Index

Acetylcholine, 180, 184, 452n
Acetylcholine receptor, molecular structure, 139
Action potential, mechanism, 147-150
Active zone. See Synapse, active zone
Adapt, match, learn, and forget, 48-49, 173, 234, 263, 399, 434, 440, 446
Adapt, match, trade, 48-50. See also Symmorphosis
Adapt and match
array to input $\mathrm{S} / \mathrm{N}, 136-137,248$, 306-309
bandwidth to input 213, 218-222, 224, 228-230, 299, 330
capacities across systems, 13, 48-49 (see also Symmorphosis)
capacity to natural distribution of information, 434-435
circuits to stable statistics, 405
coding to natural statistics, 251-252, 258-263 290, 301-313, 327, 337342, 351-357
dendritic arbors to image statistics, 307
electrical coupling to input statistics, 280-284, 287-288, 310
energy capacity to information rate, 336
gain to light level, 220-221
information capacity to supply, 228230, 248

I/O function to input, 49, 129, 130, 145, 221, 260, 270, 289, 299
locomotion to terrain and viscosity, 23 memory to lifespan and lifestyle, 16, 21, 38-39
parallel channels to distribution of information, 306-309, 354
potassium channels to visual ecology, 230-233
predictive coding to input statistics, 251-252
receptive field to image statistics, 251-252, 306-309, 337-344
resources to information, 135-137, 291-295
response waveform to input statistics, 219, 260-263
sensor to signal quality, 195-234, 274
structures and molecular mechanisms, 195-234, 291-295
synapse to input, 186-190, 210, 241263, 268-276, 287-295, 327-332
Adaptation relates to learning, 421-422
to changing demand, 3
Addiction, cause of, 429
Addition (arithmetical operation), 128, 145, 172
Adenosine triphosphate (ATP). See also Mitochondria
constrains information processing, 152-153, 157

Adenosine triphosphate (ATP) (cont.) drives signaling in protein circuits, 122-123, 138
inactivates receptor proteins, 121
production of, 58
standard unit of cellular energy, 52, 54
Adrenal gland, 64, 67
Adrenaline (epinephrine), 91, 116-122, 125, 129
Affinity. See Binding affinity
AII amacrine. See Retinal amacrine cells
Aldosterone, 66-67
Allostasis, 447n2
Allostery, 115, 126, 213, 450n4
information processing and computation, 117-118
synaptic vesicle release, 160,163
Amacrine cell. See Retinal amacrine cells
AMPA receptor. See Glutamate receptor
Amplification, optimization, 258-260
push-pull, 308-309, 341-342
Amplifier, xvii, 35, 107, 120, 126, 130, 268. See also G-protein-coupled receptor
ion channel, 141
protein circuit for phototransduction, 126, 195-204, 210-12, 217, 233
Amygdala 86, 357
Anabolism, 58-59. See also Catabolism
Analogue computation. See
Computation, analogue;
Computation, direct; Compute directly with analogue primitives
Analogue circuit elements, 146-147
Analogue primitives, 131, 221, 440
used for coding, 234, 260, 263, 281287, 301, 322
Analogue to pulsatile, 37-38, 96, 174175, 265-276, 300, 333
AND gate, 117-118, 218
Anticipatory regulation, xiv-xvi, 47, 67, 447n2

Anxiety, xvi
Arithmetical operators, 125, 127-131, 145-146, 172, 451
Array. See also Sensor array; Neuronal array; Synaptic array
maximize information within, 303311, 434-437
optimization, 135-137, 247-248, 280298, 303-311, 316-319, 433-439
Arrays, interconnecting efficiently, 367-387
Arrestin, 121, 202, 216
Assembling patterns, 45, 359, 361, 416
Associative learning, 32, 95, 100, 102, 450n2
mammal, 410-430
Astrocyte. See Glial cells
A to P. See Analogue to pulsatile
Auditory cortical areas, similarities to visual, 359-360
Auditory patterns, 74
Auditory sensors, 92, 92, 268-274. See also Hair cell
Autonomic system, 45, 89
low information rates, 68
sympathetic and parasympathetic subsystems, 68
Avoidance response, Paramecium 18-20
Awakening, 63-64
Axon
analogue to pulsatile, 174-175, 425n12
channel noise limit to diameter, 185
initial segment, 174-175, 178-179
local computing, 178-179
as matched filter, 255-258
matched to active zones, 291, 294
Axonal transport, mechanism and cost 175
Axon diameter, and rates xvii, 54, 75-76, 87, 186, 266-268, 273, 320-322
minimum, 185

