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Purpose. A critical issue in assessing speech recognition involves understanding the factors that 
cause listeners to make errors. Models like the articulation index show that average error decreases 
logarithmically with increases in signal-to-noise ratio (SNR). We investigated whether (1) this 
log-linear relationship holds across consonants and for individual tokens, and (2) what accounts 
for differences in error rates at the across- and within-consonant levels. 

Method. Normal-hearing listeners heard CV syllables (16 consonants and four vowels) spoken by 
14 talkers, presented at six SNRs. Stimuli were presented randomly, and listeners indicated which 
syllable they heard. 

Results. The log-linear relationship between error and SNR holds across consonants, but breaks 
down at the token level. These two sources of variability (across- and within-consonant factors) 
explain the majority of listeners’ errors. Moreover, by simply adjusting for differences in token-
level error thresholds, we can explain 62% of the variability in listeners’ responses. 

Conclusions. These results demonstrate that speech tests must control for the large variability 
between tokens, not average across them, as is commonly done in clinical practice. Accounting for 
token-level differences in error thresholds with normal-hearing listeners provides a basis for tests 
designed to diagnostically evaluate individual differences with hearing-impaired listeners. 

 
A critical issue in speech perception 
involves understanding the factors that cause 
listeners to make errors. Normal-hearing 
(NH) listeners are remarkably good at 
speech recognition, making very few errors 
in quiet or low levels of background noise 
(Singh & Allen, 2012). At higher noise 
levels, however, they eventually make errors 
when identifying consonants and vowels. 
Are these errors random? Or, are there 
systematic differences between speech 
sounds that cause listeners to make errors 

(e.g., are certain sounds more robust to noise 
than others)? 

These questions are closely related to the 
assessment of speech recognition with 
hearing-impaired (HI) listeners, who often 
have difficulty recognizing speech even in 
quiet. Clinicians would like to be able to 
assess a listener’s ability to perceive speech 
in noise, which we focus on here and which 
can provide information for evaluating 
hearing aid performance (along with other 
measures). However, existing speech tests 
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have had limited success (Walden, 
Schwartz, Williams, Holum-Hardegen, & 
Crowley, 1983; Dobie & Sakai, 2001; 
Haskell, Noffsinger, Larson, Williams, 
Dobie, & Rogers, 2002), though certain tests 
can be used for predicting hearing aid 
acceptance (Nabelek, Freyaldenhoven, 
Tampas, Burchfield, & Muenchen, 2006). 
Nonetheless, the lack of an effective test for 
evaluating speech perception in noise is 
problematic, since the main purpose of 
wearing a hearing aid is to improve speech 
understanding (Ward, 1983). 

Minimally, we would like a test that 
allows us to quantify a listener’s sensitivity 
(in one ear or both) to a degraded speech 
signal. Ideally, such a test would allow us to 
fit a hearing aid or adjust a communication 
system. This was the goal of Fletcher’s 
articulation index (AI) measure, for 
example, which was used in World War II to 
optimize pilot-navigator communications 
(Allen, 1996). However, despite nearly 100 
years of work on this problem, existing 
speech tests are still insufficient (Walden et 
al., 1983; Dobie, 2011; Taylor, 2006). 

How can we resolve this problem? The 
approach we take here is to examine the 
nature of speech recognition with NH 
listeners at the level of individual 
consonants and tokens. This, in turn, can 
provide a baseline for developing speech 
tests that could be used for individual 
assessment with HI listeners. 

At a very basic level, speech recognition 
can be characterized first as an acoustic 
signal processing stage (Allen, 2005a; b), 
followed by an information processing stage 
(Brokhorst, Bosman, & Smoorenburg, 1993; 
Bronkhorst, Brand, & Wagener, 2002): 
Given a speech signal in noise, listeners 
must extract the relevant acoustic cues that 
provide information about the underlying 
linguistic message.1 The problem is made 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 A great deal of research on speech perception has 
focused on how listeners distinguish between two 

more difficult by the nearly open-set nature 
of the task (e.g., the large number of words 
that a listener might need to identify), and 
the fact that speech is highly affected by 
context (coarticulatory context, linguistic 
context, etc.). 

Fletcher’s early work on speech 
recognition (Fletcher, 1929) yielded many 
key insights about the relationship between 
errors that listeners make and the noise level 
(described by the signal-to-noise ratio 
[SNR]). Specifically, he observed that 
listeners’ average log error decreases 
linearly as a function of the SNR measured 
in auditory critical bands (CBs; Allen, 
1994). This observation (stemming from the 
average error) forms the basis of the AI, 
which is defined as the average SNR over 20 
CBs covering the speech range (0.3 to 7.5 
[kHz]). 2  For stimuli presented in speech-
shaped noise, the AI is simply the wide-band 
SNR. The AI, and more recently, another 
measure, the speech recognition threshold 
(SRT), have been used for a number of years 
for research in audiometric speech 
assessment (Plomp & Mimpen, 1979; 
Plomp, 1986; Festen & Plomp, 1990; 
Humes, Dirks, Bell, & Ahlstbom, 1986; 
Pavlovic, Studebaker, & Sherbecoe, 1986; 
Rankovic, 1991). 

However, both the AI and SRT have 
severe limitations, and researchers have 
noted the shortcomings when using these 
measures to assess recognition with HI 
listeners (Kamm, Dirks, & Bell, 1985; 
Humes et al., 1986). Why do speech tests 
based on these measures perform so poorly 
in predicting listeners’ success? We will 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
phonemes (e.g., along a continuum varying from /b/ 
vs. /p/), or between sounds varying in distinctive 
features (e.g., voicing, manner, and place). Here, we 
focus specifically on how listeners recognize natural 
speech in noise. 
2  The current ANSI standard also includes band 
importance in its definition of the AI. Here, we refer 
to the version based on auditory CBs (as this is the 
aspect of the AI that is relevant to the current study).  
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show that these tests obscure listeners’ 
errors by averaging across tokens. That is, 
they provide no information about listeners’ 
responses to individual speech sounds. This 
is a major source of the problem with 
existing tests, since it ignores the 
considerable variability in natural speech 
attributable to talker identity, speaking rate, 
and coarticulation (Liberman, Cooper, 
Shankweiler, & Studdert-Kennedy, 1967; 
Repp, 1982; Fowler, 1984; Massaro & 
Cohen, 1983; Toscano & McMurray, 2012; 
Bronkhorst et al., 1993; 2002), as well as 
other factors not directly related to the 
signal, such as task demands, linguistic 
context, and individual differences between 
listeners (which are, of course, critical for 
assessing hearing loss). We will show that 
the problem is not with speech testing itself, 
but rather with the way the tests are scored 
(i.e., averaging across different sounds). 

