cohen, and Lagerstrom (1975) can again be applied. From egua-
tions (4. 3.11) through (4. 3. 14) it is easily demonstrated that the
left hand side of (4. 3. 13) is orthogonal to (dVO/dx), where the
integration is over a period, » , of Vy({x). Thus u varies with s
as indicated in {4. 3.16) with

X
[ V2 ax
B g O
weE T o {4. 3. 20)
N fav,
[ e
0

Rinzel and Keller (1973) have studied periodic solutions of
4. 3.2} with ¢ = .05, a= 0, b= 0, and

FWV) = Vv for V <Vl

V-1 for V>V1

(4. 3. 21)

This is the function of Fig. 4-8 with g5 = g, = ! so the phase-
space equations-are linear except along the plane V= V;. For a
periodicity defined by

V{E)= V(E + 1) (4.3. 22}

some numerical values for velocity, u, and amplitude, A, are
shown as functions of A in Fig. 4-14. There are two waves for
each period, the slower wave being unstable.

Currently it is of great interest to extend such results to the
full Hodgkin-Huxley equations (4. 1. 1) or to the corresponding or-
dinary differential eguations for traveling-wave solutions (4. 1. 5).
Evans and Shenk (1970) have shown that (4. 1. 1) has a unique solu—
tion for arbitrary bounded initial conditicns with continuous de-
pendence cn the initial conditions. Carpenter {1974, 1977a) has
extended the concept of isolating blocks to the higher dimensional

_phase space associated with (4. 1. 5) and indicated in Fig. 4-1. To
do this she takes m to be & fast variable so that v,i, and m
‘vary along branches () and @ andonly n and h vary along

¢ -branches @ and @ . The small parameters are then 'Tm”rn_l,
~and 'Th_l, and both homoclinic and periodic orbits are established.
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FIGURE 4-13. Construction of periodic orbit C in Fig. 4-1llib:
(a) "cubic" nonlinearity; (b) the periodic wave.

The analysis by Hastings (1976a), which does not assume Tq O
be small, is probably closer to physiological reality as we saw in
the previous section.

Quite recently Carpenter (19773, 1977b} has shown that the
Hodgkin-Huxley equations can exhibit traveling-wave solutions
that are gualitatively different from those of the FitzHugh-Nagumo
equation. This arises because the Hodgkin-Huxley equations have
two slow variables (n and h) instead of one (R} for FitzHugh-
Nagumo. These mpew! solutions include:

1. Finite pulse trains, where a fixed number (I <k <) of
pulses can propagate together. In the phase space of
Fig. 4-la, this corresponds to & homoclinic orbit that
"loops around” k times before returning to the singular point.

2. Two periodic solutions for the same traveling-wave velo-
city. This differs from the FitzHugh-Nagumo case of Fig.
4-14, which implies a single periodic solution for any

particular value of the traveling~wave velocity.
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3. Pericodic bursting, which is a periodic activity where the
appearance of arbitrary numbers of pulses is separated by
long intervals of rest. More precisely, given any se-
quence of positive integers {ki}, solutions of eguations
of Hodgkin-Huxley type can be constructed with k;
pulses in the ith burst.

12 I T o5
v, =0.0,0.05

>3
04}
e} i 1 l 1
0 20.0 400 600 800
A—
{a)
10 T T T T

0.05V|=0.0
I

1 1 1
0 200 40.0 600 80.0

A——
{b)

FIGURE 4-14. (a) Velocity and (b) amplitude plotted against pulse
spacing, A\, for periodic solutions of the TFitzHugh~
Nagumo eguation with ¢ = 0.05, a=0, b= 0, and F(V}
as in (4. 3. 21) {redrawn from Rinzel and Keller,1974).
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There is, of course, no @ priori reason to expect these exotic
solutions to exist when 7Tn ,'rn_I, and 'rh"l are set at values
appropriate for a real nerve membrane. However, the recent ob-
servations by Donati and Xunov (197 6) indicate that such effects
are at least plausible. Donati and Kunov found that two pulses on -
a squid fiber become "1ocked together ™ when they are separated by
a time interval of about 7 msec. The reason for this effect can be
appreciated from an examination of the structure of the stable
Hodgkin-Huxley pulse () shown in Fig. 4-3. On the wake of this
pulse, the voltage vy, passes from a value below Vg {which
would impede a trailing pulse) to a value above Vg {which would
accelerate a trailing pulse) at a time of about 7 msec. This oscil-
lation is, in turn, related to the “phenomenclogical inductance”
discussed in relation to Fig. 4-5. Such a locking effect should
permit any number of Hodgkin-Huxley pulses to be hitched togeth-
er {like railroad cars) in the ways indicated by Carpenter.

4, THE MARKIN-CHIZMADZHEV MODEL

An interesting technique for analyzing the structure of a nerve
pulse was introduced by Kompaneyets and CGurovich (1966) and dis-
cussed in detail by Markin and Chizmadzhev (1967). This approach
reproduces several of the gualitative features of the PitzHugh-
nagumo equaticn but is even more simple. Markin and Chizmad-
zhev start with the nonlinear diffusion equation (2. 30) and immed-
iately assume the ion current j; to be the following function of
time

0 for t<0

1

ji(t)

- Il for 0 <t <~rl
(4.4.1)
:+I2 for ’Tl <t <"rl+'r2

=0 for t>'rl+72

Next the membrane voltage is taken to have the traveling-wave

form v = v{x - ut) = v{§). Equation (2. 30) is linear within each
of the four regions indicated in Fig. 4-15. General solutions with=~
in these regions take the forms: D Ajexp(-rgcu £} + BL, :
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@ Ay exp lrrgcué)+ By - )5 /cu, @ Azexp (-rgouf ) + B3+2£/ou,
and @ A exp (—rS cuf) + By. The requirement v({£) -0 as g
approaches infinity implies B = 0 and A4 = 0. Continuity of
v(£} and its first derivative at the boundaries between regions
fizxes the other six constants. The corresponding analytic expres—
sions for v (&) are:

Region @ :
viE) = : ClZUZ{IlJrI?_ eXp{-uzrsc (Tl+72 - (]l+]'2)exp (—uzrS CTl)}exp (—urscg)
s (4.4.2)
Region @ :
1 2 Ilg II
v(E) = > 2{lz[exp(-u rscwz)* 1}- ) } exp[—rscu(g-'ru”rl)] T T T2
r cu rcu
5 s
(4. 4. 3)
Region &
7 J T (11+I ) J
2 2 ) PR N )
vig) = > 3 exp|~u rsc(71+72) urscg] + ucg’ + o >3
urec u're
{4, 4, 4)
Region @ :
I7 ~-J.7
vig) = et {4, 4, 5)

c
From (4. 4. 5) the condition for pulse return to its starting value is

Im =77, (4. 4. 6}

(see Fig. 4-15).
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(b)

FIGURE 4-15. {a) Membrane ionic current; (b} membrane voltage
assumed for a propagating pulse in the Markin~
Chizmadzhev model.

The velocity of propagation is not vet specified in (4, 4.2)-

{4. 4. 4). It can be determined by the consistency condition that
at £ =0 (when inward ion current starts to fiow) v should equal
the threshold value Vl as indicated in Figs. 4-6a or 4-8. From
(4. 4. 2)

L {1, +7 exp[—uzr clr +r )]-0,+1 )exp(—-uzr et}
uzr cz 172 s 12 17-°2777 sl

s (4. 4.7)

v(0) =
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which is sketched as a function of pulse velocity in Fig. 4-16, It
is evident that, for a sufficiently small value of V), there aretwo
values of pulse velocity that satisfy the condition

V(o) = v, (4. 4. 8)

If the upper value of pulse velocity, up, is slightly increased,
v(0) becomes less than the critical value, V|, and the pulse
slows down. Thus this faster pulse appears stable. In a similar
way, the lower value of pulse velocity, up, is for an unstable
pulse. Thus the two intersections in Fig. 4~16 correspond to the

two branches of the velccity parameter curves in Figs. 4-4 and
4~9,

v (o)

FIGURE 4-16. Construction for stable (up) and unstable {up)
pulse velocities in the Markin-Chizmadzhev model.

An approximate expression for the upper velocity, u,, can be
determined under the assumption that 7] 1is sufficiently large that
the exponential terms in (4. 4. 7) can be neglected. Then




108 The Nerve Fiber

u, R (4. 4. 9)

Assuming, on the other hand, that the exponential terms in {4.4.7)
are close to unity and also that (4.4, 6) holds gives

ZVl

B rsIlTl (’ri-l—q- 2)

The condition to be satisfied for both these approximations is

Vlc << Il'Tl {4, 4. 10)

in a more recent paper, Undrovinas, Pastushenko, and Markin
(1972) have indicated how membrane leakage current can be added
to this model to account for the hyperpolarizing dip that appears
at the end of the action potential in Figs. i-3, 4~3, and 4-10.

5, THE MYELINATED AXON

Examination of {4. 2.16) reveals a major design difficulty of
the smooth nerve fiber. Since g4 = 2maGa, ¢ = 2maC, and rg =
(Trazcrl)"l, where a is the radius of the fiber, the conduction
velocity is proportional to (Hodgkin, 19 54}

[N

ue a’ (4.5.1)

or to the fourth root of the cross-sectional area. [ See FitzHugh
(1973) for a careful application of dimensional analysis to nerve
problems. | In order to double the velocity, the area (and hence
the volume) of the fiber must increase by a factor of sixteen; to
triple the velocity requires a factor of eighty-one. Since the
giant axons of the squid transmit “escape signals” (generated in
forward nerve cell complexes) to the appropriate muscles (located
aft), there is evolutionary pressure to increase the speed, and
this probably explains the unusually large size of the fiber. But
clearly the fibers can't get much faster without occupying an
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unacceptable fraction of the squid's cross-section, and only a
single bit of information ("leave” or “stay") is being transmitted
at any instant of time. Egquation (4. 2.16) also indicates a solu-
tion to this dilemma. If the fiber is partially covered by an in-
sulating material so only a fraction, f, of the active membrane re-
mains exposed, (g,/c} and rg would remain the same. But c
would be proportional to f so the conduction velocity should de~
pend on the exposed fraction roughly as

(4.5.2)

Thus the velocity can be increased without changing the cross-~
sectional area by making f small.

Something like this takes place in the design of the moior
axons of vertebrates. The structure of the fiber appears as in
Fig. 4-17, where the fiber is covered almost everywhere by a rela-
tively thick insulating coat of myelin consisting of a couple of
hundred layers of cell membrane {Hodgkin, 1951, 1964). Only at
small active nodes (nodes of Ranvier) can the membrane function
in the normal way and these are spaced apart by a distance D ~
1 mm. In this manner the diameter of the fiber can be as small as
10p while the conduction velocity is as large as that on the squid
fiber. The frog nerve studied by Helmholtz (1850} and shown in
Fig. 1~1 is actually a bundle of many axons myelinated as in Fig.
4-17. Young (1951) has prepared a graphic comparison of the squid
giant axon and the sciatic nerve of a rabbit {see Fig. 4-18)., The
conduction velocity is nearly idential in both cases, so the mye-
linated nerve bundle can carry at least two orders of magnitude
more bits of information per unit time. This rapid information rate
permits the fine muscular control that is one of the siriking fea-
tures of higher animals.

24 Myelin
J AN /77§ {7 )
7

L b
Vo o Ve \_{
AL}(/ TIX T

Active nodes

FIGURE 4-17. Structure of amyelinated nerve fiber (not to scale).




FIGURE 4-18.

e TERST
Comparison of cross sections for the squid giant
axon (top) and the sciatic nerve bundle controlling
the calf muscle of a rabbit {(below). There are
about 400 myelinated fibers in the rabbit nerve,
each conducting pulses at about 80 m/sec.
{Young, 1951). From Doubt and Certainty in Science
by 7. Z. Young, published by Oxford University Press.
110
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The role of isolated active nodes in increasing conduction
speed was first recognized by Lillie (1925, 1936) in connection
with his experiments on the "iron wire-acid" analog for the nerve
fiber. He showed that the conduction velocity on this model was
greatly increased when the wire was enclosed in a glass tube
broken into segments, and he noted that the excitation seemed to
“jump” quickly from one opening in the glass tubing to the next,

. an effect called "saltatory* conduction by physiologists. * Short-
ly thereafter Osterhout and Hill (19 30) demonstrated that conduc—
tion in Nitella that had been blocked in fresh water by chloroform
could be restored by introducing a salt bridge arcund the block,
and Kato (1934) isolated in the conductable state a single fiber
from the sciatic nerve of the Japanese toad. Building on these
results, Tasaki (1939) demonstrated that conduction jumped from
node to node in a single Japanese toad fiber. For general surveys
of myelinated fibers the reviews by Tasaki {1959), Hodgkin (1951,
1964), and Waxman {1972) are suggested in addition to the discus-
sion by Cole (1968). Here we list (Table 1) some representative
data on the frog myelinated fiber collected by Hodgkin (1364).

TABLE 1. Data on frog myelinated fiber

Fiber radius ({(a) 7R

Myelin thickness (h) 2

Distance between active nodes (D) 2 mm

Area of active node 2.2 X 10“7 cm2
Internal resistance per unit length 140 MQ/cm
Capacity of myelin per unit length 10-16 pf/cm
Conductance of myelin per unit length 2.5 -4 X 10—8 mho/cm
Capacity of active node 0.6 -1.5pF
Resting resistance of node 40~ 80 MK
Conduction velocity 23 m/sec

* Saltare is the Latin and modern Italian verb "to jump. ¥ For

discussions of recent work on acid-wire nerve models, see
Suzuki (1967) and Markin and Chizmadzhev (1974, Section 7. 1}.
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It is interesting to note how close his average conduction velocity
is to the value of 27 m/sec measured by Helmholtz in 1850.
Equations (4. 5.1) and (4. 5. 2) can be used to estimate the
ratio of conduction velocity on the squid fiber (us) to that of the
frog fiber {ug). First of all, the square root of the (Hodgkin-
Huxley) squid fiber radius (238} to the frog fiber radius in Table
1 (7 |u) is 5. 83. The fraction of exposed area, from Table 1 is
2.53 x 107% so '

Taking only these two factors into consideration would indicate

=

Tszo.og
f

whereas in fact the two velocities are about equal. One rather
obvious additional correction is the extra internode (myelin) ca-
pacitance of the frog fiber. This increases the capacitance per
unit length by the ratio

2,6
=t
6

N

I.

7 or 4.33 to 3.13

631

and, from (4. 2.16} decreases the zero-order estimate of u; by the
same factor. This gives an estimate of the velocity ratio in the
range

uS
2 -0.3 to 0.4
Vi

which is still substantially less than unity. There are various ef-
fects that might be invokedto explain this discrepency-- such as
a difference in axoplasm resistivity or, from Fig., 3-12, a differ-
ence in membrane dynamics -- but one additional correction must
necessarily be made. This is to account for the concentration of
the active membrane at isclated points.

Such a correction can be effected by noting, from the consid-
erations of Chapter 2, that the myelinated fiber is closely approx-
imated by a linear diffusion eguation that is periodically loaded by
the active nodes (Pickard, 1966; Markin and Chizmadzhev, 19 67).
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This picture can be further simplified by lumping the internode
capacitance of the myelin together with the nodal capacitance,
This leads to the equivalent circuit indicated in Fig. 4-~19, where

R = 28 MQ

C=26-4.7pF

I

and I1k) is the ion current calculated at the kth node from (3.2.3
and {3. 2. 4) using the data in Fig. 3-12b. Eguations (4. 1. la, b) are
then replaced by the difference differential equations (DDEs)

Vk - Vk—l = - lkR
de (4.5. 3a,b)
lk+l -4 +C —d—t—: - Ik)

which may also be written as second-order DDEs for the node
voltages

dv

_k _ .
Vil " 2V t v, - RO = RIK) (¢. 5. 3%)

This is a DDE analog of the nonlinear diffusion equation (2. 30).
In order to determine a conduction velocity the traveling-wave
assumption displayed in (4. L. 3) and (4. L. 4} must be replaced by
a search for solutions that satisfy the condition

<

=

=
1l

v t- 1

(4. 5. 4a, b)
i -T
i, (- 1T)
where T is a section delay. If T can be found, the conduction
velocity for the myelinated fiber is evidently

{4. 5. 5)

In solving for the section delay, it is interesting to begin by
assuming I{k) = I(vk), where
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FIGURE 4-19. Difference-differential representation of the
myelinated nerve fiber.

n

I{vk) 0 for vy <Vl

H

G(VK—VZ) for Vk>vl

as we did in (4. 2. 13) for the smooth axon. Then (4. 5. 3') becomes
a DDE analog of the K. P. P. equation (4. 1). If conditions are
such that vy - v <<vi, the second difference in (4. 5.3'} can
be approximated by a second derivative. Then (4. 2. 16} can be
used to calculate the section delay, Ty, as

2
2
e ) [RG V|V, ] "o
c v, -V

where we have used (4. 5. 5) and noted that g, = (G/D), rg = (R/D},
and ¢ = {C/D). Since (C/G} is the membrane time constant,the
condition for validity of (4.5.7)is (TG/C) <<l or RG <<l. The
problem is to determine T as a functicn of R,C,G,V] and V;
when this approximation is not valid. In (4. 5. 3'} time can benor-
malized to RC and node voltage, to V. Then the right-hand
side can be written as a function of the two parameters, RG and
Vz - V])/V,. Thus the ratio of velocity on a myelinated axon,

Upy , O the corresponding velocity on a smooth axon, ug= (D/Ty),
can also be expressed as a function vl . ) of the same two
parameters
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j
3
<
1
<

m 0 2 1
- T“YRG (4. 5. 8)

The determination of this function was considered in detail by
Kunov and Richer at the Electronics Laboratory of the Technical
University of Denmark during 1964-65. A detailed description of
this work is included in the thesis by Kunov {1966) from which
some of the salient points have been published (Kunov, 1965;
Richer, 1965,1966). Xunov's thesis describes a variety of analyti-
cal studies including: (a) numerical integration of {4, 5.3) for a
finite number of sections, (b) an iterative computation to find
solutions with the form (4. 5. 4), {(c} a Laplace transform solution
and {d) measurements on an electronic analog (Kunov, 1963).
Their numerical results are summarized in Fig. 4-20.

For the frog axon the data in Fig. 3-12b give G = 0. 57 umho
so that RG = 16, and in Section 4-2 the value of V|, which seem-
ed to account for the delay in sodium turn-on, was about 60 mV.
Thus (V3 —= V])/V; = 0. 5. From Fig. 4-20 these two values indi-
cate a reduction in velocity of the myelinated fiber over that of a
smooth axon by the factor vy = 0.4, whereas our rough estimate
obtained above by comparison of sguid and frog fibers was 0.3 -
0. 4. This is a rather fortuitous agreement, considering the un-
certainty in the capacitance C and the indication in Fig. 3-12b
that the frog membrane responds somewhat more rapidly than that
of the squid. Purthermore, the appropriate value for G may not
be as large as 0. 57 pmhos since potassium and leakage currents
flow in the opposite direction and, in addition, leakage current
through the myelin and the resting conductance may have a notice-
able effect as indicated in {4. 2. 17) (Kompaneyets, 1971).

Richer (1966) has made an important contribution to this prob-
lem by finding an exact solution for the case G =, which he
calls "switch-line. * This solution gives an implicit relation be-
tween normalized section delay, To/RC, and (Vz-V}}/V, as

vV -V /2 T

L - Flo,z5)etneda| (4.5, 9)
0

where
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FIGURE 4-20. Ratio of myelinated conduction velocity (um) to
that of the corresponding smooth fiber (uo) given
by (4. 2.16). Dashed lines indicate extrapolated
values (Kunov, 1966).
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2T
- 2
Plo,22) =< tan L (ctne) tanh 2 sin®a) (4. 5. 10)

Equation (4. 5. 9) appears a bit unwieldy, but fortunately it can be
approximated by the much simpler expression

Ts Vl
— =T (4.5.11)
RC VZ Vl

which is found to be asymptotically correct for both large and
small values of TS and overestimates TS by about 10% at TS/RC
equal to unity. Since (4. 5.7) can be written in the form

1
Z
T, [vV,/RG]

= ~ {4.5.7")
RC V2 Vl
a simple interpolation between (4. 5. 11) and (4. 5. 7') is
- v 3
N e l—+—l (4. 5.12)
RC VZ - Vl VZ RG VZ

This equation agrees well with digital computer solutions for a
long but finite system and also with the results of analog simula-
tion {Kunov, 1966). From (4. 5. 8) a simple approximation to the
numerical curves in Fig. 4-20 is

um 1

N T 4, 5.13)
V1T RGV, /V. ¢

U, 1+ RGVI/VZ

This equation gives a fair representation of Fig. 4-20 in the
range RG > 1. For example, with RG = 16 and (VZ‘Vl)/Vz =
0.5 [or (V]/Vy) = G.5], (4.5 13) indicates vy = 1/3, whereas
Fig. 4-20 indicates vy = 0.4. In the range RG <2 and
(Vo -v))/V, > 0.5 [or (V/Vp) <0.5], (4.5.13) is qualitatively
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incorrect. It indicates vy —1 as Vl — 0, whereas Fig. 4-20 in-
dicates y —0.

Richer (1965) has also considered the addition of resting con-
ductance as in Fig. 4-8 and has shown that only a positive or
negative level change can propagate {not a pulse) just as in the
smooth axon. Tt is interesting to note that he finds an intermed-
jate range for which neither wave can propagate.

Although the qualitative behavior of the function vl ) =
(U /uo) has been fairly well charted, an exact soluticn for the
DDE (4. 5. 3') with I(k) = I{v)} has notyet been found. This
problem remains as & challenge to applied mathematicians.

Kunov {l966) considers recovery models or discrete FitzHugh-
Nagumo systems and Markin and Chizmadzhev (1967) discuss pro-
pagation when the internodes are described by the linear diffusion
equation. FitzHugh (1962) computed the initiation and conduction
of pulses on a linear diffusion equation periodically loaded with
Hodgkin-Huxley nodes and improved computations have recently
been reported by Goldman and Albus {1968).

The high velocity (stable) and low velocity {unstable) pulses
that appear in Figs. 4-4 and 4-9 for the Hodgkin-Huxley and
FitzHugh-Nagumo equations can be appreciated on the myelinated
fiber by considering the »Nasonov diagram” (Averbach and Nasonov,
1950; FitzHugh, 1969) in Fig. 4-21. If it is assumed that: (a) each
node has a *sigmoid” stimulus-response curve and (b) afraction,
l/a, of the response for each node is presented as a stimulus to
the next, then stationary levels of activity occur where the sig-
moid curve intersects the line R = #8. The lower amplitude in-
tersection is unstable since a small increase in 5 leads to a
larger increase in R, and sc on. The upper intersection, on the
other hand, appears to be stable. As the parameter « 18 in-
creased, these two intersections eventually merge,and above this
critical value of « only decremental conduction obtains.

At the beginning of this section it was noted that the conduc-
tion velocity for a smooth fiber is proportional to the square root
of the fiber radius. Thus

L
u =k, a® (4. 5. 14a)

where for the Hodgkin-Huxley axon

—

k = 1. 43 m/sec we
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Stable wave

Unstable wave

(R)

Response

v

" Stimulus {s)

FIGURE 4-2]. Nasonov diagram for a myelinated nerve fiber,

For myelinated fibers there is evidence that conduction velocity is
proportional to the radius itself. Rushton (1951) explains this ob-
servation with the assumptions of: (a} constant nodal length,
which implies that G« a and C=a and (b) internodal distance
(D) proportional to radius, which implies R« a~l. Then from

{4. 5. 12) the internodal delay (T) is independent of the radius; and
from (4. 5. 5}

u =k.a (4. 5. 14b)
Using the frog fiber data of Table 1,

k, = 3 3 m/sec .

Rushton (1951} suggested that equations (4. 5. 14a,b) imply a cri-
tical radius (ac} above which the conduction velocity will be
faster for a myelinated fiber, This critical radius is determined
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by seiting ug = UYp s where

Kk 2
a :(—1—) - 0.18 1 (4. 5.15)
kZ

for the above mentioned values for kj and kj. Waxman and
Bennett {1972) have recently reexamined the data originally used
by Rushton (19 51) on small smooth and myelinated fibers of cats
and kittens. They find evidence for a critical radius of a, = 0.1,
Thus one might suppose that if speed of conduction is the impor-
tant design criterion, then fibers with diameters less than 0.2 -
0.4y should not be myelinated. Waxman and Bennett suggest,
however, that conduction speed may not be the only criterion in
the mammalian central nervous system. Waxman, Pappas, and
Rennett {1972) have found a functionally significant variability in
the size and spacing of active nodes on the neural electric organ
of the knife fish. In a study of the kangaroo rat's brain, Waxman
and Melker {1971) cbserved certain fibers with ratios of internodal
distance to diameter {including myelin} as low as 18:1. {For the
frog fiber in Table 1 this ratio is 110:l. } Waxman and Melker in—
dicate that the occurrence of closely spaced nodes in mammalian
prain, and particularly in reticular formation, suggests that vari-
ations in the geometry of the central myelin sheath may provide a
mechanism for “velocity matching” or more complex iransforma-
tions of neural information in the axons of mammalian integrative
neurcns.