Axon diameter distribution, in nerves
and tracts, 63, 75, 99, 267, 320-322,
384-386, 416
log-normal 63, 384, 386, 419

B 29 (Boeing), 1. See also Reverse
engineering
Bandwidth
at chemical synapse, 161, 188, 234, 268, 291, 293-295
determines information rate and
capacity, 113-114, 220, 225-227, 241
limited by dendrite, 170
match to input, 213, 218-220, 224, 228-230, 299, 330
and membrane time constant, 146, 151, 166, 170, 227
photoreceptor, 213, 224, 218-220, 224, 228-230
and receptor binding affinity, 128129, 137, 160-161, 165-168, 270271, 286, 330
regulated by potassium channels, 230-234
segmented by synapse, 164-168, 291-296
segmented in parallel neurons, 310, 322, 353
sets receptive field size, 310
spatial, 338-339, 353
and spike rate, 312
trade for energy, S / N and gain, 135, 137, 146, 161, 202, 209, 260-263
Basal ganglia, 98
Basket cell (cerebellum), 177-179, 184, 186, 189, 190, 373
Bat, 73-74, 92
Battery (ionic), 140-144, 150, 152, 164
cost of recharging, 141-142, 153, 222, 145, 393
Behavior, 41-50
aversive response, 27-28
choice, 43-44
foraging, 21
motor, 44
random, 20-21
selection of, 28-31, 44
Behavioral threshold for discrimination, 323
Benzodiazepine. See Tranquilizers
Bergman glia, 156, 190
$\beta 2$ adrenergic receptor, 117-123
Biased random walk (search strategy), 15-16, 29
Binding affinity
and bandwidth/timescale, 128-129, 137, 160-161, 165-168, 270-271, 286, 330
and dissociation constant, K_{D}, 127-129
matched to input signal, 12,67 , 155
matched within a circuit, 160-161, 167-168, 204, 213, 270-271, 290291, 438
Bit, unit of information defined, 51
Bit rate. See Information rate
Bits per spike, 52-53, 84, 174, 300, 309, 327-334, 340, 353, 451n2
Blindsight, 458n4
Blood pressure, 45-47, 66-67
Boltzmann, L.
entropy, 110
constant (K_{D}) 122
Boolean operation. See AND gate
Brain
broad aspects of design, 41-43
can ours do better? 441
constraints on, 50-55, 89
core tasks, 43-45, 89, 104
emergence of, 20-21
insect, 89-104
mammal, 57-89
organizational principles, 57-104
purpose, 11
will ours survive? 444

Brain size, 22, 392
C. elegans, 33, 35
comparison of fly, mouse, monkey, human, 41
honeybee, 102
mormyrid fish, 77
Brecht, Bertold, 459n18
Brownian motion, 17, 133, 155
Brownian noise, 92, 133, 137, 198.
See also Noise sources, thermal

Caenorhabditis elegans (C. elegans), xiii, 13, 21-39, 400

Cable theory, 170-171, 255, 365, 422
Cajal, S. R. See Ramón y Cajal, S. R.
Cajal's laws of conservation, 363, 393
Calcium channel, and memristor, 147
links electrical signals to chemical, 150-151
Calcium channels
control simple behavior, 18-20
and synaptic vesicle release, $160-162$, 270-272, 281-290, 299

Calcium ions
as chemical messenger, 150
control gain and bandwidth, 202, 209, 216-218, 220-222, 270-272, 281-293
couple chemical and electrical circuits, 150-151, 160-162
driving force on, 162
pumps (see Calcium pumps and exchangers)
and synaptic plasticity and memory, 167, 404, 412-413,417-418
trigger synaptic vesicle release, 150 , 160-162
Calcium pumps and exchangers, 20, 192, 202, 212, 217, 221
CaM kinase II, 412
cAMP. See Cyclic adenosine monophosphate