Recently, Singh and Allen (2012) 
demonstrated that, for stop consonants, there 
are indeed large differences in error rates 
both across consonants and for individual 
tokens of a given consonant. Two 
productions of the same stop consonant 
spoken by different talkers can be very 
different in their robustness to noise (i.e., 
listeners may be able to accurately recognize 
one token in noise but not another due to 
subtle differences in how the tokens are 
produced). Singh and Allen found that (1) 
for most stop consonant tokens, error rates 
increased abruptly beyond a critical SNR 
(i.e., the nature of the error is binary; NH 
listeners uniformly make errors below a 
particular SNR and almost never make 
errors above that SNR); (2) the NH listeners 
in the experiment performed nearly 
identically to each other; and (3) consonant 
error rates at -2 [dB SNR] and quiet (no 
noise) were extremely low (<5% on 
average). The majority of the error above -2 
[dB SNR] is driven by a small number of 
tokens (e.g., 1 in 20) that have significant 

error in quiet. That is, most sounds have no 
error and a few sounds have large error 
(Phatak & Allen, 2007). This story here is 
clear: Responses at and above -2 [dB SNR] 
consist of a bimodal distribution with a large 
number of zero error sounds, plus a small 
number of high error sounds. 

 These results suggest that we need 
measures that capitalize on this bimodal 
error distribution. Such detailed information 
is necessarily lost in aggregate measures. By 
looking only at the mean error across tokens, 
the AI and SRT average over the large 
natural variability between speech sounds. 
The goal here is to address these issues by 
further examining listeners’ error rates 
across a broad range of consonant classes, 
including voiced stops (/b, d, g/), voiceless 
stops (/p, t, k/), voiced fricatives (/v, ð, z, 
ʒ/), voiceless fricatives (/f, θ, s, ʃ/), and 
nasals (/m, n/), for a large set of individual 
tokens (from 14 different talkers, produced 
in four different vowel contexts). This will 
allow us to parse differences across and 
within consonant classes (i.e., token 
differences) and to quantify the total error 
attributable to each of these factors. 

The remainder of the paper is organized 
as follows: First, we provide a brief review 
of previous approaches for explaining 
listeners’ errors in speech recognition tasks. 
Next, we present the results of an 
experiment examining listeners’ ability to 
identify CV syllables in noise, varying in the 
identity of the consonant, vowel, and talker. 
These data will be analyzed to determine the 
extent to which tokens differ in their error 
rates both across and within consonants. 

The Articulation Index 
One of the earliest attempts to quantify 

listeners’ speech recognition performance in 
noise is Fletcher’s articulation index (AI), 
defined as: 

AI(SNR) ≡ 1
20

snrk
k=1

20

∑         (1)  
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where snrk is the SNR (measured in [dB]) in 
the kth critical band (CB), normalized by 30 
[dB] (Fletcher, 1929; French & Steinberg, 
1947; Allen, 1994; see also Note 2). There 
are 20 CBs corresponding to 20 [mm] along 
the basilar membrane, covering the 
frequency range from 0.3 to 7.5 [kHz]. 

Due to the normalization, the AI ranges 
from 0 to 1, such that an AI of 1 indicates 
maximum performance, with an error of emin 
(e.g., 2% error, 98% correct), while an AI of 
0 indicates chance performance (e.g., 1/16 = 
6.25% correct for a 16AFC  task). Fletcher 
found that, for a CV listening test, the AI 
can be used to quantify the across-
consonant average error as 

 
e(SNR) = emin

AI ,        (2) 
 
defined as the average probability of error in 
recognizing the CV, as a function of the AI, 
which, for speech-weighted noise, is the 
same as the wide-band SNR. Thus, the AI 
models the across-consonant average error 
(e) as the product of average band errors 
over 20 CBs (Allen, 1994; Allen, 2005a; 
Phatak & Allen, 2007; Li, Trevino, Menon, 
Allen, 2012). Note that if any of the 20 CBs 
contains a perceptual cue, the corresponding 
band error could theoretically go to zero, 
causing the total error (product of the band 
errors) to be zero (i.e., probability 
correct=1). 

Across vs. within consonant errors 
While Fletcher had a deep insight in 

creating this model (Allen, 1996), and while 
it nicely captures listeners’ average error, it 
is unclear whether it works for individual 
consonants and tokens (Allen, 1994; 2005a). 
If token-level error functions are log-linear, 
as the average is, such an approach could 
potentially explain listeners’ errors for both 
individual speech sounds and average 
scores. This is one of the questions 
addressed in the present study. 

Miller and Nicely (1955) provided some 

early insights about errors for specific 
consonants, demonstrating that they vary in 
their intelligibility (Allen, 2005b). Sounds 
like /v/ have much higher errors at a given 
SNR than sounds like /p, t, k/. At a 
particular SNR, some consonants are easier 
to recognize than others. Thus, across-
consonant error rates are highly variable 
(Phatak & Allen, 2007). Namely, the 
average error for each consonant (ec) 
depends strongly on the consonant that was 
spoken (c). 

Recently Singh and Allen (2012) 
examined this issue further to determine 
whether the predictions of the AI hold both 
across and within stop consonant tokens. 
They measured NH listeners’ errors for 56 
tokens of 24 CVs (six consonants, /p, t, k, b, 
d, g/, and four vowels, /ɑ, eɪ, ɪ, æ/), spoken 
by 14 talkers, at six SNRs (-22, -20, -16, -
10, -2, and quiet), with 25 NH listeners. 
They found that for the -2 dB SNR and quiet 
conditions, listeners made almost no errors, 
recognizing 95% of the CV tokens with zero 
error. 

Importantly, they also found across-
consonant differences in error rates above -
10 [dB SNR]: /g, k/ had low error (≈1%), /t, 
p, d/ had moderate error (≈3-5%), and /b/ 
had high error (≈18%). As with the AI 
(which averages different phonemes 
together), the log-error for each consonant 
was approximately linear as a function of 
SNR, increasing to chance performance 
below -22 dB SNR. Thus, the AI (Eq. 2) 
seems to hold across stop consonants, but 
has a consonant-dependent slope and 
intercept (Phatak & Allen, 2007). 