6. FIBERS WITH CHANGING DIAMETER

In Chapter 2 we observed that if the dimensions of a fiber
change slowly over a distance equal to the length of its action
potential then (2. 21) should be approximately correct with the local
values of rs(x), clx) and jij{x,v,m,n, h). Such an approxima-
tion might, for example, be appropriate for calculations of pulse
propagaticn onthe large dendrites of the Mauthner cell of the gold-
fish (Bodian, 19 52) shown in Pig. 4-22. Let us begin the study of
gradual tapers by assuming (Lindgren and Buratti, 1969) that the
parameters vary exponentially as
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- yX
rg =Ty €
-yx
c=cye .(4.6.1a,b,c)
S Y
Jl = ]0 e

where r and Cp are constants and j, is independent of x.
Then the nonlinear diffusion eguation corresponding to (2, 30) be~
comes
BZV av v
27 Vi T 0% Tar T Tolpamn, ) (4. 6.2)
ax
Using the FitzHugh-Nagumo model and normalizing as in (4, 3, 1},
this equation can be approximated by

V. -yV. -V = F(V) +R

ooox ot 4. 6. 33, b)
Rt = ¢ {V ~ bR)

and the periurbation calculation of Casten, Coher, and Lagerstrom

(1975) can be carried through just as in Section 4-3. In particular,
the pulse velocity is

uzu0+y+ulAe (4. 6. 4)

where U is the pulse velocity that would be calculated for R =
0 and y = 0 using the concepts outlined in Section 4-2. The
linear coefficient in ¢ becomes

©  © dVO uog
S vo(g')—bRO(g'))dé'Ee at
A 1 -0 £
u, ="
1w +y o 4
G EI
Jo\a

(4. 6, 5)
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= 0. Thus (4.6.4)and {4, 6. 5) can
1] as for the fast wave. The pri-

mary effects of the (inward) exponential taper ars to increase the
zero-order term for pulse velocity in (4. 6. 4)(in the direction of
increasing series resistance)and to decrease the magnitude of the

first-order term.

which remains finite when u
be used for the slow wave as we

Axon

club. endings

Lateral Dendrite

100 1

Ventral Dendrite

FIGURE 4-22. Tapered dendrites of Mauthner's cell in the gold-
fish: (§) small dendrites; (e} small endbulbs;
(h) axon hillock, (LE) large endbulbs;
{m) myelin sheath on axon (Bodian, 12 52).
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The exponential variation assumed in (4. 6. 1} is not realistic
f rg is almost entirely determined by the inside component and
herefore inversely proportional to radius (a) squared as indicat-
>d in {2.19).  This is because both ¢ and j; should be propor-
ional to a. Equations {4. 6. 1) might be appropriate when the ex-~
ernal current flow is restricted, as in (2. 25), and the dependence
>f rg on the radius is weakened.

Rall (1962a) has presented an interesting analysis of the tap-
>red fiber that approaches an equation similar to {4. 6. 3) by trans-
orming the spatial coordinate. He assumes internal resistance
0 dominate so that (2. 2la) becomes

; 2 8v
i=-ma %) ox (4. 6. 6)
and {2. 21b) becomes
oi, da, -l
NEw) = - [l 55] 4. 6.7)

vhere (dA/dx) is the change in membrane area with increase in
z. For a cylindrical membrane (dA/dx) = 2wa just as in (2. 21b).
3ut when the radius is a function of x, a differential application
f the Pythagorean theorem implies

1
dA da.,2 }*
ax = 2ma l:l + (_dx) ] {4, 6. 8)

Differentiating (4. 6. 6) with x and substituting into (4. 6. 7) then
yives

2
2
TN = 22— | 2L v d log a%) (4. 6.9)
1 5 2 8x dx
1+ (da )2 ox
dx

At this point Rall defined a new spatial variable

z = z{x) ’ 4. 6. 10)

S0 that
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sy _ av dz
ax 8z dx
and
2%y {d_z]z (a_zhgxg(gmg;
2 dx 2 ' pz dz \dx dx
ox JZ

gubstituting these derivatives into (4. 6.9}

)

a(iz‘)2
2. _—dx’  |2v @!(Q& d 2_@-1;)
crlN(v) == L > " oz \dz dx log {a dx) (4. 6.11)
‘.l+ day2|® )
dx )

Then if the transformation z(x) is chosen such that

Bl

2
g
23y K%i 2 N
oz z 71
where
4 2 dz
K= dx[log (a dx J
N dz
dx

_ 1
3 da Z!Zd 3/2[ da .2
_ .2 da d da
=a [l-l-(dx) dx log ta 1+(dx)

Evidently ¥=0 i & varies such that

(4. 6. 12)

(4. 6. 13)

4. 6.14

1) s
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1
4
aa/‘2 [l + (‘j‘i‘)zj = const {4. 6. 16)

and K = const. if

2 dz
z « log (a de )} 4. 6.17)

In a more recent analysis of tapered fibers, Goldstein and
Rall (1974) assume the taper is sufficiently gradual so that

(3—)%)2 <<l (4. 6. 18)
Then from {4. 6. 12)
dz —%
ax = °
and (4. 6.17) can be written
z = _4 log (a3/2)
Y
where vy 1is a constant. Then
K=-vy (4. 6.19)

and
% X 42 I3
a= (ao— 3x) (4. 6. 20)
where ag is the fiber radius at x = 0.
Thus for a radius variation as in (4. 6, 20) and assuming y<<|l
so that (4. 6,18) is satisfied, (4. 6.13) is formally identical to
f.6.2) or {4. 6. 3) where =z is related to x by

1
z = —élog(az—lx) (4. 6, 21)
v 0 3

We can also suppose that the fiber diameter changes abruptly (see
Fig. 4~23a}. In this case we should consider the effect of higher
modes, which are necessary to match electromagnetic boundary
conditions at the discontinuity.
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2a,

AN\

FIBER OF RADIUS g, ¢ 1; FIBER OF RADIUS a,

{c)

FIGURE 4-23. (a) Abrupt discontinuity; (b) varicose discontinu-
ity; {c) lumped equivalent circuit for a discontin-

uity.

To appreciate this problem remember that eguations (2.12) for
series impedance of the fiber were derived from (2. 8) which assume
the lowest order TM mode of propagation. This mode is expect
ed to dominate when the radius is changing slowly with X, but
generally, there is an infinite number of such modes correspond-
ing to higher order Bessel functions and more complex radial de~
pendence. The selected assortment of these higher modes which
match boundary conditions at the discontinuity will ahsorb energy
from the wave. In microwave calculations the higher modes are
often represented by an equivalent admittance that appears at the
discontinuity [ see Ramo and Whinnery (1953} pp. 477-485 for an
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introduction to these representations]. But for nerve fiber prob-
lems, where the distances are small compared with the electro-
magnetic penetration depth | see (4, 15)], it can be assumed that
to a good approximation the electrical potential satisfies Laplace's
equation and the current "spreads" from-the smaller to the larger
fiber as indicated in Fig. 4-23a. Then the discontinuity region
can be represented by a series gpreading resistance

a_-—a

R mye——t (. 6. 22)
T %
plus the shunting effect of the extra membrane of area
2 2
A= 'rr(az— al) (4. 6. 23)

presented at the discontinuity. Thus the shunt elements in the
equivalent circuit of Fig, 4-23 are

Ii = jiA (4. 6. 24)

C

cA (4. 6. 25)

The discontinuity in Fig. 4-23a can be considered as a special
case of the "varicosity" in Fig. 4-23b for which the equivalent
circuit still applies if

aa_+a,a, — 2aa
173 2
R ot 12 (4. 6. 26)
T 9%%
and
2 2 2
A= Tr(?_a3 + Za3b- a - a, } &. 6. 27)

for oy~ 3 mho/m and a) = . 238 mm (the Hodgkin-Huxley axon),
the time constant

a
2 -6
RC~ (—)Z X 10~ sec
s a
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The series spreading resistance should be negligible when
_C is less than 1074 sec or for discontinuities in which
az/al) <10. In this case it is not unreasonable to include the
hunt elements with the description of the larger fiber and ignore
onuniformity at the discontinuity altogether. Under this assump-
ion Markin and Pastushenko {19 69) have obtained a simple and
mportant boundary condition on pulse velocity. From {2.2la) con—
inuity of axial current at the discontinuity implies

Bv_ 5 AV,
— (4. 6. 28)

n_n gubscripts refer to respective values just

where the “+" and
f the discontinuity. Continuity of membrane

o the right and left o
voltage at the discontinuity implies

ov_ 8v+
—_— = 4. 6.
ot at (2. 6 29)

Defining pulse velocity, u, for a point of constant voltage ampli-

tude as
v /0t
= - 4.6,
u ov /0% (4.6.30)
implies
u_ u,
a_z =" (4. 6. 31}
1 %2

be discontinuous at the discontinuity.
f Section 4-5 that pulse velocity on
he square root of the radius. I
far to the left (right) of

Thus pulse velocity should
We noted at the beginning o
a smooth fiber is proportional to t
we define uj {up) as the pulse velocity

the discontinuity, then

Y u
1 :__2.1_ (4, 6. 32)
a? al?

1 2

o)

O R A d B O Zwd PO T = w

o
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Joldstein and Rall (1974} have recently presented some numerical
tudies that illustrate the relation between (4. 6. 31} and (4. 6. 32).
Jsing a model that simulates the squid axon, they compute the
'peak velocity”, Ups for a pulse in the vicinity of a discontinuity.
s the pulse approaches a widening (a;/a; > 1) it slows down
Fig. 4-24a). In a qualitative way this is to be expected from our
revious consideration of tapered fibers; y is negative for a wid-
ning taper that [ through (4. 6. 4}] tends to reduce the velocity.

s the pulse passes through the discontinuity at x = 0, its peak
elocity jumps to a large value, as should be expected from (4. 6.
1) and eventually falls back to the value required by (4. 6. 32},
lote, however, that'the discontinuity at x = 0 shown in Fig. 4-
4 does not exactly match that implied by (4, 6, 31), This may be
ecause (4. 6. 31) was derived for a point of constant voltage am~
litude, whereas the data of Fig. 4-24 were computed for the peak
elocity. Similar results were obtained by Berkinblit, Vvedens-
aya, Gnedenko, et al. (1970) for an abrupt widening of the Hodg—
in-Huxley fiber. For a five fold widening the velocity of the peak
f the action potential falls from 19 m/sec to about 2 m/sec and
hen rises sharply to about 54 m/sec as the action potential pass-
s through the discontinuity.

10 T T T 10
81 4 8
6l — 6
- - 4
2 — 2
2
1 92sa;=1 1.5 1
08 — 0.8
06 - 06
Q| - caf 1.5 . S 04
ozl = oz~ =
2
0.t TR N U N S [o X | S I S I N N
-2 -1 0 + +2 +3 “2 -t 0 H +2 +3
x{cm) — x{cm} —

{a) (b}

FIGURE 4-24. Change of peak velocity of an action potential as
it approaches: (&) abrupt enlargement; (b) abrupt
construction (redrawn from Goldstein and Rall,1974).
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In Fig. 4-24b are plotted some corresponding data for a pulse
that approaches & constriction (az/al <1). Here the pulse gains
in velocity as it approaches the discontinuity, which is to be ex~
pected since Y is positive for a constricting taper. Then, as
{4. 6. 31} implies, the pulse velocity falls rapidly upon passing
through the discontinuity and eventually rises to the value re—
quired by (4. 6. 32).

Khodorov, Timin, Vilenkin, ot al. (1969) have studied the pro-
pagation on @ Hodgkin-Huxley axon that was abruptly increased in
radius by factors of three, five, six, and ten. For the five—fold
increase, an action potential did propagate through the discontin—
uity but with considerable delay {(~0.8 m/sec). With a six-fold
increase, conduction was blocked. Waveforms for the case of
marginal conductance are displayed in Fig. 4-25, which shows the
enlarged portion of the fiber to initially propagate & pulse that is
close to the threshold pulse (Fig. 4-3). This low-amplitude in-
itial pulse eventually increases into a fully developed action po—
tential, Berkinblit, vyvedenskaya, CGnedenko, et al. (1970) have
extended this study by considering the effect of a tapered widening
on the conditions for pulse blocking. Again the initial pulse was
propagating on a Hodgkin-Huxley axon that widened over a taper
distance an n-fold increase in radius. Their numerical observa-
tions are indicated in Table 2.

TABLE 2. Critical diameter ratio as a function of taper length

{Berkinblit, Vvedenskaya, Gnedenko, et al.,1970)

Length of Taper Diameter Ratic
[
(cm) Blocking Passage
T e —
0. 088 5. 5:1 5:1
0. 785 6:1 5. 5:1
1. 7() 8:1 7:1

3. 81 >10:1 10:1
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2a,=476mm_ | |_
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FIGURE 4-25. Membrane voltage (v}, total membrane current
density {Jj5), and ionic current density {7;) for
the Hodgkin-Huxley action potential approaching
an abrupt five—fold enlargement (redrawn from
Khodorov, Timin, Vilenkin, et al., 1969).

Pastushenko and Markin {1969) have used the simple nerve

model of Section 4~4 to estimate the diameter ratio at which block=-
A critical parameter in this

ing of an action potential is observed.
development is the ratio of maximum pulse voltage, Vo, , to the
threshold voltage, Vy. For large values of this stability factor
Vma.x
(4. 6. 33)
Vi

=
i
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they find that the condition for the enlarged fiber to be brought a-
bove its threshold level is

a, 3/2 N
- < k + 1. 11k*-1.869 (4. 6. 34)

|

from the stable and threshold waveforms for the Hodgkin—-Huxley
axon shown in Fig. 4-3, k & 5 which implies blocking for a dia-
meter ratio greater than 3. 22.

Khodorov, Timin, Pozin, et al. (1971) have also considered the
propagation of a pulse train through an abrupt widening of the
Hodgkin~Huxley axon, Some examples of their computations are
presented in Fig. 4-26, FPor an abrupt widening of 5:1 and an in-
coming temporal period of 2. 5 msec, only the first pulse will pass
(see Fig. 4-26a). If the widening ratio is reduced to 3:l and the
temporal period is increased to 3.3 msec the fifth pulse will fail
but the sixth will again pass (see Fig. 4-26b). Calculations of
this sort are reviewed in the recent book by Khodorov (1974) and
can be summarized as follows.

I(va
1.0 /1\ 2 /\l 18]
> 3 4

|

DISTANCE {cm)
N
(@]

DISTANCE - (em)
W

N
I r

I 4 TR e s otz 4 € 8 2

TiME (msec) —— TIME (msec}——
(@) (b}

FIGURE 4-26. Propagation of a pulse train through an abrupt wid-
ening of the Hodgkin-Huxley axon: (a} widening of
5:1 with an incoming temporal period of 2. 5 msecs;
(b) widening of 3:l with aperiodof 3,3 msecs (re-
drawn from Khodorov,Timin,Pozin,and Shmelev,lQ?l).

1w i

T

el Tt el M = M ™M O
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[ABLE 3. Blocking of pulses in a periodic frain (Khodorov, 1974)

Temporal period {(msec)

Abrupt 2.5 3 3.3 3.5
videning 5 block )
ratio Number of blocked pulses
1.5:1 None None None None
B b
3:1 2,4,6,..., 3,5,7,..., 5,9,..., - -
. a
5:1 2,3,4,5,..., 2,3,4,5,..., 2,3,4,5,..., 2,3,4,5,...,
6:1 All All All All

2 Pigure 4-26a.
2 Figure 4-26b.

It is evident from Figs. 4-25 and 4-26 that marginal passage
>f a pulse through a widening leads to time delays of the order
). 5-1 msec. This would seem significant for the processing of
juditory information. These delays can be induced by "varicesi-
lies" as indicated in Fig. 4-23b, and Bogoslovskaya, Lyubinskii,
Pozin, et al. {I1973) have shown that such varicosities are clearly
evident in the dendrites of cochlear neurons of certain animals
(see Fig. 4-27). This leads one to suspect that the dendrites may
play an important role in the processing of pulse frain information.
We return to this idea in Chapter 6. .

On the axcnal side Revenko, Timin, and Khodorov (1973) have
recently investigated the propagation of an action potential from
a myelinated fiber into a nonmyelinated terminal section. This is
a region of low safety factor because the exposed fraction of the
membrane, I in (4. 5. 2), jumps from a low value on the myelinat-
ed fiber to unity on the terminal section. To ensure conduction,
a narrowing of the fiber diameter by a factor of about three is re-
quired; even in this case frequency reduction similar to that dis-
played in Fig. 4-26 should be expected.

7. DECREMENTAL CONDUCTION

We have seen in Fig, 4-4 that the effect of multiplying gy
and g by a “narcetizing factor” n <! 1is to reduce the speed
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FIGURE 4-27. Cochlear neurons of: (a} monkey, (®) hedgehog,
(c) owl, and (d) bat (Bogoslovskaya, Lyubinskii,
Pozin, et al. 1973).

and amplitude of the fast traveling-wave solution and to increase
the speed and amplitude of the slow threshold pulse. At a critical
value of narcotization ng = 0. 261, these two pulse soluticns of
the Hodgkin-Huxley equations merge. For m <Tg R0 wraveling-
wave pulse solution has been found. If the axon is suitably stim—
ulated with n <mng,2a udecremental " pulse is observed that pro-
pagates with diminishing amplitude. Figure 4-238, for example,
presents numerical calculations of decremental propagation on the
Hodgkin-Huxley axon with n = 0. 25 by Cooley and Dodge (1966);
similar results have been obtained by Leibovic and Sabah (1969)
and by Khodorov, Timin, Vilenkin, et al. (1970) | see also the re~
cent books by Leibovic (1972} and Khodorov (1974)] .
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FIGURE 4-28. Propagation of a decremental pulse on a Hodgkin-
Huxley axon narcotized by a factor of 0. 25.
Curves are voltage waveforms at lcm intervals
{redrawn from Cooley and Dodge, 1966).

These numerical studies are of considerable interest because
the possibility of decremental conduction was sericusly challenged
a half century ago by Kato {1924), His argument had a theoretical
foundation which he recently summarized as follows (Kato, 1970}

The decrement theory and the decrementless theory can ke
said to rest on fundamentally different theoretical stand-
points. The former seems to hold that an impulse is con-
ducted by its initial energy supplied only at its start which,
being consumed as it propagates and having no supply of
new energy during its conduction, gradually diminishes,
in other words, suffers decrement... but the latter theory
postulates that the impulse is conducted by means of new
energy necessary for conduction produced locally as it is
propagated, so it can be conducted in a decrementless
manner. What is important here is that, while those sup-
porting the decrement theory held that the nerve {(a living
tissue in general) would change its nature gualitatively
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when condition changed, we, in our decrementless theory,
inferred that it would remain unchanged in its nature under
changed conditions, and only be subject to guantitative
change. Therefore, our way of thinking was fundamentally
different from theirs, not being concerned merely with the
phenomenal fact as to whether conduction is decremental
or decrementless (nondecremental). In this sense the
discussion on the right or wrong of our theory came to
exert a great influence on the fundamental thought in the
biological world.

To establish the validity of his perception, Kato prepared an ex—
perimental demonstration for the 1826 International Physiological
Congress in Stockholm. Using sciatic nerve muscle preparations
(see Fig. l-1} from Dutch frogs (his Japanese toads had perished
during the long irip across Siberia), he first showed that the ex-
tinction times under narcotization were almost exactly egual for

1. 5 cm and 3.0 cm of nerve. Next he demonsirated a threshold
effect for stimulation in the narcotized region. Finally came the
crucial “cut experiment” designed to demonsirate that such grad-
ed responses as were evident from stimulation in the narcotized
region were due to electrical leakage rather than decremental con-
duction. It was a terminal experiment since the narcotized region
was to be cut precisely at the point of electrical stimulation in
order to show that mechanical stimulation would not produce the
came effect. Thomas Kuhn {1962) has not described a more dramat-
ic example of the establishment of a scientific paradigm than that
moment so vividly recalled by Kato (1970).

When Dr. Uchimura, just after applying the electrical
stimulation, took a cutting pose, there came a voice

from far behind of the room, "No muscle state can be

seen from here! " Indeed, many of the observers wanted
to witness whether the muscle would contract or not with
their own eyes. It was Dr. Buytendijk, Professor of the
University of Groningen, Holland, who offered to announce
if the muscle moved or not, because he was nearest to the
table. Dr. Uchimura tock up scissors once again and
brought them near the nerve to cut it. But his hand was
trembling; that might cause some gort of straining on the
nerve to make the muscle contract. I had no courage to
see the cutting instant. Seconds fled. Suddenly sounded,
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"Keine Zuckung!! No twitch!!” It was Prof. Buytendijk's
voice. And then followed another voice, “Revolution der
Physiologie! ", from whom I could not identify. Scholar

after scholar they presented me with congratulations and

handshakes.

Thirty-three vears later Lorente de NS and Condouris (1959)
were to lament the premature demise of the decremental conduction
doctrine in the face of these objections.

It seems unbelievable, but it is true, that although the
objections were soon proved tc be unjustified by a number

of authors frefs. ], the doctrine of decremental conduction .
disappeared from the literature and there remained, to mold
the thinking of neurophysiclogists, only the all-or-nothing
law in the generalized, inflexible form given to it by Kato ....

The theoretical objections posed by Kato to the gualitatively
different aspect of decremental conduction disappear when one
considers nonlinear pulse propagation on the nerve fiber to be
dominated by the power-balance condition

P=uE 4.7. 1)

where P is the power (J/sec) consumed by the pulse, E is the
stored energy (J/m) released by the pulse, and u is the pulse
velocity (m/sec). The curves in Figs. 4-4 and 4-9 indicate those
values of the plotted parameters for which a traveling-wave pulse
satisfying (4. 7. 1) does exist. Since the upper branch is stable and
the lower branch is unstable it seems reascnable to speculate that
the inside & region is where pulse solutions can be found with
uE > P. Conversely, in the outside &) region we expect uE<?P
for all pulse solutions., For n slightly less than n,, we expect
to find a decremental pulse for which uE is slightly less than P,
As an example, take the FitzHugh-Nagumo equation (4. 3. 1) with

a =0 and b = 0. Putting "conservative"” temms on the left and
"dissipative” terms on the right, this can be written

_Vtt ~eV=F (V)Vt - vx.xt (4.7.2)

The conservative terms are recognized because they can be derived
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by substituting the Lagrangian density %(e V2 - Vzt) into the Euler
equation | Scott (1970)]. Then the corresponding energy density is
L(ev? + ve) so the total energy is

[va]

E- i [V +vdx (4.7.3)

Differentiating (4. 7. 3) with time and substituting (4. 7. 2) gives

£ )

= - [ PV )dx (4.7.4)
-0

Along the traveling-wave locus in Fig, 4-9, the right~-hand side
integral must be zero. In the & region, the right-hand side is
negative and in the & reglon itis positive. Perturbative tech-
niques would seem 10 be appropriate for estimating the right-hand
side near the traveling-wave locus. Some problems for which such
a perturbative approach might be useful are listed below, and the
corresponding critical parameter is indicated.

1. For the FitzHugh-Nagumo equation, the critical parameter
might be ¢ (as in Fig. 4~-5) or a perturbation of F{v)
that reduces the negative ared (Ap in Fig. 4-6),

2. For the Markin-Chizmadzhev model (see Fig. 4-1€) the
critical parameter might be V, or from (4.4.7) rg or C.

3. The amplitude of the Markin-Chizmadzhev pulse as de~
termined by (say) I} in (4. 4. 7) might be chosen as the
critical parameter. Then the description would apply to
the decrement for pulses below the threshold level.

4, The parameter o for the representation of myelinated
propagation indicated in Fig. 4-2L

5. Various real experimental parameters, such as tempera-
ture, ionic concentrations, and narcotic concentrations,
which would modify the constants in the Hodgkin-Huxley
expression (4. L 2) for ionic current.

6. The wavelength, », for periodic traveling-wave solutions
such as those by Rinzel and Keller (1573} shown in Fig. 4-14.

In view of all these possibilities for application, the develop-
ment of a formal perturbation theory for decremental conduction is
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of great current interest. To introduce the fundamental ideas it is
convenient to return to the K P. P. equation

Ve TV T Flv) = 0 (4. 7. 5)

and add a small perturbation, §, so it becomes

Ve T Ve T Fv) = 6 . (4,7, 6)
Following the notation of Whitham (1974) (pp. 493-487) for "two
timing* and *"double crossing" we write

v = Vo ©,X,T) ¢ 0V 6,X,T)+ -« (4.7.7)

where X =5%Hx and T = ft are slow space and time variables. It
is assumed that v depends on fast space and time {x and t)
through

-1
0=38 eX,T) (4.7.8)
and for notational convenience we define

kX, T)= @X and vX,T)= ®T (4. 7.9)

Then to first order in &

v o= kZV -HS(kZ\./'l

k
s 0,00 +2kv0 +k V. )

0% "x'0, 6

¥

65

2

v, = VVO,Q +(5(1.r\4'l o +\J’0 T) .

b 3

Thus equating coefficients in (4. 7. 6) for the first two orders in &
gives

5 1 k°V -wW., - FV)=0 (4.7.10)
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fquation (4. 7. il) is a linear, nonhomogeneous ordinary differen—
jal equation for Vi. It must have a sclution for the perturbation
expansion (4. 7.7} to be valid. To investigate this requirement,
suppose it is written in the abbreviated form

LVl =f (4,7.11")

Here L is the differential operator

A
szzi—z—-ua‘é——rwo) (€. 7.12)
dae

and f is the inhomogensous term that can be calculated from VD.
Using the notation for an "inner product” of two functions [ say

v(@) and w(@)]

(v,w) = [ vB)wE)do (4. 7.13)

~c0

recall that (if v and w —0 as g —+00} the "adjoint" (f) of an
operator (L} is defined by the requirement

(v, Iw) = (Tv,w) (4. 7. 14)

Suppose next that ¢ is a solution of the adjoint homogeneous
equation

16 =0 (4. 7.15)
which satisfies the condition E; —(Q as 6 —=xw. Then the inner

product ($, ) must equal zero for (4.7.11) tohave @ solution. To
see this, suppose ($, f) # 0. Then from (4. 7. 11"

3, v) = (4,0 #0
= (fq;, vl) =0
which is a conitradiction.

