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Intr oduction

This chapter describes the mechanical function of the cochlea, or inner ear, the organ
that converts signals from acoustical to neural. Many cochlear hearing disorders are still
not well understood. If systematic progress is to be made in improved diagnostics and
treatment of these disorders, a clear understanding of basic principles is essential. Models
of the cochlea are useful because they succinctly describe auditory perception principles.

The literature is full of speculations about various aspects of cochlear function and
dysfunction. Unfortunately, we still do not have all the facts about many important issues.
One of the most important examples of this is how the cochlea attains its sensitivity and
frequency selectivity, which is very much a matter of opinion. A second important example
is dynamic range (acoustic intensity) compression, due to the operation of cochlear outer
hair cells (OHC).

However today our experimental knowledge is growing at an accelerating pace because
of a much tighter focus on the issues. We now know that the answers to the questions of
cochlear sensitivity, selectivity, and dynamic range, lie in the function of the outer hair cells.
As a result, a great deal of attention is now being concentrated on outer hair cell biophysics.

This effort is paying off at the highest level. Three examples come to mind. First is
multiband compression hearing aids. This type of signal processing, first proposed in 1938
by Steinberg and Gardner, has revolutionized the hearing aid industry in the last 10 years.
With the introduction of compression signal processing, hearing aids work. This powerful
circuit is not the only reason hearing aids of today are better. Better electronics and trans-
ducers have made impressive strides as well. In the last few years the digital barrier has
finally been broken. One might call this the last frontier in hearing aid development.

A second example is the development of otoacoustic emissions (OAE) as a hearing
diagnostic tool. Pioneered by David Kemp and Duck Kim, and then by many others, this
tool allows for the cochlear evaluation of infants only a few days old. The identification of
cochlear hearing loss at such an early stage is dramatically changing the lives of these
children and their parents for the better. While it is tragic to be born deaf, it is much more
tragic to not recognize the deafness until the child is 3 year old, when he or she fails to
learn to talk. With proper and early intervention, these kids lead normal, productive lives.

A third example continues to evade us, namely how the auditory system, including the
cochlea and the auditory cortex, processes human speech. If we can solve this grail-like
problem, we will fundamentally change the way humans and computers interact, for the
better. The ultimate hearing aid is the hearing aid with built in robust speech recognition.
We have no idea when this will come to be, and it is undoubtedly many years off, but when
it happens it will be a revolution that will not go unnoticed.

Chapter Outline: Several topics will be reviewed. First, the history of cochlear models,
including extensions that have taken place in recent years. These models include both
macromechanics and micromechanics of the tectorial membrane and hair cells. This leads
to comparisons of the basilar membrane, hair cell, and neural frequency tuning. The role
of nonlinear mechanics and dynamic range are covered to help the student understand the
importance of modern wideband dynamic range compression hearing aids. Hearing loss,
loudness recruitment, as well as other important topics of modern hearing health care, are
briefly discussed.

This paper assumes a basic knowledge of cochlear anatomy. If the reader desires basic
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knowledge about cochlear anatomy or function, many good text books exist that can fulfill
that need better than this more advanced review paper [1, 2].

Figure 1: Cross section through the cochlear duct showing all the major structures of the cochlea.
The three chambers are filled with fluid. Reissner’s membrane is an electrical barrier and is not
believed to play a mechanical role.

Function of the Inner Ear

The goal of cochlear modeling is to refine our understanding of how auditory signal are
processed. Science is at its best as an interplay between experiment and theory. The
two main roles of the cochlea are to separate the input acoustic signal into overlapping
frequency bands, and to compress the large acoustic intensity range into the much smaller
mechanical and electrical dynamic range of the inner hair cell. This is a basic problem
of information processing by the ear. The eye plays a similar role as a peripheral organ.
It breaks the light image into rod and cone sized pixels, as it compresses the dynamic
range of the visual signal. Guided by the intensity JND, the corresponding visual dynamic
range is about 9 to 10 orders of magnitude of intensity [3, 4], while the ear has about 11
to 12. Neurons are low bandwidth channels. The stimulus has a relatively high information
rate. The eye and the ear must cope with this problem by reducing the stimulus to a large
number of low bandwidth signals. It is then the job of the cortex to piece these pixel signals
back together, to reconstruct the world as we see and hear it. This information coding
starts in the organ of Corti, shown in Fig. 1. There are three major chambers, separated by
Reissner’s membrane and the basilar membrane (BM). However, mechanically speaking,
there are two chambers, as Reissner’s membrane is for electrical isolation of the Scala
media (SM) [1, 2]. Figure 2 shows a blown up view of the organ of Corti where the inner
hair cells (IHC) and outer hair cells (OHC) sit between the BM and the tectorial membrane
(TM).

3



Figure 2: This cross section of the Organ of Corti shows the inner and outer hair cells, pillar cells
and other supporting structures, the basilar membrane (BM), and the tectorial membrane (TM).

Inner Hair Cells. In very general terms, the role of the cochlea is to convert sound at the
eardrum into neural pulse patterns along � 30,000 neurons of the human auditory (VIII

���
)

nerve. After being filtered by the cochlea, a low level pure tone has a narrow spread of
excitation which excites the cilia of about 40 contiguous inner hair cells. Cilia excitation is
a narrow band signal with a center frequency that depends on the inner hair cell’s location
along the basilar membrane. Each hair cell is about 10 micrometers in diameter while the
human basilar membrane is about 35 mm in length (35,000 microns). Thus the neurons
of the auditory nerve encode the responses of about 3,500 inner hair cells which form a
single row of cells along the length of the BM. Each inner hair cell voltage is a lowpass
filtered representation of the detected inner hair cell cilia displacement [5]. Each hair cell is
connected to many neurons. In the cat, for example,1 approximately 15–20 neurons encode
each of these narrow band inner hair cells with a neural timing code. It is widely believed
that the neuron information channel between the hair cell and the cochlear nucleus is a
combination of the mean firing rate and the relative timing between neural pulses (spikes).
The mean firing rate is reflected in the loudness coding, while the relative timing carries
more subtle cues, including for example pitch information and speech voicing distinctions.

Outer Hair Cells. As shown in Fig. 2 there are typically 3 (sometimes 4) outer hair cells
(OHCs) for each inner hair cell (IHCs), leading to about 12,000 for the human cochlea.
Outer hair cells are used for intensity dynamic range control. This is a form of nonlinear
signal processing, not dissimilar to Dolby sound processing.2 It is well known (as was
first proposed by Lorente de No [7] and Steinberg and Gardner [8]) that noise damage of

1It is commonly accepted that all mammalian cochleae are similar in function. The frequency range of operation
differs between species.

2I am told that this form of processing was inspired by cochlear function, and was in use long before it was
patented by Dolby, in movie sound systems developed by Bell Labs in the 1930’s and 1940’s. Telephone speech
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“nerve cells” (i.e., OHCs) leads to a reduction of dynamic range, a disorder clinically called
dynamic range recruitment.

We may describe cochlear processing two ways. First in terms of the signal represen-
tation at various points in the system. Second, in terms of models. These models are our
most succinct means of conveying the results of years of detailed and difficult experimental
work on cochlear function. The body of experimental knowledge has been very efficiently
represented (to the extent that it is understood) in the form of these mathematical models.
When no model exists (e.g., because we do not understand the function), a more basic
description via the experimental data is necessary. Several good books and review papers
are available which make excellent supplemental reading [9, 1, 10, 11, 4, 12].

For pedagogical purposes the discussion is divided into five sections: Section 1 Macrome-
chanics describes the fluid motions of the scalae and treats the basilar membrane as a
dynamical system having mass, stiffness, and damping. Section 2 Inadequacies of the 1

�
model describes the experimental data that characterizes the nonlinear cochlea. Section
3 OHC Transduction, describes the electromechanical action of the outer hair cell on the
basilar membrane. Most important is the nonlinear feedback provided by the outer hair cell,
leading to the dynamic range compression of the inner hair cell excitation. Section 4 Mi-
cromechanics describes the models of the motion of the Organ of Corti, the inner and outer
hair cell cilia, the tectorial membrane, and the motion of the fluid in the space between the
reticular lamina and the tectorial membrane. Much of this section has been adapted from
an earlier article [13]. Finally in Sec. 5 we briefly summarize the entire paper.

A warning to the reader: Due to experimental uncertainty there is diverse opinion in
the literature about certain critical issues. While there are many areas of agreement, this
paper is directed on those more interesting controversial topics. For example, (a) it is very
difficult to experimentally observe the motion of the basilar membrane in a fully functional
cochlea; (b) questions regarding the relative motion of the tectorial membrane to other
adjacent structures are largely a matter of conjecture. Some of these questions are best
investigated theoretically. The experimental situation is improving as new techniques are
being invented. As a result, a multitude of opinions exist as to the detailed function of the
various structures.

On the other hand, firm and widely accepted indirect evidence exists on how these
structures work. This indirect evidence takes on many forms, such as neuro- and psy-
chophysical, morphological, electrochemical, mechanical, acoustical, and biophysical. All
these diverse forms of “indirect” data may be related via models. Their value is not depre-
ciated because of their indirect nature. In the end, all the verifiable data must, and will,
coexist.

1 Macromec hanics

Typically the cochlea is treated as an uncoiled long thin box, as shown in Fig. 3. This
represents the starting point for the macromechanical models.

is similarly compressed [6].
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Figure 3: Box model of the cochlea. The Base ( � =0) is the high frequency end of the cochlea while
the Apex ( � = � ) carries the low frequencies.

1.1 The early histor y of coc hlear modeling.

I am told that Helmholtz’s widely recognized model of the cochlea was first presented by
him in Bonn in 1857 (subsequently published in a book on his public lectures in 1857 [14]),
and again later in 1863 in chapter VI and in an appendix of On the Sensations of Tone [15].
Helmholtz likened the cochlea to a bank of highly tuned resonators, which are selective
to different frequencies, much like a piano or a harp [14, page 22-58], with each string
representing a different place on the basilar membrane. The model he proposed is not
very satisfying however, since it left out many important features, the most important of
which includes the cochlear fluid which couples the mechanical resonators together. But
given the publication date, it is an impressive contribution by this early great master of
physics and psychophysics.

The next major contribution, by Wegel and Lane (1924), stands in a class of its own
even today, as a double barreled paper having both deep psychophysical and modeling
insight.3 The paper was the first to quantitatively describe the details of how a high level
low frequency tone effects the audibility of a second low level higher frequency tone (i.e.,
the upward spread of masking). It was also the first publication to propose a “modern”
model of the cochlea. If Wegel and Lane had been able to solve their model equations
(of course they had no computer to do this), they would have predicted cochlear traveling
waves. It was their mistake, in my opinion, to make this one paper. The modeling portion
of their paper has been totally overshadowed by their experimental results.

I know of only two other early major works in cochlear modeling, one by Fletcher [17],
and several by Ranke starting in 1931 (for a historical review see [18, 19]).

Contrary to some opinion [20], the significance of cochlear viscous fluid damping (a
measure of the energy loss) was shown by Békésy to be very small [21, 22]. Fletcher’s
1951 model [21] (Eq. 8) was the first to quantitatively consider fluid viscosity. In fact the
inner ear is nearly a lossless system.4 The significance of this is great. Imagine a nearly
lossless bouncing ball. Such a ball would bounce wildly, similar to a “super ball.” Low-loss
structures, such as the cochlea, have unusual properties that appear to defy the laws of
physics.

It was the experimental observations of G. von Békésy starting in 1928 on human ca-
daver cochleae which unveiled the physical nature of the basilar membrane traveling wave.

3Fletcher published much of the Wegel and Lane data one year earlier [16]. It is not clear to me why Wegel and
Lane are always quoted for these results rather than Fletcher. In Fletcher’s 1930 modeling paper, he mentioned
that he was the subject in the Wegel and Lane study. It seems to me that Fletcher deserves some of the credit.

4Fletcher [21] page 639 clearly states this fact. This conclusion also follows from a calculation of the “viscous
boundary layer thickness” relative to the scala dimensions [23]. At low frequencies, below a few hundred hertz,
scalae damping is significant [21, 24, 25].
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What von Békésy found (consistent with the 1924 Wegel and Lane model) was that the
cochlea is analogous to a “dispersive” transmission line where the different frequency com-
ponents which make up the input signal travel at different speeds along the basilar mem-
brane, thereby isolating each frequency component at a different place along the basilar
membrane. He properly named this dispersive wave a “traveling wave.” He observed the
traveling wave using stroboscopic light, in dead human cochleae, at sound levels well above
the pain threshold, namely above 140 dB SPL.5 These high sound pressure levels were
required to obtain displacement levels that were observable under his microscope. von
Békésy’s pioneering experiments were considered so important that in 1961 he received
the Nobel prize.

Over the intervening years these experiments have been greatly improved, but von
Békésy’s fundamental observation of the traveling wave still stand. His original experi-
mental results, however, are not characteristic of the responses seen in more recent ex-
periments, in many important ways. These differences are believed to be due to the fact
that Békésy’s cochleae were dead, and because of the high sound levels his experiments
required.

Today we find that the traveling wave has a more sharply defined location on the basi-
lar membrane for a pure tone input than observed by von Békésy. In fact, according to
measurements made over the last 20 years, the response of the basilar membrane to a
pure tone can change in amplitude by more than five orders of magnitude per millimeter of
distance along the basilar membrane (i.e., 300 dB/oct is equivalent to 100 dB/mm in the
cat cochlea).

Figure 4: Figure 7b from 1924 Wegel and Lane paper.

To describe this response it is helpful to call upon the 1924 Wegel and Lane and the
1930 Fletcher model of macromechanics, the transmission line model, which was first
quantitatively analyzed by J. J. Zwislocki (1948, 1950), Peterson and Bogart (1950), and
Fletcher (1951). The transmission line model is also called the one-dimensional (1

�
), or

long-wave model.
5One dB corresponds to a 12% change.
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1.2 The 1
	

model of the coc hlea

Zwislocki (1948) was first to quantitatively analyze Wegel and Lane’s macromechanical
cochlear model, explaining Békésy’s traveling wave. Wegel and Lane’s 1924 model is
shown in Figs. 4 and 5. The stapes input pressure 
�� is at the left, with the input velocity � , as shown by the arrow, corresponding to the stapes velocity. This model represents
the mass of the fluids of the cochlea as electrical inductors and the BM stiffness as a
capacitor.Electrical circuit networks are useful when describing mechanical systems. This
is possible because of an electrical to mechanical analog that relates the two systems of
equations, and because the electrical circuit elements comprise a de facto standard for
describing such equations. It is possible to write down the equations that describe the
system from the circuit of Fig. 5, by those trained in the art. Engineers and scientists
frequently find it easier to “read” and think in terms of these pictorial circuit diagrams, than
to interpret the corresponding equations.