In contrast, within-consonant errors (i.e., 
differences in error rates between tokens of 
the same consonant) above -10 [dB SNR] 
were caused by a small group of high error 
sounds. For example, 41 /p/ tokens had no 
errors above -10 [dB SNR], 11 showed a 
single error (no different from zero; p>0.05), 
and only 4 had high error (p<0.001). Above 
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the SNR at which the error function crosses 
50% (defined as the SNR50), within-
consonant errors show an abrupt drop from 
chance to zero (i.e., above the SNR50, NH 
listeners make virtually no errors). 

  This observation fits a binary (“all or 
nothing”) within-consonant error model, 
centered about the SNR50 threshold. This 
threshold provides an important measure of 
within-consonant noise robustness, and the 
standard deviation (SD) of these thresholds 
is large (>15-20 [dB SNR]). Thus, the AI 
model does not seem to be accurate at the 
level of individual tokens (at least, for stop 
consonants), due to the variability in SNR50 
thresholds across tokens. 

 This result also means that NH 
listeners are highly consistent in their 
thresholds, as evidenced by the fact that the 
token-level error functions are highly non-
linear and, therefore, correlated across 
listeners. If the error functions were 
nonlinear but thresholds were variable 
between listeners, the responses would have 
shown a more linear fit when averaged 
across them. Thus, there do not appear to be 
considerable individual differences among 
NH listeners (at least for this task), even 
though there are many individual differences 
for HI listeners (Trevino & Allen, 2013a; b). 
Our goal here is to examine data from NH 
listeners that may provide a baseline for 
tests that can be used to assess speech 
recognition with individual HI listeners. 

Problem statement and approach 
Overall, the results of Singh and Allen 

(2012) suggest that, while the average log 
error for NH listeners is close to linear as a 
function of SNR (as predicted by the AI), 
the variance in error rates across consonants 
is extremely large. In addition, this log-
linear pattern breaks down for within-
consonant errors, with individual tokens 
contributing further variance. Given this, we 
predict that there are two main components 
that make up most of the variability in 

listeners’ errors: (1) an across-consonant 
component, and (2) a within-consonant 
component. The goal of the present study to 
investigate across and within consonant 
errors and variance as a function of SNR, 
consonant, and token, for a large dataset of 
speech sounds containing stop, nasal, and 
fricative consonants, and to determine how 
much variability in NH listeners’ errors is 
attributable to each of these factors, and 
importantly, how much variability can be 
explained by accounting for differences in 
error thresholds (SNR50). 

We examined NH listeners’ error rates 
for a dataset consisting of 896 tokens (56 
CVs from 16 different consonants and four 
vowels, presented at six SNRs). If the AI 
formula (which holds for listeners’ average 
error) accounts for listeners’ responses, SNR 
would be the single factor predicting 
whether or not listeners’ make an error. 
However, based on Singh and Allen 
(2012)’s results for stop consonants, we 
predict that the effect of SNR is relatively 
weak compared to across- and within-
consonant differences between speech 
sounds. 

We also ask whether the log-linear 
pattern predicted by Eq. 2 is valid across and 
within consonants. If it is, we would expect 
a similar relationship between listeners’ 
errors and SNR at both the across- and 
within-consonant levels. If it is not, we 
would observe a different relationship, such 
as the highly non-linear binary responses 
seen by Singh and Allen (2012) for 
individual stop consonant tokens. This 
would, in turn, suggest that we should 
develop speech tests for HI listeners based 
on the error thresholds (SNR50) for specific 
speech sounds. Accordingly, we will also 
examine how much of the variability in NH 
listeners’ errors can be explained by 
accounting solely for the SNR50 error 
thresholds. 
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Method 
Some of the data presented here were 

collected as part of the experiments 
previously reported by Phatak and Allen 
(2007) and Singh and Allen (2012). 
Additional details about the methods can be 
found in those papers. The data presented 
here include 14 additional subjects and the 
entire set of stimuli and responses (i.e., data 
not included in any of the previous studies). 
 
Design 

Participants performed a 64 AFC 
syllable identification task (16 consonants x 
4 vowels). Each of the 64 consonant-vowel 
(CV) syllables was presented at six SNRs (-
22, -20, -16, -10, -2, and quiet) with 14 
talkers, for a total of 5,376 stimuli. Stimulus 
presentation was randomized across all 
stimulus variables, divided into 42 blocks of 
128 trials each (5,376 trials total). The 
experiment was run over the course of 
several sessions, and on average each 
participant took 15 hours to complete the 
entire experiment. Each of the 5,376 
conditions was presented once to each 
subject. However, by accident, a few of the 
subjects re-ran a portion of the experiment. 
These few additional data points were also 
included in the analysis.3 
 
Participants 

Twenty-eight NH listeners participated 
in the experiment. Phatak and Allen (2007) 
reported on 14 subjects, four of whom were 
removed based on their poor performance in 
quiet. The following year, the same 
experiment was re-run with a second cohort 
of 14 subjects.  Thus, a total of 28 listeners 
participated in the joint experiment. 
Eighteen completed all the sessions. For 
participants that did not complete all 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 The difference in the number of data points for 
these tokens was accounted for by running a 
weighted regression, as detailed in Results section 
below. 

sessions (i.e., those that did not hear each of 
the 5,376 stimuli), data from the sessions 
that were completed are included. After a 
careful evaluation of the responses, 25 
subjects were included in the present 
analysis. The three removed were a subset of 
the four removed in Phatak and Allen 
(2007); one of the participants previously 
removed actually had excellent scores other 
than in quiet. All but one of the listeners 
were young native English speakers with 
self-reported normal hearing. Participants 
provided informed consent (approved by the 
University of Illinois IRB) and received 
monetary compensation. 
 
Stimuli 

CV stimuli were selected from the 
Linguistic Data Consortium LDC2005S22 
“Fletcher” corpus (Fousek, Svojanovsky, 
Grezl, & Hermansky, 2004). Speech-
weighted noise was generated on each trial 
and added to the CV at the appropriate SNR 
level. 
 
Procedure 

Participants were seated in front of a 
computer in a sound-attenuating booth. 
Stimuli were presented over Sennheiser 
headphones at the subject’s most 
comfortable level. On each trial, a stimulus 
was presented, and the participant clicked on 
one of 64 buttons on the computer screen, 
corresponding to the 64 possible CV 
syllables they heard. The buttons were 
arranged in a grid by consonant and vowel 
to make the selection as easy as possible. 