Thus in order for (4. 7. 11) to have a solution, the zero-order
solution, Vg, must evolve in such a way that the condition

is
of
¢

th
L

- o TN o+ e
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&,0) =0 ' (4. 7. 16)

. satisfied. This condition can be used to determine the behavior
f Vg

The first obstacle in using this result is to find an appropriate
olution for the adjoint homogenecus equation (4, 7.15). To effect
nis, note that if ¢ is a solution of the homogeneous equation
4 = 0, one can use integration by parts to show

[31odo - [$T¢do = K2 Go - 30) - vod (4. 7.17)

ince the left-hand side is zero, we find ‘d: = ¢)exp(—k129). Thus,
f we know a solution of Lo = 0, we can immediately write a
olution for L¢$ = 0. A solution for Lo = 0 is readily obtained
v noting that differentiation of {4. 7,10} gives

2

kKT, )

0,999— a (4. 7.18)

Wy glg = FVghVy o =

‘Thus ¢ = Vg o is a solution for Lo = 0 and the corresponding
solution of tle adjoint equation is

&=V, ,exp(-—58) - (4.7.19)
0,6 2
k
Since the adjoint homogeneous equation is second order, it has
rwo independent solutions. From the asymptotic form of L as
5 ~» £ o, however, it is seen that the other solution does not ap~

proach zero as 6 — . Thus there is only a single secularity
condition implies by (4. 7.15). Itis

[ne]
-V
_fwvo,e exp(kz 9)[1+VD,T—2ka’9X—}3(vD,9]de_ 0 {4.7.20)

To see that this condition implies for the functional behavior of
Vg, consider a specific example, Let

FV) = V(Vv-a)v-1) {4. 7. 21)

Then using the techniques of Section 4-2 [in particular, {4, 2. 11)
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and {4.2.12})], itis readily shown that (4.7.10) has the solution

L

V= 4, 7. 22
0 lt+expiEAN2k) ¢ )
with traveling-wave velocity

y 1l-2a

K H——«\fz (4.7.23)

If 6= 0, this is an exact traveling-wave sclution of (4.7.6). I
5+ 0, then v and k vary with X and T. How do they vary?
The secularity condition {4.7.22) must be satisfied and also the
requirement

=k 4,7, 24
Yx T T ( )
for integrability of @®. We can assume that k is independent of
T and v a constant {say -1) without violating (4. 7. 24). Since
Vg has explicit dependence only on 6 and k, (4. 7. 20) and

(4. 7. 24) can be solved for

28]
fVO 9exp(:vz g)dg
b
~© k (4.7.25)

X o0
V exp "—_le)[‘f L2k 16

—c0 3 k

Then Vg evolves according to (4. 7.22) with a velocity ulX) = k—l,
where k is obtained from integration of (4. 2.25). In the "un-
stretched™ distance scale

kx = 6kX (4. 7. 26)
Thus Vj speeds up or slows down if 6 is increased from zero in
one direction or the other.

The recent numerical studies of decremental conductance by
Khodorov and his coworkers have been much more detailed. Their
approach is to use the Hodgkin-Huxley equations in order to relate
pulse propagation through a decremental region with biochemical
manipulation. Tor example, Khodorov, Timin, Vilenkin, et al. {1970
have modeled an increased concentration of Catt by a shift in
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voltage for an, Bp,em, and B (see 3.25), as is implied by the
measurements of Frankenhaeuser and Hodgkin (1957). With a 7mV
shift toward depolarization, the traveling-wave amplitude is
reduced to 82 mV, but a 15 mV shift toward depolarization results
in decremental conduction. Khodorov and Timin (1970, 1971) have
modeled the effects of such influences as cooling, tetrodotoxin,
and narcotics, on the propagation of pulse trains over segments of
decremental paths. In general they observe a variety of rhythmical
variations qualitatively similar to those displayed in Fig, 4-26 for
widening tapers. This appears to be a most fruitful research area
for future collaboration between biochemists and electrophysiolo-
gists.

8. A SUPERCONDUCTIVE NEURISTOR

Before concluding our study of pulse propagation on a nerve
fiber it may be appropriate to consider briefly an electronic analog:
the neuristor. Coined by Crane (1962}, this generic term implies
a class of nonlinear transmission lines that share three critical
properites of the active nerve fiber: (a} attenuationless propaga-
tion of a traveling-wave pulse, (b} threshold for excitation of the
pulse, and (¢} mutual pulse destruction on collision. The partic-
ular realization to be discussed here is a superconductive neuris-
tor (Scott, 1964b; Parmentier, 1969). Pulse propagation on this
system differs in an interesting way from that found from the
Hodgkin-Huxley or FitzHugh~Nagumo models of a nerve fiber.

Figure 4-29 is a photograph of the currently available device
(Reible and Scott, 1975}, which consists of a layer of sputtered
niobium film overlaid with a narrow strip of tin (see Fig. 4-30a).
These two layers are separated by a thin (~ 50 A) insulating bar-
rier of niobium oxide through which electrons canpass via guantum-
mechanical tunneling (Giaever and Megerle, 1962). The corres-
ponding TLEC is sketched in Fig. 4-30b and, briefly, the elements
of the system are as follows:

¢ - the capacitance of the insulating barrier per unit length in
the direction of propagation;

j{v) = the ncnlinear conduction current through the barrier per
unit length;

r ~ the resistance per unit length for normal electron current
flow parallel to the barrier;
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FIGURE 4-29. Superconductive neuristor (length 35 cm} on a glass
substrate consisting of a tin strip (width 0.0064 cm}
over a niobium line {(width 0.048 cm) with an insu-

lating barrier of niobium oxide.

tnsulating barrier

~50p°
(a}

{b)

FIGURE 4-30. (a) Sketch of the superconductive neuristor, and
(b) equivalent circuit.
144
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£ - the inductance per unit length for superconducting current
flow parallel to the barrier;

v - voltage across the barrier;
1) = superconducting current parallel to the barrier;

i; - normal current parallel to the barrier.

The total nonlinear tunnel current through the insulating bar-
rier, IT(V), varies with voltage as shown in Fig. 4-31, but an ad-
justable bias current, Ig, can be introduced through appropriate
terminals so that
I (v)-1
ey o L B
j(v) = W 4. 8. 1)
If the bias current is sufficiently large, j{v) becomes zero at three
values of voltage, as in Fig. 4-8a, and energy can be released in
support of a traveling-wave pulse.

FIGURE 4-31. Plot of total Giaever type tunneling current against
voltage for @ 35 cm tin-niobium neuristor at 2.7°9K
Vertical scale: 20 mA/div; Horizontal scale:
0. 5 mV /div.
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The TLEC in Fig. 4-30b implies the PDEs

—

Py ponlle ot {4, 8. Za,b,c)

l
Q

l

i
z

i
9t £ 2

which are rather closely related to the FitzHugh~Nagumoc equations
(4, 3.1). Assuming the variables v,i;, and i, to depend only on
the moving spatial coordinate £ = x-—ut, reduces (4. 8. 2) to the

QODEs

dv ri
dg 2
di2 1
— = —rcull ~—)i, - i) (4. 8. 3a,b)
d& 2’72 ’
fcu
In the limit
A
r 0

(4. 8.2) and {4. 8. 3) reduce to the corresponding PDEs and ODEs
for the simple nonlinear diffusion (K. P. P. ) equation given in
{4.2.3) and (4, 2.4). Thus in the case

1
2 >0
the traveling—-wave solutions to (4. 8. 3) will correspond directly to
those given by {4. 2. 4) and illustrated in Pigs. 4-8, 4-9, and 4-
15. If ug is the velocity of a certain solution of (4. 2. 4), then
the corresponding seclution of (4. 8. 3) will have a velocity, u,
given by
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or

. u :%[uai\/uaz+4/zzc:1 (4.8.4)

For typical superconductive neuristors, l/\fE is measured to be
about 1/20 the velocity of light (Yuan and Scott, 1966} while u
is the order of magnitude of the pulse velocity on a nerve fiber.
Thus the inequality

a

1
o >> u {4, 8. 5)

is satisfied by several orders of magnitude and (4. 8. 4) reduces to
u s i +3u {4. 8. 6)
JVic T 27a <o

Referring back tc Figs, 4-6 and 4-7, appropriate values for uy
are #u) and #u, for the propagation of level changes and 0 for
the pulse. From (4, 8,1), however, the ratic of areas Al and 25
can be changed by a simple adjustment of the bias current, For
convenience we can define Is as the critical value of bias cur-
rent at which A = A,. Then

IB>IC:>A2>A1

IB<IC =>A2 <Al

as indicated on Fig. 4-32. This figure shows the velocity, from
(4. 8. 6), plotted against the bias current for the traveling-wave
solutions on the neuristor, which correspond to those in Figs. 4- 6
and 4-7.

The puise solution is shown in Section 5-1 to be unstable
{Lindgren and Buratti, 1969), Measurements by Reible on an
eighty-two-section electronic analog of (4. 8. 2} show that such a
pulse either decays to zero or grows to a metastable pulse in
which the leading edge travels slightly faster than the trailing
edge (see Fig. 4-33). From such data the relative velocities of
the leading and trailing edges can be readily measured and plotted
as a function of bias current. As shown in Fig. 4-34, such mea-
surements confirm {4, 8, 6) and Fig. 4-32.
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FIGURE 4-32. Plot of velocity (1) against bias current (IB) for
traveling-wave solutions of (4. 8. 2).

Thus the dynamic behavior of (4. 8. 2) for the superconducting
neuristor presents an interesting contrast to that of the FitzHugh-
Nagumo equation. The "center of mass” for the metastable pulse
has the same velocity as that of the unstable pulse. It absorbs
the exira energy necessary to satisfy the power—~balance condition
(4. 3), P = uk, not by going faster, but by growing fatter!

elo ﬁ—’—‘T’T————]——'—’W—‘T‘—'—j—-‘
=
=
Z 08 Ig = 1.3 1¢
@
o
208
o Ve &
E 04|
<
w02
£
2V 1 4 q A b [
0 z 3 10 14 18 22 26

Distance (Sections)

FIGURE 4-33. Evolution of a pulse waveform for a bias level of
Ig= L3l measured on an eighty-two—section

electronic analog of (4. 8. 2}
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FIGURE 4-34. Leading- and trailing-edge velocities for pulses
on the eighty-two-section analog plotted against
current (data confirms the predictions of Fig. 4-33).
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Companion of my griefs! thy sinking frame

Had often drooped, and then erect again

with shews of health had mocked forebodings dark;
Watching the changes of that gquivering spark,

1 feared and hoped, and dared to trust at length,
Thy very weakness was my tower of strength.

Mary Wollstonecraft Shelley

In Chapter 4 we sought traveling wave solutions for various
types of nonlinear diffusion eguations, and we expect that such
solutions will help us to understand the "level 3" relation between
neuron behavior and membrane electrodynamics. We found station-
ary solutions in the form of both solitary and pericdic waves. Qur
analytic technigue was to assume that dependent variables are
functions of x and t only through the argument § = X~ ut as
indicated in (4. 1. 3). This is equivalent to introducing the inde-
pendent variable transformation (4.1, 4) and then assuming no de-
pendence on 7 i.e. 8/aT = 0). Having found such traveling-
wave solutions, it is important to know whether or not they are
stable with respect t0O perturbations that might reasonably be ex-
pected to arise in an experimental situation, To study the time
evolution of such perturbations, it is necessary to consider the 7
dependence.

However, it should not be assumed that unstable traveling-
wave solutions are uninteresting. An unstable solitary wave, for
example, can be expected either to grow into a stable solitary
wave or collapse to zero under the influence of small perturbation.
Since it thus represents @ vwatershed” or nqivide" from which the
system can flow toward one of two stable states; the unstable

150
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solution determines the threshold conditions necessary to induce
a stable solution.

1. WAVEFORM STABILITY

To iniroduce the basic ideas of waveform stability analysis,
we investigate the K, P. P. form of the nonlinear diffusion egquation
(4.1},

Vv -V = F(V) {5.1.1)

Traveling-wave soluticns for {5, 1,1) were considered in detail in
Section 4-2 assuming a cubic form for the function FP(V). Equation
(5.1.1) is sufficiently simple for exposition and the results to be
obtained serve as a basis for stability investigation of the Fitz-
Hugh~Nagumo and Hodgkin-Huxley traveling waves.

Under the transformation {4.1.4), {5, 1L 1) becomes

Vgg + u\fg -V = F{v) {5. 1. 2)

where V is now considered a function of £ (space in a coordi~
nate system moving with velocity u) and 7 (the same time scale
as t). The traveling-wave solution VT(E) must satisfy

VT’ £c + uVT’ - F{VT) (5. 1. 3)

and a general solution of {5. 1. 2) can be considered as the sum of
a traveling~wave solution and a perturbation VP(E, s 7). Thus

VEE, T = Vo(E) + Vi (E,7) (5. 1. 4)

Substituting (5. 1. 4} into {5. 1. 2) gives

VP,§§+UVP,§_VP,T = P(Vp+VT}— F(v,.) (5.1. 5)

a5 a nonlinear and § dependent PDE for the evolution of the per~
. turbation. It is important to recognize that no approximations have

 been made in going from (5. 1. 1) to (5. 1. 5).
Investigation of (5. 1, 5) for the evolution of Vp(£, 7} subject
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to prescribed initial and boundary conditions constitutes the
nwaveform stability problem” for a traveling-wave solution of
(5. L. 2) with velocity u. This equation has been studied in con-
nection with the propagation of: (a) flames (Zeldovich and Baren-
blatt, 1959; Kanel', 1962}, (b) "Gunn effect"” domains in bulk
semiconductors (Knight and Peterson, 1967; Eleonskii, 1968), and
{c) traveling waves on "neuristors" and electronic analogs for the
nerve fiber (Parmentier, 1367, 1968, 1963, 1970; Buratti and Lind-
gren, 1968; Lindgren and Buratti, 1969; Maginu, 1971},

One approach to the study (5. 1. 5) is to assume the perturba-
tion small enough so that the right-hand side can be approximated
by

; 45 = 5
(v, + V) = L) = gy X V=GV lVp (5.1.6)

V=VT

whereupon (5. L. 5) is “linearized" to

VP, gg + UVP’g - VP,'T = G[VT(E)JVP (5. 1, 7)

Elementary solutions to (5. 1. 7) will either decay exponentially
with time, grow exponentially with time, or remain constant.
Thus, with respect to the linearized equation, we can say the
system is: (&) asymptotically stable if all elementary solutions
decay, {b) unstable if any elementary solution grows, and

{c) stable if both (a) and (b} are not satisfied.

This is a neat scheme but we must be wary of drawing con-
clusions from (5.1.7) that are not relevant to the application of
(5.1, 5) in a real situation. While we might conclude asymptotic
stability with respect to (5. 1. 7), for example, it may not be rea-
sonable to assume perturbations sufficiently small for {5.1.7) to
apply. As Eckhaus (1965) puts it, vinfinitesimal disturbances are
certainly unavoidable, but not all unavoidable disturbances may
be considered infinitesimal, *® On the other hand, if (5. 1.7) in-
dicates elementary solutions that grow, these may eventually be
bounded by the nonlinear character of (5.1.5}. SBucha bound may
be so close to the original solution that the system is, in a prac-
tical sense, stable. With these caveats in mind, let us proceed
to the analysis of (5.1 7).

* rhose who experiment with real nerve fibers will probably agree.
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It VP is constructed from elementary product solutions of the
form

: ~87
VP ~o(E)e (5. 1. 8)
then ¢ must satisfy the eigenvalue equation

¢€€ +u¢§ + {s—G{vT(g)] =0 (5. 1. 9)

The condition for asymptotic stability is that all the eigenvalues,
s, which are allowed for solutions (5. 1. 9) must have positive real
parts. This would require the magnitude of the corresponding ele-
mentary solution (5. 1. 8) to decay exponentially with time. In a
certain sense asymptotic stability is never possible. This can be
seen by differentiating (5. L. 3) for the traveling-wave solution
with respect to £ to obtain

) -G(VT}V =0 {5.110)

[\ +u(VT’§§ T,

EEY

and noting that this is the same equation obeyed by ¢ when s =
0. Thus the eigenfunction of (5.1, 9) with zero eigenvalue is
=y for s =0 (5. 1. 11)
o T, £
The physical meaning of this result is seen by considering an in-
finitesimal translation, a«, of VT along the £-axis. Since

VT(g + a} = vT(g) + aV (5. 1. 12)

T,

this is equivalent to adding an infinitesimal amount of the g =
‘eigenfunction, But we expect a translation perturbation to neither
grow nor decay, The observation that the perturbation eigenfunc—
;. Hon corresponding to zero glgenvalue is the derivative of the trav-
- -eling wave is quite general and not at all restricted to solutions of
“ {5, 1. 1), Many investigators avoid this situation by defining sta-
bility with respect to a metric that permits arbitrary translations
with € (Zeldovich, and Barenblatt, 1959; Kanel', 1962; Maginu,
-1971; Evans, 1972; Sattinger, 1976).
Next it is of interest to determine whether s = 0 is the low-
~est eigenvalue; if it is not, (5. L. 8) indicates instability. We
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make this determination with respect to the boundary conditions
5 -0 as &l = {5.1.13)

1f the change of dependent variable

& =[exp - (%)&]w (5.1.14)

ig introduced intc (5.1.9) (parmentier, 1967), 3 must satisfy the
Schrodinger equation
2
u
+ - I = L1015
“L’gg {s " G[VT(E)] b= 0 (5. 1.15)

for which the eigenvalues are real and bounded from below [Morse
and Feshbach (1953) pp. 766-8]. I s5<0, G—-G >0 as £ —
+w, and G —~Gp >0 as £ — -0, Yy must also satisfy the bound-
ary condition (5.1.13). Then s = 0 is the lowest eigenvalue if
the corresponding eigenfunction, (dVT/dg), has no zero Crossings.
This condition is satisfied for the Ylevel change” waves in Fig. 4-
6 but not for the pulse wave in Fig. 4-7. Thus the smooth level
change waves are stable with respect to the linearized equation,
but any solution for‘which vp is not monotone increasing or de-—
creasing with £ will have eigenvalues s <0, and, from (5.1.8),
will be unstable. This conclusion is independent of the form of
the function FP{V} in (5. L 1). }

This result has been extended to perturbations that are not in-
finitesimal by Maginu (1971). He expresses the right-hand side of
(5.1, 5) by a Taylor geries so that

2
v, o, - = F ip 6
Vo ee TWVp ¢ Vp , ¥ (v WVp + 2F (VVE + (5. 1. 16}

for Vp within the appropriate range of convergence. Then he finds :
a set of functions

{n)
vy }

with the property that as 7 — 0

v s d'vg
P n: ae"
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This asymptotic property is established by requiring the partial
sum

(1}
P

{2)

(n)
A +\/‘P + +VP

to satisfy (5.1.16) when the Taylor series is approximated up to
terms of order «™. Then, taking Vp as the infinite sum

<«
Vo= ) vy (5.1.17)
n:
it is seen that

Vp =Vl a) - Vo6)  as 7w (5.1.18)

This is asymptotic nonlinear stability with respect to a metric that
permits translations in the £-direction. The only restriction on
Vp 1is that it must lie within the range of convergence in (5. L. 16).
To see how this argument goes, note first that we have already
demonstrated [ through analysis of (5. I, 7)1, that Vp(” —aVp £ for
7 —¢ as long as Vo is a monotone increasing or decreasin’g
function of £.
To second order, VP(Z) must satisiy

1),%

)
p ) (5.1.19}

L@ LR @) ¢

p e Pt P r = F'(VT)V

+ 4P (VT(V

Differentiating (5. 1, 3) twice with respect to £ gives

i = ' " 2
va ceee qu’ tet P (VT)VT’ gt F (VT)VT,‘E (5. 1. 20)
The variable
W= Vl(pz) - %QZVT, ” (5. 1. 21)

obeys the equation [ (5.1.19) - %az (5.1.20)] or

Wt W, - w_ = PV )w +AFr(y )[(v(”)z— 21 (5.122)
33 g Y T T 2t Wollp “ Ve -
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But, as T-—%, this approaches

Wgg +uwg - Wg = P‘(VT)W (5.1.23)

which is identical to (5.1.7) so W —aVp £
Then from (5. L. 21} ’
2) 2

M L1
Vg +Vp (o + “1)VT,.§ b o VT’ e (5. 1. 24)

as 7 —-c, The addition of ) 10 & in the first term constitutes
a second-order correction to +he translation caused by the initial
perturbation. It can be absorbed by redefining « as (o + czl) in
(5. 1. 21) and (5.1, 22). Higher—order estimates are treated in a
similar manner.

Consider finally the nonlinear bounds on those traveling
waves, VT(g), that are not mcnotone increasing and hence unsta-
ble with respect to the linearized equation (5. L 7). These will
grow no further than the stable, monotone increasing transition
wave and will decay no further than zero. It seems reasonable to
suppose that these are the hounds of interest.

1t should be emphasized that these conclusions do not apply
to transition waves between 0 and V) in Fig, 4-7. Since the
gingular point at V] corresponds to negative differential conduc-
tance of the membrane, it is unstable even under space-clamped
conditions. The stability of such waves is studied in connection
with a problem of genetic diffusion where the dependent variable
must be less than or equal to its value at the singular point
(Fisher, 1937; Kolmogoroff, Petrovsky, and Piscounoff, 1937;
Canosa, 1973; Rosen, 1974). Aronson and Weinberger {1975} have
compared the asymptotic behavior of (5. 1. 1) for F(V) equal to
v(l - V) with that for FW) equal to V(- WV - vih

Lindgren and Buratti (1969) have investigated the stability of
traveling-waves on an exponentially tapered version of the non-
linear diffusion equation. From (4. 6. 3a)

Vo W, Y, = F(v) (5. 1. 25)

where v 1s the tapering exponent indicated in 4. &. 1). Traveling=
wave solutions identical to those indicated in Figs. 4~6, 4-7, and
4-13 are readily obtained. The only difference ig that the traveling~
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wave velocity is

u:uo+y (5. 1. 26)

where ug is the velocity that would be calculated for no tapering
as indicated in (4. 6, 4), Expressing a perturbation of a traveling—
wave as in (5, 1, 5), the correspending PDE for its evolution is

VP,E,@ + (U ~Y)VP,g_ Vo = F(VP+VT)-F(V

2

T) (5. L. 27}

Lindgren and Buratti expre-ss the right-hand side of {5.1. 27) as

F(Vp + Vg) = PV = GOV, + e (€, V) (5. 1. 28)

where the “remnant” ¢ (&, Vp) has the property

le (&,VPH
lim — _‘—I—‘ =0 (5. 1. 29)
VP* 0] JVP

Then they define the Liapunov functional (Hahn, 1963}

-

L) = 3 wWievi(e, Dat .1 30)

where W{(£) is an appropriate weighting function to be determined.
Assuming the initial perturbation, vP(g, 0), to have finite energy,
stability is ensured if L = (dL/dt) <0 for 7 >0, Asymptotic
stability requires L <o.

Differentiating (5. . 30) with respect to time and substituting
(5.1. 27} vields

co

L= w? Vol VP, ce ( —y)VP’ g—G(VT)VP—e &, vp)ae  (5.1.31)

-0

For a linear stability analysis, the remnant « is neglected and,
~ after integration by parts, (5. 1. 31) assumes the form
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W

) o B ¢ WE 2 P
i=-J {tPE +[(U"Y)W‘(\—N—) £ G Jag  (5.1.32)

where
(5.1.33}

=WV
v P
nt to choose the weighting function W) so

Now it is convenie
g/'\N) = 2u=-vy) or

i is minimized. Thus W

W = exp| il - vE] (5.1.34)

and (5.1, 2) becomes

[k e -y’ oIy (5.1.35)

ngure that L does not become positive.
sibility we can consider the variational
(5. 1. 35) subject to the energy constraint

For stability we must €
To investigate this pos
problem of maximizing

[~ 8]

f w?‘dg = const

-00

(5.1.36)

Tor this condition (Morse and Feshbach, 1953) y must satisfy the
Fuler equation
v d[s-tu-y) -G lw=e (5.1.37)
£g T
Integrating (5. L. 35) by parts and substituting (5. L. 37) gives the

maximum value for L as

fo- [syat

—0G

(5.1.38}

Thus if (5. 1. 37) has only positive eigenvalues, the linear stability :
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analysis would imply absolute stability. The corresponding com-
putation for nonlinear stability assumes e (E,VP] # 0, wiere

L= fls+el, v lptat (5. 1. 39)

From the property of the remnant as Vp — 0 that was expressed in
(5.1.29), it is clear that linear absolute stability [L <0 from
(5. 1. 38})] implies nonlinear absolute stability [L <0 from (5. L
39)]. It is only necessary to choose Vp sufficiently small
enough so that !E/V‘pl <s for any eigenvalue of (5.1, 37).

However, as we noted above in connection with (5. 1. 9), there
is an eigenfunction of (5.1, 38) with s = 0, and perturbation with
this elgenfunction simply translates VT along the é-axis. But if
we define Vp @as the difference between V(£ ,T) and a translated
traveling-wave Vr £+ ¢ where o is adjusted to minimize the
difference, then the s = 0 eigenfunction disappears from the
analysis. With this definition of Vp the fransition waves in Fig,
4-6 are stable, whereas the pulse wave in Fig. 4~7 and the peri-
odic waves in Fig. 4-13 are unstable.