1.2.1 Impedance .

During the following discussion it is necessary to introduce the concept of a 1-port (two-
wire) impedance. Impedance is typically defined in the frequency domain in terms of pure
tones �������������������! #" , which is characterized by amplitude � , driving frequency � , and
phase  . Ohm’s Law defines impedance as

Impedance $ effort
flow % (1)

In an electrical system the impedance is the ratio of a voltage (effort) over a current (flow).
In a mechanical system it is the force (effort) over the velocity (flow). I next give three
important examples:

Example 1: The impedance of the tympanic membrane (TM, or eardrum) is defined in
terms of a pure tone pressure in the ear canal divided by the resulting TM volume velocity
(the velocity times the area of TM motion). The pressure (effort) and volume velocity (flow)
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referred to here are conventionally described using complex numbers, to account for the
phase relationship between the two.

Example 2: The impedance of a spring is given by& ���'"($ )���'*+�-, (2)

where
)

is the stiffness of the spring and � is the frequency. This element is represented as
two straight lines (Fig. 5) close together, which looks like two physical plates. The important
term *.$0/ 132 , (3)

in the denominator, indicates that the impedance of a spring has a phase of 14�657� (-90 8 ).
This phase means that when the velocity is 9;:<�=���������>" , the force is �����6�?�������>" . The definition
of Eq. 2 follows from Hooke’s Law which says that the force @ and displacement A of a
spring are proportional, namely @B$ ) A % (4)

Since the velocity
 $C���'*+��A , and the definition of the impedance is ratio of @D5  , Eq. 2

follows.
Example 3: From Newton’s Law @E$GF!H where @ is the force, F is the mass, and

acceleration HI$J���'*+�  . The electrical element corresponding to a mass is an “inductor,”
indicated in Fig. 5 by a coil. Thus for a mass& �?�'"($K���'*+�'F % (5)

From Eq.’s 2 and 5, the magnitude of the impedance of a spring decreases as 2L57� , while
the impedance magnitude of a mass is proportional to � . The stiffness with its -90 8 phase
is called a lagging phase, while the mass with its +90 8 phase is called a leading phase.

1.2.2 Thévenin equiv alence

When dealing with impedance circuits there is a very important concept called the Thévenin
equivalent circuit. In 1883 a French telegraph engineer Léon Thévenin showed6 that any
active 1-port circuit, of any complexity, is equivalent to a series combination of a source
voltage

�M
and a source impedance

&NM
. These two elements are uniquely defined by

performing two independent measurements. Any two independent measurements would
do, but for the purpose of definition, two special measurements are best. The first definesOM

, which is called the open circuit voltage. This is the voltage measured with no load on
the system. The second measurement is the short circuit (unloaded) current P M , defined as
the current when the two terminals are connected together. By taking the ratio of the open
circuit voltage and the short circuit current, the Thévenin impedance is obtained

& M $  M 57P M .
The classical example is a battery. The open circuit voltage defines the Thévenin volt-

age
 M

, which is the voltage measured with no load. The short circuit current P M is the cur-
rent measured with a wire across the terminals (don’t try this!). The Thévenin impedance& MRQ  M 5�P M is the unloaded voltage divided by the short circuit current.

As a second example consider an earphone. When unloaded, by placing the earphone
in a very small cavity so that it has very little air to move, it can produce an “open circuit”
pressure. However, when loaded by placing it in the ear canal, the earphone pressure is

6Apparently Helmholtz worked this result out even earlier.
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reduced, due to the load of the ear canal. If it were placed in water, the load would be
very large, and the corresponding pressure would be small. In this case the “short circuit
current” corresponds to volume velocity of water that the diaphragm of the earphone can
move. The Thévenin parameters are the pressure measured in the small cavity, and the
impedance defined by the Thévenin pressure divided by the volume velocity measured
when place in in the water load.

The Thévenin parameters are needed to characterize a hair cell’s properties.

1.3 2-por t analysis

The concept of a 1-port impedance and of a Thévenin equivalence circuit has been gen-
eralized by defining a 2-port (4-wire connection) [30]. This is a very important modeling
tool that is used every time we must deal with both an input and an output signal. This
methodology is called 2-port analysis by engineers [31, 30, 32], referring to the fact that
a transducer has an input and output. A related literature is called Bond Graph analysis
[33]. A pair of “impedance” (conjugate) variables effort and flow (see section Sec. 1.2.1
and [31]), are used in each of two domains, the input and the output, to characterize the
transducer.

The 2-port relation properly characterizes the relations between an input effort and flow,
which we denote as lower case variables S , � , and an output effort and flow, characterized
by upper case variables T , @ . This characterization is in the frequency domain, and it re-
quires four functions of complex frequency U Q *+��� frequency, which are traditionally called�V�?UL" , W ��UL" , X ��UL" , Y �?UL" [30]. These four functions completely characterize the linear 2-port.
Complex frequency U is the necessary frequency variable for functions that are causal (one
sided in time), as in the case of impedances.Z T @\[ $^] �V��UL" W �?UL"X �?UL" Y ��U_"a` Z S�0[ , (6)

In later sections we shall see that all of the impedance and Thévenin properties are cap-
tured in this one matrix equation. A 2-port is called reciprocal if it is reversible. For recipro-
cal systems, � Y 1 W X $b2 % (7)

If a system is reciprocal then it is bidirectional because when the determinant of the � W X Y
matrix is 1 (Eq. 7), the inverse system must exist.

Each section of the the Wegel and Lane model Fig. 5. has a series impedance
&NM

and a
shunt impedance

&6c
. Thus it is a cascade of three � W X Y matrices, which may be written

as Z 
 � �d[ $ Z 2 &(M 57�e 2 [ Z 2 e2L5 & c 2f[ Z 2 &6c 57�e 2 [ Z 
hg g [ , (8)

This provides a mathematical formulation of a section of the Wegel and Lane model. The
details for doing this are derived in Pipes [30].

If the system is reversed and its topology is identical then,
W $ X

. This is called a
symmetric network, which is a common special case of a reciprocal 2-port. For example,
Figure 5 is symmetric when the scala area is constant.
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Recipr ocal systems. The classic example of a reciprocal network is a piezoelectric crys-
tal, while the classic example of a non reciprocal network is a transistor. More to the point,
outer hair cell forward transduction, which characterizes the relation between the cell’s cilia
displacement (the input) and the cell’s membrane voltage (the output), is typically charac-
terized as non-reciprocal. Reverse transduction, which characterizes the membrane volt-
age (the input) and the output motility (the output) is believed (but not yet proven) to be
reciprocal.

1.3.1 Anatom y of the model.

Different points along the basilar membrane are represented by the cascaded sections of
the transmission line model of Fig. 5. The position along the model corresponds to the lon-
gitudinal position along the cochlea. The series (horizontal) inductors (coils) represent the
fluid mass (inertia) along the length of the cochlea, while the elements connected to ground
(the common point along the bottom of the figure) represent the mechanical (acoustical)
impedance of an element of the corresponding section of the basilar membrane. In the
Wegel and Lane model the partition impedance, defined as the pressure drop across the
basilar membrane divided by its volume velocity per unit length, has the form& c �?� ,>i "N$ ) c � i "�5jUk�ml c � i "��nULF c � i " , (9)

where l c is the resistance. Each inductor going to ground represents the partition and fluid
mass per unit length F c � i " of the section, while the capacitor represents the compliance
[the reciprocal of the stiffness

) c � i " ] of the section of basilar membrane. Note that ULF and) 57U are impedances, but F is simply a mass, and
)

a stiffness, but not an impedance.
The stiffness decreases exponentially along the length of the cochlea, while the mass
is frequently approximated as being independent of position. The position variable i is
frequently called the place variable.

Driving the model To understand the inner workings of Wegel and Lane’s circuit Fig. 5,
assume that we excite the line at the stapes with a sinusoidal velocity of frequency � . Due
to conservation of fluid mass within the cochlea (fluid mass cannot be created or destroyed
in this circuit), at every instant of time the total volume through the basilar membrane must
equal the volume displaced by the stapes. Simultaneously, the round window membrane,
connected to the scala tympani, must bulge out by an equal amount [34]. In practice the
motion of the basilar membrane is complicated. However the total volume displacement of
the basilar membrane, at any instant of time, must be equal to the volume displacement of
the stapes, and of the round window membrane.

Flow in the model. Consider next where the fluid current
 � will flow, or where it can flow.

As shown in Fig. 6, for a given input frequency the basilar membrane impedance magnitude
has a minimum at one point along the length of the cochlea. The physical meaning of this
is that there is one point along the membrane that can move in a relatively unrestricted
manner. The location of this point critically depends on frequency. The impedance being
described is the impedance of each group of three elements in series in Fig. 5, namely the
inductor-capacitor-resistor combination going to ground at each point along the length of
the cochlea. These three elements in this configuration have special significance because
at one frequency the impedance of the inductor and the capacitor cancel each other, and
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Figure 6: Plot of the log-magnitude of the impedance as a function of place for two different
frequencies of 1 and 8 kHz. The region labeled oqpr�ts is the region dominated by the stiffness and
has impedance oqpr�tsvu_w . The region labeled x is dominated by the mass and has impedance w;x .
The characteristic places for 1 and 8 kHz are shown as y cf.

the only impedance element that contributes to the impedance is the resistance. This point
is called the resonant point, which is defined as that frequency @ cf where the mass and
stiffness impedance are equal ) � i "�7�'*z@ cf

${���'*v@ cf F % (10)

Solving for @ cf � i " defines the cochlear map function, which is one of the most important
concepts of cochlear modeling @ cf � i " Q 2���3| )}c � i "~5;F c % (11)

The inverse of this function A cf �?�'" specifies the location of the “hole” shown in Fig. 6 as a
function of frequency.

Basal to the resonant point A cf �?�'" of Fig. 6, the basilar membrane is increasingly stiff
(has a large capacitive impedance), and apically (to the right of the resonant point), the
impedance is a large mass reactance (inductive impedance). In this apical region the
impedance is largely irrelevant since little fluid will flow past the mechanical hole labeledA cf at the minimum. The above description is dependent on the input frequency � since
the location of the hole (the impedance minimum) is frequency-dependent.

This description is helpful in our understanding in why the various frequency compo-
nents of a signal are splayed out along the basilar membrane. If we were to put a pulse of
current in at the stapes, the highest frequencies that make up the pulse would be shunted
close to the stapes, while the lower frequencies would continue down the line. As the pulse
travels down the basilar membrane, the higher frequencies are progressively removed, un-
til almost nothing is left when the pulse reaches the right end of the model (the helicotrema
end, the apex of the cochlea).

Let’s next try a different mental experiment with this model. Suppose that the input at
the stapes were a slowly swept tone or chirp. What would the response at a fixed point
on the basilar membrane look like at one point along the basilar membrane? The ratio of
the displacement BM to stapes displacement, as a function of frequency � , has a shallow
low frequency slope and a very sharp high frequency slope. This response describes a
lowpass filter.

12



Derivation of the coc hlear map function. The cochlear map function @ cf � i " plays a very
important role in cochlear mechanics, has a long history, and is known by many names
[17, 35, 36, 37, 38, 39]. The following derivation for the form of the cochlear map, based on
“counting” critical bands, is from Fletcher [40] and Greenwood [39]. The number of critical
bands �}�v�=� i " may be found by integrating the density of critical bandwidth over frequency
in Hz �������'" and over place �}��� i " in mm. The cochlear map function @ cf � i " is then found
by equating these two integrals.

The critical bandwidth ���O�?�'" is the effective width in frequency of the spread of energy
on the basilar membrane. It has been estimated by many methods. The historical methods
used by Fletcher were based on the critical ratio �����'" and the pure tone just noticeable
difference in frequency (JND � ). These two psychoacoustic measures have a constant ratio
of 20 between them [36] and page 171 of [41], namely the critical bandwidth in Hz equals
20 JND ���?�'" in Hz. From [17] (Eq. 6)� :�� �+��� JND � � i "z�'$ 2���1 i2_� % � �m� , (12)

with i in mm. Thus the critical ratio (in dB) � ��� � i " is of the form H i ��� where H and � are
constants. The critical bandwidth, converted back to Hz, is����� i "N$!2 e��L�+��� ���?���+� % (13)

This was verified by Greenwood [39], page 1350, Eq. 1.
The critical spread � � � i " is the effective width of the spread of energy on the basilar

membrane due to a pure tone. Based on an argument of Fletcher’s, Allen found that in the
cat � � � i " corresponds to about 2.75 times the width of the basilar membrane ������� i " [40],
namely � � � i "N${� %¡ 7¢ �£���¤� i " % (14)

The two ratio measures ¥z��5j�������'" and ¥ i 5j�¤�O� i " define the density of critical bands
in frequency and place, and each may be integrated to find the number of critical bands� �v� � i " . Equating these two functions results in the cochlear map function @ cf � i "� �v� � i " Q{¦ �� ¥ i� � � i " $ ¦m§ cf� ¥v�� � �?�'" % (15)

For a discussion of work after 1960 on the critical band see [40, 12].

Cochlear map in the Cat In 1982 Liberman [42] and in 1984 Liberman and Dodds [43]
directly measured @ cf � i " in the cat and found the following empirical formula@ cf � i "�$©¨ ¢ �«ªv2 e g=¬ �+� 1 e % �® , (16)

where the “place” variable i is normalized by the length of the basilar membrane, and is
measured from the stapes [42]. As defined in Fig. 7, the “slope” of the cochlear map, which
for the cat is 3 mm/oct and for the human is 5 mm/oct, is determined by the parameter 2.1
in the exponent of Eq. 16.
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Figure 7: Cochlear map of the cat following Liberman and Dodds, Eq. 16. This figure also shows
how a critical band ·�¸<p�¹ºs and a critical spread ·�»<pr�ts area related through the cochlear map function.

2 Inadequacies of the 1 ¥ model (Summar y of experimen-
tal data)

Wegel and Lane’s transmission line model was a most important development, since it
was a qualitative predictor (by 26 years) of the experimental results of von Békésy, and it
was based on a simple set of physical principles (conservation of fluid mass, and spatially
variable basilar membrane stiffness). The Wegel and Lane 1

�
model was the theory of

choice until the 1970’s when:¼ numerical model results became available, which showed that 2
�

and 3
�

models were
more frequency selective than the 1

�
model,¼ experimental basilar membrane observations showed that the basilar membrane mo-

tion had a nonlinear compressive response growth, and¼ improved experimental basilar membrane observations became available which showed
increased nonlinear cochlear frequency selectivity.

In the next section we review these developments.

2.1 Contemporar y histor y of coc hlear modeling

In 1976 George Zweig and colleagues pointed out that an approximate but accurate solu-
tion for the 1

�
model could be obtained using a well known method in physics called the

“WKB” approximation [44]. The method was subsequently widely adopted [45]. The results
of Zweig et al. were similar to Rhode’s contemporary basilar membrane data [46], but very
different than contemporary neural tuning curve responses [47].7

7Of course Zweig’s model was linear, and both Rhode’s and Kiang and Moxon’s data exposed significant
nonlinear behavior.
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The discrepancy in frequency selectivity between basilar membrane and neural re-
sponses has always been, and still is, the most serious problem for the cochlear modeling
community. In my view, this discrepancy is one of the most basic unsolved problems of
cochlear modeling. Progress on this front has been seriously confounded by the uncer-
tainty in, and the interpretation of, the experimental data. We shall soon return to this same
point.