Participants were allowed to replay the 
stimulus if needed, and they were given the 
option of selecting a “Noise Only” response 
if they were unable to hear any speech sound 
at all. They were encouraged to use this only 
when needed, and to make their best guess 
about which sound they heard. Participants 
clicked on the “Noise Only” button on 12% 
of the trials, mostly on trials with very low  
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SNRs (correlation between SNR and 
probability of “Noise Only” response:  
–0.76). For the analyses, these trials were 
coded by distributing the error evenly across 
each of the 16 possible consonant responses. 
That is, each trial with a “Noise Only” 
response was coded as having 15/16 of an 
error.4 
 

Results 
Across-consonant errors 

Our first goal is to characterize NH 
listeners’ errors as a function of SNR and 
consonant. Figure 1 shows the proportion of 
trials on which participants made errors as a 
function of these two factors. The stops and 
nasals are shown in the left panel (Fig. 1A) 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Because this led to a non-integer number of errors 
in some conditions, the total number of errors was 
rounded when computing the condition weights for 
the empirical logit analyses described below. 

and the fricatives are shown in the right 
(Fig. 1B). The grand mean (solid black line) 
and the means of the group of sounds in 
each panel (solid grey line) are also shown. 

As the figure illustrates, several 
properties of the grand mean are consistent 
with the predictions from the AI model. 
First, the range of SNRs (-22 [dB] to quiet) 
covers nearly the entire range of error rates. 
This fits with the prediction from Eq. 1 that 
listeners’ errors span approximately a 30 
[dB] range. In addition, the log-error 
decreases linearly with increasing SNR (Eq. 
2). Thus, the AI model holds for individual 
consonants (Phatak & Allen, 2007). A minor 
exception to this rule is the floor effect seen 
for /k, g, ʒ/ where the error function 
asymptotes near 0% at low noise levels 
(since these sounds are so robust to noise). 

The consonants also vary considerably 
in their overall error rates. For stops, the 
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Figure 1.

Fig. 1. Mean consonant error (ec) by SNR. The 
quiet (Q) condition is plotted at +5 [dB SNR]. The 
stops and nasals are shown in the left panel (A), and 
the fricatives are shown in the right panel (B). The 
solid black line is the grand mean across consonants 
(e), and the solid grey line shows the mean in each 
panel to visualize the differences between each 
subset of sounds. The lower panel (C) shows the 
standard deviation (SD) of the mean error across all 
the consonants. 
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voiced sounds (/b, d, g/) tend to have higher 
error rates than their voiceless counterparts 
(/p, t, k/). In addition, there are about twice 
as many errors for /m/ than for /n/. 
Fricatives have a larger error rate overall, 
and within the fricatives, alveolar and 
palato-alveolar sounds (/s, z, ʃ, ʒ/) have 
much lower error rates than the labio-dental 
and dental sounds (/f, v, θ, ð/).	   

Equation 3 quantifies the SD (σc) of the 
16 consonant means (ec) as a function of 
SNR 
 

σ c
2 =

1
16

ec − e( )2
c=1

16

∑         (3) 

 
where e is the grand mean. This is shown in 
Fig. 1C. The SD (measured in units of 
percent error) is >22% below -10 [dB SNR], 
and decreases to 13% for the quiet 
condition. Thus, despite the fact that the 16 
consonant means follow the log-linear 
pattern predicted by the AI model, there is 
considerable across-consonant variability in 
error rates (13-22%). This large across-
consonant SD, at every SNR, is notable; 
SNR is not the only factor driving listeners’ 
errors. This contrasts with the prediction 
from the AI, which considers only the SNR 
(since it is based on average responses, not 
on individual consonants; see also Note 2 
regarding definitions of the AI that include 
band importance). The results shown in Fig. 
1 demonstrate that both SNR and across-
consonant differences must be considered 
when describing listeners’ errors. 

These results are consistent with earlier 
work showing differences in the audibility 
of specific acoustic cues that listeners use to 
identify consonants (Régnier & Allen, 2008; 
Li, Menon, & Allen, 2010; Li et al., 2012) 
and with overall differences between 
consonants in their robustness to noise 
(Miller & Nicely, 1955). These differences 
are the source of the variability across 

consonants seen here. In addition, as shown 
by Trevino and Allen (2013a; b), the across-
consonant factor plays a key role for HI 
listeners, making consonant and SNR two of 
the main sources of errors for HI listeners. 
 
Within-consonant errors 

Next, we characterize listeners’ errors 
for individual tokens of a given consonant, 
that is, within-consonant errors. In 
particular, we are interested in whether the 
log-linear relationship seen in the grand 
average and the consonant averages is 
maintained at the token level, and whether 
there is additional variability in NH 
listeners’ responses that is attributable to 
differences between individual tokens. 

Figure 2A shows the log error for each 
token (et) in the dataset. As the figure clearly 
illustrates, there is a large amount of 
variability in the error rates of individual 
tokens. To examine the extent of the token-
level variability, we estimated the SNR at 
which each token crosses 50% error 
(denoted as the SNR50) by fitting a spline 
curve to the token error functions. We then 
interpolated between the SNR points with 
the help of the spline to estimate the SNR50 
for each token. The token error responses 
were then shifted along the SNR dimension 
by subtracting off the SNR50 for each token 

 
et SNR− SNR50( ) ,        (4) 

 
so that all the tokens are aligned with their 
50% point at 0 [dB SNR]. 

 For tokens where listeners’ responses 
did not cross 50% in the range of SNRs used 
in the experiment, an estimate of the SNR50 
was obtained by interpolating the spline at a 
broader range of SNRs. Table 1 contains a 
summary of the number of tokens with 
SNR50 values that were estimated based on 
(1) tokens with an observed 50% error point, 
(2) tokens with no errors above 50%, and 
thus, having SNR50 values below -22 [dB 
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SNR], (3) tokens with no errors below 50%, 
having SNR50 values above quiet (coded as 
+5 [dB SNR]), and (4) tokens for which no 
reliable SNR50 estimate could be obtained 
(i.e., the spline never crossed 50% error at 
any SNR). In cases where the mean error 
crossed 50% at multiple SNRs (50 of the 
tokens), the highest SNR with 50% error 
was used as the SNR50. 