For the superconductive neuristor described in Section 4-8,
Lindgren and Buratti (I1969) choose the Liapunov functional as the
sum of electric and magnetic energies or

oo
Z 1 2L gt 5
L=13/ (v + 41 )dt (5. 1. 40)

-0

where v_. and i)y, are perturbations of v({) and il(g) which
satisfy {4. 8. 3), Then

rel. = ~_fw {v;g +rGLviE)] vs}dé (5. 1. 41)

with G{v(£}] defined as in (5. 1. 6). The form of (5. 1. 41} is iden-
tical to that of (5. 1. 35}, so a corresponding stability argument can
be developed, In particular the transition wave~forms on the slop-
ing branches of Fig. 4~32 are stable, whereas the pulse on the
horizontal branch is unstable,

A corresponding stability investigation for a traveling-wave
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solution of the Fitz Hugh~Nagumo equation 4. 3. 1} is considerably
more difficult because the linearized problem is of third order.
Thus the eigenvalue problem, corresponding to (5.1.9), cannot be
made gelf-adjoint and the eigenvalues are generally complex. The
eigenfunction for s = 0 is still Vp £ but there is no simple re-
lation between the number of zerc crossings of the eigenfunctions
and the order of the real parts of the corre sponding eigenvalues.
However, We have already shown branches O and ® of the
singular orbit @ in Fig. 4-1la to be stable, which is consistent
with the numerical results of FitzHugh (1969) and Rinzel and Keller
(1973) indicating stability along the high-velocity branch for par-
ricular functions FV).

In a series of papers Evans (1972) has investigated a general-
jzation, of the Hodgkin—Huxley equations with the form suggested
py FitzHugh (1969)

vy -V = L
e Tt FO(V,wl, ’Wn) (5. L. 42)

w, :Fi(V,wl,---,wn) i=1,---,0

where the T values are twice continuously differentiable. This
set reduces to: (a) the K. P. P. equation for n = 0, {b) the
FitzHugh-Nagumo equations with n = 1, and {c) the Hodgkin-
Huxley equations with n = 3. Writing Ww=colV,wy, " 5>%Wn
and assuming a traveling-wave solution of the form Wix,t) =
Wopl-ut) = wolt), a general solution can be written WI{E, T) =
WrlE) + Wwplg, 7). The linearized equaticn for Wwp is then [as in

(5.1. 7)1

Ve, &6
0

0 suW. - W, = AW (5.1 43 F

0
where A is an (n+l) x {n+d) matrix with elements obtained by
differentiating the P wvalues with their arguments and evaluating
at W, Evans shows:
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1. The solution for (5. 1. 42} decays exponentially to Wel(E+
@} (from a suitably small initial perturbation) if and only
if the solution for (5. L. 43) decays exponentially to WT £

*

2. The solution for (5.1, 43) decays exponentially to WT £
if and only if the associated eigenvalue eguation !

%0t
0
0 +ug‘t>g +{s-MN®=10 (5. 1. 44)
0
L A
where
&= collyy, ¢, <+, ¢)

has no eigenvalues with negative real parts;and &= WT £
is the only eigenfunction for s = 0. !

A similar result has quite recently been obtained by Sattinger
{1976) for a more general system that allows the F functions in
(5. 1. 42) to depend on the Wi . The zero eigenvalue of the linear
operator must be isolated at the origin of the complex plane, and
the remaining eigenvalues must lie within a certain parabola in the
right half plane. Evans {1975) has extended his work to show that
there must be an unstable pulse as well as a stable pulse.

Thus far we have restricted our attention to the notion of
temporal instability, that is, an unbounded growth with time of a
perturbation that is bounded in space. We might also consider
Spatial instability: an unbounded growth with space of a perturba-
tion that is bounded in time. For a propagating pulse that is con-
strained to approach zero as x —+ w0 these two notions are the
same; the disturbance is bounded in both space and time; and growth of
the peak (say) with time is equivalent to growth with space. Rinz-—
el (1975a, b) has recently emphasized that the matter is not so
simple for periodic traveling-waves. From a numerical study of

“perturbations of the periodic waves discussed in connection with
“Fig. 4~14, he has shown that the conditions for spatial and tem-
poral stability do not necessarily coincide. Furthermore, for
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“signaling” experiments in which a fiber 1is stimulated by a peri-
odic disturbance of fixed amplitude at & fixed point (by an electro-
physiologist or a sensory input}, spatial instability is of primary
interest. i

The condition for spatial instability is simply stated for the
periodic waves in Fig. 4-14 with reference to the corresponding
Yfrequency-wave number” plot shown in Fig. 5-]. Herefrequency
i =1/T and wave pumber is 1/, where T and A are, respec-
tively, the temporal and spatial periods of the wave, Evidently
the traveling wave velocity is given by

u = ir (5. 1. 45)

The transition from spatial stability to spatial instability occurs
at the maximum frequency, fmax" This is the frequency at which
—dfl—— (5. 1. 46)
d(x) =0

Larger velocities are spatially stable and smaller veloctties,
spatially unstable. Rinzel (19753, b) found temporal instability

at fpax for ¢ = .05 with several values of Vi, as defined in

035

el
@

e}
2
o

=3
]

QOI5—

Frequency (f)

Eel]

o] .0z 04 06 08 A Jd2 14 16 18

Wove number {—Ix) —

FIGURE 5- 1. Plot of frequency against wave number for periodic
traveling-wave solutions of the FitzHugh-Nagumo
equation with F(V) defined as in {4.3.21}, ¢ = 0. 05,
a=0, and b= 0 (redrawn from Rinzel, 1975).
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(4. 3, 21). Furthermore fma.x does not occur at the minimum value
of M\ so a certain portion of the upper branches of the curves in
Pig. 4-14 will be spatially unstable.

The stability investigation of waveforms on myelinated fibers
is yet to begin. Beyond the speculations associated with Nasanov
diagrams {(see Fig. 4-21), there is only the work of Predonzani and
Roveri (1968), which treats equilibrium stability of a lossless
transmission line that is pericdically loaded with active bhipoles.
Thus much remains to be done before the study of waveform sta-
bility is complete.

2. THRESHOLD FOR A SPACE-CLAMPED MEMBRANE

Although we are primarily concerned with the excitation of a
propagating action potential on an active nerve fiber, it is inter—
esting to begin with a brief consideration of threshcld effects on
the space-clamped membrane indicated in Fig. 3-7. A classical
threshold experiment is to measure the relation between the
strength and the duration of a stimulation just sufficient to induce
an action potential on the membrane. Tor convenience let us sup~
pose that the total membrane area in Fig. 3-7 is 1 cm? and assume
that llz(t) is a sguare pulse with the form

Ilz(t) =0 for O0>t>n7T

=1 for 0<t<T

The point of the strength~duration measurement is to increase I
and/or 7 until the action potential is observed and then record
the relation I(7).

A rough idea of what should be expected can be found by con-
sidering the equivalent circuit for the membrane in Fig. 4-5. This
linearized representation should be approximately correct below
threshold, where the effects of nonlinearities have not yet become
dominant. Since Ilz(t) is a step function at t = 0, it is conven=~
ient to use the Laplace transform technique (Gardner and Barnes,
1942) to find the resulting membrane voltage as a function of time.
The membrane impedance is

s + R/L
%+ Rs/L+1/LC

z = (5.2.1})

L
G
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where s is complex frequency. The Laplace transform of a cur-
rent step with amplitude I is I/s so below threshold the Laplace
transform of the voltage will be

Llvit)] =?15 ———#‘/—-’ZSJFR = (5. 2. 2)
s(s“+Rs/L+1/LC)

and the voltage across the membrarne as a function of time can be
cbtained by inverting this fransform. If it is assumed that V) is
a threshoeld voltage above which the membrane will exhibit an ac—
tion potential, the strength-duration curve for threshold can be de-
termined by setting

fvir) = Vl (5.2.3)

The limiting cases for long and shert values of 7 are easily de-
termined since large values of t correspond to small values of s
and vice versa. Thus for short times (5. 2. 2) becomes approxi-
mately

L] 8T (5, 2. 4)
Cs
or

v (t) :'I(‘:‘ t (5.2.5)

Setting v equal to the threshold veoltage (Vl) and t equal to the
duration of stimulation {7} as indicated in (5.2, 3) yields the rela-
tion

Ir ~ "\/'lC {5. 2. 6)
for v << L/R. The fixed quantity of charge appearing on the right-
hand-side of (5. 2. 6) is the charge that must be supplied to the
membrane capacitance in order to change its voltage by an amount
equal to the threshold voltage. If, on the other hand, 7 >> L/R,
then (5. 2.2) becomes approximately

Rlvit)] =7 (5.2.7)
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or

v = IR (5. 2 8)

Requiring that v = V; in (5. 2. 8) implies a "rheobase™ current
equal to (V}/R). But overshoot in the voltage response to a cur-
rent step [ which was clearly indicated by Hodgkin and Huxley
(19524} and reemphasized by Muro, Conti, Dodge, et al. (1970)]
will permit the voltage to reach threshold at stimulating currents
less than (V]/R). Thus (V}/R)} should be considered as the rheo-
base when current is slowly increased.

This discussion greatly oversimplifies the dynamics involved
during excitation of a real active membrane. For a survey of the
history of strength-duration measurements and a thorough discus-
sion of current research problems, the reader is referred to Chap-
ters 6 and 7 of Khodorov's The Problem of Excitability, which has
recently been puklished in English. Particular problems which re-
quire more careful consideration include the following:

a. Definition of Threshold Voltage.

As Khodorov (1974) has emphasized, there is not an unambigu—
ous definition for the threshold voltage. In general the time deriv-
ative of the membrane voltage is

== _ L (5‘72'9)

where I;, is controlled by the experimenter (see Fig. 3-7) and i)
is the ion current that should, in principle, be calculated in some
precise way such as through the Hodgkin-Huxley equaticns (3. 2, 3).
For a very short stimulating pulse, 112 = 0 when the threshold is
reached, so the condition can be defined as

Ii <0 (5. 2.10}

or

INa > IK + IL (5.2.11}

For a very long pulse, however, I}# 0 and the threshold voltage
might be defined as the point where upward curvature of voltage
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begins. This implies

2
g%’ >0 (5.2.12)
dt
or
dI dr. dI
——1\]—51>——](—-+—-—L~ (5. 2. 13}

dt dt dt

Defined in this way, the threshold voltage can vary by several
millivelts as the strength of the stimulating current is changed.

b. Accomodation.

If has long been an established experimental fact that a slow
turn—on of the stimulating current leads to the observation of a
higher rheobase current. Although this effect is gualitatively pre-
dicted by analysis of the simple membrane equivalent circuit in
Fig. 4-5, some related effects are not. In particular a “minimum
slope” for increase of the current stimulation with time is often
observed (Khodorov, 1974}, Below this minimum slope no acticn
potential is observed at any level of stimulating current, Typical
values for the minimum slope are often of the order of 0.1 rheo—
base units per millisecond. This effect is predicted by the com-
plete Hodgkin-Huxley equations, and it comes about because with
a slowly increasing voltage the sodium turn-off (see hg in Fig.
3~12} can hold the inward sodium current to a sufficiently low
value. There are other adaptation effects (FitzHugh, 1969) with
time constants of the order of a second that are not reprasented at
all by the Hodgkin-Huxley equations.

3. THRESHOILD FOR AN ACTIVE FIBER

An experimental arrangement for measuring the strength dura-
tion curve for threshold excitation of a propagating action poten-
tial on a nerve fiber is indicated in Fig. 5-2. Computations by
Cooley and Dodge (12 66) of strength—-duration curves for the Hodg-
kin-Huxley axon are presented in Fig. 5-3, and these agree well
with experimental results (Noble and Stein, 1966; Cole, 1968;
Khodorov, 1974). It is important to notice that for small values of
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the duration {r}) Fig. 5-3 takes the form

Ir=Q

A {5.3.1)

where Qg is a constant threshold charge just as (5. 2. 6). In this
section we shall be primarily concerned with the computaticn and
physical understanding of this charge.

To begin let us proceed as in the previous section and repre-
sent the shunt admittance per unit length of the fiber below thres-
hold as (Scott, 1973a)

s° 4 rls/l +1l/1c

y=c (5. 3.2)

s + rl/,E

Then the voltage at the input terminals, v{(0,t), will be related to
the input current by the characteristic impedance, Z,, of the fiber.
This is the sguare rcot of the series impedance per unit length di-
vided by the shunt admittance per unit length (Scott, 1970), Thus

to CRO

\-—>
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(b)

FIGURE 5-2. (a} Strength {I) and duration (r) for a threshold
measurement; {b) experiment to measure strength-
duration curves for a nerve fiber.
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FIGURE 5-3. Calculated strength-duration curves for the Hodgkin-
Huxley axon (Cooley and Dodge, 19 66).

T
7 = [-£ (5. 3. 3)
¥

(5.3.4)
2

1
S +s T
£ fc

Again the Laplace transform of a current step of amplitude 1 is
1/s, so the transform of the voltage at the input terminals

z
LIv0,0] = I—S'Q (5. 3. 5)

The inverse of this transform can be obtained from tables (Roberts
and Kaufman, 1966} by convolving
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LH—L | witn Lt

to obtain

T aexp (— r_lt)
v(0,1) = IJ_CE el RS BN \ﬁ')

Tt £

@exp( 0 [l

\ Lc 12

(5. 3. 6)
where the symbol & denotes convolution or

oo

alt) ® b(t)= [ al)olt - v)dy

= b{t) ® alt)

The error function is defined as
5 z _ 2
erf(z)= = f e ¥
o

and J, is the zeroth order Bessel funciion as defined by Watson
(1962).

Now if we attempt to derive a strength duration curve, as in
(5. 2. 3), by setting

v(,7) =V, (5.3.7)

the axial current
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1
0,7} == v (0,7) {5. 3.8}
r X
s
is being neglected. Tor small values of 7, this means that the

. sodium component of membrane current must supply not only the
potassium and leakage compcnents, as indicated in (5. 2. 11), but
also the axial current. If 7 is long enough, then v, will be
small at the input end. This critical value of 7 should be of the
order of VIC {see Fig. 4-5), which is the time necessary for ion
current to begin to flow through the membrane. Thus (5.3.7) is
applicable only for stimulations of duraticn

T >lc (5.3.9)

To plot solutions of (5. 3. 7) it is convenient to normalize as

T
Tn T JIc
(5. 3.10a,b)
Nrr
I =1 sl
n Vl

and thus the strength-duration curve {5. 3. 7) becomes

n e—Ay -1

I = )\df Nev e + erf Ay} [exp(—%A(’r’n-y))IO( l-ZA2 (’Tn‘Y))]dY

(5. 3. 11}

AEr\/;g (5. 3. 12}

(which is the reciprocal of the membrane "Q') and the restriction
(5. 3. 9) becomes

T >1 (5. 3.13)
n
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Strength-duration curves for various values of the constant A
in (5. 3. 11} are plotted in Fig. 5~4. The following points should
be noted:

1. Comparison with Fig. 5-3 shows that (5. 3. 11) is clearly
incorrect when the ineguality {5. 3. 13} is violated. In-
deed, (5. 3.1l) implies W7 = constant for small 7 rather
than the condition (5. 3. 1}.

2. The dashed lines in Fig. 5-4 indicate the actual values
plotted from (5. 3. 11). According to (5. 3.7), however,
threshold is reached when the highest value of voltage
reaches the threshold, V). Thus the solid lines in Fig.
5-4 are drawn with the assumption that firing takes place
on the voltage "overshoot. "

3. The observation by Mauro, Freeman, Cooley, et al, (1972)
on squid fibers indicates a larger voltage overshoot for a
lower temperature. In terms of the simple membrane
equivalent circuit {Fig. 4-5 ), this implies a larger mem-
brane *Q" at lower temperature or, from (5. 3.12), a
smaller value of A. Thus Fig. 5-4 gqualitatively explains
the "cross-over” of the threshold curves displayed in
Fig. 5-3.

4, The increase in rheobase for a slowly increasing stimula-~
tion is indicated on Fig. 5-4 for the curve A = 0.3. If
the fiber is stimulated with a step of current, there will
be a considerable overshoct and the rhechase will be
Rh 1. If, on the other hand, the stimulating current is
slowly raised (e.g., as a linear ramp function), the over-
shoot will not occur and the larger rheobase (Rh 2) will
be observed. Of course the caveats outlined in the pre-
vious section concerning the qualitative nature of this
representation still apply. In particular, (5. 3.1l) does
not predict a minimum gradient for excitation.

But how are we to calculate the strength—duration curve when
7 1is short, so that longitudinal current away from the input cannot
be neglected and {5. 3. 7) does not apply? What is the physical
significance of the threshold charge Qg that appears in (5.3.1)?
In order to answer these gquestions it is helpful to turnour atten-
tion briefly toward the threshold problem for the superconductive
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10 T T T T T T T T T T

Qo.g

0.

™03

™S~

A< O
T Sj«—Rh2

In
«—Rh1

y | | L ! 1 ! 1 1 ] 1

ot 1 | 10 50

TIGURE 5-4, Normalized strength-duration curves calculated from
{5. 3.11), which assumes threshold is achieved when
the input terminal voltage changes by a fixed value
(v;}. This assumption is only valid for 7, > 1.

neuristor which was introduced in Section 4-8. Equations (4. 8.2a)
and (4. 8. ¢) can be combined into the conservation law

o(ei)
v 1 -
px T ot 0 (5. 3.14)

where v is the flow of the conserved quantity and £%) is its
density. Thus the conserved quantity is the magnetic flux

a=1] 1 .3,
flldx (5.3.15)

-0

From a physical point of view it is not at all surprising to find
magnetic flux conserved in a region between two superconducting
boundaries, but analytically it is rather convenient. If the stimu-
lation is a voltage pulse of strength V and duration 7, the
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magnetic flux introduced by the source is just Vr. To achieve
threshold this flux must be sufficient for the unstable pulse indi-
cated on the horizontal line of Fig. 4-33, Calling the flux of the
unstable pulse @p{lp), the threshold condition on strength (V)
and duration (7} is simply (Scott, 1973a)

VT = @P(IB) (5. 3.16)

If this much fiux is supplied, the pulse can grow into the stable
leading and trailing edges as indicated in Fig. 4-32. Threshold
levels of strength are plotted against duration in Fig. 5-5 from
measurements on the eighty-two-section analog of {4. 8. 2) dis-
cussed in Section 4-8 (Reible and Scott, 1975). FEvidently (5.3.16)
is well satisfied. The decrease in ®p with increasing bias cur-
rent (Ig) arises because the ratio A, : &y Increases {see Pigs.
4=7 and 4~3l), which reduces the amplitude of the unstable pulse.

=
= o m
Z osl -
& osl- Bios Level —
3 40.961c
= pak o 1.031c _
E— o 115 1c
<
& o2 -
=1
a
> of | I N | I B

I 2 4 & 810 20 40 60 BO OO

T - Pulse Width (g5}

FIGURE 5-5, Plot of strength (V) against duration (v} for thresh-
old excitation of the superconductive neuristor dis-
cussed in Section 4-8. Measurements were made on
the eighty-two-section electronic analog of {4. 8, 2).
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Now we can use the same concept to understand (5. 3.1). To
see this, note that the second Hodgkin-Huxley equation {4, 1. Ib})
can be written as the approximate conservation law

2, alev) g (5. 3. 17)
ax at

as long as the ion current density through the membrane is small
compared with the displacement current density. From (4. 1. 1b)
this requires

gv

_Ei—t {5. 3, 18)

<< e

Inspection of the many computations of threshold stimulation by
Khodorov {1974), and in particular the 2.05-cm point in Fig. 4-25,
shows that the ineguality (5. 3.18} is satisfied during the estab-
lishment of a threshold pulse on the fiber. For the approximate
conservation law (5. 3.17}, 1 is the flow of the conserved gquantity
and cv is its density. Thus the conserved quantity is electric
charge, which is just what we wish to determine for (5. 3. 1). In-
tegrating the flow over time on the leading edge of a threshold
pulse gives

Q= [ dar (5. 3.19)
LE

which from (4. 1. la) can be written

’-ﬂl,_

av
Q. =~ [ ~-at
g iE Bx

S

Now the threshold pulse is a traveling wave of the form v{x- uBt),
where ug is the velocity on the lower (unstable)} branch of Iig.
4-4, Thus

e L 2v
[ibed uB at
and (5. 3. 20)
V .
Q. = B
6 r_u
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where VB is the amplitude of the threshold pulse. The accuracy
of this equation is easily checked. For the Hodgkin-Huxley axon

ro= 1.94 x 106 ohm/m

whereas from Fig. 4-3 (curve b) at 8. 5°C

ug = 5. 66 m/sec
18 %10 v

1

Va

Thus (5. 3. 20} gives
-9
Q‘9 = 1,64 x10 ~ C atls, 5°C

whereas the corresponding value from the Cooley and Dodge {1966)
calculations in Fig, 5-1 is

Q, = L33 x 1079 ¢ at 18, 5°C

Considering the simplicity of (5. 3. 20} this is rather good agree-
ment.

It is interesting to compare the charge required to bring a fib-
er to threshold with the charge stored in the leading edge of a ful-
ly developed action potential, Q. Just as in (5. 3. 20) this lead-
ing edge charge can be computed as

Q =" {5. 3. 2I}

where Vp and up are the amplitude and velocity of a fully devel-
cped action potential., From Hodgkin and Huxley (1952d} at 18.59C

V, = 90.5mV sothat Q= 2.48 X wlc

u, = 18.8 m/sec

whereas at 6. 3°C

-9
VA = ]02.1 mV so that QO =4,14x10 C
u, = 127 m/sec
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From the Cooley and Dodge (1966) calculations in Pig, 5-1

Q, = 173 % 1070 ¢ at 6, 300

Thus, in general, we can write

Q.=aQ (5.

G o
where for the Hodgkin-Huxley axon

o= 0.54 at 18, 5°C

= 0.42 at 6.3°C

This axon carries on the leading edge of a fully developed acti
potential about twice the amount of charge required to excite a
threshold pulse,

These considerations are pertinent to the problem of blockag;
of the action potential at a point of abrupt widening {see Secti
4-6), The pulse should fail to pass when the leading edge chargs
carried into the discontinuity by the smaller fiber is insufficig
to supply the threshold charge requireql by the larger fiber. 8i
pulse velocities are proportional to aZ (where a is the fiber
radius) and the series resistance 1s proportional to a“z, the leg
ing edge charge in (5. 3, 21) can be expressed as

where k is a factor that is independent of fiber diameter. Like
wise the threshcld charge can be writien :

_ 3/2
Q@ = wka

where the factor o is approximately equal to % and relatively
insensitive to temperature for the Hodgkin-Huxley axon. Howev:
the leading edge charge that an action potential carries into & di
continuity will be greater than that given in (5. 3. 23) because, a
we saw in Section 4-6, the pulse slows down on approaching an
enlargement. Thus the condition for passage of a pulse can be
pressed as
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3/2

a
s < £ (5. 3. 25)
@

¢ is the factor by which the incoming pulse increases its
ng.edge charge as it approaches the discontinuity-

+ is interesting to compare this result with (4. 6. 34) obtained
astushenko and Markin (1969). To estimate ¢ we cah assume
ncoming charge is proportional to the pulse amplitude and in-
ely proportional to its velecity, as indicated in (5. 3. 21). For
sdgkin-Huxley axon at 20°C, Berkinblit, Vvedenskaya,

tenko, et al. (1970) report:

The abrupt widening of a nerve fiber (more than 5. 5 times)
eads to blocking of the impulse. Widening less but close to

tical leads to a sharp drop in the amplitude of the a. p. (to
0~30 per cent of the initial value) and sharp slowing of the
peed of conduction (from 18 m/s to 2 m/s) which determines
he considerable delay in conduction on passage of the im-
ulse through the widening.

‘implies ¢ £ 3. Taking @ = 3, (5. 3.25) then indicates

g at a critical ratio greater than 3, 3 which is in agreement
he result of Pastushenko and Markin (4. 6, 34) but somewhat
an the actual ratio of 5. 5,

ssuming « = % and a critical expansion ratio of 5. 5, (5.3.25)
§ t = 6,44, which does not appear to be inconsistent with
merical results of Berkinblit, Vvedenskaya, Gredenko, et al
Further studies would certainly be of value. We return to
nsiderations in Chapter 6 when we consider conditions for
ng of impulses at the branching of an active fiber.



Pulse Interaetions on
the Multiplex Neuron

Visible, invisible,
a fluctuating charm
an amber-tinctured amethyst
inhabits it, your arm
approaches and it opens
and it closes; you had meant
to catch it and it quivers;
you abandon your intent.