Capacitance. See Membrane capacitance; Analogue circuit elements

Capillary network, 157-158, 325, 386, 393
Capgras syndrome, 358
Catabolic/anabolic cycle, 58-59, 64, 91
Catabolism, 58-59. See also Anabolism
Central complex, 96-97
Central pattern generators. See Pattern generators, central
Cerebellar cortex, 370
design requirements, 371
Cerebellum
axon diameters vs. firing rates, 75
basic circuit's cell types (see Granule cell; Purkinje cell; Basket cell; Golgi cell; Bergman glia)
climbing fiber, $156,165,184,190$, 348, 373, 394
deep neuron clusters, 88,391
design of basic circuit, 185-190, 371
design requirements, 371
energy costs, 190-194, 394-395
inferior olive, 348
of mormyrid, fish 74
mossy fiber, $156,165,184,186-188$, 190-193, 330, 348, 372-373, 384, 394-395, 460n9
parallel fiber (see Granule cell)
pontine cluster, 348
sections through, $42,88,346,347$, 383, 38
synaptic architecture, 186-190
Cerebral cortex
adaptive responses, 400
circuits repeat, 353
comparison to retina and cerebellar cortex, 364-365
distribution of blood vessels, 158
energy costs vs. cerebellum, 395
energy usage, 153-154, 336-337, 342, 352
executive summary, 63
functional architecture, 384-389
interfaces (input/output tracts), 384
maximizes potential connections, 442
number of neurons, 41
pyramidal neuron, xix, 153 174, 175, 381, 384, 386-389, 460n7, 469n16, 460n20
sections through, $42,88,346,347$, 383, 385
similarity to mushroom body, 102
sparse codes used, 341-343, 353, 359, 411
wiring maximizes connectivity repertoire, 381
Cerebral cortical areas
auditory, 353, 359-360, 392-393, 408-410, 423
efficient placement for interconnection, 86
face identification, 85-86, 357, 358
human, 350
language, 359-360, 407, 409-410
middle temporal (MT), 361
monkey, 423
number of, human vs. mouse, 85
for object grasp, 85
for object identification, 356, 359
for scenes, 356
in star-nosed mole, 80
visual (see V1; V2)
why separate areas, 390-392
written word recognition, 406-410, 418-419, 431
cGMP. See Cyclic guanosine monophosphate
cGMP-gated channel, 212, 213, 217, 224
Chemical circuit, design basics 125-137
constraints on, 137
Chemotaxis, 15, 21

Chess, xi, xvi
Chloride channel, 140, 169
histamine-gated, 140, 146, 241, 246, 254, 260, 454n9
roles in inhibition, $169,179,461 \mathrm{n} 9$
Chloride ions, 140, 169, 179
driving force, 162
Chloride pumps, KCC2, NKCC1, 179
Choice
of action, 96-98
rules governing, 419-422
Choosing or selecting components and materials, 4-6, 8, 210, 232, 234. See also Parts, catalogue or list
Chromophore, 195
regeneration of 214,224
Circadian rhythm, xv1, 59, 448n1. See also Clock
Circumventricular organ, 65, 448, 448n1

Clock (circadian), 59-64, 69, 91, 98, 323, 449n4
coupling to behavior, 61-64
entrainment by light, 59, 197, 323
location, 59-60, 69, 91
regulates neural mechanisms, 233, 287, 334
Cluster, use of term 448 n 2
Cochlea, 76, 78, 92, 271, 273
Cochlear (auditory) nerve, 74-75
Coincidence detection, 102, 167-168, 172, 189, 218
Collecting sensory patterns, 91
Color perception
loss of (achromatopsia), 358
shift in, 405
Color vision, specializations for, $284,316,319,325,336,351$, 356, 458
Combine analogue and pulsatile processing, 206, 437. See also Analogue to pulsatile

Command neuron, 27-28, 30, 33
Compartment size and performance
in practice, 170, 172, 201, 214, 216218, 220, 234, 435
in principle, 113, 133-134, 137
Complicate, xiii, 7, 21, 401, 414, 438
Complex. See Signaling complex
Complex cell, 367, 369, 374, 481. See also V1
Component placement. See also Wiring efficiency
motor neurons, 70-71
optimization, 36, 239
silicon and worm, 36
striatum, 377
Computation. See also Information processing
analogue, 26, 37, 95, 130-134, 142147, 221, 281-282, 287, 301, 437, 445
chemical, 12-21, 32-35, 127-133
dendritic, 170-174, 176-177
design principles summarized, 434-437
direct, 131, 140, 281-288, 301-302, 339
efficiency of, xi, xvii, 93, 131-133, 153, 396
electrical, 18-20, 145-147, 255
embodied, 26, 103
load reduction, 26, 103, 131
local, 62, 83, 176-177, 179-180, 392, 445
at nanometer scale, 126
by protein circuit, 125-154
reversible, 122
by single molecule, 117-125
Turing Universal, 131
Compute
as much as possible in a single cell, 33-35
at the lowest level, 319
locally, 83