Figure 2B shows the results of the token 
shifting procedure for each token that has a 
well-defined SNR50. It is clear that shifting 
the token error function by its SNR50 greatly 
reduces the variability between individual 
tokens. Thus, by simply measuring the mean 
error for each token (indicated by the 
SNR50), we can quantify most of the within-
consonant error. 

Figure 3 shows the token errors 
separated by each consonant with the curves 
shifted by each token’s SNR50. Tokens 
without a well-defined SNR50 are not shown, 
and the numbers after each consonant label 
indicate the number of tokens shown for that 
consonant (the maximum is 56). As the 
figure illustrates, listeners’ error functions 

for individual tokens do not map well to the 
AI model’s log-error dependence. Rather, 
shifting each token by its SNR50 reveals that 
individual token error curves (Eq. 4) are 
highly non-linear (i.e., nearly binary). 

Figure 4 shows the distribution of SNR50 
values for each consonant. As with Figure 3, 
responses that did not have a well-defined 
SNR50 are not shown. Due to the large range 
of SNR50 values, the variance of et|c (across 
tokens, within a consonant class) is huge. 
Given this result, it follows that the AI’s 
log-linear relationship is simply the result of 
averaging across nearly binary responses 
having the distribution of SNR50 values 
shown in Figure 4. 

We can further quantify the differences 
between individual tokens by examining the 
slope of the error functions (as measured by 
the spline fits). Figure 5 shows the 
distribution of the steepest slope of the spine 
fit for each token. The slopes vary by 
consonant, but overall, they are around -10 
[%/dB], consistent with Figure 3 which 
shows that the error typically goes from zero 
to chance over a 10 [dB] range. The slopes  
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Figure 2.

Fig. 2. (A) Percent log error for each token, as a function of SNR (et(SNR)). (B) Percent log-error shifted by the 
token’s SNR50 (et(SNR–SNR50)). In the left panel (A), the considerable variability between the error rates for each 
token is evident. After shifting by the token’s SNR50 (panel B), this variability is greatly reduced, revealing the step-
function (e.g., binary) nature of the error. Data points are jittered slightly to prevent overplotting.	  
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are also tightly clustered. Together, the 
distributions of SNR50 values and slopes 
imply a robust threshold measure that can be 
used to quantify the differences in error rates 
between the tokens. As the figures illustrate, 
the within-consonant errors account for a 
major portion of the variability in the overall 
error. The residual variance that remains 
unaccounted for is small by comparison 

(shown as the differences between the 
individual tokens and the average in each 
panel of Figure 3). 

In summary, the total variance in the 
average error measured by Eq. 1 is mainly 
due to (1) across-consonant and (2) within-
consonant variability. The dependence on 
SNR is largely captured in the distribution 
of token SNR50 values. 
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Figure 3.

Fig. 3. Percent error by SNR for each token (lines) sorted by consonant (panels). Each response was shifted along 
the SNR axis to the SNR50 for that token (i.e., et|c(SNR–SNR50) for each token). Above the SNR50, et|c abruptly drops 
to zero, and below the SNR50, it rises to chance. Thus, the differences in SNR50 across individual tokens account for 
a major portion of the variance in et|c. Most of the natural variance has been removed in the shifted curves. The 
numbers after each consonant label indicate the number of tokens shown for that consonant (the maximum is 56). 
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Statistical analyses 

To validate these observations 
statistically, we ran several regression 
analyses. Two sets of analyses were 
conducted: (1) an analysis examining how 
much variability is explained by shifting 
response curves by their SNR50, and (2) an 

analysis examining the extent to which 
specific factors (SNR, across-consonant, and 
within-consonant factors) contribute to 
listeners’ errors. Both analyses consist of 
fitting a series of regression lines to the 
average error for the 25 NH listeners, with 
each condition weighted by the number of  
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Figure 4.

Fig. 4. Histogram of SNR50, defined by et|c = 0.5, for each token (t), sorted by consonant (c). The SNR50 may be 
thought of as a detection threshold measure for the token. The mean and standard deviation (SD) are provided of 
each distribution, in the upper right corner of each panel. Some consonants have a very tight distribution with just a 
few sounds outside the 1 SD range. Others are nearly uniform about the mean. The further to the right from the 
mean, the less robust the token. Not surprisingly high error sounds (mostly /θ, ð/) have a significant number of 
thresholds above 0 [dB SNR]. Note that one /s/ token is not plotted because its SNR50 is very low (less than 
–35 [dB SNR]). 
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data points in that condition. 

Note that these analyses do not examine 
responses for individual listeners. There are 
several reasons for this. First, the questions 
we are interested in here primarily concern 
the factors that lead listeners to make errors 
(SNR, across-, and within-consonant 
differences). Second, as noted above, NH 
listeners are highly consistent with each 
other in their errors for these sounds. That is, 

they all show approximately the same 
threshold for a given token. Thus, 
differences between NH listeners do not 
contribute much of the variance. Of course, 
for a speech test designed to assess 
performance with HI listeners, individual 
differences are paramount, and one would 
not want to average across HI listeners. This 
is, however, different from our goal here, 
which is to characterize errors at the level of 
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Fig. 5. Histogram of the maximum slope (in magnitude) of the error function for each token as characterized by 
splines fits to et. The units are in %/dB. Many of the distributions peak –10 %/dB, meaning that over a 10 dB 
range the score would vary from no error to chance performance. The means and SDs of the distributions for 
each consonant are shown in the upper left corner of each panel. 
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individual tokens for a group NH listeners 
(which can, in turn, provide data that will be 
useful for developing speech tests with HI 
listeners). 

Given the highly non-linear responses 
observed for the token-level error functions, 
one would like to transform the data so that 
they lie along a linear scale. In the figures, 
this is achieved by plotting the data on a log-
scale, which produces a linear relationship 
between listeners’ errors and SNR for the 
overall mean (the effect predicted by the AI) 
and for individual consonant means. Thus, 
one reasonable transformation would be a 
log transform: 

 
L(e) = log(e)          (5) 

 
One problem with this approach is that 

the log-linear relationship between listeners’ 
errors and SNR breaks down at the level of 
individual tokens, as discussed above. 
Instead, the token error functions resemble 
step functions. For proportional data of this 
type, a common approach is to use the 
empirical logit transform (Barr, 2008): 

 

     L(e) = log ne + 0.5
nt − ne + 0.5

        (6) 

 
where ne is the total number of observed 
errors, and nt is the total number of data 
points in that condition. This is particularly 
useful for the individual token data, which 
approximate step functions (i.e., sigmoids 
with an infinite slope). Moreover, for data 
that are distributed log-linearly and bounded 
between 0 and 1 (as the consonant means 
and overall mean are), the transform will 
still produce values on an approximately 
linear scale. This allows us to compare 
models with coefficients for different factors 
at both the across- and within-consonant 
level. The 0.5 term ensures that L(e) is 
defined when ne is 0 (i.e., no errors) or equal 
to nt (100% error). For the analyses 

presented here, both transforms (Eq. 5 and 
6) yielded similar results. The data from the 
empirical-logit analyses are given in the text 
below and summarized in Table 2. 
 