2

%
Marianne Moore

In Chapters 4 and 5 we have considered the nature of propa—
gating nerve impulses, how they interact with nonuniformities of
a nerve fiber, and the conditions necessary to induce them, We
are now in a position to augment this discussion of level 3 in the
scientific hierarchy by investigating the interactions of pulses in
and between neurons. Those of us with a background in the phy-
gical sciences often underestimate the functional complexity of a
single nerve cell, describing it as a simple device that compares
a weighted sum of dendritic (input) signals with some "threshold”

* From The Complete Poems of Marianne Moore. Copyright © 1959

by Marianne Moore. Reprinted by permission of the Viking Press
and of Faber & Faber Ltd.
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level above which an output pulse is transmitted along a branching
axon. No better introduction could be suggested to the variety of
structures exhibited by real nerve cells than a few hours with
Ramdn y Cajal's Histologie du Systeme Nerveux. From this clas-
sic work the present author extracts only one drawing, namely,
the Purkinje cell of the human cerebellum shown in Fig. 6-1, The
vast aborization of the dendritic fibers accepts some 80, 000 syn-
aptic inputs (Ec’cles, 1973} from "parallel fiber” axons of the
granule cells (a) in Fig. 1-2, Studies with the electron microscope
{Hamlyn, 1963; Poritsky, 1969) indicate a very complex encrusting
of cell bodies and even axons with synaptic contacts as is indi-
cated in Fig. 6-2. On the axonal (output) side it is often assumed
that the "parent” fiber excites all "daughters” at each branching
point so that the signal travels without interruption to every distal
{distant) twig, but experiments by Barron and Matthews (19 35),
Krnjevi¢ and Miledi (1959), Chung, Raymond, and Lettvin (1970),
Parnas (1972), and Grossman, Spira, and Parnas (1973) cast doubt
on this simple picture. In these studies, the branch pecints of
some axons emerge as regions of low safety factor where high-
frequency blockage, alternate firing, and other forms of informa-
tlon processing can occur. Branch-point conductance might be
influenced by small changes in local geometry and electric coupl-
ing, thus providing locations for modification of neural transmis—
sion or learning. On the dendritic (input) side of the nerve cell
body, the situation is even less clear. There are experimental
results indicating that information proceeds through the dendritic
trees of some neurons by purely passive means (Purpura and
Grundfest, 1956; von Euler, Green, and Ricci, 1956; Grundfest,
1958), and a corresponding mathematical theory of passive den-
drites has been developed (Rall, 1953, 1862a,b, 1964, 1967;
Pokrovskii, 1970) that essentially involves a linearized diffusion
equation with space dependent coefficients. But experiments in-
dicating passive dendritic conductance are open to various inter-
pretations (Bishop, 1958; Eccles, 1960; Rall and Shepherd, 1968;
Rall, 1870; Bogdanov and Golovchinskii, 1970), and there have
been several studies implying that action potentials can propagate
at least on the larger branches of some dendritic trees. Lorente
de N& (1960), Arshavskii, Berkinblit, Kovalev, et al. (1965),
Llinds, Nicholson, and Precht, (1969), Pastushenko, Markin, and
Chizmadzhev {1969 a, b}, Gutman (197)), Berkinblit, Dudzyavichus,
and Chailakyan (1971), Scott {1973b), and Gutman and Shimoliunas
(1973) have pointed out that the dendrites should be zable to perform
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elementary logical operations at branching points if they can pro-
pagate action potentials or even decremantal pulses. In simple !
terms, the branch may act as a logical "OR" if a pulse on either
daughter can supply sufficient charge to excite a pulse on the
parent; otherwise, it may act as an "AND",
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FIGURE &-1. Purkinje cell of the human cerebellum (Ramdn v Cajal,
1952).
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Schmitt, Dev and Smith {1976) have recently suggested that
the current state of knowledge concerning neuronal circuitry is
undergoing a “gquiet revolution. * In their words:

The new view of the neuron, based primarily on recent
electron microscope evidence and supported by intracellu-
lar electrical recording, holds that the dendrite, far from
being only a passive receptor surface, may also be pre-
synaptic, transmitting information to other neurons through
dendrodendritic synapses. Such neurons may simultaneous-
ly be the site of many electrotonic current pathways, in-
volving components as small as dendritic membrane patches
or individual dendrites. Electrotonic currents, originating
in various loci, flow through a vast network; the informa-
tion-processing product of these currents is transmitted to
other brain regions by projection neurons-- that is, neurons
with long axons.

Thus we are led to consider a nerve cell to be at least
as complex as the “"multiplex neuron" suggested by Waxman
{1972) and reproduced in Fig. 6-3. Waxman describes four
distinct regions of infermation processing in a single cell as
follows:

1. The dendritic regicn in which both excitatory and inhibi-
tory synaptic inputs are summed and (possibly) logical
decisions are made at branches {shaded).

2. The nerve body and initial axon segment as shown in
Pig. €-2b. Even the initial segment{or "axon hillock ")}
receives synaptic input to assist in its decision to fire
the axon.

3. The axonal tree, which is often covered by a myelin
sheath that restricts membrane current to active nodes
and thereby speeds conduction. These nodes can receive
inputs and, again, information processing may occur at
branches.




The Multiplex Neuron 183

4. The synaptic outputs, which can be modified by input
contacts from other cells, ©

’/(D DENDRITIC REGION
N
j@ NERVE BODY

NTIAL A
SEGMENT—

MYELIN SHEATH.__; (@ THE AXONAL TREE

ACTIVE NODES—

/@ SYNAPTIC QUTPUTS

FIGURE 6-3. The multiplex neuron., S8haded regicns have low
thresholds and may perform logical operations.
Redrawn with permission of Dr. 8. G. Waxman,
Harvard Medical School; from Brain Res. 47:269
(1972).

In the present chapter we consider some of the ways in which
pulses can interact while propagating along the fibers of a multi-
plex neuron. The intent is not to exhaust the subject but to in-
troduce a class of problems that should be of increasing interest
during the next few years.

o

In the jargon of integrated circuit technelegy, a nerve cell may
be more like a "chip” than a single "gate™.
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1. SINGLE FIBER INTERACTIONS

The well-established experimental fact that two oppositely
directed nerve pulses will annihilate each other on collision is
readily understood for the FitzHugh-Nagumo nerve model from our
previous development of leading—~edge dynamics. Consider the
interaction of two oppositely directed leading-edge transitions
shown in Fig. 4~6. If the approximate conservation law (5. 3.17)
is assumed, then together with (4. L. la) the leading-edge inter-
action is governed by a linear diffusion equation that can be
written
_az—(v—‘\])m'rc—a‘(v—\l) {6. 1. 1)

2 s e

BXZ a8t 2

Thus we expect a relaxation toward v = V, for j{v) as indicated
in Fig. 4-6a if (6. 1. 1) remains valid until the voltage rises above
V). As soon as {v - VZ) lies within the range of convergence for
the Taylor series expansion for j{v} about V,, v must decay to
Vy. Interms of (5. 3.21) we can say that the net approximately
conserved charge for the leading edges is zero. Referring back to
Fig. 4~12 for the action potential of the FitzHugh~Nagumo equation,
we expect next a slow relaxation with a time constant 7, (3.2.4a).
The third stage is the interaction of the trailing edges which, ac-
cording to the same argument emploved for the leading edges,
should bring the voltage to a negative value followed by a slow
relaxation toward zero,

For the superconductive neuristor which was discussed in
Section 4-8, the dynamics of pulse collisions is somewhat more
complex. If, as in Fig, 64, Iz mI~ (so A m Az in Flg. 4-6),
pulse destruction is observed on the electronic analog of (4. 8. 2).
If Ig> 1.2 1o, the pulses return to their full amplitude as shown
in Fig. 6-5.

2. PARALLEL FIBER INTERACTIONS

No more than a glance at Fig. 4-18b should be necessary to
justify an interest in the interactions of pulses on parallel fibers.
Indeed, as early as 1882 Hering used nerves from Kaltfrosche
(frogs that had been kept in a cellar at about 0°C for several
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Section 4-8.
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months) to unambigucusly demonstrate the excitation of action po-
tentials by-those on an adjacent fiber. Since that time, this
"ephaptic conduction” has been confirmed by many other investi-
gateors (Jasper and Monnier, 1938; Arvanitaki, 1940, 1942; Rosen-
bleuth, 1941: Renshaw and Therman, 1941) as long as care was
taken to enhance the excitability of the second fiber (Granit,
Leskell, and Skoglund, 1944)., A more subtle effect is the influ-
ence on the threshold of a fiber by an action potential on. an adja-
cent fiber (Otani, 1937; Katz and Schmitt, 1939, 1940, 1942; Blair
and Erlanger, 1940; Renshaw and Therman, 194]; Marrazzi and
Lorente de N&, 1944; Grundfest and Magnes, 1951). Functionally
significant nalectrotonic” interaction between giant axons of poly=
chaete worms has been described by Bullock (1953) and between
dendrites of electromotor neurcens in the mormyrid fish by Bennett,
Pappas, Aljure, et al (1967). Whether such effects are important
in the operation of the large cortical mass of cells in the mamma-
lian brain (see Fig. 1-4) remains an open question.

Working with a pair of naturally adjacent, unmyelinated fibers
from the limb nerve of a crab {see Fig. 6-6), Katz and Schmitt in=
troduced a reference pulse at AB on fiber @ and at a later time
measured the threshold for fiber @ at CD. The result is record-
ed in Fig. 6-6b and can be interpreted as a stimulation of fiber @
that is roughly propertional to the second derivative of the mem-
brane voltage {or, from (2. 30), the membrane current] in fiber @.

To state this point in more physical terms, the total membrane cur- ]

rent is outward when the action potential on fiber (T begins to
rise; this tends tc hyperpolarize fiber @ , which increases its
thresheld., Near the peak of the action potential,membrane current
is inward (mostly Nat) on (© , which tends to depolarize @ and
decrease its threshold. Finally on the falling phase of the action
potential on O, its membrane current is outward (largely KH)
which tends again to hyperpelarize fiber @ .

Katz and Schmitt also observed the effects of mutual inter—
action between impulses simuitaneously initiated on the two fib-
ers. This effect produced various combinations of speeding or
slowing, depending on the phase relation. In particular, synchro-
nization of the pulses could be observed if their independent ve~
locities did not differ by more than about 10%. All interaction ef-
fects could be increased by reducing the conductivity of the inter-
stitial fluid. Similar effects have been observed by Crane {1964)
on neuristors and by Kunov (1966) on electronic analogs for nerve
fibers.
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FIGURE 6-6. (a) Experiment of Katz and Schmitt (1939) to measure
pulse interacticn between parallel fibers; (b) change
in threshold on @ caused by the presence of a
pulse on @ .
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Recently Markin (197061, b) has developed a nonlinear theory
for parallel fiber interactions. Starting from a TLEC representing
two unmyelinated fibers that share the external madium (Patlak,
1955), he derived a pair of coupled nenlinear diffusion equations
with the form

A ( .

VL6 5V T o e T )

{6, 2. la,b)

o T3V s T C2V2eT U2

1
vyl gy,
Where r, ¢,i], @ad v] are the series resistance/length, shunt
capacitance/length, membrane ion-current/length, and transmem-
brane voltage for fiber @ and similarly for fiber @ . The inter-
. stitial resistance/length is rq and y=rr; +r)rq +rpr3; sc as
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rq — a, (6. 2. 1} become two uncoupled equations with the form
(2. 30).

For an analytical study of the interaction effects, Markin uses
the Markin-Chizmadzhev (1967) representation for nonlinear pulse
propagation which was introduced in Section 4-4. Each fiber is
assumed to carry a “piecewise constant” ion current as indicated
in (4. 4. 1) or Fig. 4~15a. The corresponding pulse voltages are re-
solved into two components as

vy v 6 v, (E)

(6. 2. 2a,b)
v, = v, B v, )
where
g, = x~ut
: . (6.2.3a, b)
EZ = X- uzt + 8

The components vj; and v,, are the inherent pulses on fibers
D and @ traveling at velocities uj and u,, respectively. The
components vy and vp; are the induced voltages from @ to
@ and vice versa. The parameter § is the distance which the
inherent pulse on @ lags behing the inherent pulse on D.
Assuming vy, = 0 and making approximations corresponding
to those in (4. 4. 9), Markin (197 0a) shows that the stable velocity

on @ is

T r, +r
2

4= l2 rr +rr3+rr (6. 2.4)
v 12 2°3 13

The maximum depolarization potential induced on @ is

7 r C
lek ~ (I_Z) (?—3;—) (::L) Vl (6. 2. 5)
max 1 273 2 _

where Il and Iz are the piecew‘ise constant ion current levels
assumed for fiber (O just as in Fig. 4-15a. In a more detailed
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study that proceeds from electromagnetic theory, Clark and Plons-
ey (1970} confirm that parameters affecting ry are of particular
importance in determining fiber interaction. Since both the first
two factors appearing on the right of (6. 2, 5) are less than unity,
induction of an action potential on & is not possible for identi-
cal fibers (cl = ¢z). If the radius of fiber &) is made much larg-
er than that of fiber @ so

c

_l‘ >> 1

2

the situation is not greatly changed. Markin (1970a) supposes that
in the limit of large a;

r, o~r <<r

T a
~ —Z-J (—ZJ v (6. 2. 6)
(Il a/ 'l

"Consequently, " he concludes, "the transmission of excitation
from one fiber to another is possible only if by virtue of certain
factors the threshold of excitation of the second fiber is heavily
depressed. "

A key idea in the Markin-Chizmadzhev model for nerve pulse
propagation is that conduction velocity is determined by the con-
ditions that raise the leading edge potential to the threshold level
(V) as indicated in Fig. 4-16. Markin (1970b) uses this concept
to study the synchronization of pulses. Such synchronization will
occur when

so {6. 2. 5) becomes

max

U =u, =u (6.2.7)
in (6.2, 3}, but this need not be the velocity of a pulse on () when
there is none on @& or vice versa. The effect of a pulse on @&
is to speed up (slow down) a pulse on O when vi» depolarizes
(hyperpolarizes) the leading edge. Either effect can be obtained
“ . depending on the distance & by which (@ lags behind . When
<0 is increased from zero, the effect of v, is first to decrease,
then increase, then decrease again the velocity of a pulse on &
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in a manner which is qualitatively similar to the Katz-Schmitt
curve of Fig. 6-6b. As § is decreased from zero, the interaction
V)2 has the same effect on the velocity of pulse (@. These ef~
fects are sketched in Fig. 6-7. At the intersections of the two
curves, (6. 2.7) is satisfied and synchronized pulse transmission
is possible.

-
(Y 3 5

FIGURE 6-7. Diagram related to the parallel fiber interaction of
two Markin-Chizmadzhev pulses {see text for de-
tails).

The intersection {(c) in Fig. 6-7 occurs at 5=206,>0, which
implies that the pulse on (D is ahead of the pulse on (. This
is a stable situation because if § increases slightly, upz be-
comes greater than uj and 0 tends to decrease. Intersection
{c) ocours at a combined velocity ug sy SO that the pulse on @
is “pulling™ the pulse on @ along at a velocity close to its nat-
ural velocity, ,

The intersection (a) is also stable at & = 8y <0 which means
that the pulse on @ is ahead of the pulse on (D. The combined
velocity ug mu, SO that the pulse on @ is "holding back " the
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pulse on @.

In a similar manner, it is readily demonstrated that the inter—
sections (b) and (d) are unstable and hence do not correspond to
experimentally observable pulse synchronizations.

In the nerve fiber bundle of Fig. 4-18b, it is also interesting
to consider the possibility of action potentials traveling in syn-
chronism on several fibers and exciting an additional action po-
tential on an adjacent fiber. This problem has been studied by
Clark and Plonsey ({1971} in an electromagnetic analysis that indi-
cates that membrane capacitance plays the primary rele in deter-
mining the induced transmembrane potential. Iess formally,
Markin (1973a, b) supposes that n excited fibers have a combined
capacitance ncy, series resistance (rl,/n)J and membrane current
nj;. Then assuming that the series resistance of the unexcited
fiber, r,, satisfies the inequalities

>>
277 I3

>> rl/n

and also v, << vy, (6. 2.1) assume the form

v
1, xx
— - i
I + nr3 clvl,t Jl
(6. 2. 8a,b)
A —e v = &
r, 2w 272,07 2 T
where
nr3
€ = {6. 2.9)
rl + nr3

All n fibers that propagate synchronized action potentials are re-
presented by (6. 2. 8a), whereas (6. 2. 8b) represents a single fiber
the stimulation of which is being considered. Choosing the fiber
radii to be 10y and assigning membrane parameters corresponding
to those of the squid (for lack of more appropriate data), Markin

shows that stimulation of fiber @ should occur for ¢ = 0. 5 or,

from (6. 2. 9), nw (r] /r3). If the radius of fiber @ is increased,

2
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r, becomes smaller and the coupling term in (6. 2. 8b) increases
correspondingly.

The theory of coupled nonlinear diffusion equations can also
be applied to study wave propagation in cardiac tissue. Twoe com=—
ponents of propagation can be taken as activity on both muscle
and Purkinje fibers. FEach of these activities can be represented
as solutions of nonlinear diffusion equations that are strongly
coupled through close packing of the two types of fibers. Assum-
ing different refractory periods {r,) for the two waves, Markin
and Chizmadzhev {1972) show that stimulation by three pulses
(which are separated by a time less than one refractory period and
greater than the other) should induce the propagation of a "rever—
berator. " This reverberator has the following properties:

(a) it travels at a velocity much less than that of a normal coupled
wave, (b) it emits coupled waves periodically in both the

forward and backward directions, and (¢} itis destructable.only
through symmetric collision with another reverberator. Markin and
Chizmadzhev suggest that the reverberator may be related to fi-
brillation states of the heart (see also Tsetlin, 1973).

3, CONDUCTION AT ERANCHING POINTS OF AXONS

Let us consider first the situation shown in Fig. 6—-8 where
an axonal "parent" fiber of radius ag bifurcates into “daughters”
of radii a) and aj. What will happen to an action potential on
the parent when it reaches the branch point? In answering this
question it is useful to return to Rall's analysis of a tapered fiber
discussed in Section 4-6. He showed (Rall, 1962a) that if the
spatial variable is transformed as

z = z{x) 6. 3. 1)

where =z(x) is determined by

1
1 214
z _ _-% daJ
ax = @ Ll-i-(dx J (6. 3.2)

the PDE for pulse transmission is invariant as long as the depen-
dence of the fiber radius on X satisfies
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1
2 4
33/2 [l + (E) } = const 6. 3. 3)
dx
and, more generally, for n fibers that
1
3/2 ga}? |”
na 1+ (—"J = const (6. 3. 4)
dx

For a branching fiber (as in Fig. 6-8) {da/dx) is zero everywhere
except at the branch point where it is undefined. Neglecting
fields associated with this discontinuity, condition (6. 3.4) be-
comes

na3/2 = const (6. 3.5)

for an undisturbed continuation of the PDE across the branch., This
is reasonable from a physical point of view because, as was point-
ed out in connection with (5. 3. 3), the characteristic admittance

Y, of a fiber is {(Scott, 1970)

1
h s 2
YO _ [s unt admittance lenqth} . 3. 6)

series impedance/length

Shunt admittance /length is proportional to fiber radius; and, if in-
ternal resistance dominates, series resistance/length is inversely
proportional to radius squared. Thus (6. 3, 6) can be written
Y = 1'r1£13/2 (6.3.7)
o

where m 1is a factor which is independent of fiber radius. The
condition (6. 3. 5} requires that characteristic admittance be un-
disturbed across the branch.

In a recent numerical! study, Goldstein and Rall (1974) empha-
size the importance of geometric ratio {GR) at a branch. For
Fig, 6-8 it is defined as

2y 3
GR = T (6. 3.8)
%3
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and, more generally, as the sum of the outgoing characteristic
admittances divided by the sum of the incoming characteristic
admittances. For GR = 1, an action potential proceeds through
the branch in an undisturbed manner. For GR <1, longitudinal
current is constricted as the pulse approaches and it accelerates
on approach as indicated in Tig. 4-24h. For GR > 1, the pulse
slows down on approach as in Fig. 4-24a and blocking of conduc—
tion is possible.

A

FIGURE 6-8. Geometry of a branching axon.

To investigate the conditions for block, we canuse the con-
siderations of Section 5-3. 1If the leading edge charge carried in-
to the branch by the action potential on the parent is insufficient
for the thresholds of the daughters, block will cccur. The incom-
ing charge is

_ 3/2
Qi = gka3 {6. 3.9)

where ¢ 1is the factor by which leading edge charge increases as
it approaches the branch. If u:q and Vjp are, respectively, the
changed values of pulse velocity and amplitude as the pulse ap-

proaches the branch, then from (5. 3. 21)
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V' u
A, A
Z,:(V o ) (6. 3. 10)

A A Y max

Blocking of a Hodgkin~Huxley axon occurs at a critical expansion
ratio of 5. 5, which, from {5. 3. 25}, implies

¢t ~ 6, 44

as we noted in Section 5-3, .

The condition for block of a pulse into daughter (O in Fig.
6-8 can be calculated by noting that the fraction of input charge
Q; which enters daughter O is equal to

Y
0l

Yo1 1 Y2

the ratio of the characteristic admittance of daughter (¥ to the
total characteristic admittance of all the daughters. From (5.3.24),
this charge must be less than

3/2
( ka3/2 —ml_*__. <aka13/2'
tkay ) 3/2 3/2
mal +ma3

for block. This condition can be written

a \3/2 ra_ \3/2
(a—l) + (a-z) (6. 3. 11)
3 3

and it Is the same as the condition for block into daughter @) .
For daughters of same radius this blocking condition becomes

a 2/3
3 2a
—-—al < (—g ) (6. 3.12)

R |u=

Taking o = % and t = 6.44 gives the condition aq < (.28 a,

which is not usually satisfied for a real axon. Thus it can be
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concluded that isclated pulses should propagate outward without
block on an axonal tree.

Under normal physiological conditions, however, the axons
usually transmit pulse trains rather than individual pulses. As
the calculations by Rinzel and Keller (1973) in Fig. 4-14 indicate,
pulse trains of sufficiently high frequency will block even on &
uniform fiber. At frequencies approaching this maximum, a GR
even slightly greater than unity should lead to blocking of certain
pulses at a branch. Such effects have been observed by Barron
and Matthews (1935), Krnjevi& and Miled:i {18 59), Chung, Raymond,
and Lettvin (1970), Parnas {1872), Grossman, Spira, and Parnas
(1973). Although this simple theoretical picture implies that all
daughters will fire or fail together, it is based on several ideal-
ized assumptions (both daughters of circular cross section with
negligible external component of series resistance, etc. }, which
are probably not valid for branches in a real axonal tree. Once a
particular daughter has fired, of course, it will be less sensitive
to an immediately following stimulation. Thus there are several
possible explanations for preferential firing among the daughters.

Chung, Raymond, and Lettvin {1970} suggest a functional
significance for partial conduction through an axcnal tree. If only
a subset of the distal branches are activated by a single pulse,
the axonal tree could translate complex temporal messages into
spatial patterns. They conclude as follows.

Several important shifts in perspective stem from the
recognition of the complexity of the process of axonal
conduction in arborizations and the possible significance
such conduction has in spatially structuring interspike
interval patterns. Among the most obvious is that
“spontaneous” activity and bursty discharge ought not
to be regarded as “noise". It is not obvious what any
neuron is trying to say, and given the possibility that
burstiness may itself be meaningful, we have no basis
a priori to decide what is noise and what is message.

To do so would imply a prior knowledge of the Intentions
of the system and its modes of cperation or, to use
von Neumann's phrase [1958] , “the language of the brain’.

That areas of low safety factor are very sensitive to
extracellular currents raises a second issue. The points
of low safety factor present in branched axons imply that
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neighboring regions in the central nervous system must
interact profoundly. The notion that cross talk will
degrade the performance of the nervous system is not
necessarily true. The degree of interaction that exists
suggests that information handling may be aided rather
than hampered by cross communication.

Finally, if every pulse arriving at a cell embodies
in its spatial distribution an instantaneous statement
about the recent history of events, the physiological
basis exists for a kind of "shori-term memory".
Moreover, there is the intriguing possibility that the
relative diameters of branches might be structually
altered by activity, thereby rendering the system capable
of imbedding prior experiences.

4, SYNAPTIC TRANSMISSION

On the schematic diagram of a multiplex neurcn in Fig. 6-3,
the axonal endings are indicated as enlarged "synaptic outputs™
which make contact with other neurons. Some appreciation for the
variety of such ceonnections in real tissue may be had from a
glance at the Mauthner cell of the goldfish (Fig. 4-22) or the
motoneurcon of the cat (Fig. 6-2b). Since the advent of the electron
microscope, these structures are becoming increasingly well under~
stood and several excellent references are available. Katz's
Nerve, Muscle, and Synapse is recommended as a clear and pro-
vacative introduction to The Physiology of Synapses by Eccles.

In addition to presenting & comprehensive review of research re—
sults up to 1863, Eccles's book includes an interesting historical
survey of the competition between chemical and electrical theories
for synaptic transmission. More recent research is discussed in
the book by McLennan (1970).

A schematic diagram for a synaptic connection is sketched in
Fig. 6~9. Purely electrical transmission of an action potential
from the axon ending to the region extending outward from the
postsynaptic membrane should be difficult in view of the extreme

widening and the fact that a double layer of membrane must be de~

“‘polarized in the region of the synaptic cleft. Chemical effects
coniribute in the following way. The end bulb of the axon stores
a large quantity of synaptic vesicles {~ 500 2 in diameter)
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containing chemical substances, such as acetylcholine and nor-
adrenaline, with the ability to selectively alter ionic permeability
in the postsynaptic membrane. with reference to Fig. 3-8, an
increase in sodium ion permeability {Gyg) tends te depolarize
the postsynaptic membrane and induce transmission of an action
potential, whereas an increase in potassium ion permeability (GK)
hyperpolarizes the postsynaptic membrane and inhibits transmis-
sion through the synaptic junction. One #quantum” of depoclariza-
tion or hyperpolarization is associated with the release of chem-
ical transmitter substance from a single synaptic vesicle.
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FIGURE 6-9. Schematic diagram of a synaptic contact.
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If the synapse depolarizes the postsynaptic membrane, it is
sald to induce an "excitatory postsynaptic potential” (EPSP). In
the motoneuron, the EPSP appears with a time delay of about 0. 3
msec that is attributed to the liberation of a chemical transmitter
substance and its diffusion across the synaptic cleft. After this
delay, the EPSP rises to a maximum in about 1-1. 5 msec and then
decays exponentially with a time constant of about 5 msec.