2
�

models: The need for a two-dimensional (2
�
) theory was first explicitly presented by

Ranke [18]. In the 70’s several 2
�

model solutions8 became available [48, 49, 50, 51, 52].
These results made it clear that the 1

�
theory, while a useful approximation, must be used

only with cautioned thoughtful care.
Soon it was possible to compute the response of a 2

�
, and even the response of a

3
�

geometry [53, 45, 54]. As the complexity of the geometry of the models approached
the physical geometry, the solutions tended to display steeper high frequency slopes, and
therefore increased frequency selectivity. However, they did not converge to the neural
responses.

A paradigm shift. Over a 15 year period starting in 1971, there was a paradigm shift.
Three discoveries rocked the field:

a) nonlinear compressive basilar membrane and inner hair cell responses [46, 55],

b) otoacoustic emissions [56], and

c) motile outer hair cells [57].

Of course today we know that these observations are related, and all involve outer hair
cells. A theory (a computational model) was desperately needed to tie all these results
together (as it is today).

As the basilar membrane experimental measurements were refined, the experimental
results exhibited increased cochlear frequency selectivity [58]. Inner hair cell recordings
showed that these cells were tuned like neurons [55, 59]. The similarity of the inner hair
cell recordings to neural responses is striking. Besides the increased tuning, Rhode’s 1978
observations strongly supported much earlier indirect observations which suggested that
nonlinearity played a fundamental role in cochlear mechanics [60, 61, 62, 63, 64].

Initially Rhode’s discovery of basilar membrane nonlinearity was not widely accepted,
and the frequency selectivity question was the more important issue. Contemporary ex-
periments were geared at establishing the transformation between basilar membrane and
neural tuning [65]. This was the era of the “second filter.” There were some important theo-
retical second filter results [64, 66, 67, 68] addressing the gap between the BM and neural
frequency response.

By 1982 strong controversial claims were being made that the basilar membrane fre-
quency response (the selectivity) was similar to neural and inner hair cell data [69, 70].
Both authors soon modified their claims. Khanna reported the very strange result that
the best frequency of tuning was correlated to the distance between the microphone and
the ear drum [71]. The obvious, and now accepted explanation for this correlation, is that

8The 2
�

theories are more rigorous than the 1
�

theory, and therefore are a check on the simpler models. Any
discrepancy must be attributed to the simpler 1

�
theory.
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standing wave reflections from the middle ear created a deep null in the ear canal pressure.
This pressure was then used as a normalization of the basilar membrane displacement re-
sponse. Thus the pressure null produced a large peak in the resulting incus displacement
to ear canal pressure transfer function.

Sellick et al. (1983) reviewed their 1982 data and cryptically concluded

“In conclusion, a demonstration of inner hair cell tuning at the level of the basilar
membrane continues to elude us.”

They went much further by showing how the size and placement of the Mössbauer source
significantly influenced basilar membrane tuning [73].

On the theoretical side it was becoming clear that even a 3
�

model, no matter how
much more frequency selective it was compared to the 1

�
model, would not be adequate

to describe either the newly measured selectivity, or the neural tuning. The main difference
was the tuning slope ½ g just below @ cf, which will next be described when we discuss Fig. 9.

Summar y: An important consequence of Sellick’s 1983 and Khanna’s 1986 papers was
that all the basilar membrane tuning results prior to 1986, with the possible exception of
Rhode’s, were in serious doubt. Equally important, it was a major problem that there was
no accepted available theory that could predict the observations of either the basilar mem-
brane nonlinearity, frequency selectivity, or the hair cell and neural tuning.

It was during this uncertain period that David Kemp observed the first otoacoustic emis-
sions (tonal sound emanating from the cochlea and nonlinear “echos” to clicks and tone
bursts) [56, 74, 75, 76, 77]. Kemp’s findings were like an electric jolt to the field.

It was an exciting time, but the field was becoming chaotic due to the infusion of new
results. It would take 20 or more years to clarify the situation, and require at least one
more major discovery. In 1985 Brownell and colleagues discovered that the outer hair cell
is motile [57].

Brownell’s finding fundamentally changed the experimental landscape as researchers
focused on outer hair cell experiments rather than on the basilar membrane itself. These
results would pave the way toward explaining both the purpose and nonlinear operation of
the mysterious outer hair cell.

Figure 8: Block flow diagram of the inner ear [78].

The OHCs are the one common element that link all the nonlinear data previously ob-
served, and a missing piece of the puzzle that needs to be understood, before any model
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can hope to succeed in predicting basilar membrane, hair cell, and neural tuning, and non-
linear compression. Understanding the outer hair cell’s two-way mechanical transduction
is viewed as the key to solving the problem of cochlear dynamic range.

In the last year a fourth important discovery has been made. It has been shown that the
outer hair cell mechanical stiffness depends on the voltage across its membrane [79, 80].
This change in stiffness, coupled with the naturally occurring “internal” turgor pressure, may
well account for the voltage dependent accompanying length changes (the cell’s voltage
dependent motility). This leads to a block diagram feedback model of the organ of Corti
shown in Fig. 8 where the excitation to the OHC changes the cell voltage


ohc, which in turn

changes the basilar stiffness [78].

S1

S2

FcfFz
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¾ ¿ÀÁÂÂÃÄ
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Figure 9: Their are 6 numbers that characterize every curve, three slopes ( Ç'È~É>ÇOÊ�É+Ç�Ë ), in dB/oct,
and two frequencies ( Ì z É+Ì cf). Finally the excess gain characterizes the amount of gain at Ì cf relative
to the gain defined by Ç#Í . The Excess gain frequently depends on the input level for the case of a
nonlinear response like the cochlea.

2.1.1 Measures of coc hlear response

There are two basic intertwined problems, cochlear frequency selectivity and cochlear non-
linearity. Whenever scientists are confronted with tangling (statistically correlated and com-
plex) phenomenon, good statistical measures are crucial. A measure called ÎVÏ+Ð has been
popular, defined as the center frequency Ñ cf divided by the bandwidth measured 10 dB
down from the peak. This measure is exquisitely insensitive to many important details and
is difficult to accurately measure. Computing the bandwidth 10 dB down is subject to the
error in estimating both the peak magnitude and the bandwidth. To compute Î Ï+Ð , one must
subtract these two estimates, and then divide by this small quantity. Such manipulations
are prone to large errors.

An alternative measure due to Rhode [58, Fig. 8], and defined here in Fig. 9, is used in
this review. Tuning curves are fitted by straight lines on log-log coordinates. Such straight
line fits are called Bode plots in the engineering literature. The slopes and break points,
defined as the locations where the straight lines cross, characterize the response. This
measure is robust because it is a global measure of the response rather than a local mea-
sure (like ÎVÏ+Ð ). We shall provide these numbers when making comparisons of data from
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the literature.
Such Bode plots are useful for characterizing both cochlear selectivity and nonlinearity.

By looking at the slope difference Ò'Ó-ÔÕÒ Ï (see Fig. 9 for the definitions of the slopes), we
have a statistic that is insensitive to the middle ear response. The slopes can be converted
into the place domain by use of the cochlear map function. For example, in the cat where
the conversion factor is 3 mm/oct, a slope of 6 dB/oct in the frequency domain is equivalent
to 2 dB/mm. (The corresponding conversion factor for the human cochlea is 5 mm/oct.)

2.2 The nonlinear coc hlea

Wegel and Lane’s transmission line theory is linear. Researchers began studying ways
of making the cochlear models nonlinear in order to better understand these numerous
nonlinear effects. Because these models are still under development (since the problem
has not yet been solved), it is necessary to describe the data rather than the models.

Some of these important nonlinear cochlear measures include:Ö Distortion components generated by the cochlea, described by Wegel and Lane [81],
Goldstein and Kiang [61], Smoorenburg [62], Kemp [75], Kim et al. [82], Fahey and
Allen [83] (and many others),Ö The upward spread of masking (USM), first described quantitatively by Wegel and
Lane in 1924,Ö Loudness growth and recruitment in the impaired ear [8],Ö The frequency dependent neural two–tone suppression observed by Sachs and Kiang
[84], Arthur et al. [85], Kiang and Moxon [47], Abbas and Sachs [86], Fahey and Allen
[83], [87] and others,Ö The frequency dependent basilar membrane response level compression first de-
scribed by Rhode [46, 58], and,Ö the frequency dependent inner hair cell receptor potential level compression, first
described by Russell and Sellick [55, 59].

The following sections review these data.

2.2.1 The basilar membrane nonlinearity

The most basic of these nonlinear effects was first observed by Rhode [46, 58] when he
measured the response of the basilar membrane, as shown in Fig. 10. He found the basilar
membrane displacement to be a highly nonlinear function of level. For every four dB of
pressure level increase on the input, the output displacement (or velocity) only changed
one dB. This compressive nonlinearity depends on frequency, and only occurs near the
most sensitive region (e.g., the tip of the tuning curve). For other frequencies the system
was linear, namely, one dB of input change gave one dB of output change for frequencies
away from the best frequency. This nonlinear effect was highly dependent on the health of
the animal, and would decrease, or would not be present at all, if the animal was not in its
physiologically pristine state. From Fig. 10 Rhode found up to × 35 dB of excess gain at 7.4
kHz and 55 dB SPL, relative to the gain at 105 dB SPL. From of the 50 dB SPL curve of
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Figure 10: Figure 9a, panel B from Rhode (1978) showing the response of the basilar membrane
for his most sensitive animal. The graduals along the abscissa are at 0.1, 1.0 and 10.0 kHz.

Figure 11: Response of the basilar membrane in the hook region, 1.5 mm from the end as reported
by Narayan and Ruggero [88]. These data are reported to be slightly less sensitive than data taken
3 mm from the end of the basilar membrane by the same laboratory.
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DATA TYPE Reference Ø Ù~ÚÜÛ;Ý�Þ cf ß Þ z à S1 S2 S3 Ex. Gain

octave dB/oct dB/oct dB/oct dB
BM [58] 0.57 9 92 107 27
BM [88] 0.88 10 30 101 17.4
NeuralÞ cf áãâ (kHz) [90] 0.5–0.8 0–10 50–170 ä 300 50–80

Table 1: Summary of the parametric representation of basilar membrane (BM) and neural tuning
from various sources. The parameters are defined in Fig. 9.

Fig. 10 (the most sensitive case), and his Table I, Ò�Ï4åçæ , Ò Ó å{èjé , and Ò â åbÔDê7è�è (dB/oct)
(see Fig. 9 for the definitions), Ñ z = 5 kHz, Ñ cf = 7.4 kHz, and an excess gain of 27 dB.
(Rhode reported Ò Ï = 6 dB/oct, but 9 seems to be a better fit to the data, so 9 dB/oct is the
value we have used for our comparisons in Tab. 1.)

Very recent basilar membrane data from Narayan and Ruggero are shown in Fig. 11.
In this figure we clearly see the nature of the nonlinear response growth and the change in
frequency selectivity with input level.9 For this figure Ò6Ï3åìë_í dB/oct between 0.3 and 9.0
kHz, while Ò Ó for the 20 dB SPL curve between 9.0 and 15.0 kHz is slightly less than 30
dB/oct, Ò â = -101 dB/oct, Ñ z = 9 kHz, Ñ cf = 16.6 kHz, and the excess gain is 20 îðïjñ (600/80)
= 17.4 dB.

EPL CAT NEURAL TUNING DATA
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dB
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Figure 12: Cat neural tuning curves from Eaton Peabody Lab provided by C. Liberman and B.
Delgutte. The pressure scale, in dB, has been reversed to make the curves look like filter transfer
functions. The response “tail” for the 6 kHz neuron is the “flat” region between 0.1 kHz and frequencyÌ z. In the tail the sound must be above 65 dB SPL (which on this scale is down) before the neuron
will respond.

2.2.2 Neural Tuning Data.

We ultimately seek a model which accurately predicts human inner hair cell and neural
tuning curves. A great deal of cat VIII ò�ó neural tuning curve data are available which defines
fairly precisely the input-output properties of the cochlea at threshold intensities.

9Basilar membrane experiments are notoriously difficult. The variability across (and even within) laboratories
is typically quite large [89].
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Figure 13: Slopes of neural tuning curves for 8 different cats. The upper positive slopes, labeledô�õ Ì cf give Ç Ë , the steep high frequency side of the tuning curve, while the negative slopes labeledô�ö Ì cf correspond to Ç�Ê , the slope in the range of frequencies Ì z
ödô�ö Ì cf. Above 2 kHz Ç�Ê varies

from 50 to more than 100 dB/oct, while ÇtË varies from about 50 dB/oct at 0.5 kHz to more than 400
dB/oct above 2-3 kHz. The numbers on each curve code different animals. This figure is Fig. 3 of
reference [90].

Neural tuning is measured by measuring the spiking activity in an auditory nerve fiber
as a function of the frequency and intensity of a probe search tone. The locus of threshold
intensities ÷ºøù6ú�û ù�ü that cause the neuron to fire slightly above its spontaneous rate is called
the neural tuning curve. The ý superscript indicates that the probe intensity is at threshold.
Each neuron has such a tuning curve, which is tuned to its “best” characteristic frequency,
labeled in Fig. 12 as Ñ cf and given by Ñ cf in Eq. 11. The tuning curves of Fig. 12 have been
vertically reversed to make them look more like the filter transfer functions used in basilar
membrane response plots.

Tuning cur ve slopes. Those tuning curves having best frequencies Ñ cf above a few kHz
typically have “flat tails,” meaning the broad flat region labeled as Ò Ï in Fig. 9 is less than 10
dB/oct. As an example look to the left of the frequency labeled FZ for the 7 kHz neuron of
Fig. 12. For high frequency neurons ( Ñ cf ä 2 kHz), the slope in the tail Ò�Ï4× 0. It is shown in
Fig. 13, Ò Ó is between 50-150 dB/oct, þ Ò â þ ä 300 dB/oct [90]. The excess gain is between
50-80 dB, and Ñ cf ÿ Ñ z × 0.5 oct [91].

Tuning cur ve tips. Around the sensitive tips of tuning curves we expect the response to
be similar to basilar membrane tuning, and there is significant evidence that this is the case
[92, 88].

2.2.3 The receptor potential nonlinearity

In 1978 Russell and Sellick [55, 59] found a frequency dependent compressive nonlinear
effect in the receptor potential of the inner hair cell of their guinea pig preparation. These
independent measures of compressive nonlinearity, at a different point in the system, in-
creased the credence of the hypothesis that the basilar membrane response is inherently
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nonlinear, especially at low sound pressure levels. They also greatly strengthened and
clarified the case for the two–tone suppression nonlinearity observed in neural responses
[84, 47, 86] which, due to neural saturation effects, was more difficult to quantify.