Compute directly with analogue primitives, 221, 234, 260, 263, 281-282, 301, 322, 437, 440
Computer vs. brain, xi-xii, xvi-xvii, xx, 9, 26, 287, 433
Compute with chemistry, 34-35, 124, 154, 212, 234, 322, 435
Concentrate resources, 437-438
Concentration gradient (ionic), 139141, 143
Cone opsin
spectral tuning, 274
stability and speed, 207
thermal rate, 208
Cone photoreceptor, 207-210, 213
energy cost, 224, 394
information rate versus fly, 235
photon catch, 279
single-photon response cf. rod, 209
Cone synaptic terminal, 274-298. See also Synaptic ribbon
electrical coupling to cones, 281-288
electrical coupling to rods, 207
match to information capacity, 295
number of active zones, 207, 291
reducing noise, 280-284
reducing redundancy, 284-289
S/N 207, 209, 279
vesicle rate, 279-280
Connectivity repertoire, 379
Connectome, 37, 239, 242 455n10. See also Wiring diagram
Connexon, 177. See also Gap junction
Constraints, xvii
Contrast, definition, 219
Contrast coding, 219-222, 234, 236, 241-244, 276, 284-291, 296-299
optimization, 258-260, 306-310
Contrast gain control, 300, 343
Cooperative binding, 129,146
and calcium sensor and vesicle release, 270
and channel open probability, 140
and cone synapse, 290
effects on I/0 functions, 129-131
implements exp, 146
matches I/O function to input, 129, 130, 260, 270, 299
matches synaptic transfer to function, 238, 260, 292
and optimization of I/O function, 260
and optimization of rod response, 201-204
sharpens timing, 161, 201-204, 271272, 299
and switch design, 130
Corollary discharge, 82-83, 100-101
Corpus callosum, 88, 386, 392, 443, 459n. 15

Corticocollicular pathway, 81, 348
Corticospinal tract, 69-73, 81, 386, 443

Cost
fixed, 135-136, 152, 197, 223, 225228, 342
signaling, 135-136, 197, 212, 225228, 342
Costs. See also Energy costs
different senses, 71-76
learning, 410
opportunity, 44
speed over distance, 142, 435-437
Cricket (chirping), 100
Cyclic adenosine monophosphate (cAMP), 14
Cyclic guanosine monophosphate (cGMP). See also cGMP-gated channel
concentration optimizes
phototransduction, 202-203, 209
in cone, 209
in rod, 196-204
Cytochrome oxidase, 194, 325, 336, 351, 395
patches, $326,336,337,344,351,390$, 391
stripes, 326, 351,352, 356, 390, 391, 405, 446

Cytoskeleton 115, 133, 215-216 (see also Scaffold)

DAG. See Diacylglycerol
Darwin, Charles, xii, xx, 319, 447n1, 447n3
Data Mountain, xii, xxi, 265, 278
Decision
central complex, 96
design of 57,76
integrated, 423
low-level, 71
perceptual and noise, 323
tree, 109
what to store, 419
where to look, 81-82
Deep Blue (IBM Supercomputer), xi, xvii, xx
Dendrite
cable properties constrain range, 170-171
as memory module, 414
processes information directly, 170-174
Dendritic arborization adapted for role, xix, 71-73, 185-190, 284287, 301-318, 346-349, 367-389, 425-427,463n17
Dendritic spike, 172-173, 414
Dendritic spines
compartments for computation, 172173, 452n11
increase potential connectivity, 383384, 387
increase wiring efficiency, 366, 375-376
involvement in learning and memory, 410-419
Design, xxi
and competition, 3
and cost, 3

