Cochlear nonlinearities and phoneme recognition

Finding the features in individual consonants.

Jont Allen

Feipeng Li

Univ. of IL, Beckman Inst., Urbana IL

Notable quotes

We need to know more about human speech processing and and natural speech variation –Sadaoki Furui (ASRU 2009)

This is so true! –Jont Allen

Question your assumptions:

- Elephant in the room: Human CV speech is *not* variable.
- CV speech is not redundant.
- Why we don't know anything about the topic?
 Spent on basic speech research →0,

Outline of talk

- 1. Intro + Objectives (5 mins)
 - The research goal is to
 - Identify the elemental HSR events in
 - Example consonants
- 2. Historical overview (5 mins $\Sigma 10$)
 - Rayleigh (1910) to Shannon (1948)
- 3. Methods (15 mins $\Sigma 25$)
 - Information Theory; -Signal processing
 - -Psychophysics; -Articulation Index;
- 4. Results (30 mins $\Sigma 55$)
 - Confusions; Primes and Morphs;
 - Speech Modifications; Conflicting cues
- 5. Summary + Conclusions (5 mins $\Sigma 60$)

I – **Introduction (5 mins)**

- Statement of the problem:
 - A fundamental understand the Human Speech code
- Short-term Goal:
 - Identify the key features in individual CV utterances
 - Plosives (e.g., /p, t, k/ and /b, d, g/)
 - Fricatives (e.g., /θ, ∫, ʧ, s, h, f/ and /z, ʒ, v, ð/)
 - -With vowels /o, ε, ι/
- Applications:
 - Reduce variability in ASR at frontend
 - Hearing Aids, Cochlear Implants
 - Smart Telcom products
 - TTS (Text to speech)
 - Intelligibility modifications (Robustness problem)
 - Speech enhancement in noise

Objective

- To develop rigorous procedures for analyzing and modifying speech in noise
- To identify perceptual features, denoted events

- Based on two basic measures:
 - AI-Gram (speech audibility measure)
 - Confusion matrix (CV discrimination measure)
- We will show that onset and durational timing cues form the consonant events

II – Historical HSR Studies (5 mins)

- Lord Rayleigh's 1908 and George Campbell 1910
 - First electronic articulation experiments
- Harvey Fletcher's 1921 Articulation Index Al
 - Accurate predictions of nonsense syllable scores
 - French and Steinberg 1947 first publish Al
- Shannon The thoeory of Information 1948+
 - G.A. Miller, Heise and Lichten Entropy \mathcal{H} 1951
 - G.A. Miller & Nicely CM $P_{h|s}(SNR)$ 1955
- Context:
 - **G.A. Miller** 1951 Language and communication
 - G.A. Miller 1962 5-word Grammer \equiv 4 dB of SNR
 - Boothroyd JASA 1968; Boothroyd & Nittrouer 1988
 - Bronkhorst et al. JASA 1993

Speech feature research

- 1910-1980: Bell Labs
- 1940-1960: Haskins Lab
- 1960-1990: MIT
- 1980-2010: ASR at AT&T, IBM, BBN, University research

Cochlear research

- 1910-1950: Bell Labs
- 1960-2010: MIT + Harvard HSTB
- 1980-2010: NIH funded University research

Speech feature research

- 1910-1980: Bell Labs
- 1940-1960: Haskins Lab Synthetic speech
- 1960-1990: MIT Consonant features unknown
- 1980-2010: ASR at AT&T, IBM, BBN, University research Not designed to be robustness to noise

Cochlear research

- 1910-1950: Bell Labs
- 1960-2010: MIT + Harvard HSTB
- 1980-2010: NIH funded University research

III – Methods (15 mins)

- Information Theory $IT \equiv Articulation$ index AI
 - Confusion matrix CM scores: $P_{h|s}(SNR)$
 - Al to model mean phone errors $\sum_{h} P_{h|s}(SNR)$
- Psychophysics
 - Real consonant-vowel CV speech
 - Several types of additive noise
 - Large number of trials
 - >20 talkers and >20 listeners
- Signal processing
 - Al-gram (crude cochlear model)
 - Frequency, time, intensity truncation 3^d -DS
 - Short-Time Fourier Transform STFT modifications

The CM and the *elemental-event*

Miller-Nicely's 1955 articulation matrix $P_{h|s}(SNR)$, measured at [-18, -12, -6 shown, 0, 6, 12] dB SNR

TABLE III. Confusion matrix for S/N = -6 db and frequency response of 200-6500 cps.

Allen/ASRU '09 - December 14, 2009 - p. 10

Average phone scores vs. SNR

Consonant chance performance is -20 dB-SNR in white noise Phatak Allen, 2007

Consonant Variability

- Avg. Contant error $P_{h|s}(SNR)$ strongly hetrogeneous!
- NH listeners above chance at < -25 dB SNR in SWN
 HI P_e(SNR) >> ANH P_e(SNR)

Row of CM $P_{h|/t/}$

Utterance phone scores are hetrogeneous!

Phone groups are due to shared sub-phonemic units

- CV Morphs
- Morphing sentences

Row of CM $P_{h|/t/}$

Utterance phone scores are hetrogeneous!