2.2.4 Motile OHCs

The implication that hair cells might play an important role in cochlear mechanics go back
at least two 1936 when loudness recruitment was first reported by Fowler [93] in a comment
by R. Lorente de No. [7], stating that cochlear hair cells are likely to be involved in loudness
recruitment.

The same year Steinberg and Gardner (1937) were explicit about the action of recruit-
ment when they concluded

When someone shouts, such a deafened person suffers practically as much
discomfort as a normal hearing person would under the same circumstances.
Furthermore for such a case, the effective gain in loudness afforded by am-
plification depends on the amount of variable type loss present. Owing to the
expanding action of this type of loss it would be necessary to introduce a corre-
sponding compression in the amplifier in order to produce the same amplifica-
tion at all levels.

Therefore as early as 1937 there was a sense that cochlear haircells were related to dy-
namic range compression.

In more recent years, theoretical attempts to explain the difference in tuning between
normal and damaged cochleae led to the suggestion that OHCs could influence BM me-
chanics. In 1983 Neely and Kim conclude

We suggest that the negative damping components in the model may repre-
sent the physical action of outer hair cells, functioning in the electrochemical
environment of the normal cochlea and serving to boost the sensitivity of the
cochlea at low levels of excitation.

Subsequently, Brownell et al. (1985) discovered that isolated OHCs change their length
when placed in an electric field [57]. This then lead to the intuitive and widespread proposal
that outer hair cells act as linear motors that directly drive the basilar membrane on a cycle
by cycle basis. As summarized in Fig. 8, the length change was shown to be controlled by
the outer hair cell receptor potential, which in turn is modulated by both the position of the
basilar membrane (forming a fast feedback loop), and alternatively by the efferent neurons
that are connected to the outer hair cells (forming a slow feedback loop). The details of this
possibility are the topic of present research.

2.2.5 Low frequenc y suppressor effects

The psychophysically measured upward spread of masking (USM) and the neurally mea-
sured two-tone suppression (2TS) are closely related phenomena. Unfortunately these two
measures have been treated independently in the literature. Today we know that they are
alternative objective measures of the same OHC compressive nonlinearity. The USM is
measured psychophysically while 2TS is a neural measure. Both involve the suppression
of a basal (high frequency) probe due to the simultaneous presentation of an apical (low
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frequency) suppressor. These two views (USM versus 2TS) nicely complement each other,
providing a symbiotic view of cochlear nonlinearity.

Upwar d Spread of Masking (USM). In a classic 1876 paper [95, 96], A.M. Mayer, was
the first to describe the asymmetric nature of masking. Mayer made his qualitative ob-
servations with the use of organ pipes and tuning forks, and found that that the spread of
masking is a strong function of the probe-to-masker frequency ratio ( û ù ÿ û�� ).
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In 1923, Fletcher published the first quantitative results of tonal masking.10 In 1924,
Wegel and Lane extended Fletcher’s experiments (Fletcher was the subject [17, Page
325]), using a wider range of tones. Wegel and Lane then discuss the results in terms
of their 1 � model described above. As shown in Fig. 14, Wegel and Lane’s experiments
involved presenting listeners with a masker tone at frequency û�� and intensity ÷ � , along
with a probe tone at frequency û ù . As a function of masker intensity (masker and probe
frequency are fixed), the probe intensity ÷ ù ú ÷ � ü was slowly raised from below-threshold
levels until it was just detected by the listeners, at intensity ÷ øùhú ÷ � ü . As before ý indicates
threshold.

In Fig. 14 û � = 400 Hz, ÷ � is the abscissa, û ù is the parameter on each curve, in kHz,
and the threshold probe intensity ÷ øù ú ÷ � ü is the ordinate. The dotted line superimposed on
the 3 kHz curve ú ÷ � ÿ ë�í� Ð ß ÏvÐ ü Ó�� � represents the suppression threshold at 60 dB-SL which
has a slope of 2.4 dB/dB. The dotted line superimposed on the 0.45 kHz curve has a slope
of 1 and a threshold of 16 dB SL.

10Fletcher, Wegel, and Lane used the newly invented vacuum tube, developed by Arnold for network transmis-
sion, to make these measures [97, 40].
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Three regions are clearly evident: the downward spread of masking ( û ù�� û�� , dashed
curves), critical band masking ( û ù × û�� , dashed curve marked 0.45), and the upward
spread of masking ( û ù ä û�� , solid curves) [98].

Critical band masking has a slope close to 1 dB/dB (the superimposed dotted line has
a slope of 1). The downward spread of masking (the dashed lines in Fig. 14) has a low
threshold intensity and a variable slope that is less than one dB/dB, and approaches 1 at
high masker intensities. The upward spread of masking (USM), shown by the solid curves,
has a threshold near 50 dB re sensation level (i.e., 65 dB SPL), and a growth just less than
2.5 dB/dB. The dotted line superimposed on the û ù =3 kHz curve has a slope of 2.4 dB/dB
and a threshold of 60 dB.

The dashed box shows that the upward spread of masking of a probe at 1 kHz can
be greater than the masking within a critical band (i.e., û ù = 450 Hz ä û � =400 Hz). As
the masker frequency is increased, this “crossover effect” occurs in a small frequency re-
gion (i.e., 1/2 octave) above the masker frequency. The crossover is a result of a well
documented nonlinear response migration, of the excitation pattern with stimulus intensity,
described in a fascinating (and beautifully written) paper by Dennis McFadden [99]. Re-
sponse migration was also observed by Munson and Gardner in a classic paper on forward
masking [100]. This important migration effect is beyond the scope of the present discus-
sion, but is is reviewed in [98, 101], and briefly described in the figure caption of Fig. 27.

The upward spread of masking is important because it is easily measured psychophysi-
cally in normal hearing people, is robust, well documented, and characterizes the outer hair
cell nonlinearity in a significant way. This psychophysically measured USM has correlates
in basilar membrane, hair cell, and neural recording literature, where it is called two–tone
suppression (2TS).

Figure 15: Two–tone suppression IO functions from Fig. 8 of Abbas and Sachs (1976).
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Two–tone suppression. The neural correlate of the psychophysically measured USM
is called two–tone suppression (2TS). First a neural tuning curve is first measured. Next
a pure tone probe at intensity ÷ ù ú?û ù ü , and frequency û ù , is placed a few dB (i.e., 6 to 10)
above threshold at the characteristic (best) frequency of the neuron Ñ cf (i.e., û ù å{Ñ cf). Next
the intensity ÷�� ú?û � ü of a suppressor tone, having frequency û � , is increased until the rate
response to the probe � ú ÷ ù�� í ü either decreases by a small amount ��� , or drops to ���
above the spontaneous rate � ú í � í ü . These two criteria are defined� � ú ÷ ù�� ÷ ø� ü�� � ú ÷ ù�� í ü Ô���� (17)

(subscript s for superthreshold) and� ò ú ÷ ù � ÷ ø� ü!� � ú í � í ü#" ��� (18)

(subscript t for threshold). � � indicates a fixed small but statistically significant constant
change in the rate (i.e., ��� = 20 spikes/s is a typical value). The threshold suppressor in-
tensity is defined as ÷ ø� ú?û � ü , and as before the ý indicates the threshold suppressor intensity.
The two threshold definitions � � and � ò are very different, and both are useful.

54

74
80

94 dB SPL

60
68

Figure 16: The upper panel shows a family of neural tuning curves from the cat. The lower panel
shows all the 2TS thresholds for this set of tuning curves. The circles are the locations of the Ì cf bias
tone levels and frequencies. The solid lines are the intensity that will cause the suppressed tuning
curve tip to be at the same level as that of the bias tone (the circle). The abscissa is in Pascals. 2 Pa
is 100 dB SPL. The median suppression threshold at 1 kHz is 0.04 Pa (i.e., 66 dB SPL). For more
details see [83].

Abbas and Sachs’ Fig. 8 [86] is reproduced in Fig. 15. For this example, Ñ cf is 17.8
kHz, and the û ù åbÑ cf probe intensity $.Ï is 60 dB. This means that the threshold intensity
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of the neural tuning curve was a low spontaneous neuron with a relatively high threshold
of approximately 50-55 dB SPL. The left panel of Fig. 15 is for apical suppressors that are
lower in frequency than the CF probe ( û � � û ù ). In this case the threshold is just above 65
dB SPL. The suppression effect is relatively strong and independent of frequency. In this
example the threshold of the effect is less than 4 dB apart (the maximum shift of the two
curves) at suppressor frequencies û � of 10 and 5 kHz (a one octave seperation).

The right panel shows the case û � ä û ù . The suppression threshold is close to the
neurons threshold (i.e., 50 dB SPL) for probes at 19 kHz, but increases rapidly with fre-
quency.The strength of the suppression is weak in comparison to the case of the left panel
( û � � û ù ), as indicated by the slopes of the family of curves.

The impor tance of the criterion. The data of Fig. 15 uses the first suppression thresh-
old definition Eq. 17 � � (a small drop from the probe driven rate). In this case the Ñ cf

probe is well above its detection threshold at the suppression threshold, since according to
definition Eq. 17, the probe is just detectably reduced, and thus audible. With the second
suppression threshold definition Eq. 18 � ò , the suppression threshold corresponds to the
detection threshold of the probe. Thus Eq. 18, suppression to the spontaneous rate, is
appropriate for Wegel and Lane’s masking data where the probe is at its detection thresh-
old ÷ øù6ú ÷ � ü . Suppression threshold definition Eq. 18 was used when taking the 2TS data
of Fig. 16, where the suppression threshold was estimated as a function of suppressor
frequency.

Figure 17: A cat neural tuning curve taken with various suppressors present, as indicated by
the symbols. The tuning curve with the lowest threshold was with no suppressor present. As the
suppressor changes by 20 dB, the % cf threshold changes by 36 dB. Thus for a 2 kHz neuron, the
slope is 36/20, or 1.8. Interpolation of Fig. 18 gives a value of & 1.6 dB/dB. One Pascal = 94 dB SPL.

To be consistent with a detection threshold criterion, such as the detection criterion used
in by Wegel and Lane in psychophysical masking, (Eq. 18) must be used. To have a tuning
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curve pass through the Ñ cf probe intensity of a 2TS experiment (i.e., be at threshold levels),
it is necessary to use the suppression to rate criterion given by Eq. 18. This is shown in
Fig. 17 where a family of tuning curves is taken with different suppressors present. As
described by Fahey and Allen (1985), when a probe is placed on a specific tuning curve of
Fig. 17, corresponding to one of the suppressor level symbols of Fig. 17, and a suppression
threshold is measured as shown in Fig. 16 (lower panel), that suppression curve will fall on
the corresponding suppression symbol of Fig. 17. There is a symmetry between the tuning
curve measured in the presents of a suppressor, and a suppression threshold obtained
with a given probe. This symmetry only holds for criterion Eq. 18, the detection threshold
criterion, which is appropriate for Wegel and Lane’s data.

Suppression threshold. Using the criterion Eq. 18, Fahey and Allen (1985) showed
(Fig. 16) that the suppression threshold ÷ ø� ú ÷ ù�ü in the tails is near 65 dB SPL (0.04 Pa).
This is true for suppressors between 0.6 and 4 kHz. A small amount of data are consistent
with the threshold being constant to much higher frequencies, but the Fahey and Allen data
are insufficient on that point.

Arthur et al. (1971), using Eq. 17, reported that when û � ä û ù the suppression threshold
was more sensitive than the CF threshold. Fahey and Allen [83] used Eq. 18, and found no
suppression for û � ä û ù , except for very high threshold neurons. This is because the rate
never was suppressed to threshold for high frequency suppressors. For high frequency
suppressors ( û � ä û ù ), suppression is a weak effect so it cannot suppress to threshold
(Eq. 18) unless the neurons threshold is very high (greater than 60 dB SPL). This means
that suppression above CF ( û � ä û ù å©Ñ cf) can only be observed for low spontaneous, high
threshold neurons, when using Eq. 17.

Suppression slope . Bertrand Delgutte has written several insightful papers on masking
and suppression [103, 102, 104]. As shown in Fig. 18, he estimated how the intensity
growth slope (the ordinate, in dB/dB) of 2TS varies with suppressor frequency (the ab-
scissa) for several probe frequencies (the parameter indicated by the vertical bar) [102]. As
may be seen in the figure, the suppression growth slope for the case of a low frequency
apical suppressors on a high frequency basal neuron (the case of the left panel of Fig. 15),
is × 2.4 dB/dB. This is the same slope as Wegel and Lane’s 400 Hz masker, 3 kHz probe
USM data shown in Fig. 14. For suppressor frequencies greater than the probe’s ( û � ä û ù ),
Delgutte reports a slope that is significantly less than 1 dB/dB. Likewise Wegel and Lane’s
data has slopes much less than 1 for the downward spread of masking.

Related data. Kemp and Chum [105] (their Figs. 7 and 9) found similar suppression
slopes of more than 2 dB/dB for low frequency suppressors of Stimulus frequency emis-
sions (SFE). This data seems similar to the USM and 2TS data, but is measured objectively
from the ear canal. New data on the suppression slope has been recently published by
Pang and Guinan (1997).

In Fig. 19 Liberman and Dodds show the complex relationship between the state of the
inner hair cell tuning and outer hair cell damage [43]. Local noise trauma to the outer hair
cell produces tuning curves with elevated tips and increased sensitivity in the low frequency
tails. There is a notch near Ñ z.

The development work of Walsh and McGee [106] shows similar results, with hyper
sensitive tails and W shaped tuning.
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Figure 18: This family of curves, redrawn from Delgutte (1990b), describes the growth of suppres-
sion, in dB/dB, as a function of the frequency of the suppressor (the abscissa, in kHz). The frequency
of the probe tone is the parameter, as indicated by the heavy vertical line. For example, this figure
shows that for neurons having a best frequency of 15 kHz, the maximum 2TS slope is ' 2.4 dB/dB
and occurs for suppressors between 100 and 5 kHz. A neuron having a 1 kHz best frequency has a
maximum 2TS slope of ' 1.4 dB/dB for suppressors between 100 and 300 Hz. When the suppressor
frequency approaches the excitatory region of the neuron, the suppression slope is not measurable,
since the suppressor drives the neuron in this case, making the rate suppression unmeasurable.
Suppression above the probe frequency is a very weak effect because the slope is much less than 1.
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Figure 19: Figure from Liberman and Dodds showing the effect of OHC damage on neural re-
sponses [43]. These classic studies are hard to explain with the cochlear amplifier concept.
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It is widely recognized that both the Liberman and Dodds as well as the Walsh and
McGee [106] studies give us an important insight into micromechanics, but nobody has a
simple explanation of exactly what these results mean. One likely possibility is that there
are higher order modes (i.e., degrees of freedom) within the organ of Corti and the tectorial
membrane.