Designer, $x x$-xxi
Design rule
build a neuron for a specific task, 180
compute as much as possible in a single cell, 33, 319
compute at the cheapest level, 434
compute at the lowest level, 319
compute locally, 83
conserve synapses, 35
favor analogue over pulsatile, 37
match sensor to signal quality, 274
maximize information sent by the array, 303
motorize sensors 29, 79-82, 92
neaten up, 6-7, 103, 224, 309-311
neurons that fire together locate together, 70
neurons that fire together wire together, 70, 326
no part is left idle, 263
optimize the interfaces, 235-264, 386
reduce noise before it becomes distorted by nonlinear processing, 283
send information as slowly as possible, 36
three fifths rule (wiring efficiency), 367
trade between systems, 48
use neuromodulators to switch behaviors, 35
Design specifications, 2
integrating across systems, 8
Diacylglycerol (DAG), 215-216
Diffusion
impact on chemical circuits, 106, 127, 133, 137-138, 435
impact on protein circuit, 200, 204, 210, 216-218
impact on retinal function, 200, 204, 210, 286, 291-298, 313, 321
impact on synaptic function, 159-175, 183, 188, 286, 291-298, 425

Diffusional filtering, 291-296
Diminishing returns. See Law of diminishing returns
Disconnection syndromes, 358-360
Disinhibition, 98, 202,308-309,341, 459n.9. See also Inhibition
Dissociation constant, $K_{D}, 127-129$. See also Binding affinity
Division (arithmetical operation), 125, 131-132, 146, 172
Divisive normalization, 146, 343-344.
See also Contrast coding; WeberFechner law
Dopamine, 30, 32, 35, 69, 287, 452n5
learning, 87, 100, 418-419
memory, 413-416
neuron, 69, 287, 424, 426-428, 463n17
teaching signal, 422-428, 462n13
transporter, 429
Dorsal stream, "where," 356, 358-359, 361
Driving force (on ions), 138, 162164, 309, 451n6. See also Reversal potential
Drosophila melanogaster (fruit fly). xiv, xvii, 89-104, 213-234
DUM neurons, 91

Ecclesiastes, 22
Economics
cortical theme for neural investment, 354
high rate cf. low rate channels/ pathways, 333
investment in axons in a tract, 397
phototransduction, 210-213, 222-234
synaptic investment, 332-334
of visual information, 296
Economic theory, neoclassical, 420
applied to choice, 420
applied to teaching signal 422
Effector clusters, arrangement 68-71

Efference copy. See Corollary discharge
Efficiency. See also Energy efficiency;
Information, cost and efficiency;
Wiring efficiency
and brain design, xx
and small size, 102-104
and spike rate, 52-54
Electrical circuits
design basics, 138-154
constraints on, 151-153
speed over distance, 18-20, 147-151, 155, 194
Electrical synapse, 177, 179, 207, 309-310, 452n3. See also Gap junction
Electric sense, 74-77
Electronic circuits cf. protein circuits, 126, 130
Electroreceptors, 74
Embodied computation, 26, 103
Endocrine glands. See also Pituitary
adrenal, 64
corpora allata, 89
corpora cardiaca, 89
pancreas, xiv
Endocrine signals, 60, 64, 68. See also Wireless signaling
Endocytosis, 413, 425n8. See also Synaptic vesicle, recycling
Endogenous opiate, endocannabinoid, endobenzodiazapine (diazepam binding inhibitor), 169-170
Energy capacity, matches information rate, 336
Energy cost. See also Energy efficiency of axon, 54, 74-75, 63, 74, 182
chemical cf. electrical, 150, 162-164, 210-213
of human brain, 8
and information rate, 53-54
of inhibition, 169, 191-193
of ion channel, 141-142
of neural circuits, 190-194, 393-395
of neuron, by function and computational stage, 190-194, 393-396
of phototransduction, 210-213, 223-231
of signaling protein, 122-123
of synapse, 160-164, 168, 175, 191-194, 212, 245-246, 394-395
thermodynamic lower bound to, 122-124
of tracts, 396

Energy costs

of cerebellum,190-194
of cortex, 393-396
Energy density, constrains neural processing, 153-154
enforces sparse coding, 342
Energy efficiency
cost per bit 54, 223, 245
dependence on rate 54, 223
and inhibition, 169, 388-389
need for, xx, 157
related to component size, 54, 117, 223
Energy-efficient electronics employs neural principles, 440
Energy landscape, 115-116, 160-162
Energy production, 58. See also
Cytochrome oxidase; Mitochondria
Energy supply to neurons, brain controls, 157-158, 184, 277, 325, 386, 393
Energy supply to organs, brain controls, 44-45, 48, 58-64, 89-91
Engineering principles, xiii, 440
Entropy
Boltzmann's (thermodynamics) 110,114
Shannon's (information theory), 53, 109-111, 258
EPSC. See Excitatory postsynaptic current