Hyperpolarization of the postsynaptic membrane is described
as an "inhibitory postsynaptic potential” {IPSP}). Ina motoneuron,
the typical initial delay is about 1. 5 msec, the initial rise is
1.5 - 2 msec and the time constant for exponential decay is about
3. 3 msec,

But several variations on this simple description of synaptic
transmission have been observed. For example, Robertson,
Bodenheimer, and Stage (1963) have reported results of an electron
microscope examination of the Mauthner cell of the goldfish (see
Fig. 4-22) that indicate the possibility of electrical transmission
at the “club endings. ¥ Furshpan and Potter (195%9a) have studied
electrical transmission through the giant motor synapse of the
crayiish using glass microelectrodes as indicated in Fig. 6~10a.
The time delay observed was very small (usually about 0. ] msec)
which is an indication of electrical transmission. Their observa~
tions could be explained by assuming the contact area to function
as the diode rectifier indicated in Fig. 6-10¢, and they could not
be explaired by assuming a chemical mechanism. This electrical
transmission was distinguished from a slow IPSP (Furshpan and
Potter, 1959b} which appears to be chemical in nature.

Transmission across the septal (dividing) membranes (see
Fig. 6-10a) of the crayfish lateral giant axon appears to be entire-
ly electrical (Watanabe and Grundfest, 1961). The voltage current
characteristic is linear at least over the range £25mV and may
be represented by a simple series resistor, Rg;. Transmission of

. impulses across a septated axon has been investigated by Markin
~and Pastushenko {I1973) using the analytic technique outlined in
Section 4-4. They show that the pulse speeds up while approach-
ing the septum and slows down on leaving, as might be expected
by comparison with Fig. 4-24b. The net pulse delay is approxi-
=mately

RS
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for small values of Ry. For a typical crayfish giant lateral axon
with a diameter of 100p, Ry = 3 X 1059, rg = L2x lDSQ/m and
u = 15m/sec so 7 is calculated from (6. 4. 1) to be about 0. 17
msec. This is compared (Markin and Pastushenko, 1973) to an
observed value of about 0.1 msec. The difference in these two
values can be partially explained by the neglect of displacement
current through the membrane in deriving (6. 4.1). Markin and
Pastushenko also show that the critical value of Ry for propaga-—
tion through the septum may be overestimated by a factor of two
from dc arguments.

Pinally, Furakawa and Furshpan (1963) have observed an elec-
trical inhibition of the axon hillock region of the Mauthner cell
(see Fig. 4-22) by the “spiral synapse, * which is followed by a
slower chemical inhibition i. e., (IPSP).

Thus it appears that a variety of electrical (fast) and chemical
(slow) output mechanisms are available to the multiplex neuron,
which may be either excitatory or inhibitory in nature.

5. LINEAR DIFFUSION ON DENDRITES

The dendritic trees of a multiplex neuron are in a position to
sense many complex spatiotemporal signal patterns on the input
synapses. Just how a particular neuron recognizes and responds
to a particular input pattern is as vet unclear, but a glance at the
dendrites of the Purkinje cell in Fig. 6-1 should convince the
reader that it may be a rather sophisticated process. In principle,
each branch should be described by a nonlinear diffusion equation
(2. 30) with appropriate continuity conditions at the branching
points and 80,000 synaptic inputs appearing throughout the trees,
Clearly, some simplifying assumptions must be introduced in order
to proceed with an analytical description. The danger in any sim-
plification, of course, is that the essence of the object under
study may be lost in the quest for a simple model.

Nonetheless, an interesting possibility is to describe the
- branches by linear diffusion equations of the form

Ve T g€ Vy T T OV {6.5.1}

: -, where g is the conductance per unit length of a dendritic branch

" below its firing threshold. This is essentially the assumption

- ‘that action potentials do not develop on dendritic membranes. As




202 The Multiplex Neuron

Rall and Rinzel (1373) have recently emphasized, this may be a
reasonable assumption for the cat motoneuron (Fig. 6-2) since the
combination of two typical EPSPs yields a response which is
egual to or somewhat less than the sum of the individual responses
(Burke, 1967; Rall, 1967). Such a sublinear response does not sug-
gest the onset of an action potential, and it can be explained as
an interference between chemical depolarizations at adjacent re-
gions of postsynaptic membrane (Kunc and Miyahara, 1969).

Even with the assumption of a linear membrane, however, the
analysis of a particular dendritic structure is a rather difficult
problem. The basic reason for this additional difficulty is that
reflections may occur at each of the branching points. The sum of
all signals (reflected, reflected, and reflected again) must be ac-
counted for to obtain an analytic solution. As Rall {1962a,b, 1964,
1967) has suggested, the reflection problems disappears if it is
assumed that characteristic admittance is continuous across a
branch from daughters to parent and alsc that all the daughter
branches are stimulated in unison. As a simple example, consid~
er the bifurcation sketched in Fig, 6-1l. If the sum of the charac-
teristic admittances for branches A and B equals the character—
istic admittance of branch C, and if

iA(t) = iB(t) (6. 5.2)

then A and B can be considered as components of a single
branch that is continuous and uniform across the crotch. If the
external component of series resistance can be neglected in com-~
parison with the internal component, then rg is inversely pro-
portional to radius squared (2. 19) and characteristic admittance is
propertional to a3/2 as was discussed above in connection with
(6. 3. 7). The condition on the radii in Fig, 6-1l is then 2a 3/2
a23 2, More generally, when the dendritic trunk (of radius at)
has branched into n daughters of radius a,

naB/2 = af/z {6, 5. 3)
is the condition for reflectionless diffusion.

Recently Rinzel and Rall {Rinzel and Rall, 1974; Rinzel, 1576)
have indicated how the reflectionless response of the parent {C)
to stimulation of a single daughter (say A) may be obtained. They
assume a symmetrical bifurcation as in Fig, 6~11 and supposefirst that
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it

FIGURE 6-1L. Geomeiry of a symmetrical branching dendrite. ’

™~

iA(t) = iB(t) = ii(t) (6. 5. 4)
Then, with the admittance matching condition (6. 5. 3), the corres-
ponding current is readily calculated from the linear diffusion

(6. 5. 1) throughout the branch, and, in particular, i {t). Next
they assume an antisymmetric stimulation as

iA(t) = - iB(t) = %ii(t) {6.5.5)

and again calculate current throughout the branch. Evidently, the
antisymmeiry condition requires the current to be zero along
branch C in this case. Since the PDE (6.5.1) is linear, the re-
sponse to an input that is the sum of those in both (6. 5. 4) and

(6. 5. 5) will be the sum of the individual responses. But the sum
of the symmetric and antisymmetric inputs yields

iA(t) = il,(t) and iB(t) =0 (6. 5. 6a,b)

-while the sum of the responses on branch C is just the one that
was computed for the symmetric input (6. 5. 4).

Rall and Rinzel (1973) discuss some of the evidence for assum-
ing that the sum of a¥/2 for daughters equals a3'2 of the parent,
For the motoneuron the “geometric ratio" of these quantities

. Seems to lie within the range 0. 8 to 1, 2 with a gradual decrease
- toward the tips of the tree. It should be mentioned, of course,
~that external resistance probably cannot be neglected for the
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closely packed cells of real nervous tissue s0 & modified defini-
tion of this ratio may be more appropriate. But assuming, with
Rall and Rinzel, cylindrical fibers and a geometric ratio of unity
at each branch point, (6. 5.1) can be normalized as follows. Time
is measured in units of the membrane response time

r=2 (6.5.7a)
g

so the dimensionless time variable is

T

Ht

ala

(6. 5. 7b}

Distance is measured in units of the diffusicn length

1
A= r 2
[r 9]
Since this changes with position along the dendritic fiber, an ap-
propriate dimensionless space variable is generated by the differ-
ential relation

dx
ax =7

1
The diffusion length X x a2 and, from (6. 5. 3)

a1/2 _ n—1/3 ai/:a

Thus the dimensionless space variable can more conveniently be
defined as

nl/3dx
dX =——— (6. 5. 8)
A
t
where
-
- T2
My =g (6. 5. 9)

is the diffusion length at the trunk of the dendritic tree. Then the
differential change of membrane area with x is

d(Surface area) = 2mandx = 27 at?udX
L
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or the circumference of the trunk multiplied by )\th. ‘With this
normalization, (6. 5.1) reduces to

V,,~- V. =V 6.5 1
" Vo ( 0
and the "electrotonic length, " A, of a dendritic iree can be de-
fined as

end of twigs
A= fax
base of trunk

For a typical motoneuron the electrotonic length of a dendritic tres
appears to lie between 1 and 2 with an average of about 1. 5
(Barrett and Crill, 1974a).

Assuming linearity, it is possible to express the voltage re-
sponse at some point in the dendritic structure (say v, (t} at
point (@ ) to the current input at some other point (say ift) at
point D) as the Green's integral

t
v, (0= [ 5=t Hp, ) dt’ (6.5.11)
—00
where le(’t) is the voltage response at @ to a unit impulse of
current injected at (. The task is to calculate Hjo between
points'of interest. Rinzel and Rall (1974) do this in general for
the dendritic model indicated in Fig. 6-12, where:

N 1is the # of dendritic trees;
M is the # of symmetrical branchings of each tree;

A is the "electrotonic” length of each tree.

The electrotonic lengths of the branches are assumed equal, ZEach
branch is assumed to he symmetric and satisfying (6. 5. 3} so the
“reflectionless” calculation discussed above {in connection with
Fig. 6-11) can be employed throughout. The membranes of the
nerve body and the axon are neglected in comparison with the
dendritic membranes,

- Of particular interest is the voltage response at the nerve
“body (point @ in Fig. 6-12) to a unit impulse of current at the
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PIGURE 6-12. General dendritic model for passive-response
calculation.

end of a single branch (point (D). For these points Rinzel and
Rall obtain

-t/7

r ko « 2
.| st _[(Zn—l)A T

le(t) h ( Wrtr ) E 8xp 4t

n= —<o

(6. 5.12)

In making this calculation (see Fig. 6-12), each of the N-1
unstimulated trees is considered as a uniform cylinder of length
A in the normalized space variable X. The trunk of a dendritic
tree is characterized by:

= the series resistance per unit length;

st
¢, = the capacitance per unit length;
gt = the membrane conductance per unit length.

The membrane time constant 7 defined in (6. 5. 8) is (Ct/gt)'
The series (6. 5.12) is convenient when t —0. For larger
values of t it becomes
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Jeo

e_t/T - n 0 2 t
le(tB 2 m 142 n>_—’1 (~1) exp | - (—A—) - (6. 5.13)

The physical implication of (6. 5. 13) can be appreciated by suppos-
ing that

Lty = Q o)

where 6{t) is a unit impulse function {or a Dirac "delta function”
of unit area). Then from (6. 5.11)

v, {t) = Q le(t) (6. 5. 14)

Using the approximate expression (6. 5. 13) for le(t) we find

v, (0 = =271 4 R (6. 5. 15)
t
where
pl L 2
R =2 ) ) exp[- () =] (6. 5. 16)
n=1

Since NAX c; 1is just the total membrane capacitance of all the
dendrites, (6. 5.15) implies that the input charge will be evenly
distributed over the dendrites as soon as R(t} << 1. As we noted
above, A ~1. 5 is areasonable electronic length for the dendrit-
ic free of a motoneuron. Then inspection of (6. 5. 16} {plus the
numerical studies of Rinzel and Rall) indicate a uniform charge
distribution for t > 7. More generally, we can begin to neglect
R{t) in (6. 5.15) when

. (2—)27 (6. 5. 17)

For such times, the effect of a charge, QO, briefly introduced at
“the twig of a dendritic tree will be to induce a voltage at the cell
body equal to

Q
v () =2 L T/

) = (6.5, 18)
2 Ciotal
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where Cigtal 15 the membrane capacity of all the dendrites. TFor
small values of time we must return to (6. 5.12), which implies
Hjp@t)—~0 as t—0.

It may be helpful at this point to recapitulate the assumptions
made in the derivation of (6. 5,13). These were:

1. A geometric ratio of unity is preserved at each branching
as implied by (6. 5. 3),

2. The surface area of the cell body is much smaller than
that of the dendrites,

3, Input current is injected at a twig (distal branch) of a
dendritic tree, and, of course,

4. Membrane voltage evolves according to the linear dif-
fusion equation (6. 5. 1).

For more realistic dendritic geometries, the analytic expressions
for response to an impulse of synaptic current can be quite com=~
plex. Many additional analytic and numerical results are avail-
able in the studies by Jack and Redman (1971 a, b) on the transient
response of a single fiber loaded with a parallel R-C circuit at
one end to simulate the nerve body and stimulated at an arbitrary
point. The recent book by Jack, Noble, and Tsien {1975) provides
an excellent summary of these calculations. Butz and Cowan
(1974) have developed a simple graphical calculus that generates
analytic expressions for the Laplace transform of the impulse re-
sponse [Hij defined in {6, 5.11}] for arbitrary dendritic and cell
body geometry. This calculus should facilitate an automatic com-
putation of linear dendritic response.

The application of such models to real motoneurons is dis-
cussed in detail by Jack, Miller, Porter, et al. {1971) and also by
Barrett and Crill (1974a), The latter investigators pay particular
attention to the fact that the EPSP inducedcn a dendrite is not pro-
pertional to the time course of the conductance change, G(t), of
the postsynaptic membrane (Barrett and Crill, 1974b). To appre-
ciate this effect, consider that the induced current is given by

il(t) = Gt [VD + Vl(t)] {6. 5. 19}

where Vg is the difference between the resting potential across
the membrane and the diffusion potential [1. e. ,(VR - VNa) for
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sodium ions as in {4.1. 12)]. The EPSP and the injected currant
are v and il, respectively. Assuming an impulse response,
H);(t), calculated for the point of current injection, (6. 5,11) be-
comes

t
v (6) = f GV, +v ()] H ) (€~ t)de {6. 5. 20)

—-00

This is a linear Volterra integral equation for V] (t} (Rinzel and
Rall, 1974), which implies that the EPSP will be less than that
which would be calculated under the assumption™

v << VO (6. 5. 21)

To account for this effect Barrett and Crili {1974Db) define a “charge
injection factor"

[ve]

f GOV, + v (5] at
7= = - (6. 5. 22)
_{O G) v, dt

which is the ratio of charge injected to that which would be under
6. 5. 21). At a distal branch, the effect of a quantal conductance
change due to the discharge of a single synaptic vesicle of chemi-
cal fransmitter into the postsynaptic membrane (see Fig. 6-9) is
estimated to yield an EPSP of 16~20 mV with a charge deficit
(1-7 of 14-19%,
If the inequality indicated in (6. 5. 21) is not satisfied, v may
- approach the threshold for an action potential on the dendritic
- -membrane. When this occurs (6. 5.1) and (6. 5. 20} will no longer
. be valid because membrane conductance wiil depend on v as we
discussed in Section 3-2, but the qualitative effecct will be regen-
erative (J > 1) with increasing v leading to increasing G lead-
ing to increasing v,*-+, as in Fig. 3-11, This situation will be
considered in the following section.

P

;- Note that VO is negative while vy is positive,
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6. NONLINEAR INTERACTIONS AT BRANCHING POINTS OF
DENDRITES

To find solutions for nonlinear dendritic models that corres-
pond to the linear diffusion calculations discussed in the previous
section would be a difficult task as Pickard {1974) has recently
emphasized. But it is interesting to consider the suggestion
{Lorente de NG, 1960; Arshavskii, Berkinblit, Xovalev, et al. 1965}
that the branch points of active dendrites may serve to process the
information carried by dendritic action potentials. The previous
section and this one correspond, in a way, to the two main sim-
plifications of modern electronics: linear system analysis and
switching theory. In the first approach, nonlinearity is dealt with
by assuming that it does not exist, and often this is arranged to be
so. In the case of switching theory, nonlinearity is desired for
the increased technological possibilities it introduces. The non-
linearity is rendered analytically tractable by assuming it to be so
strong that dependent variables can take only one of two states.
Then the two element field of Boolean algebra can be used to de-
scribe those response functions that are of interest. Here we dig-
cuss the possibility that dendritic branchings can provide the ele-
mentary "AND, * "OR, " and "NOT" functions necessary for the
synthesis of an arbitrary Boolean function. But the present author
does not wish to leave the reader with the impression that Sections
6-5 and 6-6 present antagonistic theories for dendritic function
one of which must eventually be proven "mue™ and the other "false.”
Rather, they should be considered as polar extremes on a specirum
of possibilities for dynamic activity that may be employed by real
dendrites.

The first analytical study of nonlinear interactions between
spikes at the branching points of dendritic trees was published in
1969 by Pastushenko, Markin, and Chizmadzhev, and the geometry
of the simple bifurcation they considered is sketched in Fig. 6-13.
Basically they were interested in finding the conditions under
which an action potential incoming on one or both daughters would
induce an outgoing pulse on the parent fiber. If both A and B
on daughters (0 and @ are required to induce a pulse C on the
parent, the branch can be described by the Boolean eguation

C =24 {AND) B (6. 6. 1)
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If either pulse A or pulse B can induce a pulse C, we can
write

C=A (CR) B (6. 6,2)

while if neither A nor B can induce a pulse C/
C=0 (6. 6. 3)
In these Boolean (or logic) equations, the variables (A,B, and C)

can assume only the values 0 and 1. The corresponding arith-
metic is:

0 (AND} 0 =0 0 (OR} 0=0
0 (AND) 1 =0 0 (OR) 1=1
1 (AND}) 0=0 1 {(OR) 0=1
1 (AND) 1 =1 1 (OR} 1=1

& nonlinear diffusion equation (2, 30} was used to describe
each of the three fibers (Pastushenko, Markin, and Chizmadzhev,
19693, b}

FIGURE 6~13. General geometry for a branching dendrite.
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azvk ka .
———Z—'—rskck—gzrsk]ik, k=1,2,3 (6. 6. 4)
Bxk

where the three distance coordinates (x),%, ,¥3) increase away
from the junction. Using (2. 21a), Kirchhoff's current law at the
junction becomes

IS W S S S S (6. 6. 5)
r ax r ax r ax._ s

sl 1 s2 2 s3 3

Pastushenko and coworkers used the Markin-Chizmadzhev model
(see Section 4-4) to describe the incoming pulses, demonstrating
once again the remarkable usefulness of that simple description.
As is indicated in (4. 4. 1), the membrane ion currents (jj,Jjp and
jiz) remain zero uniil the membrane voltage passes a threshold
level V] after which they jump to Jlk fora time 7]k, then jump
to a level Jpp for a time 72k, then reiurn to zero (see Fig. 4-15]
The voltage pulse returns to zero if the net ionic charge tran sfer
is zero which requires

Ik = LTk k=123 (6. 6. 6)

As a further simplification, they assume
Ill I12 I21 I
=—"= and =7

Cl C2 C C

o
(\N]

which is to be expected if both daughters have identical mem-
branes.

The condition for an action potential to appear on the parent
fiber is simply that the voltage v3([}, t) must exceed the thresh-
old value V. Thus only a linear diffusion calculation of the sort
outlined in Section 5-3 is required. However, the admittance
matching conditions {geometric ratio equals unity) is not satisfied
for the incoming pulses on the daughters, so reflections by the
junction from each of the daughter pulses will affect both daugh-
ters. Pastushenko, Markin, and Chizmadzhev account for this by
defining pulse velocities u and u, for those points on the
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incoming waves that first reach the threshold voltage Vy. The
coordinates 1; and L, defined by

v, )=V, = v (L, 1) (6. 6.7)
move as
L1 = - ult
(6. 6. Ba, b)
L2 = —uz(t -7}

where 7 is a time delay between the incoming pulses. It is im-
portant to note that the velocities u; and u, are only constant
when the pulses are far from the junction (Ll , Lo —=-w}, As they
approach the junction, the above mentioned reflections will
change the velocities by influencing the condition (6. 6. 7).
As a first problem, Pastushenko and Markin consider only a

single pulse coming in (say) on daughter Q). Neglecting exter-
nal series resistance, the junction has a geometric ratio

VIR
GR = _‘—3/_2-'—— (6. 6.9)
9

From the results of Section 4-6 on propagation through a discon-
tinuity, we should expect a pulse to form on the parent and the
other daughter whenever this GR <1. For GR>1 and sufficient-
ly large, on the other hand, blocking of conduction should occur.
Inagreement with (4. 6. 34), Pastushenko and coworkers find the
condition for a pulse on the parent to be

62/2 +a3/2

3/2
4

-

<k +L11kZ~1 69 (6. 6.10)

Following the ideas presented in Section 6~3 we can use the con-
dition of approximate conservation for leading edge charge to ob-
fain a similar expression. From (6. 3. 9) the incoming charge
,.C;i,rries on the leading edge of pulse A (daughter @)}, is 4 kaf’/z

b
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where ¢ indicates the factor by which this charge increases as
the pulse slows down { see (6. 3.10)}. This incoming charge will
divide between the parent and the other daughter in a ratio deter-
mined by the corresponding characteristic admittances [ see
(6.3.7)]. Thus the parent receives a fraction [a33/2/(a23/2 +
a33/2)] of the input charge, and it requires a charge aka23/2 to
achieve threshold [ see (5, 3. 24)]. Then the condition for a pulse
on the parent is (Scott, 1973b)

a3/2
3/2 3 3/2
2;ka1 32 . 63/2 > aka3

) 3

or

(6.6.11)

The relation between (6, 6.11) and (6. 6. 18) is exactly the same
as that found between (5. 3. 25) and (4. 6. 34). Following the nota-
tion of Pastushenko and coworkers we can dencte the right-hand
side by K. Thus

-

K=w+L11k?~169 or :’i- (6. 6. 12)

depending on which theoretical point of view is being assumed.
For fibers which correspond to the Hodgkin~-Huxley axon, blocking
occurs for

GR (5. 5)3/Z = K

Suppose now that both daughter fibers have the same radius
{a] = ap) in Fig. 6-13. Then (6. 6. 10) and (6. 6. 11) indicate that
the condition to avoid block of a single input pulse is

a
= k-2 (. 6, 13)
|
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If this condition is satisfied, the branch functions as an “"OR"
junction defined by (6. 6. 2). If it is not satisfied, the condition
for an AND” junction, from (5. 3.25), is

p a
(x - 23 <-a—3 < 2k)2/? (. 6. 14)
1

The "AND* condition is defined in {6. 6. 1). If the ratio (a3/al)
is too large to satisfy (6. 6. 14}, then the junction is represented
by (6. 6, 3),

Consider next the "tufted” branching indicated in Fig. 6-14
that Ramon-Moliner (1962) described as typical for dendrites of
sensory neurons. We assume that n daughters of equal radius
a) branch from a single parent with radius a3, and ask what is
the threshold number, 8, of daughters that must be simultaneously
active in order to induce an action potential on the parent. Again
the concept of approximately conserved leading edge charge is
convenient to apply. The incoming charge on 8 daughters is
8tk ar/*, and the fraction of this charge that enters the parent is
a3/2/[(n—9}a13/2 + a23/23] .. The charge required to bring the par-
ent to threshold is aka, Thus © 1is determined by the equa-
tion

J3/2
ac.kaf’/‘1 i/z 7 - akag/a
(n - E))al tag

which implies

+n

(i;)s/z

6 = 6. 6. 15
K+1 ( )

—

where, as in (6. 6.12), K= {/a,

An important advantage of the analysis by Pastushenko,
Markin, and Chizmadzhev over the concept of approximate charge
conservation is that it permits study of nensynchronous pulse in-
puts. For Q0 < 7 < jn (6. 6. 8b) they show (1969a) that an effect
of pulse interacticn is to bring the two pulses into closer syn-
chronism since the second pulse to arrive is decelerated less than
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n

FIGURE 6-14. Geometry of a tufted branching dendrite.

the first. In a later work (l969b) they study the voltage v{0, t)
which appears at the input to the parent fiber and show th?l: it has
two maxima for sufficiently large values of 7. Deafining t as
the value of t at which

2
d—V(QJt—)- =0 and _C_i_M <0
dt ~ 2 ~
t=1t dt t=t

the situation is qualitatively as shown in Fig. 6-15. For T <7,
there is only one peak of voltage presented to the parent fiber.
NI-‘or T> T, there are two maxima indicated by two branches in
t{(r). The larger maximum is shown as a solid line and the smaller
by a dashed line. At 7 = 7, the larger maximum becomes small-
er and the smaller becomes larger. This is indicated by a discon-
tinuity in the solid line on Fig, 6-15. Thus Pastushenkc and co-
workers suggest the possibility of a rather sensitive control of
delay operating along the following lines. Suppose the parent
f'i\berjiameter is adjusted so it will just fire at the first maximum
(t =t) when 7= 7. Thena slight inhibition in the vicinity of
the junction (at t = T’l) could cause the parent not to fire on the
first maximum but fire instead on the second. The 'slight inhibi~
tion" would then be able to introduce a signal delay equal to

’?'2 —?1 (see Fig. 6-~15}.
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-
T, T T

FIGURE 6-15. Diagram related to the calculation of nonlinear
pulse interaction at a dendritic branch by
Pastushenko, Markin, and Chizmadzhev (sce
text for details).