Summar y. The USM and 2TS data show systematic and quantitative correlations be-
tween the threshold levels and slopes. The significance of this correlation has special
importance because (a) it comes from two very different measurement methods, and (b)
Wegel and Lane’s USM and Kemp’s SFE data are from human, while the 2TS data are from
cat, yet they show quite similar responses. This implies that the cat and human cochleae
may be quite similar in their nonlinear responses.

The USM and 2TS threshold and growth slope (e.g., 50 dB-SL and 2.4 dB/dB) are im-
portant features that must be modeled before we can claim to understand cochlear function.
While there have been several models of 2TS [107, 64, 108] as discussed in some detail by
Delgutte [102], none are in quantitative agreement with the data. The two–tone suppres-
sion model of Hall [64] is an interesting contribution to this problem because it qualitatively
explores many of the key issues.

2.2.6 The basilar membrane to hair cell transf ormation

The purpose of this section is to address the two intertwined problems mentioned in Sec. 2.1.1,
cochlear frequency selectivity and cochlear nonlinearity,

A key question is the nature of the transformation between BM and hair cell cilia mo-
tion at a given location along the basilar membrane. There are several issues here. First,
the motion of IHC and OHC cilia are not the same. The IHC cilia are believed to be free
standing while the tips of OHC cilia are firmly anchored in the underside of the tectorial
membrane. We may avoid this uncertainty by changing the question: What is the trans-
formation between BM and TM-RL shear? (Basilar membrane (BM), tectorial membrane
(TM) and reticular membrane (RL). The IHC and OHC cilia sit in the space between TM
and RL.) The cilia sit in a 4-6 ( m fluid filled space between the tectorial membrane and the
rectular lamina. It is the shearing motion between these two surfaces that moves the inner
and outer hair cell cilia. The question reduces to the nature of the coupling between the
vertical displacement of the BM and the radial shear of the TM-RL space. We dichotomize
the possibilities into single versus multi-mode coupling. It is presently a matter of opinion
as to which of these two couplings accounts for the most data.

Single-mode coupling. One possibility is that the displacement of the basilar membrane
is functionally the same as the displacement of the TM-RL shear (and implicitly therefore
the same as the OHC cilia). I will call this model single-mode coupling between the basilar
membrane and the TM-RL shear. This means that the displacement magnitude and phase
of these two displacements are significantly different. For example, they might differ by a
linear transformation.

Since about 1971 when Rhode published Fig. 10, the single-mode coupling view has
become widely accepted [2, 92, 109, 110]. This is unfortunate since it is not generally true
that experimental BM displacement, IHC voltage frequency response, and neural tuning
curves are identical, or even similar. Nobody has actually demonstrated that neural and
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basilar membrane responses are functionally the same. The strongest argument for single-
mode coupling is the study of [92] which is at one frequency and in one species. Even this
data shows a small, systematic and unexplained 3.8 dB/oct difference across frequency.

Figure 20: Figure from Kim et al. 1979. The arrow indicates the frequency of the tone. The
abscissa is the Ì cf of each neuron, and the ordinate is the neural phase of the neuron relative to the
phase in the ear canal. Like the data of Fig. 19, this figure shows evidence for multi-mode coupling
between the BM response and the cilia excitation.

Multi-mode coupling. The alternative to single-mode coupling is that neural signals are
a multi-mode mechanics transformation of the basilar membrane response.11 There are
many studies that are in conflict with single-mode coupling. There are at least two cate-
gories of measurements that give insight into this transformation, tuning and nonlinearity.
The following discussion summarizes many of the known differences between basilar mem-
brane and neural response.

Noise damage. In my view Fig. 19 gives strong direct evidence of a tectorial membrane
resonance (multi-mode “2 degrees of freedom” coupling). But this view has remained con-
troversial. One problem with these data is the difficulty in interpreting them. But no matter
what the interpretation, the data of Fig. 19 do not seem compatible with the concept of
single-mode coupling.

Neural phase populations. As discussed extensively by this author on many occasions,
phase measurements of the mechanical response and the neural response are fundamen-
tally incompatible. Basilar membrane data has a monotonically lagging phase. Neural data

11The multi-mode transformation could even be nonlinear if OHCs are involved. For now we shall stick to linear
multi-mode transformations.
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shows a 180 degree phase reversal at Ñ z (see Fig. 9), where the tip and tail meet in the
tuning curve, as shown at the 60% location along the basilar membrane (2 kHz place) in
Fig. 20. The implication of this is that there is a well defined antiresonance (transmission
zero) in the neural response at the frequency, where the tip and tail meet, that does not
exist in the basilar membrane data.

Tuning cur ve Ò�Ó slopes. Another line of reasoning comes from the cat neural tuning
curve Ò�Ó slopes as seen in Tab. 1 and Figs. 12 and 16 for high frequency neurons. SlopeÒ'Ó for cat neural tuning curves having Ñ cf’s greater than 3 kHz are typically greater than 50
dB/oct. From Fig. 13, typical cat tuning curves in the 15 kHz range have Ò Ó slopes greater
than 100 dB/oct [90]. The slope Ò�Ï of the basilar membrane response of Fig. 11 is 10 dB.
If we make a middle ear correction of -10 dB/oct (this is equivalent to a normalization with
respect to ear canal pressure rather than incus displacement), the Ò Ó slope of Fig. 11 would
be Ò*)Ó = Ò Ó -10 = 30-10 = 20 dB/oct.

Tuning cur ve “tails. ” Neural tuning curve “tails” of high frequency neurons typically have
threshold levels in excess of 65 dB SPL, as may be seen in Fig. 12 and Fig. 16.12 The Ò�Ï
slopes of neural responses in the tail are close to zero. Basilar membrane tuning curves
do not have such tails.

BM versus neural 2TS. Recent basilar membrane 2TS measurements [111, 112, 108]
have unequivocally shown that the neural and BM 2TS thresholds are significantly different.
For example, Ruggero et al. (page 1096) says

. . . if neural rate threshold actually corresponds to a constant displacement ( ×
2 nm) . . . , then mechanical suppression thresholds would substantially exceed
neural excitation thresholds and would stand in disagreement with findings on
neural rate suppression.

Using a 0.1 nm displacement criterion, Cooper found basal excitation thresholds near 65 dB
and 2TS thresholds near 85 dB SPL. Cooper says (page 3095, column 2, mid-paragraph
2)

Indeed, the direct comparisons shown . . . indicate that most of the low-frequency
mechanical suppression thresholds were between 10 and 20 dB above the
iso-displacement tuning curves . . . [corresponding] to “neural thresholds” at the
site’s [CF].

That is, Cooper’s BM results placed the threshold of BM suppression about 1 order of
magnitude higher in level than the Fahey and Allen 2TS thresholds shown in Fig. 16, both
in absolute terms, and relative to the 0.1 nm threshold. The Geisler and Nuttall (1997)
study [108] confirms these findings (see their Fig. 2).

BM versus other band width estimates. BM displacement response are not in agree-
ment with psychoacoustic detection experiments of tones in wide band noise, such as the
critical ratio experiments of Fletcher [36, 113], French and Steinberg [114], and Hawkins

12Because of the reversed ordinate scale of Fig. 12, the tails lie below 65 dB in this figure.
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and Stevens [115]. These classic studies show that the psychoacoustic bandwidth is nearly
independent of intensity over more than a 55 dB range. Neural revcore functions also show
that the bandwidth is independent of level from threshold to 50 dB-SL[116] (see Fig. 6).
The bandwidths of the basilar membrane data, on the other hand, are quite variable, as
may be inferred from Figs. 10 and 11.

BM Model predictions. When the 2 � and 3 � models began showing sharpened re-
sponses relative to the transmission line model, the hope was that these more detailed
models would converge to the response measured in the nerve fiber. Although a significant
increase in sharpness was found, the necessary convergence has not occurred. From
a theoretical point of view, it is significant that the frequency response, as computed by
passive cochlear models of basilar membrane motion, is quite different from the response
estimated from the nerve fiber measurements. The difference (i.e., the error) in excess
gain, as defined in Fig. 9, is somewhere between 10 to 100 (20 to 40 dB).

2.2.7 Measures from the ear canal

Acoustic Distor tion products It has been known for over a century that the ear gener-
ates distortion in response to pairs of tones. Helmholtz believed that this distortion came
from the middle ear. Now we now know that this distortion is a byproduct of normal outer
hair cells. In the last 15 years commercial equipment has been developed to detect hear-
ing loss in infants based on these distortion product emissions. Using combination tones,
such as the ê û Ï Ô û Ó distortion product, Goldstein was one of the first to emphasize the
importance of nonlinearity in hearing at low intensities [60, 61]. Ever since Goldstein’s
1967 classic study, distortion product analysis has have been an important experimental
tool, which has helped us to understand the inner ear. Distortion products are a byproduct
of outer hair cell dynamic range compression, but otherwise do not directly play any know
role in hearing. Smoorenburg [62] was the first to observe that the distortion product dis-
appeared in those hears having a hearing loss. By the use of the cochlear microphonic,
Deatherage et al. [117] and much later Kim [82] demonstrated that the distortion products
are present on the basilar membrane by showing that these nonlinear tones propagated
along the basilar membrane. Then in 1978 Kemp directly observed the distortion product
in the ear canal, leading to much of the OAE diagnostic equipment presently used in infant
screening [75].

Ear canal standing waves. In 1958 Elliott [120] observed the fact that the threshold of
hearing is not a smooth function of frequency but fluctuates in a quasi-periodic manner with
a period of × 80-100 hertz near 1200 Hz. Such micro-structure is characteristic of standing
waves due to an impedance mismatch within the basilar membrane [75, 118, 119].

Starting in 1978, Kemp [56, 74, 75] observed low level dispersive ear canal pressure
responses (he called them echos) to a pulse of sound in the ear canal. The delays approx-
imately correspond to a round trip travel time along the basilar membrane. These “echos”
displayed nonlinear compressive growth with intensity.

A third somewhat bizarre observation followed with the finding of spontaneous otoa-
coustic emissions (SOAEs), which are narrow band tones emanating from the human
cochlea [75, 121]. It is natural to relate Elliott’s micro-structured hearing threshold and
Zwicker and Schloth’s super-threshold ear canal pressure microstructure [118, 119] to
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Figure 21: Kemp [75, 105] and later Zwicker and Schloth [118] reported that the pressure in the
ear canal is level dependent. In 1995 Allen, Shaw, and Kimberley measured the nonlinear ear canal
impedance in normal ears below 50 dB SPL [119]. They found that the ear canal effects of pressure,
reflectance, impedance, spontaneous emissions, hearing thresholds, and distortion products, had
the same microstructure. Some of this data are shown in Fig. 22. It seems clear that the organ of
Corti impedance changes with level are due to outer hair cell dependence. The upper–left panel of
this figure shows a polar plot of the pressure reflectance at three different sound levels. The radius
gives the magnitude and the angle the phase of the complex reflectance. The lower–left panel shows
the magnitude of the ratio of the retrograde to incident pure tone pressure , -., for pure tones of 20,
30, and 40 dB SPL (the power ratio is , -., Ê ). The panels on the right show the group delay (upper)
and phase (lower) of the pressure reflectance. The raw data for this plot was provided by Greg Shaw
and Barry Kimberley of the University of Calgary.
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these narrow band SOAE tones. In animals, similar tones have been correlated with dam-
age to the cochlea, where a clear discontinuity in cochlear impedance is likely.

The first speculation was that these emissions were just biological noise, passively am-
plified by cochlear standing waves [75]. However, linearly filtered noise must have a Gaus-
sian amplitude distribution. Contrary to the standing wave model, the amplitude distribution
of the emissions were more like tones [122].

In a transmission line, the reflectance of energy is determined by the ratio of the load
impedance at a given point, divided by the local characteristic impedance of the line. Fol-
lowing up on these ideas, as shown in Fig. 21, Allen et al. [119] measured the canal
impedance at 20, 30, 40, and 50 dB SPL, and used the 50 dB SPL ear canal impedance as
a Thévenin cochlear source impedance. This allowed them to estimate the nonlinear com-
ponent of the retrograde power below 50 dB SPL. From Fig. 21 we see that the reflectance
is stimulus–level dependent. The nonlinear canal power reflectance covaries with the non-
linear compression characteristics seen by the inner hair cells (IHC), which are measured
psychophysically in terms of compressive loudness growth. Lower stimulus intensities lead
to larger reflections from the basilar membrane. This data leads to the conclusion that the
relative local impedance is stimulus–level dependent.

Based on the ear canal impedance measurements shown in Figs. 21 and 22, and given
what we know about OHC properties, the most likely cause of nonlinear basilar membrane
impedance changes with level would be due to changes in the OHC stiffness. This conclu-
sion logically follows from ear canal impedance measurements expressed as the nonlinear
power reflectance, defined as the retrograde to incident power ratio [119].
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Figure 22: Pressure, pressure reflectance, and the ear canal pressure power spectrum noise
floor showing SOAE. There is a nearly perfect correlation across frequency between these three
measures, as well as the threshold of hearing microstructure. All of the measure are consistent with
very low damping standing waves, and a model of the cochlea that has very low losses [119].

A model that seems to account for the data of Figs. 21 and 22 is Kemp’s standing wave
model [75, 76], but modified to include a nonlinear load impedance, as shown in Fig. 23.
It is imagined that this termination impedance is distributed along the length of the basilar
membrane. Only one location is shown in Fig. 23.
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Figure 23: A simple model of the cochlea that accounts for the 1995 observations of Allen, Shaw
and Kimberley [119].

Can the nonlinear model of Fig. 23 fix this amplitude distribution, and save Kemp’s
standing wave model? To investigate the feasibility of this model, an extension of Elliott,
Kemp, and Zwicker’s observations are shown in Fig. 22 [119]. In this figure the ear canal
pressure, the pressure reflectance and impedance, and the spectral noise floor all show
microstructure. The nonlinear element accounts for the level dependent reflectance of
Fig. 21 low left panel, as well as the standing waves and other data of Fig. 22. This model
assumed that thermal noise drives the standing waves to give spontaneous emissions
(bottom panel of Fig. 22).

2.2.8 Loudness growth, recruitment and the OHC

In 1924 Fletcher and Steinberg published an important paper on the measurement of the
loudness of speech signals [123]. In this paper, when describing the growth of loudness,
the authors state

the use of the above formula involved a summation of the cube root of the
energy rather than the energy.

This cube–root dependence had first been described by Fletcher the year before [16].
In 1930 Fletcher postulated that there was a monotonic relationship between central

nerve firings rates and loudness. Given a tonal stimulus at the ear drum, Stevens’ law says
that the loudness is given by /102/436587:9;7=<?>!@2<?A�7

(19)

where B 587C9;7=<�D are the frequency, place and intensity of the tone, respectively. The expo-
nent E has been experimentally established to be in the range between FHG�I and FHG�J for long
duration pure tones at 1 kHz. Fletcher and Munson (1933) found ELKMFHG�I at high intensi-
ties and approximately 1 near threshold. Although apparently it has not been adequately
documented, E seems to be close to 1 for the recruiting ear [124].