EPSP. See Excitatory postsynaptic potential
Error, reward-prediction, 100
Error correction, 86-88, 100
and evaluating behavior, 86-87
and intention learning, 87
and reward-prediction learning, 87
role of dopamine, 87
Escherichia coli, xiii, 12-17
Excitatory postsynaptic current (EPSC)
cost, 163, 191
in dendritic spines, 414-415
in ganglion cells, 312
in granule cell, 188
summation for quasi-secure synapse, 328-329, 331
Excitatory postsynaptic potential (EPSP)
cost, 437
integration of, 172
passive transmission by dendrite, 171
regulation by network, 173
spine amplitude in, 452n11
Exocytosis. See Synaptic vesicle release, mechanism
Exponentiation (mathematical operation), 146
Extracellular potential, varied to compute, 178-179, 254-255, 286
Eye movements, fixation and efficiency, 79, 81

Face areas. See Cerebral cortical areas, face identification
Faces, identification and recognition, 85-86, 354-362
Feedback 24. See also Negative feedback; Positive feedback
"Fight or flight," 46, 91
Filter, 125, 151. See also Matched filter; Diffusional filtering
Gabor, 337-342, 344-347, 353-354, 361
Gaussian, 287, 302-303
mechanical, 268
spatial, 287, 302, 322, 337-342
temporal (see Bandwidth)
Filtering by single protein molecules, 126, 129, 166, 292-296
Filters
cortical processing for, 337-361
mechanosensors in, 74, 83, 268-269, 455n3
photoreceptors in, 204, 207, 217, 231
retinal processing for, 274-276, 279, 280-281, 283, 285, 287, 302-303, 307, 314-317
Finite state machine, 117-121, 124, 133, 147, 435, 450n5
Fixed cost. See Cost, fixed
Fly photoreceptor, 214-234
constraints on design, 213-214
cost of energy, 224-225
cost of space, 222-224
design requirements, 214
economics, 222-231
gain control, 220-222, 225, 227, 230-231
information capacity and efficiency, 227-230
information rate and efficiency, 225-227
mechanical signal processing, 216-218
noise in phototransduction circuit, phototransduction circuit in microvillus, 216-219
potassium channels increase
efficiency, 230-232
synapses, 235-264
Ford, Henry, 4
Ford, model T, 3, 6
Fornix, 62-63, 69, 88, 443
Fovea, 79-81
vs. camera on Mars rover, 456 n1
like fly lovespot, 92
served by midget ganglion cells, 236, 283

Freud, Sigmund, 399, 428-429
Frontal eye field, 82, 449n16
Fruitfly. See Drosophila melanogaster

GABA receptors, 159-160, 169, 300
Ganglion cell. See Retinal ganglion cells
Gap junction, 177, 281-285, 308310. 427, 456n7, 458n17. See also Electrical synapse
Generalization, 220, 345
Genesis, 58, 306
Genome, 5, 17, 33, 117, 125, 151, 451.
See also Parts, catalogue or list
Gestalt (grouping principle), 352, 354
Glegg, Gordon L., 447n1
Glia. See Glial cells; Synapse, glomerular
Glial cells
astrocytes, 183-184
Bergman, 156, 190
and electrical inhibition, 178-179
epithelial, 239, 242, 257
mitochondria in, 181
oligodendrocytes, 181
and predictive coding, 254-255
role in neural design, 181-184, 190
synapses onto, 239, 242, 255
volume and number cf. neurons, 181
Gliotransmitters, 184
Glomerular synapse. See Synapse, glomerular
Glomeruli, olfactory and optic, 90, 93-95
Glutamate receptors. See also NMDA receptor
AMPA, 164-168, 172, 179, 286, 295, 330
distribution in circuit, 270
family of, 165,168
and memory, 412
mGluR, 168
segregate parallel channels, 291-298
temporal filtering by, 164-168, 293
tuned for function, 286

Glutamate transporters, 166, 168, 281, 330
Golgi cell, 156, 184, 186, 188, 190
GPCR. See G-protein-coupled receptor G protein, 117-123, 126, 141-142.