Effect of SNR50 

First, we wanted to quantify the amount 
of variability in listeners’ responses that can 
be explained by the error threshold (SNR50) 
alone. Note that this analysis can only be run 
on the subset of sounds with well-defined 
SNR50 values (789 of 896 tokens); the 
analyses presented in the next section were 
run on the full dataset of 896 tokens (since 
SNR50 did not enter into those models 
directly). We compared two regression 
models. The first model, 

 
L(e) = β0 +β1SNR         (7) 

 
examines the effect of SNR by itself, where 
β1 is the regression coefficient for SNR 
(corresponding to the slope of the average 
error shown in Figure 1) and β0 is the 
intercept (corresponding to the grand mean 
error). As expected, SNR accounted for a 
significant proportion of the total variance in 
listeners’ errors (R2=0.290, p<0.001). 
However, it explains only 29.0% of the total 
variability. Thus, SNR is only one factor 
predicting listeners’ errors. 

The second model, 
 

L(e) = β0 +β1 SNR− SNR50( )       (8) 
 
examines the effect of shifting the error 
functions by SNR50. This model provided a 
much better fit to listeners’ responses 
(R2=0.624, p<0.001). Thus, adjusting for the 
SNR50 allows us to explain more than twice 
the variability explained by SNR alone. This 
result fits with the observations above and 
suggests that by simply measuring error 
thresholds, we can account for the majority 
of listeners errors (62.4%) in speech 
recognition tasks. Figure 6 shows the  
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relationship between the observed empirical 
log-odds error and the predicted log-odds 
error from this model. 
 
Effect of across- and within-consonant 
factors 

Next, we examined the amount of 
variance explained by across- and within-
consonant differences using the full dataset, 
including those sounds that did not have 
well-defined SNR50 values. This analysis can 
provide a more complete account, but it also 
relies on more complex models. We used 
multi-step regression to look at the 
contribution of (1) SNR, (2) consonant, (3) 
token means (corresponding approximately 
to SNR50) and (4) token slopes. At each step, 
one factor was added, and the proportion of 
variance accounted for by the model (R2) 
was calculated. The change in R2 on each 
step quantifies how much each factor 
contributed to listeners’ errors. 

On the first step of the regression, we 
entered SNR as the only factor, yielding the 
same regression equation used above (Eq. 
7). Here, less variance is accounted for than 
in the first analysis (R2=0.228, p<0.001), 
though SNR still has a significant effect. 

The lower R2 value is due to the additional 
tokens for which we could not obtain an 
SNR50. These sounds had errors that were 
either consistently near 100% at all SNRs or 
near 0% at all SNRs. Thus, the model does 
not explain responses to these sounds very 
well. This analysis does, however, provide a 
more complete picture of the amount of 
variance that can be explained in natural 
speech (including speech sounds with 
atypical response patterns). 

On the second step of the regression, 
consonant and its interaction with SNR were 
added to the model. These factors 
correspond to the individual consonant 
means shown in Figure 1. Because 
consonant is a categorical variable (i.e., each 
consonant in the experiment represents a 
discrete category), treatment coding 
(Kleinbaum, Kupper, Muller, & Nizam, 
1998) was used to create variables 
corresponding to the consonant coefficients 
(i.e., if the stimulus for a particular condition 
was a /b/, the variable corresponding to /b/ 
was coded as 1 and all other variables were 
coded as 0). This can be represented as an n 
× p–1 matrix of treatment codes: 
 

⎥
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⎥
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⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−

−

1,1,2,

1,22,21,2

1,12,11,1

pnpnn

p

p

CCC
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!
"#""

!
!

C         (9) 

 
where p=16, the number of consonants,5 and 
n=5376, the number of stimuli in the 
experiment. These variables correspond to 
the mean error rate for each consonant. The 
slope of each consonant’s error function is 
given by the interaction between SNR and 
C. This is coded by multiplying the SNR for 
each condition (n) by each of the consonant 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 One less than the total number is needed to code all 
the consonants, since the model coefficients for one 
consonant (the reference category) are estimated by 
the overall slope and intercept as a function of SNR. 

Fig. 6. Scatter plot showing proportion of listeners’ 
errors and predicted model responses for the 
regression model that accounted for differences in 
token-level error thresholds (SNR50). Data points are 
jittered slightly to prevent overplotting. 

Figure 6.
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treatment codes: 
 
SNR×Cn = SNRn[ ]! Cn,1!Cn,p−1

#$ %&  

= SNR×Cn,1!SNR×Cn,p−1
#$ %&  

 
Including these factors yields the 

following regression equation for a 
particular speech sound (n): 

 

L(en ) = β0 +β1SNR( )+ βiCn
i=3

17

∑ + β jSNR ×Cn
j=18

32

∑
#

$
%%

&

'
((
  

 
 
Here, βi and βj are coefficients for the 

intercept and slope, respectively, for each 
consonant, for a total of 32 coefficients in 
the model (15 for consonant intercepts, 15 
for consonant slopes, 1 for the overall 
intercept, and 1 for the overall slope). This 
model accounted for an additional 30.8% of 
listeners’ errors (ΔR2=0.308, p<0.001). 
Thus, together, SNR and consonant explain 
53.7% of the variance in listeners’ 
responses. 