Recruitment. What is the source of Fletcher’s cube root loudness growth (i.e., Stevens’
Law)? Today we know that cochlear outer hair cells (OHC) are the source of the cube root
loudness growth observed by Fletcher.

From noise trauma experiments on animals and humans, we may conclude that re-
cruitment (abnormal loudness growth) occurs in the cochlea [125, 126]. Steinberg and
Gardner (1937) described such a loss as a “variable loss” (i.e., sensory–neural loss) and
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partial recruitment as a mixed loss (i.e., having a conductive component) [8, 127]. They and
Fowler verified the conductive component by estimating the air–bone gap. In a comment
to Fowler’s original presentation on loudness recruitment in 1937, the famous anatomist
Lorente de No theorized that recruitment is due to hair cell damage [7]. Steinberg and
Gardner clearly understood recruitment, as is indicated in the following quote [8, page 20]

Owing to the expanding action of this type of loss it would be necessary to
introduce a corresponding compression in the amplifier in order to produce the
same amplification at all levels.

This compression/loss model of hearing and hearing loss, along with the loudness
models of Fletcher [128], are basic to an eventual quantitative understanding of nonlin-
ear cochlear signal processing and the cochlea’s role in detection, masking and loudness
in normal and impaired ears. The work by [129] and [8], and work on modeling hearing
loss and recruitment [130] support this view.

In summary, many studies agree: The cube–root loudness growth starts with the nonlin-
ear compression of basilar membrane motion due to stimulus dependent voltage changes
within the OHC.

2.3 Discussion

When spontaneous emissions were first observed, many researchers were quick to conjec-
ture that the cochlea was an “active system,” which occasionally became unstable [75, 118,
131], hence models that incorporate negative damping were proposed [94, 132, 133, 109,
110, 134]. The use of negative damping in these models serves the function of sharpening
the tuning of the cochlear filters. It also has the capability, in theory, of making the basilar
membrane oscillate, thus giving rise to the emissions that were observed by Kemp.

While this seems like an attractive approach, one problem has been finding a model
that is physically realizable. In my view, negative resistance is too radical. It is not a
good theoretical solution because it could introduce instability that would be much worse
than a few tones in the ear canal. For example, it would mean that waves traveling in
either direction would be amplified. This would create total havoc, and is inconsistent with
observations of wave amplitudes seen in the canal, which are consistent with very low loss
traveling waves [135]. Negative damping was introduced to improve cochlear frequency
selectivity and sensitivity. I believe we need to find different solutions to these two problems.

So far the motile hair cell model has not been a particularly successful concept. There
have been a host of problems. One of the most difficult is the role of the OHC membrane
capacitance, which acts as a low pass filter on the cell membrane voltage. Due to this
filtering effect, the magnitude of the motion becomes small just where the boost in gain is
needed, at high frequencies. A second problem has been the phase of the motility, which
is reversed from the preferred direction. Time delay has been used in an attempt to fix this
difficulty.

Are the many differences between basilar membrane and neural (i.e., TM-RL shear)
significant, or are they an artifact of the experimental technique? Unfortunately, we cannot
yet be sure of the answer to this important question.

It is widely recognized that key nonlinear properties are missing from modern cochlear
models. The question is, What is the modification that needs to be made to the models to
extend them? This question will be discussed in Sec. 4. However until the experimental
questions are resolved, it seems that this theoretical question is likely to remain open.
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3 Outer Hair Cell Transduction

The fundamental question in cochlear research today is:
What is the role of the outer hair cell (OHC) in cochlear mechanics?

3.1 Role of the OHC

The prevailing view is that the OHC provides cochlear sensitivity and frequency selectivity
[2, 92, 109, 110].

The alternative view, argued here, is that the OHC compresses the excitation to the
inner hair cell, thereby providing dynamic range expansion.

There is an important (and possibly subtle) difference between these two views. The
first view deemphasizes the role of the OHC in providing dynamic range control (the OHC’s
role is to improve sensitivity and selectivity), and assumes that the nonlinear effects result
from OHC saturation. The second view places the dynamic range problem as the top
priority. It assumes that the sole purpose of the OHC nonlinearity is to provide dynamic
range compression, and that the OHC plays no role in either sensitivity or selectivity, which
are treated as independent issues.

3.1.1 The dynamic rang e problem

The question of how the large 120 dB dynamic range of the auditory system is attained has
been a long standing problem. Previously this question has been raised in the context of
both the nerve cell, and the synapse. I am raising the same question, but presynaptically.

Our understanding of the auditory system’s large 120 dB dynamic range is fundamen-
tally incomplete. For example, recruitment, the most common symptom of neurosensory
hearing loss, is best characterized as the loss of dynamic range [8, 136, 40, 124]. Recruit-
ment results from outer hair cell damage [125]. To successfully design hearing aids that
deal with the problem of recruitment, we need models that improve our understanding of
how the cochlea achieves its 120 dB dynamic range.

Based on a simple analysis of the IHC voltage, we will show that the dynamic range of
the IHC must be less than 65 dB. In practice it is widely accepted that IHC dynamic range
is less than 50 dB.

The IHC’s transmembrane voltage is limited at the high end by the cell’s open circuit
(unloaded) membrane voltage, and at the low end by thermal noise. There are two obvious
sources of thermal noise, cilia Brownian motion, and Johnson (shot) noise across the cell
membrane (Fig. 24).

The obvious question arises: How can the basic cochlear detectors (the IHCs) have a
dynamic range of less than 65 dB, and yet the auditory system has a dynamic range of 120
dB? The huge amount of indirect evidence has shown that this increased dynamic range
results from mechanical nonlinear signal compression provided by outer hair cells. This dy-
namic range compression shows up in auditory psychophysics and in cochlear physiology
in many ways.
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Figure 24: On the left is the equivalent circuit model of a hair cell with noise sources due to the
cell leakage resistance Johnson noise fHg and the Brownian motion of the cilia, represented by the
voltage noise source fHh . On the extreme right is the linearized small–signal equivalent circuit, which
may be used to find the i�jlknm transmission parameters described by Eq. 21. The force on the ciliao�p

and the cilia velocity q p are related by the cilia drag r and drag compliance s . The voltage in the
cell tZu depends on the membrane electrical admittance v�w�x�u�y{z�k|u and the cilia induced current}~ u . The left-hand electrical circuit Eq. 22 determines this relationship.

IHC dynamic rang e. From the model described by Fig. 24 the mean-squared transmem-
brane thermal (Johnson) noise voltage ��� of the IHC is given by�Z��������Z�4�.� ���� � ����2� ���;�V�l�.����� � � ��� �Z����{� (20)

where � � is the membrane leakage resistance and � � the membrane capacitance [137,
78]. The IHC capacitance has been found to be about 9.6 �	� by Kros and Crawford [138].
From Eq. 20, ��� = 21.1 � V RMS at body temperature ( � = 1.38 � 10 � �=� Joule/degree-Kelvin,� = 310 � K).

The maximum open circuit DC voltage across the cilia is about 120 mV. The RMS
voltage corresponding to a peak to peak voltage of 120 mV is �d� �� ?¡����:¡�¢ ���¤£?� mV. The
maximum RMS cell voltage that has been empirically observed is 30 mV RMS (Russell,
personal communication). The ratio of 30 mV RMS to the noise floor voltage (e.g., 21.1 � V
RMS), expressed in dB, is 63 dB.

It has been shown by Denk [139] that the Brownian motion of the cilia (thermal noise
motion) is larger than the Johnson noise. Since it is difficult to calculate the soma voltage
change due to Brownian motion, we first calculate the Johnson noise. A correction can then
be made to the Johnson noise based on Denk’s observation, to obtain the final estimate
of the IHC dynamic range. If we subtract 6 dB from the above estimate of 63 dB, find
a reasonable upper limit of 57 dB. The maximum dynamic range in signal intensity of the
auditory system is less than 120 dB. This leaves up to 63 dB of dynamic range unexplained.

We conclude that there must be nonlinear compression (level dependent gain) built into
the mechanics of the cochlea to account for the large acoustic dynamic range. Since the
discovery of loudness recruitment in 1937, it has been suspected that OHCs provide this
dynamic range compression [7, 8, 125].

The key question before us is: What is the chain of events that leads to the stimulus
compression seen by the IHCs?
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3.1.2 The IHC sensitivity

Russell et al. (1986) have estimated the in vitro sensitivity of the mouse culture hair cell as
30 mV/degree (0.4 mV/nm) of angular rotation of stereo cilia. Since the maximum observed
RMS voltage is 30 mV, 1 degree of cilia displacement is approximately the maximum cilia
angular displacement, assuming a linear relationship. This means that an angular displace-
ment of more than a degree, corresponding to a cilia tip displacement of 30/0.4 = 75 nm,
would drive the cell into nonlinear saturation. Displacements greater than 75 nm therefore
would likely rupture the delicate structures of the cilia transduction channels and tip links.
Assuming a thermal noise floor of 20 � V RMS and 30 mV/degree, the IHC displacement
sensitivity of the cell at the thermal noise threshold is 0.05 nm. This is about 1/2 the di-
ameter of the hydrogen atom (0.1 nm), and is much smaller than the numbers assumed
in many of the basilar membrane measurements for the “iso-response” threshold. This
number probably somewhat underestimates the threshold because it ignores the Brownian
motion of the cilia. It is difficult to make this correction, but it is likely to be less than a factor
of 3 (i.e., 10 dB). More information is needed to refine these estimates.

By way of comparison, the accepted maximum displacement of the stapes at 120 dB
SPL is about 1 � m (1000 nm) of displacement [141]. This leads to a corresponding stapes
displacement at 0 dB SPL of about 0.001 nm. At 14 dB SPL, which is the typical threshold
pressure at the ear drum, the stapes displacement would be 0.005 nm, which is 10 times
(20 dB) smaller than the cilia thermal noise threshold displacement estimate of 0.05 nm
derived from the 30 mV/degree sensitivity estimate of Russell et al. [140]. To match the
stapes displacement at threshold to the cilia displacement at threshold would require a
linear and passive cochlear gain of 10 (20 dB), which is typical of both models and basilar
membrane data. For example in Fig. 10 the high level gain is close to 15 dB, while in Fig. 11
it approaches 40 dB.

The calculated threshold value of 0.05 nm, based on Russell’s 30 mV/degree estimate,
is much smaller than the sensitivities assumed by those making basilar membrane mea-
surements [55, 111, 112, 108]. If the IHC is much more sensitive than previously estimated,
then the need for a cochlear amplifier gain is directly reduced by that amount.

3.2 Outer Hair Cell Motility model

A most significant finding in 1985 was of OHC motility, namely that the OHC changes
its length by up to 5% in response to the cell’s membrane voltage [57, 142, 143]. This
observation led to a huge increases in research on the OHC cell’s motor properties.

In 1999 it was shown that the cell’s longitudinal soma stiffness changes by at least a
factor of 2 ( ¥ 100%), again as a function of cell membrane voltage [79, 80]. A displace-
ment of the cilia in the direction of the tallest cilia, which is called a depolarizing stimulus,
decreases the magnitude of the membrane voltage ¦ § � ¦ , decreases the longitudinal soma
stiffness, and decreases the cell soma length. A hyper polarizing stimulus increases the
stiffness and extends the longitudinal soma length.

Given this much larger relative change in stiffness (a factor of 2) compared to the rela-
tive change in length (a factor of 1.05), for a maximum voltage change, it seems possible
that the observed length changes (the motility) is simply a result of the voltage dependent
stiffness. For example, imagine a spring stretched by applying a constant force (say a
weight), and then suppose that the spring’s stiffness decreases. It follows from Hooke’s
Law (Eq. 4) that the spring’s length will increases when the stiffness decreases.
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Each cell is stretched by its internal “turgor pressure” ¨ [144], and its stiffness is voltage
controlled [79, 80]. The voltage dependent relative stiffness change is a much greater than
the relative motility change. Thus we have the necessary conditions for a stiffness induced
motility. The consequences of this senerio could be quite significant as there would be
no need for an “area” motor [145], defined as the active change in the membrane area
with membrane voltage. Many of the nonlinear cochlear models are based on such motility
(voltage dependent OHC movement) in a feedback loop.

A voltage dependent stiffness (i.e., a “stiffness motor” [145]) in a feedback loop is a very
different model, with some interesting properties. For example, nonlinear resistance mod-
els, the first form of cochlear model nonlinearity, represent a voltage dependent impedance
mechanism. But they proved insufficient to account for the data [110]. It is possible of
course that both nonlinear stiffness and resistance are inextricably linked, due to internal
mechanisms. But that would be significantly more complex. Simplicity requires that just
one mechanism account for the data. The possibility therefore, that the voltage dependent
stiffness is the only mechanism, needs careful consideration.

However there seems to be a problem. A decrease in a springs stiffness leads to
an increased length. Paradoxically, this is the reverse of what OHC soma does, since
depolarization gives a decrease in stiffness, and a shortening of the soma. In fact there
may be no contradiction, if we treat the membrane as having a thickness and composed of
a homogeneous iso-volume structure having a Poisson ratio of 1/2. A model is required to
sort this out [144, 146].

3.2.1 Equations of the OHC transducer .

Using the methodology described around Eq. 6, the small–signal response of the hair cell
transduction may be full described.

Forwar d transduction In the case of the outer hair cell forward transduction, the input
variables are the cilia force (effort) ��© and velocity (flow) ª« © .13 The output variables are
the membrane voltage (effort) § � and current (flow) ª¬ � , represented here as the time
rate of change of the membrane charge. Assuming linearity, the membrane voltage and
current are related by the membrane admittance  � �6® �¯� � ¡��.� �°® ��� (admittance ±
1/impedance), which is nonlinear ( ��� is voltage and/or charge dependent). For this case
Eq. 6 is ² § �ª¬ �´³ �¶µ2·l¸ ¹�¸� ¸ º»¸½¼ ² ��©ª« © ³.¾ (21)

This equation may be used to represent the circuit diagram shown in the right side of
Fig. 24, thereby specifying the four functions · ¸ �¿® � , ¹ ¸ �¿® � , � ¸ �¿® � and º ¸ �¿® � . As before,® ��ÀÁ���;� is the complex frequency.

Reciprocity (namely · ¸ º ¸ÃÂ ¹ ¸ � ¸ � � ) does not hold for forward transduction since
this 2-port model is analogous to a transistor, as shown in the right panel of Fig. 24 (a
transistor is not reciprocal) [32] [p. 254]. The parameters Ä and Å in Fig. 24 represent
the cilia stiffness and drag due to the fluid, while the parameters � � and � � represent
the membrane resistance and capacitance. The current induced into the cell depends

13A dot over a variable indicates a derivative with respect to time, namely ÆÇ4ÈÊÉ�Ç�ËTÉ�Ì .
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on channels in the cilia membrane. Following Fig. 24, the Thévenin equivalent current14ª¬�Í � « © � , which depends on the displacement of the cilia
« © , is given byª¬ Í � « �!�ÏÎ Ð � « ©T� � �l� ��® ���4Ñ § Í � (22)

where § Í is the equivalent battery voltage supplied to the cell by the stria vascularis and
membrane batteries, ª¬�Í is the Thévenin current, Ð � « © � is the conductance of the cilia, which
is a function of the cilia displacement, and � ¡�� � ��® � � is the membrane admittance.