Although it is certainly of great value to have the relatively
simple analytical results developed by Pastushenko and coworkers,
we must remember that the Markin-Chizrmadzhev model for nerve
pulse propagation is an approximation, Thus the numerical stud-
ies by Berkinblit, Vvedenskaya, Gnedenko, et al. (1971) of a
branching (as in Fig. 6-13) where the fikers are represented by
the Hodgkin-Huxley equations are also most interesting. The
Hirst case they consider is the effect of nonsynchronous pulse in-
Puts on the daughter fibers. They assume radii ratios gpiay:ag=
<1:1i5. 5, From the results discussed in Section 4-6 we can ex~
..pect that a single pulse should not fire but both together should,
~Thisg is essentially the condition for an “AND" junction given by
6:6.14). As shown in Fig. ©-16, Berkinblit and coworkers have
;Computed the voltage at the junction, v(0, t), for various values
:Of time delay, T ., between the incoming pulses, Evidently syn-
~<_3hr0nism of the input pulses to within about one msec is required
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to insure performance as an"™aND” junction. Fora change in de-
lay of the input pulses from 0. 9 to 0.95 msec, the delay of the
output pulse is increased by about a millisecond. This scems to
confirm the discontinuity in output delay around 7T = T, predicted
py Pastushenko, Markin, and Chizmadzhev, (1969b) and indicated
on Fig. 6-15. The "space-time” trajectories for the voltage max-
ima are shown in Fig. 6-17. 1In Fig. 6-17a the time delay between
input pulses is zero, whereas in Fig. 6-17b, 7 = 0.8 msec. The
leading pulse is slowed much more in the second case confirming
the prediction by Pastushenko, Markin, and Chizmadzhev, {1969a)
that such an interaction tends to bring the pulse peaks into closer
synchronism.

40 TIME {msec)

FIGURE 6-16. Plot of voltage against time at a dendritic branch
with ratios @] :dz i 83 < 1:1:5 described by the
Hodgkin-Huxley equations. Delay between in-
coming pulses (in msec): {1}, 0.6; 2), 0.8
(3), 0.9 {4), 0.95; and {5}, L.0O {redrawn from
Berkinblit, Vvedenskaya, Gnedenko, et al., 1971
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FIGURE 6-17. Space-time plots of pulse maxima for the calcula-
tlon of Fig. 6-16, where distances are measured
from the branch point: (a} synchronized input
pulses; (b} pulse input on daughter B delayed by
0. 8 msec {redrawn from Berkinblit, Vvedenskaya,
Gnedenko, et al., 1971).

?

The second example discussed by Berkinblit and coworkers is
for ajtaytas; = 1:1.5:5. In this case a pulse on daughter @
alone is unable to induce an action potential on the parent while
a pulse on daughter @ alone can, In Fig. 6-18 is shown the
junction potential for varying degrees of delay of pulse B (on
@} behind pulse & {on @ ). Here it is most interesting to
note that for

1.7 msec <7 < 2.8 msec (6, 6. 16)
the pulse A inhibits the formation of a pulse on the parent. When
7. lies within this range, the Boolean cheracter of the junction can
- be expressed by

C = B{AND) NOT(A) (6., 6.17)

Where the definition of the Boolean function NOT{-) is

NOT(0) = 1 and NOT{l) =0 (6. 6. 18)
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Thus have Berkinblit and coworkers demonstrated how a simple bi-
furcation using a physiologically reasonable (Hodgkin-Huxley)
description of the fibers can perform the logical operation of
inhibition. Corresponding space-time plots for trajectories of the
pulse maxima are presented in Fig. 6-19 for values of 7 that are
too short (@) and too long (b) to satisfy the inhibit condition

(6. 6.16). In these cases a pulse B on @ induces a pulse A
on the other daughter (D as well as on the parent. Berkinblit

and coworkers indicate how this effect might be applied to make a
“ring oscillator” and a "motion detector”. Finally, they consider
a simple bifurcation with the radii ratios a;:a;:85 = l:1:5.
Here each input alone can excite a pulse on the parent so the
Boolean "OR” function expressed in (6. 6.2) is realized. For 7<
1. 4 msec the incoming pulses are essentially synchronized and a
pulse travels outward only on the parent fiber. For 7 > 1.5 msec
the pulse A on (D induces an outward pulse on the parent and
also outward on daughter & . This outward pulse destroys by
collision (see Section 6-1) the incoming pulse B on @ .

+40}-

+20

TIME (msec

- 40}

FIGURE 6-18. Plot of voltage against time at a Hodgkin- Huxley
dendritic branch with ratios aj:a;ag= 1:1.5:5.
Delay between incoming pulses (in msec): (1}, L 5
2), L& (3), 2; (4), 2.8 (5), 3 (redrawn from
Berkinblit, Dudzyavichus, Chailakhyan, et al., 1971
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Figure 6-13. Space time plots of pulse maxima for the calculations
of Fig. 6-18. The pulse delay in (a) is too long
and-in (b} too short to satisfy the "inhibit” condition.
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It should be clear that the possibilities for information pro-
Jceessing in active dendrites have not been exhausted: indeed the
Study has scarcely begun. But it is important to note that some
physiological confirmation of these effects is also available,
:There are several studies which indicate that action potentials do
ropagate at least on the larger branches of some dendritic trees
lorente de NG, 1947; Cragg and Hamlyn, 1855; Eyzaquirre and
uffler, 1955; Fatt, 1957; Spencer and Kandel, 196]; Hild and
dsaki, 1562; Anderson, Holmquist, and Voorhoeve, 1966;

Uk 'vanov, 1970: Korn and Bennett, 1971, 1972} and, in particular,
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those of cerebellar Purkinje cells (see Fig. 6-1) (Llinds, Nichol-
son, Freeman, and Hillman, 1968; Nicholson and Llinés, 1971;
1linds and Nicholson, 1971). In addition, Tauc and Hughs (1963}
have demonstrated both "OR" and “AND" operation of branches
during antidromic . (backward) stimulation of mollusc axons, The
sketch of these experiments is indicated in Figs. 6-20 and 6-21.
Inputs are presented to two branching axons and the output is re-
corded through a microelectrode in the cell body. From previous
studies by Tauc (1962a, b} it was possible to distinguish between
the large output pulse from firing of the cell body and the smaller
pulse associated with firing of the axon. It was not difficult to
fire the axon but not the cell body. The sOR® function (6. 6. 2}

is demonstrated in Fig. 6-20. Stimulation of either branch results
in firing of the axon. The "AND" function (6. 6.1) is demonstrat-
ed in Fig. 6-2l. Stimulation of both branches with pulses suffi-
ciently synchronized (see Fig. 6-16) is necessary to fire the axon.
Tauc and Hughs conclude with the observation: "It follows from
this study that a molluscan nerve cell may assume the functions
of several neurons if these are considered in their classical sense
as units of nervous activity. ”

FIGURE 6-20. Demonsiration of the “OR" function at a branching.
mollusc axon by Tauc and Hughs (19 63), [The large .
peak in (3) is caused by firing of the cell body. ]
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FIGURE 62.1. Deonstration of the "AND” function at a branch-
ing mollusc axon by Tauc and Hughs (1963),

7. PULSE-TRAIN DYNAMICS

In this chapter we are primarily concerned with the interaction
of individual pulses. This is essentially a simplifying assumption
since nermal neural activity involves the propagation of pulse
. trains. The present author anticipates that the dynamics of pulse
" trains will become of increasing interest in the near future. As
an introduction to such studies, consider the propagation of com~
pressed regions on a nerve pulse train that is approximately peri~
odic.
Whitham (1974) has developed a technique for finding solutions

1o nonlinear wave problems that are almost periodic, but for which
the frequency, f, wavelength, x, and amplitude, A, are slowly
arving functions of space and time. Such almost periodic solu-
tions are not sinusoidal (often they are elliptic functions), and

he corresponding dispersion equation is of the form f= F(x s A).
Two quasilinear equations for the slow evolution of f A, and A
e obtained from variation of a Lagrangian density that has been
Veraged over a cycle of the periodic wave. Such a Lagrangian
Snsity can be obtained from an energy-conservation law {4.4), A
lrd equation is conservation of wave crests
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L
E(—XlJriw (6.7.1)
ot ax co

For nerve fiber problems, we do not have conservation of
energy: propagation is governed instead by the power balance con-
dition (4. 3). Purthermore, as the results obtained by Rinzel and
Keller indicate (see Fig. 4-14), the frequency, amplitude and
wavelength for a stable periodic wave are fixed by the local prop-
agation velocity

u = fx (6.7.2) ¢}
Thus f= f@u), » = x{u}, and A= A{W) so only (6.7.1) is needed

to describe the slow evolution of f,k, and A. Conservation of
wave crests becomes

fu Bu
at+U(u)BX =0 {6. 7. 3)
where
Ul) = df (6.7.4)
d(;)

is a nonlinear group velocity. For the periodic waves in Fig. 4-14,
typical plots of f against 1/x were presented in Fig. 5-1. 1itis
interesting to note that the boundary for spatial instability found
by Rinzel (5. 1. 46) is simply

T=0 {6.7.5)
Along the stable (high velocity) branch it is clear that
TUu) <u (6. 7. 6) -

as was noted by Rinzel and Keller (1973). Thus (see Fig. 6-22) a
compressed region in a pulse burst should drift to the rear. This
is because pulses are arriving at the rear with a speed greater
than that of the compressed region. Eventually (6. 7. 3) predicts
the onset of rear end “shocks" which must, of course, be inter=
preted as an indication that the primary assumption of a slowly
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FIGURE 6-22. A slowly varying train of nerve pulses.

varying wave train is no longer valid. But the question of "rear
end collisions” (Crane, 1364) may be important for a nerve fiber
just as it is in a corresponding study of automobile traffic dynam-
ics (Whitham, 1974).

Some progress toward the understanding of such effects has
been reported by Donati and Kunov (1976) in connection with their
experimental study of double pulse propagation along a squid giant
axon. To predict the ratio of the velocity of the second pulse to
that of the first (leading) pulse, they calculated the change in
membrane conductance in the wake of the first pulse due to slow
potassium turn-off, This change in effective resting potential was
introduced into (4. 2. 17) in order to calculate the change in velo-
city of the second pulse. Substantial agreement was obtained be-
tween predicted and observed velocity ratios for the two pulses.
For a particular axon they found a "locking” effect at a spacing of

-about 15 cm (7. 5 msec). If the pulse spacing was between 15 cm
-and 20 cm, the second would travel faster than the first, but with
" closer spacing than 15 cm the second pulse would propagate more
:‘slowly.

Telesnin (1969) has studied the stability of an arbitrary num-
ber of pulses propagating on ring (or loop) of active fiber. Assum-~
ng an enhancement to follow the refractory phase of each pulse,
fie ‘'shows that the pulses will be equally spaced for a short ring

but should travel in a single compact group for a ring which is
fficiently long.
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8. THE McCULLOCH-PITTS NEURON

In 1943 McCulloch and Pitts proposed that nsurons might be
approximately described by the following physical assumptions:

|. The activity of the neuron is an “all-or-none” process.

2. A certain number of synapses must be excited within the
period of latent addition in order to excite a neuron at
any time.

3. The only significant delay within the nervous system is
synaptic delay {7 ).

~Under these assumptions McCulloch and Pitts began the de-
velopment of a calculus of neural nets [ see McCulloch (1965) for
a carefully edited collection of the important papers] . Analytical
implementation of the ideas expressed in assumptions 1-3 can be
performed in several ways. Under assumption 1 it is inviting to
represent the activity of a neurcn as a logical proposition and
write the neuron output as

Wit +7) = o[ 00 -00] (6. 8.1)
i
where

rlx] =+1 for x>0
(6.8.2)
=-1 for 2<0

is the signum function. In (6. 8.1) ¥ takes values of +1, where-
as the synaptic weights (ai) and the threshold (B) are real num- )
bers. The "synaptic delay” is represented by 7 and often it is
convenient to assume time to be quantized in units of 7. Equa-
tion (6. 8.1) fails to express the possibility that a firing decision
might depend on inputs at times more remote than 7 (dendritic
memory}, but this can be included by writing

t
@) = |y f wil-t)e Hdt - G(t)] (6.8. 3)

; i
1 —oo
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where wi(t) is a (real) function that: (a) is zero for negative
argument, (b) rises to a maximum in a time of order 7, and
{c) eventually falls back to zero as t —o, On a longer time
scale it is often of interest to consider the neuron as an analog
processor of information expressed as the rates of pulse trains.
Then we can write

F(t) = 8[y, @ f ()] (6. 8. 4)
i

Here F and the fi are real positive functions of time represent-
ing average firing rates and 8[-} 1is a "sigmoid" type monctone
increasing function.

In their initial study, McCulloch and Pitts (1943) emphasized
the distinction between neural nets with "circles” (i, e. , closed
causal paths for logical feedback) and those without. “Nets with-
out circles” lack the capacity for reverberatory activity and thus
are analyzed with much less difficulty. In the survey of approach-
es to neural net analysis presented in Chapter 7, nets without
circles are considered first. But (6. 8.1), (6. 8. 3}, and (6. 8. 4)
are approximate representations of assumptions 1- 3, wiich, in
turn, seem an cutrageously oversimplified description of the mul-
tiplex neuron in Fig. 6-3. One justification is to suppose a sin-
gle real neuron to be represented by several hundred or more for-
mal neurons. This net of formal neurons to describe a real neuron
may be without circles; but counting is affected and the widely
quoted number of 1010 cortical neurons could perhaps be inter—
preted as 1013 *formal neurons. *

Since the objective in Chapters 7 and 8 is to suggest some
difficulties in establishing a “calculus of mind, " the formal neu-
- ron of McCulloch and Pitts is accepted as an appropriately con-
servative assumption.
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i cry no guarter of my age and call

on coming wits to prove the truth

of my stark venture into fates cold hall

where thoughts at hazard cast the die for sooth

Warren S. McCulloch

1. NETS WITHOUT CIRCLES

The study of neural nets without closed causal loops was
vigorously pursued from the late 1950s to the mid 1960s. One
focus of this activity was the "Perceptron” idea that was begun
at Cornell University as an attempt to construct computing ma-
chines that mimic brains (Rosenblatt, 1958, 1962; Block, 1962;
Block, Knight, and Rosenblatt, 1962). A second was the ADALINE
(acronym for ADAptive LiNear Element) developed at Stanford Uni-
versity to implement some of the ideas on reliability of computa-
tion that had concerned von Neuman (Widrow and Angell, 19 62;
Nagano, Ohteru, and Kato, 19 67) and the related Lernmatrix intro~
duced by Steinbuch (1961). An extensive bibliography of this work
is included in the excellent book Learning Machines (1965) by
Nilsson (of which only the most elementary concepts are cited
here).

Suppose the &; values in (6. 8. 1) are coordinates in an n-
dimensional pattern space and ¥ is to indicate which regions
satisfy a certain condition (¥ = +1} and which do not (¥=-1).
Defining a weight vector

228
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W E(al,az,"',a’n,e) (7.1.1)
and an augmented pattern vector
R O A WY (7.1.2)

the threshold condition {at which the argument of o[+] 1is zero)
is

WP =20 (7.1, 3)

This is evidently an (n-1) dimensional hyperplane in the space
of the ¢; values that attempts to divide those regicns for which
¥ should be +1 from those where ¥ should be -1. As a simple
example consider Fig. 7-la, where n = 2 and \IfAis the predicate

‘-FA = +1 if the pattern has property A

= -1 if the pattern does not

In this case there is a one~dimensional hyperplane (al(i:l tayd, =
8) that discriminates the patterns with property A. A slightly
more complex situation is indicated in Fig. 7-1b, where a single
hyperplane that can discriminate property A does not exist. How-
ever, using the two predicates ¥) and ¥, indicated on the fig-
ure, it is clear that ¥, can be logically computed as

T = ¥ (AND) &

n ] o (7. 1. 4)

Often it is interesting to "train” {7.1.1) to classify correctly.
..Let us suppose it does not. That is tc say there is some augment-
ed pattern P| with property A for which ¥= ~1 or W « P <0,
Changing the weight vector to

WW'= w4 c1—>l (7.1.5)

hich is greater than zero if c satisfies the ineguality
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W P

-

c>- (7. 1. 6)

oo

N
Note that the threshold condition W - —P_l =0 isa hyperplane per-
pendicular to Py in the space of the weight W. Thus a change
of T in the direction of P; is the shortest distance to cross the
threshold and, in this sense, (7. 1. 5) is an efficient scheme for
weight adjustment. The fundamental training theorem for a Per—

is essentially that, assuming a discriminating hyperplane to exist,
one will be found by iterating the weight adjustment indicated in
(7.1. 5). A satisfactory hyperplane is, of course, not necessarily
unique.

P |
&

22

%%

12

5, 5,

TFIGURE 7- 1. Discriminant hyperplanes for pattern recognition by
Perceptrons.
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These ideas are so simple and appealing that it is difficult to
avoid becoming overly enthusiastic. Thus the careful evaluation
of the Perceptron concept by Minsky and Papert {1963) is an im-
portant contribution which should be carefully studied by all who
are interested in this subject. Choice of the ¢ functionsisacru-
cial consideration, so Minsky and Papert restrict themselves to
the situation sketched in Fig. 7-2. Patterns are presented to a
“retina” of R points each of which may be black or white, and
each ¢ is computed from a certain subset of the retinal points.

A Perceptron is defined as follows. Consider a patiern, X, a
property or predicate T (e.q. , convexity, connectedness, the
letter A, etc.), and a family of functions

&= {‘\l‘)l’ d)zsl'.,d\)n} (7'1'7)

The predicate T{X) is linear with respect to & if there exist real

numbers ap,...,a, and O such that ¥(X) is "true” (i. e. , 1)
if and only if
@ X) + - ta 6 (X) >0 (7. 1.8)
We can then write
T(X) = “?"i"’im - 6} (7.1.9)

which constitutes a Perceptron for the predicate ¥ (X). If pattern

"X has the property ¥, T(X) = +1; if not, W(X} = - L.

The repertory of a set 2, L(@), is defined as the set of all
predicates that can be computed as in (7. 1. 9) with appropriate

- choice of the weights., The “game” of Minsky and Papert is to

:put restrictions on @ to see what can be learned about the corres-

sponding L(%). They are particularly concerned with the following

1. Considering the retina as an R-dimensional space of 2R
pattern vectors obscures the real geometrical properties
of patterns ecn R. There are meaningful geometric pro-
perties that cannot be computed by Perceptrons.

2. Size range for the weights is an important consideration.
Predicates in L(®) requiring an impractically large range
of the o wvalues are of limited interest.
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3. Time of convergence must be con sidered in evaluating the
learning scheme. A Perceptron can always "learn" by

cycling through all weight vectors, but this is impracti~
cal.

Minsky and Papert define diameter limited Perceptrons for
which the inputs tc any ¢ function lie within a fixed distance and
order limited Perceptrons for which the number of points in the
retina seen by each ¢ functionisbounded. Typical negative results
obtained for computation of "connectedness” are (a) no diameter—
limited Perceptron can compute connectedness and (b) an order
limited Perceptron must be of order R (i.e., some ¢ function must
look at every point in the retina) to compute connectedness. Typ-
ical positive results are that simple geometrical figures (triangles,
rectangles, alphabetical letters, etc, } can be computed by dia-
meter limited Perceptrons and by Perceptrons limited to low order.

RETINA CAN HAVE AN ARBITRARILY
LARGE (R} # OF POINTS

FIGURE, 7-2. Diagram of a Perceptron.
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Perceptron ideas have been used to train a digital computer to
play checkers {Samuel, 1959), and recently it has been suggested
independently by Marr (1969) and Albus (1971) that the Purkinje
cell of the cerebellum (see Fig. 6-1) may be essentially a Percep~
tron that mediates muscular activity. However, one should not
jump to conclusions. Considerably greater computing power would
be obtained {see Fig. 7-lb) if logical decisions were made at den—
dritic branches (see Fig. 6-3). Marr (1970) has extended his pic-
ture of the cerebellum to a detailed discussion of information pro-
cessing in the cerebral cortex. Here, however, it is necessary
to consider also the influence of reverberatory activity.

2. REVERBERATORY NEURAL NETS

In 1949 Hebb published his classic Organization of Behavior
in which he attempted to bridge the gap between neurophysiclogy
and psychology by postulating the existence of a new hierarchical
entity that he termed the cell assembly. A carefully developed in-
troduction to this concept is contained in his textbook (Hebb, 1972)
but the central notion is that:

Any frequently repeated, particular stimulation will lead
to the slow development of a "cell assembly, " ..., capable
of acting briefly as a closed system, delivering facilitation
to other such systems and usually having a specific motor
facilitation. A series of such events constitutes a “phase
sequence” - - the thought process. Each assembly action
may be aroused by a preceding assembly, by a sensory
event, or ~~- normally -~ by both. The central facilitation
from one of these activities on the next is the prototype of
"attention®.

Hebb, a psychologist himself, marshaled substantial psy-
chological evidence to support this view against the conflicting
claims of "field theory, ¥ which denied the importance of individ-
ual neural connections and "switchboard theory, ¥ which, in turn,
‘asserted direct connections between sensory and motor neurons
‘throughout the cortex. As the electrically induced experiential
‘responses described in Chapter | indicate, something like the
—phaSe sequence is a palpable fact of thought. It can also be
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experienced as a "jumping” between perceptions of profile and
front views in Picasso's 1937 painting of Marie-Thér&se Walter
(Fig. 7-3). [For a survey of the relation between art and per-
ceptual dynamics, Arnheim's Art and Visual Perception {1954} is
highly recommended. ] Another easily experienced phase se~
guence is the thought train of dreaming, a vivid example of which
has recently been given by Roszak {197 3).

.

FIGURE 7-3. Picasso's "Marie-Thérése Walter. " With practice,
either mirror image can be viewed in front or profile,
but practice with (b) - - the criginal -~ doesn't
help with (a). (From Goodbye Picassc by David
Douglas Duncan. Used by permission of Grosset
and Dunlap, Inc.)
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A sphere appears in my dream ... and becomes a ball,
a familiar childhood toy I had forgotten. At once the dream
begins to heap up associations around this ball. Tt plays
exuberantly with the word "ball" ... with every possible
rhyme, pun, slang connotation, homonym. Suddenly, thers
are elegant people dancing on and around the ball; it has
become a fancy-dress ball ... where people are having a
ball ... balling the jack ... drinking highballs ... geiting
drunk to the eyeballs .., ., Balls: a man's balls ... to
have balls ... to be on the ball. Ball; toc ball a woman . ..
to ball up the job ... to bawl like a baby. Ball: bald.
Ball: fall ... as hair falls.,, leaving you hald as a
billiard ball. People named Ball: John Ball ... George
Ball ... Lucille Ball, Ball: Baltimore ... the Baitimore &
Ohio ... highballing down the line ... And the dream plays
toc with the form of the ball, until it reflects every sort of
round, rolling, bouncing thing ... globes, planets, wheels,
balloons, bubbles, circles, eggs, oranges, coins, fireballs,
goof balls, golf balls, footballs ... a baseball which is
"the old apple" ... forbidden fruit ...

Hebb viewed the cell assembly as a "closad solid cagéwork,
or three-dimensional lattice, with no regular structure, " and sup-
posed it to develop under the following conditions.

When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A's efficiency, as one of the cells
liring B, is increased.

Although Hebb (1949) favored a strengthening of synaptic con~
tacts as a mechanism for learning, the above assumption is not
specific. It does, however, consider only an increase in firing
efficiency. In 1955 Frankel reviewed several approaches to the
realization of machines to mimic mammalian brains and suggested
a-design along the lines of Hebb's theory as most promising. Since
the difficulties of dealing analytically with such a system appeared
unmanageable, he proposed a computational investigation. Rochest-
e, ‘Holland, Haibt, et al. {1956) presented the results of such a
test that modeled 99 neurons as indicated in {6. 8. 3) with no in-
bitory interconnections and assumed the time to be quantized in
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discrete steps of a “synaptic delay, " 7. They found a diffuse
reverberation with a period of the order of the refactory time but
could not demenstrate the growth of cell assemblies. Rochester,
Holland, Haibt, et &l {1956) then talked with Milner who was
revising Hebb's learning assumption tc include inhibition as a
decreasing efficiency of firing (Milner, 1957). They { Rochester,
Holland, Haibt, et al. (1956)] subsequently modified their program to
include inhibition in 512 neuronswith six "external® neurcns excit-
ed every ten time steps by organized signal plus noise. Cell as~
semblies were found to develop with excitatory contacts between
cells in the same assembly and inhibitory contacts between adja-
cent assemblies. Thus two such assemblies could act as a "flip~-
flop" that mimics oscillation between the two perceptions in Fig.
7-3.  Griffith (1967) has demonstrated that an “"habituation” effect
that gradually raises the threshold of a neuren during activity can
change such a flip-flop into the "multivibrator” indicated in Fig.
7-4. When assembly A {("mode A" in Griffith's terminology)
fires, it inhibits assembly B, but eventually the thresholds for
neurons in assembly A rise and.it becomes extinguished. This
removes the inhibition from sssembly B permitting it to fire. A
significant aspect of this study is the extermely rapid "turn-on"
of usually only one or two time increments.

]
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FIGURE 7-4. [Iree-running "multivibrator™ oscillation of two cell
assemblies with inhibitory interaction and habitua=
tion. From A View of the Brain, by J. 5. Griffith,
published by Oxford University Press, 1967.
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Hebb (1849) discussed a hierarchical organization of cell as—
semblies, making particular reference to visual perception, Al-
though we consider this concept in greater detail in the text that
follows,it seems appropriate to introduce the gist of it here. Not-
ing that neural mapping from the retina to area 17 of the visual
cortex (see Fig, 1-4) is topological, he proposed lines and angles
positioned through eye movement as the first level cell assemblies
{(subassemblies} localized in area 17. Since the connections from
area 17 to area 18 are no longer topological but diffuse, this area
can serve as a location for assemblies that organize lines and
angles into perceived geometrical figures such as triangles, rec-
tangles, circles, and so on. This notion receives some support
from the studies by Hubel and Wiesel (1962) of the functional ar-
chitecture of the feline visual cortex. They conclude:

It is suggested that columns containing cells with com~-
mon receptive-field axis orientations are functional units,
in which cells with simple fields represent an early stage
in organization, possibly receiving their afferents directly
from lateral geniculate cells, and cells with complex fields
are of higher order, receiving projections from a number of
cells with simple fields within the same column.