On the third step of the analysis, we 
included coefficients corresponding to 
individual token intercepts (again, as 
treatment-coded factors). Each token is 
defined as a combination of consonant, 
talker, and vowel. This is represented by the 
interaction between consonant and each of 
the 56 tokens for that consonant. First, we 
created treatment codes for the 56 tokens: 

 

T =

T1,1 T1,2 ! T1,q−1
T2,1 T2,2 ! T2,q−1
! ! " !
Tn,2 Tn,p−1 ! Tn,q−1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

      (12) 

 
where q=56, the number of tokens for each 
consonant. These were then multiplied by 
the consonant treatment codes to create 825 

variables (15 consonant variables × 55 token 
variables per consonant) corresponding to 
the individual tokens in the experiment: 
 
C×Tn = Cn,1!Cn,p−1

#$ %&! Tn,1!Tn,q−1#$ %&  

= C ×Tn,1!C ×Tn,( p−1)(q−1)#$ %&  
 
Thus, for each condition in the 

experiment, the treatment code for that 
consonant’s intercept (Cn,1···Cn,p-1) is 
multiplied by the corresponding variable for 
one of its 56 tokens (Tn,1···Tn,q-1). This yields 
the following regression equation: 

 
L(en ) = β0 +β1SNR( )  

+ βiCn
i=3

17

∑ + β jSNR×Cn
j=18

32

∑
#

$
%%

&

'
((  

+ βkTn + βlC×Tn
l=88

912

∑
k=33

87

∑
#

$
%

&

'
(  

 
where βk and βl are the coefficients 
corresponding to the intercepts for specific 
talker-vowel combinations (k) and specific 
tokens (l). This model explained an 
additional 23.8% of the variability in 
listeners’ errors (ΔR2=0.238, p<0.001), for a 
total of 77.5%. Thus, by accounting for the 
effect of SNR across consonants and the 
mean error within consonants, we can 
explain a considerable amount of the 
variability in listeners’ errors. 

The final model accounted for the small 
differences in the slopes of the individual 
token error functions, as seen in Figure 5. 
Again, this is represented using a set of 
treatment codes, specifically corresponding 
to the three-way interaction between SNR, 
consonant, and token: 

 
SNR×C×Tn = SNRn[ ]! Cn,1!Cn,p−1

#$ %&! Tn,1!Tn,q−1#$ %& 

= SNR×C ×Tn,1!SNR×C ×Tn,( p−1)(q−1)#$ %&  
 

(10) 

(11) 

(13) 

(14) 

(15) 
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This leads to the final regression 
equation: 

 
L(en ) = β0 +β1SNR( )  

+ βiCn

i=3

17

∑ + β jSNR×Cn
j=18

32

∑
#

$
%%

&

'
((  

+ βkTn + βlC×Tn
l=88

912

∑
k=33

87

∑
#

$
%

&

'
(  

+ βmSNR×Tn
m=913

967

∑ + βnSNR×C×Tn
n=968

1792

∑
#

$
%

&

'
(  

 
 
where βm and βn are the coefficients 
corresponding to the slopes for specific 
talker-vowel combinations (m) and specific 
tokens (n). This model accounted for an 
additional 8.1% of the variance (ΔR2=0.081, 
p<0.001), for a total of 85.6%. The 
remaining 14% of the variance is likely 
attributable to small differences between 
listeners (since the listener is the only other 
factor in the experiment that was not 
included in the model) and to measurement 
error. 

Thus, four factors, SNR, consonant, 
token mean, and token slope, can explain the 
vast majority (85.6%) of listeners’ errors. 
Moreover, by simply adjusting the SNR 
based on differences SNR50, as we did in the 
first analysis, we can explain 62.4% of the 
variability. Composite measures like the AI 
and SRT completely miss this information, 
since they average across speech sounds and 
only account for differences in SNR. 
Although SNR is an important factor, it only 
accounts for 23-29% of listeners’ errors. As 
a consequence, speech tests based on these 
measures are missing most of the 
information that causes listeners to make 
errors. 

 
Discussion 

The results of this experiment 

demonstrate that there is a great deal of 
variability in listeners’ errors (both across- 
and within-consonants) that is not captured 
by the wide-band SNR. Adjusting for 
differences in token-level error thresholds, 
as measured by the SNR50, allows us to 
explain more than twice the variability in 
listeners’ errors (62.4%) than we can explain 
via SNR alone (29.0%). Composite 
measures, such as the AI and SRT, fail to 
capture the large natural variability in 
listeners’ errors. While these measures 
quantify the aggregate effect of SNR, they 
fail to capture the fact that more errors are 
driven by differences across and within 
consonants.6 In order to develop a speech 
test that accurately characterizes listeners’ 
errors, we must take SNR50 thresholds into 
account. 

Such an approach seems extremely 
powerful. As a group, NH listeners are 
remarkably consistent in their ability to 
correctly identify speech sounds in noise. 
Given the SNR, consonant, and token, we 
can explain more than 85% of the variability 
in errors for NH listeners. Only the small 
residual variance (14% of the total) is 
attributable to individual differences 
between the 25 NH listeners.7 This small 
difference between NH listeners implies that 
they represent a homogenous group for this 
task. 

In addition, the results demonstrate that 
the log-linear relationship between error and 
SNR breaks down at the token (within-
consonant) level for all the consonants, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 One could imagine calculating the AI for individual 
tokens, as Phatak and Allen (2007) did for individual 
consonants. However, as we show here, listeners’ 
responses to individual tokens more closely resemble 
step functions, rather than the AI’s log-linear 
dependence. Thus, this approach does not provide an 
accurate model of listeners’ errors at the token level. 
7 Again, this is true for NH listeners, as we examined 
here. For HI listeners or situations where a speech 
test seeks to assess an individual listener, individual 
differences between listeners are critical. 

(16) 
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consistent with results first demonstrated by 
Singh and Allen (2012) for stop consonants. 
Thus, as a function of SNR, each token’s 
response (et, Fig. 3) is functionally binary 
over a very small range of SNRs (around 10 
[dB] for most tokens; Fig. 4). Either NH 
listeners can hear the sound with nearly zero 
error, or they are at chance. 

The results also show that the small error 
in quiet is due to a few high-error 
consonants. For example, /θ/ and /ð/ rarely 
drop below 40% error, while other 
consonants, such as /g/ and /k/, have ≈1% 
error above -2 [dB SNR]. These differences 
are likely driven by acoustic differences 
between the consonants that cause them to 
vary in their overall intelligibility and make 
them more or less robust to speech-weighted 
noise (Régnier & Allen, 2008; Li, Menon, & 
Allen, 2010; 2012). For example, /t/ sounds 
can be recognized on the basis of high-
amplitude bursts in specific frequency 
regions. These bursts are generally very 
robust to noise (Li et al., 2010). In contrast, 
/v/ sounds, which have higher error rates, 
contain lower-amplitude frication cues that 
are more likely to be masked by noise (Li et 
al., 2012). 