Reverse transduction More important, from the modeling point of view, is the case of
reverse transduction, for which the input is the membrane voltage § � and current ª¬ � ,
which represents the output of the forward transduction.

One output variable is the movement of the cell, which may be characterized in several
ways. One possibility, with certain advantages, is to define the output flow variable to be
the cell’s fluid volume flow ªÒ . The conjugate variable to a fluid volume flow is the turgor
pressure ¨ (effort). The resulting ·l¹ � º transmission matrix equation that specifies outer
hair cell reverse transduction equation is15² ¨ ªÒ ³ � µ2·lÓÔ¹.Ó� ÓÕº»ÓL¼ ² § �ª¬ �¶³ ¾ (23)

It is frequently speculated (but not actually proven) that reciprocity holds for this system,
namely that ·4Ó^º»Ó Â ¹lÓ � Ó � � . Reciprocity is a sufficient condition that the system may be
run in reverse, with pressure and flow as the input, and voltage and current as the output,
analogous to a piezoelectric crystal.

Given the cell turgor pressure and volume velocity (Eq. 23), we need to find the cells
axial force � z (effort) and strain Ö=× (relative length change). Relationships have been formu-
lated between the longitudinal Ö=× and circumferential Ö © strains, the axial applied force � z,
and the turgor pressure ¨ [146]. Before presenting this equation of motion, a few definitions
are necessary.

Definitions. The longitudinal strain Ö=× is defined as the change in length Ø , per unit length.
If the cell’s length changes by Ù�Ø , then Ö=×n±ÚÙ�Ø ¡ Ø . This variable is useful because, for a
given force, the strain is a local (i.e., a density) description of the movement. LikewiseÖ © ±ÛÙ ��¡�� is the relative change of the circumference �°�����Ü� , where � is the cell radius.
From the basic definition of a strain, Ö Ó � Ö © .

The longitudinal � × and circumferential � © stress are defined as the force normalized by
the length (or area) over which the force is applied. The axial membrane stress �#Ý is there-
fore the area of the cell’s end cap �Ü� � times the pressure ¨ , divided by the circumference���Ü� , plus the applied axial stree � ÝH¡�� , namely �#ÝÞ�M� ¨ ¡�� � � Ý�¡�� . The circumferential
stress �Ü© is given by the tension in the membrane generated by the turgor pressure ¨
pushing on the membrane wall ( ¨ � Ø � ), normalized by the length ( � Ø ), giving �Ü©��ß� ¨
[144, 147].

In general four coefficients of elasticity relate the two strains Ö=× and Ö © and two stress� Ý and �Ü© . Elastic system are reciprocal, reducing the number of constants from four to
14This may also be called the “Norton equivalent current.”
15Note that the signal variables must be the small signal component of each variable. In other words, the mean

value is subtracted from each of these state variables.
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three. These three constants ( à × , à and à © ) must be determined experimentally. As shown
by Iwasa, the resulting Hooke’s law (stress-strain) equation of motion for the cell is [146]µ à × àà à © ¼ ² Ö ×Ö © ³ � ² � ¨ ¡�� � � z ¡��� ¨ ³ ¾ (24)

“Stress” and “strain” terms have been grouped, as in an impedance matrix formulation.
Strain is used rather than strain rate (i.e., ªÖ ), because the equation is static. If viscosity had
been included this would necessarily change. The output axial force � z is coupled with the
input turgor pressure ¨ on the right hand side of the matrix equation, while the two strainsÖ × and Ö © are paired on the left hand side of the equation.

After some algebra, the stress-strain Iwasa’s Eq. 24 may be reduced to transmission
matrix form. In doing this Ö © may be rewritten in terms of the volume strain ÖTá � Ù Ò ¡ Ò to
make it similar to the left hand side of Eq. 23, by using Ö © � � ÖTá Â Ö × �=¡�� . It is also necessary
to convert to strain rates ( ªÖ=× and ªÖ á ) since we wish to match the units of Eq. 23. Conversion
to strain rate introduces the complex frequency ® �âÀd���;� in the lower left element of the
matrix which operates on the turgor pressure, in this equation. We also use the identitiesªÖ á � ªÒ ¡ Ò and ªÖ:× � ªØ ¡ Ø .² � zªØ ³ �¶ã¶ädå � äÁæ\ädçCè:é� ä � ädç ���ê� ä å ä ç � ädë� ä � ädç �.¡ Ò ®ì� ä � ädç ��� Ø ädç� ä � ädç Ø ¡ Ò í ² ¨ ªÒ ³�¾ (25)

This equation relates the turgor pressure and the cell fluid volume flow to the axial force and
velocity. Due to the splitting of �#Ý into its two components ( � ¨ ¡�� and � Ý�¡�� ), this system
is not reciprocal, even though Eq. 24 is. The cascade of the two transmission matrices
Eqs. 23 and 25 provides a description of reverse transduction from the electrical input to
the longitudinal output.

3.2.2 Physics of the OHC

Given the basic equations of reverse transduction Eqs. 23 and 25, the coefficients must be
determined from physical measurements and models of the OHC membranes. It must be
determined experimentally if ¹.Ó �2� Ó [31].

Conser vation of cell volume . Based on data from Ashmore, Iwasa and Chadwick [144]
pointed out that the volume of the cell must be constant (i.e., ªÒ �î  ) over acoustic time
scales. This condition follows from fluid mass conservation (due to fluid viscosity, the mem-
brane cannot pass fluid over these short time scales). Therefore a change in membrane
voltage cannot change the volume of fluid in the cell. As shown by Eq. 25, if the pressure
were also constant, the cell length could not change.

The cylindrical shape of the OHC is significant, in the following sense. If the cell were
a sphere, and its volume were constant, then it could not move. This effect has been used
to advantage by Adachi and Iwasa [148]. A sphere has the minimum volume to area ratio,
giving it special properties. Its volume and area both depend on the radius, making it a
highly symmetric structure. The cylindrical OHC depends on two dimensions, � and Ø .
Given a constant volume, unlike the sphere, the area and length can change. If OHCs
were spheres, the inner ear could not work!
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Relation between length and area variation. The relation between the length and ra-
dius strain may be determined by assuming that the cell volume

Ò
is constant over one

cycle of the stimulus (i.e., ªÒ = 0), and that it has a fixed cylinder shape. Setting to zero the
variation (a small change) in the log volumeÙ\ïñð�ò � Ò �!� Ùóïñð�ò � � � Ø �!�Û  (26)

leads to [149] Ö Ó � Âõô Ö=× � (27)

with ô � � ¡�� .The negative of the ratio of the radius strain to length strain is called the Poisson ratio ô .
Feynman points out that the Poisson ratio is between 0 and 1/2 [149]. The value of ô � � ¡��occurs with incompressible homogeneous volumes, as in Eq. 27.

Experimental pipette results. Experimental details on the relations between OHC lengthØ , radius � , volume
Ò

, and turgor pressure ¨ , have been quantified by Iwasa and Chad-
wick (1992) [144]. They measured the fractional cell length and radius change ( Ö:× � Ö Ó ) as
a function of the turgor pressure by placing a pipette in a cell and varying the volume and
pressure. They experimentally found thatÖ Ó � Âõô Ö=× (28)

with 1.85 ö ô ö 2.3,16 and Ö=× � Âõ÷ ¨ � (29)

with ÷ùø   ¾  ?ú (kPa) �Üû . The resulting volume strain for this case isÙ ÒÒ ± � Ö Ó � Ö=× � � � ôÊÂ � � ÷ ¨ ø   ¾ ��ü ¨ ¾ (30)

These two measurements allowed Iwasa and Chadwick to estimate the cell membrane’s
elastic properties. Assuming the membrane is isotropic, they found that bulk modulusý �Ï  ¾  ?ú N/m, and shear modulus � �°  ¾  � ?ú N/m.17 Assuming whole cell isotropy, Iwasa
found that àþ× � à ©�� ý � � , and à � ý Â � [145], giving direct estimates of these two
important parameters. Steele et al. showed that the whole cell is not isotropic however,
and found the ratio of à ©�¡ àþ× �Ûÿ ¾ � [150]. These estimates remain controversial.

For both the iso-volume and pipette cases the length of the cell decreases as the radius
and pressure increase. In the iso-volume case (Eq. 27), the Poisson ratio is ô � � ¡�� , as
required. In the pipette case Eq. 28, ô�ø � . According to Feynman the maximum physical
value of the Poisson ratio ô is 1/2, yet in the pipette experiment it is approximately 2. In the
next section a simple explanation of this “impossible” experimental result is provided.

Model of the pipette results. Consider two cylinders having a common axis but slightly
different radii, � � ¥ � û . The volume of the fluid between two such cylinders

Ò û � is given byÒ û � � � � � �� Â � � û � Ø (31)� ��� ² � û � � �� ³ � � � Â � û � Ø ¾ (32)

16They report 1/ � = 0.43 in the Fig. 1 caption, while 1/ � = 0.58 may be inferred from their Fig. 2 caption using
their Eq. 3.

17For a lucid definition of these coefficients, see [149].
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Define thickness � ± � � Â � û , mean radius � ± � � û � � � �:¡�� , and length Ø . Using this
notation, the volume is given by

Ò û � � ���Ü�.� Ø . As before, assume that the volume
Ò û � is

constant, and set to zero the variation of the log volumeÙ � ïñð�ò Ò û � ���
² Ö�� � �� Ö Ó�³ �

² �� Ö Ó � Ö × ³ �2  ¾ (33)

The experimental observation of Eq. 28 says that the second quantity in square brackets
is zero. Therefore the first quantity in square brackets must also be zero, and Ö�� � Ö × ,
(resulting in an experimental prediction). It is helpful to think of a circumferential “ring”
slice of hair cell as a bar, with its ends abutted, and Eq. 28 follows naturally. When the
cell is sealed the roles of � and Ø reverse, so effectively ô goes from 2 to 1/2 due to the
geometrical modification.

The longitudinal strain versus volta ge. The length of the cell Ø is known to be a func-
tion of the turgor pressure ¨ and the membrane voltage § � , namely Ø � ¨ � § � � [144, 148,
79, 80]. The linearized small–signal change in length Ù�Ø must be of the formÙ�Ø � ¨ � § ���!��� � § ��� ¨ � � Í § � � (34)

where from Eq. 25 (assuming ªÒ �2  ),
� � § �ê�!� ���à © � � à

chacterizes the soma trans-compliance per unit area in the axial direction. Constant � Í is
defined as the longitudinal strain motor sensitivity, which characterizes the axial component
of the “area motor” strength [151]. The cell trans–compliance per unit area � � § �.� is a
function of membrane voltage § � , as reported by He and Dallos [79, 80]. If we make the
small–signal approximation � � § ��� ø Å Í � Å û § � �
then Å û��� 0. In other words, one or both of àþ× and à © must depend on the membrane
voltage.

The justification for the form of Eq. 34 is as follows: If the voltage and pressure change
are zero ( ª§ � �M  , ª¨ �â  ), then ªØ �   . If the turgor pressure alone is varied, the length
varies in proportion to the passive longitudinal trans-compliance per unit area Å Í . In the
general case, a change in the soma voltage § � will have a complex effect on the cell. Both
the area motor [151] and the voltage dependent cell wall induced longitudinal compliance� � § ��� [79, 80] will contribute to the area change. Any relative area change Ö
	 , due to
the area motor, must induce a volume conserving corresponding length change Ö=× �Ú� Ö
	 .
These two sources of length change are then added on the right hand side of Eq. 34.

4 Micr omec hanics

Unlike the case of macromechanical models, the physics of every micromechanical model
differs significantly. This is in part due to the lack of direct experimental evidence of physical
parameters of the cochlea.
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To organize our discussion of cochlear micromechanics, we represent each radial cross-
section through the cochlear partition as a linear 2-port network. A general formalization
in transmission matrix form of the relation between the basilar membrane input pressure� � � � ® � and velocity § � � � ® � and the OHC output cilia bundle shear force � � � � ® � and shear
velocity � � � � ® � ² �§ ³ � µ · ¹� º ¼ ² � ª« ³ � (35)

where · , ¹ , � , and º are complex functions of place � and radian frequency ® . If we
knew the functions · � ¹ � � � º as a function of frequency and place, many of the current
questions about modeling cochlear micromechanics would be answered.

The complex ratio of the force � � � � ® � (effort) on the cilia bundle to the velocity ª« � � � ® �(flow) defines the load impedance  © . The cilia bundle impedance is assumed to be com-
posed of a mass � © , stiffness

ý © , and viscous fluid drag in the 6-10 � m space between
the tectorial membrane and the reticular lamina, represented by ��© , namely� ª« ±� © � � � ® ��� ® � © � � © � ý © ¡ ® ¾ (36)

Partition transduction. As previously discussed, an important question in cochlear me-
chanics is the extent to which the tuning of the basilar membrane (at a given place) de-
termines the tuning of the cilia bundles of the IHCs and OHCs. We will define � © , the
transduction filter, to be the complex ratio of the OHC cilia bundle velocity to basilar mem-
brane velocity, as a function of frequency. In terms of the transmission matrix (and load
impedance), ª«§ ±�� © � � � ® �!� � ¡ � �  © � º � ¾ (37)

The amount of additional tuning (filtering) provided by � © is a longstanding open experi-
mental question. Micromechanical models explore at the heart of this uncertainty.

Partition impedance . In terms of the general transmission matrix parameters, the parti-
tion impedance used in the macromechanical models (Eq. 9) is given by

�§ ±��� � � � ® � � � ·  © � ¹ �=¡ � �  © � º � (38)� � © � ·  © � ¹ � ¾ (39)

Some of the assumptions of macromechanical models that can be studied are (a) the
effect of geometrical relationships on the cochlear partition impedance and cilia motions
(e.g. stiffness of the OHC), (b) the effect of parameter relationships on the cochlear par-
tition impedance and cilia motions (e.g. importance of

ý � ¡ ý © ), (c) the effect of nonlinear
elements (e.g. length and stiffness of the OHC soma as a function of its voltage), and (d)
the effect of adding mechanical degrees of freedom.