In 1961 Caianiello proposed a detailed analysis of neural sys-
tmes composed of elements as in (6. 8. 3} paying particular atten—
tion to reverberatory states and their relation to thinking and con-
sciousness. Caianiello, de Luca, and Ricciardi (1967) investigat-
.ed the reverberatory character of N formal neurons described as
in (6. 8.1) with every 8 (threshold) equal to zero, a normal system.
Time was assumed to be quantized in units of the synaptic delay,
7; and a real variable, v, was introduced to represent signal
strength before processing by the signum function. Thus the input
to the firing decision for neuron h at time t + 7 is related to the
states of all neurons in the net at time t by

v (t+7) = Zahko—[vk(t)] (7.2.1)
k

ntroducing a vector description of the states of the N neurons at
ime t = mr as
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A vl(m"r)
_ _ Vz(m’T)
V= v{mT) = (7.2.2)
_VN(mT)
permits (7. 2. 1) to be written in matrix form as '
Vo S Azr[vm] (7.2.3) k-

where A= [ahk] is the N x N matrix of interconnection
strengths. A reverberation is defined as a sequence of states

v = P =v 7. 2.
vm Vm+l Vm+R Vm ( 4)

and Ry is the period. Even this greatly oversimplified model for
a neural system has 2N states, and a reverberation that cycled
through all of these states would have a period of 2Nr sec.
Taking N = 100 neurons and 7T = 10~3 sec implies a period of
about 1019 years, which is much longer than the age of the uni-
verse! Caianiello, de Luca, and Ricciardl showed how the rank
(K) of the connection matrix could be used to establish an upper
bound on the pericd of a reverberation. By partitioning the matrix
A as

e i (7.2.5)
MB ! MBA ;} (N-K) rows

— —

K columns (N-K) columns

and defining a reduced vector ;;n as
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' i
Yim VK+l,m
Vem YK+2,m
o= and also V" =| : (7. 2. 6a,b)
m : m :
YKm _VN,m ]
(7. 2. 3) can be written
Vo B | BA | [V ]
ol (1.2.7)
on \ n
Vsl MB !'MBA c{v"]
Thus
ot _ o S}
Vi T E[o—{vm] +A(T[Mvm]] (7.2.8)

In otherwords, the reduced vector at time m+l depends only on
the reduced vector at time m. At any time v M—;n , and
clearly o[vy] has just 2K states. The 51gnum function has the

property a[xy] = o{x] - o[v]. Thus we can write
o[ M Vm] = U'[Mjcr[vm] (7.2.9)

if we assume that the matrix M has only a single element in each
row and column. Then the period of a reverberation is bounded by

R<2F (7. 2. 10)

: Without assuming quantized time or zero threshold, Caianello,
“de Luca, and Ricciardi also showed that the reverberatory system
would have (N-K) constants of the motion. To see this rewrite
{7.2.3) as

vt} = Acfvit~7)] -8 (7.2.11)

Where 6= col (6 ,6n) is a threshold vector, Taking the sca-
ar product of (7 2 ll) with a constant, N component vector y
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glt) = v -v(t) = V- [Tt -7)] -V O
f y is chosen so
o) (7.2.12)

then

g=-5:6 (7.2.13) 1

For A an N xX N mairix of rank K there are (N-K} independent
vectors, y, which satisfy (7. 2.12) and give (N-K] constant val-
ues for g in (7.2.13). See Alello, Burattini, and Cailaniello
(1970) for further discussion of constants of the motion and learn-
ing invariant rank.

A system of N neural elements and, therefore, 2N states
can also be described in terms of a state diagram that indicates
the evolution that the system undergoes as time increases. For
three elements there are eight states of the vector (nl, n,, n3)
where n; = & 1, and each of these can be designated by a point
(see Fig. 7-5). Only one arrow leaves each state indicating the
unique state for the next time increment, but any number of arrows
can enter a state. Thus emerges a basic nerve net property,
namely, irreversibility in time. Reverberations are related to the
closed cycles, and "transients” to paths not included in cycles.
Thus if the system is initiated in state {111} it will go through state
{-111) before entering a reverberation of period 2. Kitagawa {(1973)
and Ishihara and Sato (1974} (see also Sato and Ishihara, 1974)
have recently discussed the application of graph theory to the
study of shifts and stability of reverberations.

In general each of the N, neural elements may be an arbi-
trary Boolean function with N, inputs. Since there are 272 in-
put combinations and the output can be +1 for each, there are

N

2
5 2

Boolean functions of N, inputs. FEach of the N, neural elements
can be any of these functions so there are

Ng = 2N12 (7.2.14)
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2
FIGURE 7-5. One of the 2 4 state diagrams for a logic machine
with three elements.

possibilities for the system. If we restrict the neural elements to
the threshold calculation indicated in (6. 8. 1), not all of these
possibilities can be realized. The simple state diagram of Fig.
7-5, for example, demands that the first element decide -1 when
the inputs are {l11) and (-1-1-1), but must decide +1 for other

- inputs. As was indicated in Fig, 7-1, this decision cannot be
made by a threshold element. The number of threshold logic func-
tions of N, inputs is not exactly known, but for large N, itis

.- approximately (Yajima, Ibaraki, and Kawano 1968)

“where

(7.2.15)

he ratio (gLT/qLB) falls rapidly to zero as N, and N2 increase:
O N, = N, = 7 neural elements it is 0. 548 x 10200, Thus it is
portant to know whether a neuron computes an arbitrary Booclean
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function (as might be inferred from the "multiplex neuron” of Fig.
6-3) when making numerical estimates of the dynamical possibili-
ties for a neural system. :

Consider next an N neurcn system for which only m < 2N
of the state transitions are specified. Yajima and coworkers de-
fine R(m,N) as the ratio of threshold systems to the total num-
ber of Boolean systems with this specification and show that

R(@N,N) -0 for a>2

— 1 for o <2

as N —o, Thus threshold logic imposes little restriction on the
realization of an N element system as long as less than 2N
transitions in the state diagram are specified.

These considerations may be useful for extending and evalu-
ating the discussions by Ishihara (1971a, b) of the interactions be~
tween reverberations. Referring to Fig. 7-6 he describes Pavlov's
classical conditionad reflex experiment in the following manner.
The food-salivation mechanism is assumed to be established as a
reverberation A in area 19, where the loop of dots represents a
sequence of states (as in Fig. '7-5) rather than the successive
firing of individual neurons. When the bell is repeatedly rung, a
corresponding train of pulses projects to areas 4] and 42 of the
temporal lobe (see Fig. 1-4) eventually establishing reverberatory
activity B in area 22, Simultaneous stimulation by the bell and
the meat leads to the development of an interaction between as-
semblies A and B, eventually permitting stimulation of A by the
bell via B without the presence of the meat. Ishihara has been
primarily concerned with the representation of such an interaction-
in the context of Caianiello's neurcnic equations (7.2.3). Inthe
text that follows we consider more physical descriptions of how
such a long~range interaction could occur.

The computational difficulty of dealing with a dynamic system
as complex as at least one hundred formal neurcns led Shimbel '
and Rapoport (1948) to consider the development of a statistical
neurodynamics, and Rapoport {1952} used this approach to study
the "ignition" phenomenon in a neural network (see also Trucco,
1952). Smith and Davidson (1962) presented a simple descriptio
of this effect which assumed a network of N neurons, each hav
ing e excitatory connections coming randomly from the other
neurons. Time was assumed to be guantized and inputs were
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FIGURE 7-6. Schematic representation of Paviov's classical
conditioning experiment (redrawn from Ishihara,
1971b).

summed over s time units. Calling the activity or fraction of
cells firing F, the probability of a cell receiving i umts of
excitation over the previous s time units on e inputs is™

' i -3 1
I(_ése_e%_'_'_ F - pse 1E(sie)EJ<(l_F)se i

The probability of firing, 8, is the sum of this quantity for all
i> 6 (the threshold) so

s(r) = Z(Se)m p)e! (7. 2. 16)

An equilibrium condition for sustained activity is
S(F) = F (7. 2.17)

hich is easily shown to be satisfied for F = 0 (no activity) and
I (maximum activity). If 1 <6 <se, S(F) has the sigmoid

pe indicated in Fig. 7-7 so there is an intermediate equilibrium
which

S:any craps shooter should know.
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ds

aF >1 (7. 2.18)

Thus a slight increase (decrease) in F causes a greater increase
{decrease) during the next time increment and the intermediate
equilibrium point is always unstable. Ashby, von Foerster, and
Walker (1962) saw this effect as “something of a paradox" because
the brain does, indeed, exhibit intermediate states of activity.
Confusion arises here because a completely statistical represen-—
tation of a nerve net fails to distinguish between {say) one per-
cent of the neurons firing at maximum rate and all the neurons
firing at one percent of the maximum rate. Thus in the context of
Hebb's discussion, the paradox can be resclved by supposing that
(7.2.16) and Fig. 7-7 apply to the neurons of a particular cell as~
sembly with inhibitory connections to neighboring assemblies.
Statistical neurodynamics might be considered as a procedure
for establishing the "laws of thought” from network dynamics
(level 5 in Chapter 1) just as statistical thermcdynamics derives
the gas laws from molecular dynamics. For careful ireatments see

Stable ~__

Unstable equilibrium
point

3 (F)

o]

0 ™~ stable F————— 1

FIGURE 7-7. Solution plot for equation (7.2.17).
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Rozonoér {1969), Amari {1971, 1874), and also the combined numer—
ical and analytic studies by Burattini and Liesis {1372). Cowan
{(1970) has discussed the possibility of establishing a Hamiltonian
formulation for neural activity, but the corresponding restrictions
on neural interconnections may be too severe. The work of
ventriglia {I974) is alsc motivated by an analogy with classical
physics. He considers the neural system to be composed of two
types of “particles” (neurons and impulses) enclosed within a
three—-dimensional space. The neural particles are in fixed posi-
tions while the impulses form a surrounding “gas. " Impulse-
impulse collisions are neglected, but the total number of impulses
is assumed to change after an impulse-neuron collision, A kine-
tic equation is developed for evolution of the distribution function
for impulses. The difficulty, of course, is that the organization
of a neural mass into (say) cell assemblies determines which as~
pects of the mass may be treated statistically, and it is just this
organization that is not evident from the study of neural nets.
Some ad hoc notion, such as the cell assembly, seems necessary
as a working hypothesis in crder to proceed.

White (1961) was among the first to consider the dynamics of
cell assemblies in relation to the "ignition" phenomena displayed
by random neural nets. For a net with N neurons he began with
a simple version of the equilibrium conditions (7, 2.17) in the form

F= S(P+ BNF) (7. 2.19)

where P is an external input to the net and S is a coefficient
which expresses interconnectedness. Inhibition is included by
supposing f to be coriginally negative; it gradually becomes posi-
tive as the net develops into an assembly under repeated stimula~
tion by P. Rewriting (7. 2.19) as

st -ps BNT (7. 2.20)

nd referring to Figs. 7-8a, b, it is clear that for B negative or
ositive but less than the minimum slope

as” (m)

dF min

eire; is only one firing state and F will return to zeroc as P is
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reduced to zero, However, if repeated stimulation by P increases

f so it satisfies the inequality

-1
ds ~ (F)
B >—qF (7.2.21)

min

there can be two firing states. Increasing P sufficiently and
then reducing it again will leave the network in the upper firing

state as shown in Fig. 7-8c. E
For two cell assemblies, N} and Nz, equilibrium egquations |

can be written

)

-1
STF) = B BN F BN T

(7.2.228,b)
s (F,) =P+ 521N1 F + 5ZZN2 F,

Let us assume that B and ;322 both satisfy the inequality

(7. 2. 21} so the assem lies can be individually ignited. Then if
@Zl(ﬁlz) is also positive, it is impossible to ignite assembly 1(2)
without also stimulating assembly 2{l1}). This is in agreement with
the computer studies by Rochester, Holland, Haibt, et al (1556)
and Griffith (1967) indicating the need for some inhibition between
assemblies. If B, and Bp) are both negative, a variety of

/
Active

STHF)— sTtF) / Stats

/
s
~ /
P B <O p L= Z —tnstable
~ ds” P ] g> 487
~ o< < in
—_ B8 df |min 4F jmin
F F
Resting State
{a) {b} {c)

FIGURE 7-8. TFormation of a cell assembly described by equatio
(7.2.20): (&) mutual inhibition; {b) weak mutual
excitaticn; (c) strong mutual excitation.



Reverberatory Neural Nets 247

solutions to (7. 2. 22} can be obtained involving the ignition of one
or both assemblies.

Following an initial attempt by Harth and Edgar (1967) to mod-
el the cortex as a mass of association neurons which were highly
damped so reverberations would not occur, Harth, Csermely,

Beek, et al. (1970) turned to the idea of cell assemblies {called
netlets). They begin with a careful review of the biological evi-
dence supporting Hebb's theory, which includes: (a)} experiential
response to electrical stimulation of the cortex [described in
Chapter I of Penfield and Perot (1963}], (b) Mountcastle's (1957)
observation of radial columns of neurcns in the somatosensory
cortex of the cat that appear to act as “elementary units of organi~
zation, * (¢} the previously cited suggestion by Hubel and Wiesel
(1962) of a functional hierarchy for cell pools in the cat's visual
cortex, and (d) intracortical microstimulation of the cat’s motor
cortex by facilitating currents as low as 2 pA (Asanuma, Stoney,
and Abzug, 1968), which indicates that “the basic design of motor-
sensory cortex includes radially arranged colonies of functionally
related neurons.  Since the cortex contains some 1010 neurons,
any attempt at an holistic description must greatly reduce the
number of parameters considered. Cell assemblies might serve as
appropriate "macrostates” that are random in the small and organ-
ized in the large. Harth and coworkers stake out their position as
follows:

It should by no means be taken for granted that such
neuronal macrostates must exist, nor that their description
can be made sufficiently simple to be of practical value.
However both will be assumed here. [t is difficult to see
how significant progress in understanding the brain can
ever be achieved unless these twe assumptions are justified,

They then describe the ways in which cell assemblies could inter~
act in the cortex to process information and to model the condi-
tioned reflex. Learning is assumed to proceed according to
Caianiello’s (1961) adiabatic learning hypothesis, according to
which the coupling coefficients [the apy, in (7.2.1)] change
slowly on the time scale for reverberatory activity. The detailed
,;athematicai analysis is described in a companion paper by

d nincs, Beek, Csermely, et al. (1970). They assume a "refrac-
Ty period, ¥ r, which is related to the firing delay, 7, by

b
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T <r <27 (7.2.23)

This means that at each time step only those neurons that fired on
the previous step would be unavailable for refiring. Equation
(7. 2.17) then becomes modified to

Flt +7) = [1- F@t)]8[ Ft}] (7. 2.24)

which leads to a high probability of cyclic activity between two
states as in Fig. 7-4. A formulism is developed, involving macro-
scopic coupling coefficients, for systems containing an arbitrary
number of assemblies. Numerical results from application of this
formulism to a system of two assemblies is discussed by Harth,
Cseremely, Beek, et al. (1970). In a series of subsequent papers,
Anninos (1972a,b, 1973) and his associates [ Anninos and Elul
(1974), Cyrulnik, Anninos, and Marsh (1974)] present a variety
of numerical results on the dynamical behavior of single-cell as-
semblies {see alsc Dunin-Barkovskii, 1970).

In a more analytical discussion, Wilson and Cowan (1972)
consider two subpopulations of neurons; excitatory and inhibitory,
for which the fraction firing per unit time are described by two de~
pendent variables Ef{t) and 1{t). After a cell fires, it is assumed
to be refractory for a time r, so the fraction of excitatory cells
ready to fire at time t is

t
1- [ Eft)dt =l -rE@)
t-r

with a corresponding expression for the inhibitory cells. Assum-
ing the delay time for firing to be a value 7, Wilscn and Cowan
write a dynamic equation

Elt +7) = {1 - rEft)] se[|3l Et) - ﬁZI(t) + P{t)] (7.2.25

where S, is a sigmoid response curve for the excitatory neurons
P(t) is an external input tc the excitatory neurons, and both ] -
and P, are positive interconnection constants. Using the appro. -
imation

E(t +7) - E(T) dE

e VI
T - dt
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(7. 2. 25) becomes an ordinary differential equation for E{t)

eI TE)S [ BE - p,I+ P) (7. 2. 26a)

and similarly for I{t}, the inhibitory subpopulation

Tar =TIt 0-mS[pE-pI4Q] (7. 2. 26b)

where Q is an input specifically directed to the inhibitory neu-
rons. Egquilibrium conditions from (7. 2. 26) can be written

Bl = BE+ P—S;l( Ey for aE

2 1-rE dat ~
(7.2.27a,b)
-l 1 dar
f33E—[34I-Q+Si (l—l'I) for dt_o

From (7, 2. 27b) E is a monotone increasing function of I along
- the locus {in the E- I phase plane} where (di/dt) = 0. From

(7.2.27a), however, I is not necessarily a monotone increasing

function of E along the locus where (dE/dt) = 0. Two possi~
‘bilities are displayed in Fig. 7-9, where the directions of tra-

jectories along the equilibrium lines can be established from ref-
- erence to (7. 2.26). A smaller value of B] and a larger value of
. Bs favor the formation of stable equilibrium points indicated in
“Fig. 7-9a over the oscillatory behavior in Fig. 7-9b. Transitions
from one equilibrium point to the other in Fig. 7-9a can be ac-
complished by moving "the {dE/dt) = 0 locus"” right and left
through the excitatory input P or by moving the "(dI/dt) = ¢
locus” up and down with Q.

The biclogically oriented reader will notice that equations
{7.2. 26) are closely related to the Volterra equations for the inter-
action of species, Recently Lin and XKahn (1976) have used the
averaging method of Kryloff and Bogoliuboff {1947) to find condi-
tions for existence and amplitude of limit cycles when the system

near sinusoidal oscillation.

Grossberg {1973) has investigated the interaction of inhibitory
d excitatory neuron populations from a more theoretical point of
W (L e., using a "theorem-proof* format). He assumes that the
Craction parameters are identical for both components so a
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single activity variable (let's call it Fj) is sufficient to describe
the activity of the ith cell population, and that each population
excites itself as it inhibits neighbering populations according to

dF,
i _ - - ¥ :
el APi + (B Fi)S(Fi) Pik/;&liS(Fi) + Pi (7. 2.28)

Tt is interesting to compare (7. 2. 28) with the Wilson-Cowan equa-
tions in (7. 2. 26). The excitatory process, (B - F;}8(Fy), takes a
form different from the inhibitory process,

- ¥ ), 8(F)
lk?fi 1

Lecause a recurrent "on-center, off~surround” interconnection
scheme is assumed in which the cell population, F;, excites only
itself but inhibits neighbors within a certain halo. The multipli-
cative character of the inhibitory interaction is termed a "shunt-
ing” effect, which has heuristic value in assembly function as the
relative levels of the inhibiting assemblies are preserved, P; is
an external input tc the ith assembly.

E E
(7.2.27b)
Unstabla {7.2.27b)
Unstable
Stable ~_
Equilibrium Limif Cycle
Paints
—~—
(7.2.27a) =~{7.2.270)}
I I
(o) (b)

FIGURE 7-9. Phase-plane trajectories for excitatory and inhibi
tory neural subpcpulations from equaticns {7. 2. 26}
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The objective of Grossberg's work is to analyze the dyvnamic
properties of (7. 2. 28) with various assumption on the character of
the function S{.). 1In particular, a sigmoid character leads. to
edge enhancement of patterns and to localized reverberation or
short-term memory. More complex applications of this approach
to processing of pattern information are discussed in Grossberg
and Levine (1975), Ellias and Grossberg (197 5), and in Levine and
Grossberg (1976), Here influences on pattern processing of spa-
tiotemporal parameters in excitatory and inhibitory cell popula-
tions are considered.

Having suggested the notion of a cell assembly as an atomis—
tic entity, it is interesting to ceonsider how many assemblies
might exist in the human brain. This is a difficult question, but
Legéndy {1967) has obtained some results from a very simple mod-
el. He assumes that the brain ig already organized into subas-
semblies and discusses their organization into assemblies. The
assembly and one of its subassemblies variously represents "a
setting and a person who is part of it, a word and one of its let-
ters, an object and one of its details. ¥ Interconnectiong are as—
sumed evenly distributed over the brain to avoid the complications
of spatial organization. Subassemblies and assemblies are like
neurons in that a threshold of excitation must be exceeded for
ignition, but they are also bistable. As indicated in Fig. 7-8c,
they may remain in an active state {subject to the constraints of
‘habituation) as well as in a resting state. Whereas the threshold

~for a subassembly is assumed to be a certain number of active
'neurons, the threshold for an assembly is a certain number of ac-
tive subassemblies. Assembly storage has two additional advan-
Ages over neuron storage:

1. Physical damage will not destory specific assemblies,
but degrade many by roughly equal degrees.

2,  The growth of interconnections is much more plastic for
assemblies than for neurons.

Legéndy considers the subassemblies to be formed through
eak"” contacts and assumes assemblies to develop from sub-
emblies through the development of "latent" into "strong” con-
s between neurons. In his notation:

B = number of neurons in the brain;
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- maximum number of assemblies in the brain;

number of neurons in a subassembly;

- number of subassemblies in an assembly;

o = =2 Q
1l

= number of strong (latent) contacts per neuron.

Legéndy further assumes that half of the strong (latent) contacts
make output {axonal)} connections and the other half make input
(dendritic) connections.  Then he defines

m = maximum number of strong contacts from an assembly
to one of its subassemblies.

The number of ocutput contacts from an assembly is (3 Nya) and
those connecting to a subassembly reach a fraction N/B of the
neurons in the brain. Therefore

2
N va
o (7.2.29)

m =

The maximum capacity of the brain is reached when about one half
of the latent contacts have become strong; thus

Ba
= ——Zmy (7. 2. 30}

Substitution of {7.2.29) into (7. 2. 30) gives an estimate for the
maximum number of assemblies that can be stored in the brain as

This estimate is insensitive 1o the maximum number of strong con
tacts assumed for each neuron and to the number of subassemblie
Taking B = 1010 neurons in the brain, N = 10% neurons/sub-
assembly and v = 30 subassemblies/assembly gives c =10
assemblies.

Considering how much more complex the "multiplex neuron”
of Fig. 6-3 is than the simple representation employed by Legénd
this may be & conservative estimate for "the number of elementa
things the brain can know”, but, as he points out 107 is the nw
ber of seconds in 30 years. Griffith (1971) has reviewed various
estimates for the storage capacity of the brain that indicate 4
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jower bound of 108 bits {about equal to the information content
of the Encyclopedia Britannica estimated at one bit per character)
and an upper bound of 101l bits {corresponding to an average rate
of 50 bits/sec for 60 years). He feels that a reasonable value
lies in the range from 109 to 1010 bits.

3, SPATIAL LFFECTS

Up to this point we have ignored spatial organization of the
neural interconnections. This organization is evident from Fig.
1-4, and such points as: how an auditory reverberation in area 22
could communicate or interact with an optical reverberation in
area 19 are now considered here. Beurle (1956) initiated the anal-
ysis of wave effects by assuming the "neural medium™ to be com-
posed of p threshold elements per unit volume and for which:

B(x)dx = the average number of connections from one cell to
an infinite plane of thickness dx and distance x
away;

P = the "activity" or the fraction of cells becoming
active per unit of time;

R = the fraction of cells that are sensitive, (i. e.
refractory);

, hot

® = the probability of a cell being stimulated above
threshold per unit time;

T = the operating (synaptic) delay.

Assuming that the cells after firing remain in a refractory

ate (unable to fire) for a time period that is longer than the dura-
orn -of the disturbance being considered, each firing diminishes
efraction of sensitive cells, R. Thus

- =-F (7. 3.1}

“The firing rate' at t + 7 is equal to R times the probability
‘Sensitive cell being stimulated above threshold. Thus

Flt +7) = Rt} o)



254 Neural Networks

or, as in {7.2.26)

8

\ns|

\

T = (Re- F) (7.3.2)

Q
purs

Partial derivatives are indicated in (7. 3. 1) and (7. 3. 2) because
dependence on distance {x) is considercd as well as on time {t).
Beurle assumed p(x) to be an exponentially decreasing probabil-
ity of interconnection and showed

&= mF (7. 3. 3)

where m is a real proportionality constant. More generally
o0
o= plo-1)[ Blx', Bk~ x"dx’ (7.3.4)
—-c0

=pB-LF@B (7.3.49

where & indicates the convolution operation in {7.3.4) and
plo - 1) is the probability of & cell being just one input pulse be-
low threshold. If p({@ - 1) is assumed constant and the spatial
extent of B(x) is small compared with that of the disturbance be
ing considered, (7. 3. 4) reduces to (7. 3. 3) with m equal to p
times the area under P(x).

Here we assume (7. 3. 3) and suppose [ and R to be the
traveling wave of information with velocity u shown in Fig. 7-10
Then

FE)

n

P(x,t) = Flx - ut)

|

R{x,t) = R{x - ut) = RE)

where
€ = x-ut {7.3.5)

is the space coordinate in a frame moving with the assumed velo
city u. Equations (7. 3.1) and (7. 3. 2} then become :

(7. 3.

[
&
1}
try
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4r _ _
ur 4t = F{l -~ mR) (7. 3. 6b)
or
dF
3R S 1-mR (7.3.7)

which can be integrated over R to obtain the parabolic trajectory

TF=K+R- =R (7. 3.8)

sketched in Fig. 7-10d. Given a value, R|, for the fraction of
sensitive cells ahead of the wave, the correspondlng value in the
wake 1s

RZ=;1—R1 (7. 3.9)

as indicated in Fig. 7-10d, but it is unstable against growth tc
R) or collapse to zero. 