These results also fit with those of Singh 
and Allen (2012) who found that errors in 
quiet were driven by a few high-error stop 
consonant tokens. These tokens would have 
SNR50 thresholds above quiet. Thus, the 
error in the quiet condition is bimodal; most 
of the tokens have virtually no errors and a 
few have a very high error rate. 
 
Assessment of hearing-impaired listeners’ 
errors 

What do these results suggest about how 
to assess effects of hearing loss on speech 
recognition? First, they demonstrate that we 
should not rely on composite measures that 
average across speech sounds. Second, they 
provide a useful baseline of speech 
recognition with NH listeners that could be 

used to create a test based on individual 
tokens with precisely known SNR50 values 
(from NH listeners). By examining 
responses to individual tokens, we can 
identify cases where a listener has difficulty 
with a particular consonant or talker, 
providing a fast, simple speech test for 
assessing hearing loss. If a listener’s 
responses deviate from the pattern 
consistently observed for NH listeners, this 
tells us they have difficulty recognizing that 
sound. 

Trevino and Allen (2013a; b) 
demonstrated the utility of this approach by 
showing that there are large individual 
differences in HI listeners’ ability to 
recognize different phonemes. Unlike NH 
listeners, HI listeners (with even a slight 
hearing loss) can have significant errors 
above the SNR50 for a particular token. 
These individual differences between HI 
listeners are critical and must be measured 
in a speech test. There is considerable 
variability amongst HI listeners in their 
ability to identify specific tokens (whereas 
NH listeners identify them consistently), 
even though an individual listener is 
consistent in their responses (Trevino & 
Allen, 2013a; b). Thus, these two sources of 
variability (differences between tokens and 
differences between listeners) operate 
differently for NH and HI listeners. NH 
listeners show almost no individual 
differences in their error thresholds, while 
the errors vary considerably between tokens 
(as estimated by SNR50). In contrast, HI 
listeners show large individual differences 
for the same tokens. Therefore, if we first 
account for token-level differences (e.g., by 
adjusting sounds by their SNR50 using data 
from NH listeners), we will be left with 
individual differences between HI listeners, 
providing the diagnostic information needed 
to assess speech recognition. Importantly, 
this approach also avoids ceiling effects 
(i.e., HI listeners do not correctly recognize 
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all the sounds, as can happen, for example, 
with HINT sentences in quiet; Gifford, 
Dorman, Shallop, & Sydlowski, 2010). 

This approach should help a clinician to 
develop a profile of the specific speech 
deficits experienced by a listener with 
hearing loss, and it would allow them to 
determine how far above the SNR50 
threshold the SNR must be in order for the 
listener to correctly recognize the sounds. 
Suppose, as quantified by Trevino and Allen 
(2013a; b), that a listener has difficulty 
recognizing /s/ sounds spoken by a specific 
talker, while they have no difficulty 
identifying other sounds. This could be 
indicative of difficulty hearing the high-
frequency frication that provides a primary 
cue for recognizing this sound, and it could 
help the clinician generalize this deficit to 
similar speech sounds (e.g., they might 
focus their assessment on whether the 
patient also has difficulty with /z/ or /ʃ/, or 
whether they have difficulty with that 
particular talker). In contrast, a speech test 
that averages across different consonants 
and talkers would conclude that this listener 
only makes a few errors (since, on average, 
the error would be small). A test based on 
recognition of individual speech sounds with 
known SNR50 values (based on data from 
NH listeners) would provide the level of 
detail needed to assess the speech 
recognition deficit for this listener. 
 
Types of confusions 

Finally, although these analyses provide 
us with many useful insights about the 
factors that that cause normal-hearing 
listeners to make errors, they do not tell us 
anything about the nature of those errors, 
namely the particular confusions that 
listeners make. The error rate, by itself, does 
not tell us whether listeners consistently 
made the same confusion in cases where 
they made errors. Miller and Nicely (1955) 
found that certain consonant classes are 

much more likely to be confused with each 
other, suggesting that there is a great deal of 
information in the types of errors that 
listeners make. When listeners make errors, 
often they are not simply guessing. One way 
we could quantify this is to look at the 
entropy of listeners’ responses, which 
provides a measure of how consistent 
listeners are in the type of error they make 
(Singh & Allen, 2012). If a token has a 
small entropy, listeners are highly consistent 
(only confusing the token with one or two 
other consonants). If the entropy is large, 
consistency is low. 

This approach is useful when selecting 
tokens to be used in speech recognition tests. 
For example, some sounds can be said to be 
mispronounced in the sense that listeners 
agree on a particular response that is 
different from what the talker intended. 
These sounds are easily identified, as they 
typically have high error and low entropy. 
This is a useful way of identifying 
“mispronounced” sounds in a database and 
provides a way of quantifying the degree to 
which the sound is mispronounced (in terms 
of the number of different responses). This 
may also provide a means of restricting the 
set of likely responses to a much smaller 
subset of all the consonants (Allen, 2005a). 
Ongoing work is using this approach to 
examine the nature of listeners’ errors in 
more detail. 
 
Conclusions 

The large acoustic differences between 
individual speech sound tokens are a major 
source of the variability in listeners’ error 
rates. Only by carefully controlling for these 
token-level errors, can we hope to develop 
speech tests that effectively measure 
listeners’ speech recognition abilities. The 
only way we know to quantify these errors is 
to directly measure them, token by token, 
with a cohort of NH listeners. This is what 
we have done here. 
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The results of this experiment 
demonstrate that: (1) there is large 
variability in listeners’ error rates due to 
differences across consonants (Fig. 1); (2) 
there is additional variability due to within-
consonant differences, which can explained 
by the token error threshold (SNR50) and 
slope (Fig. 3); (3) NH listeners are 
remarkably good at recognizing speech at 
SNRs greater than SNR50; (4) NH listeners 
are highly consistent with each other in this 
task; and (5) adjusting for differences in 
SNR50 allows us to account for 62% of the 
total variance in listener’s errors. Such an 
approach can greatly improve the utility of 
speech testing for HI listeners (Trevino & 
Allen, 2013a; b). Together, these results 
suggest we must reconsider the widespread 
use of aggregate measures of speech 
recognition and develop new methods that 
take differences between individual tokens 
into account. 
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