Figure 25 shows a simplified version of the radial cross-section geometry of Fig. 2. If we
assume that the tectorial membrane is elastic between the place where it contacts the hair
cells and its attachment to the bony spiral limbus (

ý � ), then a significant enhancement of
tuning between the basilar membrane and the IHC necessarily follows, as given in Eq. 37.
This is the basis of the resonant tectorial membrane (RTM) model [22] discussed next, and
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Figure 25: Shown here is the basic RTM model of the cochlear partition radial cross-section. In
this drawing, the mass of entire organ of Corti is lumped into ��� and the tectorial membrane is
represented by ��� (see Fig. 2). The two masses are coupled to each other by mass � p , compliance� p

, and damping x p . The tectorial membrane is attached to bone by
� � and x � and the basilar

membrane by
� � and x�� . The arrow through the spring

���! #"
represents the voltage dependent

stiffness of the outer hair cell soma. The cilia mass � p has a huge effect on slope $OÊ (see top panel
of Fig. 27). The lower half of the figure shows the electrical equivalent circuit which is a convenient
starting point for writing equations. This representation of the cochlear partition is a common starting
point for modeling cochlear micromechanics.
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is an example of passive enhancement of cochlear tuning. If we assume that the motility
of OHCs can be modeled as a controlled source of mechanical energy between the basilar
membrane and the reticular lamina, then we have the ingredients for active enhancement
of cochlear tuning such as in the cochlear amplifier (CA) model.

Active and passive models currently represent two alternative and competitive expla-
nations of cochlear mechanics. Active models contain sources of mechanical energy and
passive models do not. In some sense passive models are “active,” because the cochlea
has a battery, and therefore the cochlea is active. However this is not how the term “active”
is being used here, in keeping with popular usage. The generic term active model does
not capture either the intent nor the physics of the CA model, and is inappropriate nomen-
clature. Any system containing a source of power (i.e., a battery) is, by definition, active.
The cochlea is active, since it has a battery. However the question of whether the OHC’s
provide power amplification to the basilar membrane traveling wave (i.e., is there a CA) is
very much an open question.

4.1 Passive BM models

The most successful passive model of cochlear tuning is the resonant tectorial membrane
(RTM) model [22, 13]. The RTM model starts from the assumption that the slope % � of
BM tuning is insufficient to account for the slope % � of neural tuning, as seen in Tab. 1.
This sharpening is accounted for by a reflection in the tectorial membrane, introducing
an antiresonance (spectral zero) at frequency � z, which about half an octave below the
resonant frequency � cf of the basilar membrane, into � © Eq. 37.

From Fig. 25, and as described by Allen and Neely (1992), the · � ¹ � � � º elements of
Eq. 35 are given by [22, 13]: · � ÷ � '& ¡ ÷ (� (40)¹ � )& ¡ ÷ (41)� � � ¡ ÷ (� (42)º � � ¡ ÷ � (43)

where ÷ is the ratio of the OHC cilia bundle displacement and the BM displacement when © �   , )& � ® �*& � ý
ohc ¡ ® is the BM impedance,  © � ® � © � � © � ý © ¡ ® , and (� �® �+� � ý � ¡ ® is the TM impedance. These element definitions are illustrated in Fig. 25. For

this discussion we shall assume that ÷ � � .In this model the OHC transduction filter (Eq. 37)

� © � � � ® ��� ÷  �
 © � (� (44)

is a high-pass filter with a low-frequency attenuation given by ÷ ý � ¡ � ý � � ý © � . A key issue
here is the magnitude of the impedance ratio ¦ (� ¡  © ¦ , which in practice depends on the
stiffness ratio

ý � ¡ ý © . If this ratio is greater than 1, then the basilar membrane and OHC
tuning will be similar (they will differ only by G which does not vary with frequency). If the
ratio is less than 1, then the tuning may differ.

Of equal importance is the partition input impedance  � � � � ® � given by Eq. 39

�� � � � ® ��� '& � ÷ �  ©  � © �  � � (45)
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Figure 26: Comparison between neural data and the computed model excitation patterns from
Allen’s passive RTM model. These results used a linear version of the model.

which determines the tuning of the basilar membrane.
The response ratio of IHC cilia bundle displacement to basilar membrane displacement

is [67]
� ihc � � � ® ��� ®®�� Àd���;� Í � © � � � ® � � (46)

where � Í is the frequency above which the cilia bundle of the IHC follows fluid displacement
rather that fluid velocity, as determined by the IHC drag and cilia bundle stiffness. Dallos
has determined this frequency to be � Í ø 0.8 kHz [2]. The parameters of the RTM model
may be chosen such that model results for mechanical input to the IHC fit the experimental
neural threshold tuning curves closely, as shown in Fig. 26.

4.1.1 The nonlinear RTM model.

The RTM model is made nonlinear by control of the BM stiffness via OHC’s stiffness (or
length changes) [78, 152, 153], as shown in Figs. 2 and 25. The basal end of each OHC is
attached to the BM via an interlaced chain of Dieter cells. Attached to the apical end of the
OHCs are the cilia, the longest row of which are connected to the TM.

It is postulated that the decrease in OHC stiffness, accompanying cilia stimulation, re-
sults in a decrease of the net partition stiffness

ý � � � � (increasing compliance). As shown
in Fig. 27, this decrease in the local BM stiffness results in the partition excitation pattern
shifting basally towards the stapes. Another way to view this, shown in the bottom of panel
of Fig. 27, is that at any point � along the BM, the resonant frequency � cf decreases with
increasing intensity. This migration of the excitation pattern, combined with the assump-
tion that the TM has a highpass characteristic, means that the cilia excitation gain at CF
is nonlinearly compressed as the intensity increases. This compression effect is shown in
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a wideband noise, at four intensities between 0 and 80 dB SL. Each response is normalized, and is
shown in dB, as a function of place. In the top panel we see the BM normalized by the ear canal
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a cartoon format in Fig. 29, while Fig. 28 shows the actual calculated model results. Note
how the bandwidth (ERB) remains approximately constant as a function of input intensity.

Discussion. Two important advantages of the NL-RTM model include its physically based
assumptions (described above), and its simplicity. Given these physical assumptions, we
show next that the NL-RTM model can explain: a) the basalward half-octave traveling wave
migration as a function of increasing intensity [99], b) the upward spread of masking (USM)
[16, 81], two-tone suppression (2TS) (see Sec. 2.2.5), d) distortion product generation
[56, 82, 154, 83, 155, 156], e) normal and recruiting loudness growth, and f) hypersensitive
tails [43].

From the steep 2.4 dB/dB slope of the USM and 2TS (Fig. 18) it seems necessary that
the low frequency suppressor is turning down the high frequency probe even though the
growth of the masker at the high frequency’s place is linear with masker level, as shown in
Fig. 29.

Figure 30: Comparison between neural data computed tuning curves from Neely’s active model
[157]. This CA model assumes an IHC cilia bundle displacement of 300 picometers at the neural
rate threshold. The tuning curves shown by the dashed lines are the average of single nerve fiber
responses from six cats obtained by M. C. Liberman and B. Delgutte.

4.2 Active BM models

One obvious question about active cochlear models is “Are they really necessary?” At least
three attempts to answer this question based on detailed comparisons of basilar membrane
responses have concluded that the measured responses cannot be account for by a pas-
sive cochlear model [158, 134, 159, 160, 161]. On the other hand, one study concluded
that cochlear amplifier (CA) models are inconsistent with experimental distortion product
data measured in the ear canal [135].
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4.2.1 The CA hypothesis

The most popular micromechanical theory is called the cochlear amplifier (CA) hypothe-
sis. The concept of the cochlear amplifier, originated by Gold, Kemp, Kim and Neely, and
named by H. Davis, refers to a hypothetical mechanism within the cochlear partition which
increases the sensitivity of basilar membrane vibrations to low level sounds and, at the
same time, increases the frequency selectivity of these vibrations [162]. The CA adds
mechanical energy to the cochlear partition at acoustic frequencies by drawing upon the
electrical and mechanical energy available from the outer hair cells. In response to a tone,
the CA adds mechanical energy to the cochlear traveling wave in the region defined byXZY

as it approaches the place of maximum response. This energy is reabsorbed at other
places along the cochlear partition. The resulting improvement in sensitivity of the ear due
to the CA is thought to be 40 dB, or more under certain conditions; however, the details of
how this amplification might be accomplished are still unknown. A general discussion of
this model is presented in Dan Geisler’s 1998 book [110] and in Allen and Fahey (1992).

It is presumed that this OHC action amplifies the BM signal energy on a cycle-by-cycle
basis, increasing the sensitivity [94, 133]. In some of the models it is assumed that this
cycle-by-cycle pressure (force) due to the OHCs causes the sharp BM tuning tip. In most of
these models, the CA is equivalent to introducing a frequency dependent negative damping
(resistance) into the BM impedance. Nonlinear compression is introduced by assuming that
the resistance is signal level dependent. This NL resistance model was first described by
Hall [64] for the case of []\_^ . Thus the CA model is an extension of Hall’s model to the
case of [a`�^ . In several models nonlinear negative damping is obtained with a nonlinear
stiffness and a small delay. The addition of a small delay introduces a negative real part
into the impedance.18 CA models models do not depend on a loosely coupled or resonant
TM, but some do use micromechanical mechanisms to assist in the tuning.

Cochlear amplifier models generally have a region where the real part of the impedance
of the cochlear partition becomes negative. It makes sense that this region correspond to
the high slope portion of the tuning curve defined by

X Y
defined in frequency as b z `�c*`b cf, because this is where the traveling wave slope changes [135]. As the traveling wave

generated by a sinusoidal stimulus encounters a region of negative damping, the power
of the traveling wave will increase abruptly. In the negative damping regions, the pressure
across the basilar membrane also increases, relative to the passive case. Zweig (1991)
[134] has developed a ingenious negative-damping model based on the experimental data
of Rhode which is perhaps the most detailed of these negative-damping models.

Hybrid CA models can include both negative-damping elements in the cochlear partition
and a resonant tectorial membrane. For example, in Neely and Kim’s active model [133],d

of Eq. 41 was replaced by
d�egf]dah*iUj(k

. This model is active for
i \a^ . The use of

negative damping elements is to (a) increase the sharpness of tuning of the BM responses,
both in relative frequency response and amplitude sensitivity at the best frequency, and (b)
provide larger cilia bundle displacements to the IHC as shown in Fig. 30. These CA models
can achieve sharp tuning while maintaining stability, in the sense that transients responses
decay with time.

Another view of active elements is that they provide the gain for a mechanical feedback
loop [163]. For example, Mountain and Hubbard assume l fnm and

jpo'qrj's
and that the

cilia bundle stiffness t s (Eq. 36) depends on the OHC voltage. Based on the 90 degree
18In mathematical physics, nonlinear damping resonators are called van der Pol equations, while nonlinear

stiffness resonators are call Duffing equations [30].
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phase shift resulting from the OHC membrane capacitance, they developed a theory in
which [ s (Eq. 36), the effective cilia bundle resistance, becomes negative for frequencies
greater than the membrane cutoff frequency cBu , but remains positive for cv`wcBu .

Geisler also proposed a feedback model [164] where the cell body of the OHC is mod-
eled as a spring having an impedance

j)xyf t x{z}| , in series with an active force generator.
However, this model leads to a physically unrealizable system of equations.

4.3 Discussion

Both active and passive BM models are reasonably successful at simulating the neural
threshold response tuning curves. Thus we need to look elsewhere to contrast the differ-
ence between these two approaches, such as 2TS/USM. While the passive RTM model
is easily made nonlinear with the introduction of t ohc ~�� u�� , differences between nonlinear
RTM and CA models have not yet been investigated. The CA and RTM models differ in
their interpretation of damaged cochlear responses. In CA models, the loss of sensitivity of
the cochlea with damage is interpreted as a loss of CA gain while in passive models, the
loss of sensitivity has been interpreted as a 2:1 change in the BM stiffness [130].

The discovery of OHC motility demonstrates the existence of a potential source of me-
chanical energy within the cochlear partition which is suitably positioned to influence vibra-
tions of the basilar membrane. It is still an open question whether this source of energy is
sufficient to power a CA at high frequencies.

One possible advantage of the CA is that of improving the signal-to-noise ratio in front of
the IHC detector. A weakness of the CA models has been their lack of specificity about the
physical realization of the active elements. Until we have a detailed physical representation
for the CA, RTM models have the advantage of being simpler and more explicit.

The discovery by He and Dallos that the OHC soma stiffness is voltage dependent is
an exciting development for the nonlinear passive RTM model, as it greatly simplifies the
implementation of the physical model. The RTM model has been in disfavor because many
feel it is does not account for basilar membrane tuning. This criticism is largely due to
the experimental results of physiologists who have measured the BM-ear canal transfer
function, and found the tuning of BM velocity to be similar to neural threshold response
data. Much of the experimental BM data, however, are not convincing on this point, with
the BM slope

XZY
generally being much smaller than that of neural responses. The question

of whether an active model is required to simulate measured BM responses is still being
debated.

Better estimates of the amplitude of cilia bundle displacement at a given sound pres-
sure level directly address the sensitivity questions. If the estimate of Russell Sec. 3.1.2 of
30 mV/degree is correct, then the cochlear sensitivity question may be resolved by having
very sensitive detectors. Also, better estimates are needed of the ratio of the BM frequency
response to the IHC frequency response, both at high and low frequencies. Rhode’s ap-
proach of using the slopes of Fig. 9 rather than Q ��� might be a useful tool in this regard.

5 Summar y

This paper has exhaustively reviewed what we know about the cochlea, which is a complex
topic. Hopefully this has provided a framework to help the reader glue the various pieces
of the puzzle together, thereby simplifying the subject.
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The Introduction section reviews the nature of modeling and briefly describes the anatomy
of the inner ear, and the function of inner and outer hair cells. In Sec. 1 we reviewed the his-
tory of cochlear modeling. The Wegel and Lane paper was a key paper that introduced the
first detailed view of masking, and in the same paper introduced the first modern cochlear
model Fig. 4. In Sec. 1.2.1 we presented the basic tools of cochlear modeling, impedance,
the Thévenin circuit, and the Transmission matrix method (2-port analysis). In Sec. 1.3.1
we describe how these models work in intuitive terms, where the basilar membrane is
treated as having an acoustic hole in it, that depends on frequency. The location of the
hole, as a function of frequency, is called the cochlear map. This hole keeps fluid from
flowing beyond a certain point, producing the cochlear traveling wave.

In Sec. 2 we extensively review and summarize the nonlinear measures of cochlear re-
sponse. Since these data are not fully understood, and have not be adequately modeled,
this is the most difficult section. However it is worth the effort to understand these exten-
sive data and to appreciate the various relations between them, such as the close parallel
between two–tone suppression and the upward spread of masking, and between loudness
recruitment and outer hair cell damage.

In Sec. 3 we review several models of the hair cell, including forward and reverse trans-
duction. Some of this material is recently published, and the view of these models could
easily change over the next few years, as we better understand reverse transduction.

Finally in Sec. 4 we review the basics of micromechanics. We have presented the two
basic types of models, Passive and Active models, with a critical review of each.

I would like to thank Paul Fahey for his reading of this paper, and for finding many errors.
Sec. 3.2 could not have been written without the generous help of Kuni Iwasa. I did not
always take his wise advice, and any errors are due to me alone. Section 4 is an update,
based on [13], which was written in collaboration with Stephen Neely.
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