Phone groups are due to shared sub-phonemic units

- CV Morphs DEMO
- Morphing sentences DEMO

Model of human speech recognition HSR

— Research Goal:

- Identify elemental HSR events
- An event is defined as a perceptual feature
- Event errors are measured by band errors e_k

Definition and use of the A/

The average error is: $P_e(SNR) \equiv \prod_k e_k = 0.02^{AI}$ • $e_k = 0.822^{Al_k(snr_k)}$ cochlear k^{th} band-error • $AI_k = \log_{10}(1 + 4 \operatorname{snr}_k^2)^{1/3}$ band channel-capacity • $AI \equiv \overline{AI_k} = \frac{1}{20} \sum_{k=1}^{20} AI_k,$ Output: Cochlea Event Phones Syllables Words ayer Layer s(t) \rightarrow s(t)-ayer -ayer $AI_k \propto snr_k \text{[dB]} e_k = 0.82^{AI_k} s = 1 - e_1e_2...e_{20} S_{cv} = s^2 W$

Analog objects ??? Discrete objects

Fletcher's Lowpass/Highpass result

The AI is based on the band-error product formula

$$P_e(\mathsf{snr}, f_c) \equiv e_{lp}(\mathsf{snr}, f_c) \times e_{hp}(\mathsf{snr}, f_c)$$

Human listeners as a Shannon Channel

The Channel capacity theorem gives the maximum information rate as:

$$\mathcal{C} \equiv \int \log_2 \left(1 + \operatorname{snr}^2(f) \right) df \tag{1}$$

- For a Maximum Entropy (MaxEnt) speech source, the maximum information rate is determined by the SNR
- The Al-gram is a closely related measure:

III–Results (30 mins)

- Examples and Demos of events
 - Plosive CV events
 - Fricative CV events
- Conflicting cues
- DEMOS:
 - Event isolation
 - Consonant morphing
 - Consonant enhancement
 - Conflicting cues within consonants
 - Sentence meaning modification

m117/te/ in speech-weighted noise

/t/ confusion threshold at $P_c(SNR^* = -2) = 0.9$ correlated to Event-gram

m112/te/ in speech-weighted noise

/t/ confusion threshold at $P_c(SNR^* = -16) = 0.9$ correlated to Event-gram

Correlations of /t/ events

High correlation across all /t/'s in the database

Masking of /ta/ timing cue

When the /t/ burst is masked by noise, the perception morphs to /p/

DEMO 4

Truncation of /ta/

- This represents the normal hearing responses to a truncated /ta/, from the start of the consonant
- Morphing from /ta/ to /pa/ to /ba/ at 0 and 12 dB SNR
- Similar to Furui 1986, and our extensive results

Truncation of f101 /sa/

- This represents the normal hearing responses to a truncated /sa/, from the start of the consonant
- Morphing from /sa/ to /za/ to /da/ to /ða/
- Duration seems to be a fricatives event

Methods: 3^d Deep Search (3^d-DS)

- **3** 3^d Deep-Search (3^d-DS) via truncation:
 - SNR truncation (i.e., masking)
 - Frequency truncation (High/Low-pass filtering)
 - Time truncation (Furui 1986)

3^d-DS Method /ʃa/

Truncation in Time, Intensity and Frequency

3^d-DS Method /sa/

Truncation in Intensity, time and frequency

3^d-DS Method /ta/

Truncation in Intensity, time and frequency

Enhancement of /tɛ/ event

- The sound is heard as /t/ again, we suppressed the morph (see confusion patterns of slide 4)
- METHODS: The /t/ burst is enhanced (14 dB) on the quiet sound, then noise is added

Enhancement of /ta/ event

- The sound is heard as /t/ again, we increase /t/ recognition
- METHODS: The /t/ burst is enhanced (14 dB) on the quiet sound, then noise is added

We have:

- 1 isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and Fricatives / θ , \int , f, s, h, f/ and /z, z, v, δ /) + Vowels /o, ϵ , I/
 - for many individual talkers
 - via new tools (AI-gram, Event-gram and 3^d -DS)

We have:

- 1 isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and Fricatives / θ , \int , f, s, h, f/ and /z, z, v, δ /) + Vowels /o, ϵ , I/
 - for many individual talkers
 - via new tools (AI-gram, Event-gram and 3^d -DS)
- 2 shown that normal listeners use
 - across-frequency timing coincidences
 - duration and bandwidth

to discriminate consonants in noise

We have:

- 1 isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and Fricatives / θ , \int , f, s, h, f/ and /z, z, v, δ /) + Vowels /o, ϵ , I/
 - for many individual talkers
 - via new tools (AI-gram, Event-gram and 3^d -DS)
- 2 shown that normal listeners use
 - across-frequency timing coincidences
 - duration and bandwidth

to discriminate consonants in noise

- 3 developed tools to
 - Morphed speech sounds
 - Decrease or increase intelligibility. Ex: /tα/, /tε/

- 1 the existance of conflicting cues
 - Thus MaxEnt consonants are NOT redundent

- 1 the existance of conflicting cues
 - Thus MaxEnt consonants are NOT redundent
- 2 that the event threshold is abrupt (i.e., 6 dB)

- 1 the existance of conflicting cues
 - Thus MaxEnt consonants are NOT redundent
- 2 that the event threshold is abrupt (i.e., 6 dB)
- 3 proven the AI band-product formula (yet again)

- 1 the existance of conflicting cues
 - Thus MaxEnt consonants are NOT redundent
- 2 that the event threshold is abrupt (i.e., 6 dB)
- 3 proven the AI band-product formula (yet again)
- 4 why the AI works
 - Due to the frequency and SNR event distribution

- 1 the existance of conflicting cues
 - Thus MaxEnt consonants are NOT redundent
- 2 that the event threshold is abrupt (i.e., 6 dB)
- 3 proven the AI band-product formula (yet again)
- 4 why the AI works
 - Due to the frequency and SNR event distribution
- 5 the role of forward and upward masking spread

This could lead to:

1 Improved automatic speech recognition front-ends

This could lead to:

- 1 Improved automatic speech recognition front-ends
- 2 The design of new hearing aids

Question your basic assumptions

Thanks for your attention http://hear.ai.uiuc.edu