See also G-protein-coupled receptor trades gain for rate/bandwidth, 202, 209

G-protein-coupled receptor (GPCR), 117-123. See also G protein; Opsin;
Metabotropic receptor
amplification by, 120
energy efficiency, 122-123, 141-142.
Grandmother cell, 357
Granule cell (of cerebellum), 184, 371, 374-375
design for efficient wiring, 374-375
parallel fiber, $165,177,184-185,189$, 190, 192, 373-376, 384, 460n6, 460n9, 461n11
synapse to Purkinje cell, 189-190
Gray matter, 154, 158, 182-183, 396, 400, 436, 443
Grouping statistics, 352
GTP. See Guanosine triphosphate
Guanosine triphosphate (GTP), 119122, 126, 202

Hair cell, 268-274
specialized synapse, 268-274
Haldane, J. B. S., 104
Happiness and unhappiness, 399
Hartline, H. K., 454n6
Hebb, D. O., 418
Hebbian synapse and learning, 411, 417-418
Hemispheric specialization, 392
Heuristics, 103-104
Hillel, Rabbi, xvii
Hippocampus, 42-43, 62-63, 86, 88, 357, 400-401, 419, 423
Homeostasis, xiv, 45, 477n2. See also Synaptic homeostasis

Homo sapiens, xiv
Homunculus, 79
Honeybee, 43, 92, 102-103, 399, 404, 427
Horizontal cell. See Retinal horizontal cells
Hormones, 60, 64-69, 89, 448n1, 450n1. See also Wireless signaling
Hyperbolic I/O function
computation by, 127-130, 145-146
and contrast coding, 219-220
and Weber-Fechner law, 128
Hypothalamus. See also Pattern generators
accessing information, 62
anticipating needs, 61
behavioral sequencing, 61
calling brain hormones, 65
commanding low-level pattern generators, 61-63
coupling clock to behavior, 61-63
evolutionary origin, 89
and high-level pattern generators, 60-63
hypothalamic circuits, 60-64
location, 43, 60, 69, 88
and motivation, 61
proximity to effector clusters, 68
retinal input to, 324
role in behavioral repetition, 418, 425
volume, 70, 449n9

Image processing in V1, 335-353
INAD, scaffolding protein (fly photoreceptor), 216
Inductance. See Analogue circuit elements
Inferior colliculus, 69, 74, 363, 449n15
Inferior olive, 348
Information, 51
concentration of, $169,192,300,303$, 304-306, 331, 334, 357
cost and efficiency, 52-54, 122-124, 135-136, 174, 222-224, 245, 320
and laws governing brain design, 50
Information capacity
analogue signal cf. pulsatile signal, 51-53, 110-112, 174
constraints on, 51-54, 110-113, 152-153, 174, 223, 227-228
matched to supply, 228-230, 248
measured values, 225, 245
percentage filled, 266
storage, 15, 85-86, 410-412
theory, 51-53, 107-114
Information processing
by allostery, 117-122
by chemical circuit, 105, 117-138
by electrical circuit, 138-154
by protein molecule, 105, 114-124
Information rate
and axon diameter, 53-54, 321-322
measured values, $53,223,245,296$, 299, 320, 328
Inhibition
cross-, 28, 70, 71 (see also Inhibition, reciprocal)
crossover, 309, 313
electrical, 178-179
energy cost, 191-193
feedforward sharpens timing precision, 331
reciprocal, 26, 70, 73
Inhibitory neurons
contributions to coding efficiency 388-389
contributions to cortical circuits, 387-389
Initial segment. See Axon, initial segment
Inositol triphosphate $\left(\mathrm{IP}_{3}\right), 196,215-218$
Input patterns
collection, 71-83
linkage to motor commands, 96-97
processing and storage, 83-86, 93-96

Input/output function, 125, 269, 404, 439. See also Hyperbolic I/O
function; Adapt and match, I/O
function
computes in protein circuits, 127-131, 144-146
key role circuits, protein and
electronic, 125-126
optimizes coding, 258-260
Insect brain, xviii, 41-43, 89-105, 235264, 448n2
Insulin, 32, 46, 65, 66, 68
Interface, xiii, 4, 65, 235-264, 384-386
Interhemispheric tract. See Corpus callosum
Internal milieu, xiv, $x v, 11,15,44,45$, 89, 104
Internal physiology, 70
Inverting signal, molecular mechanism, 296-298
Investment. See also Costs; Economics; Diminishing returns
in brain, xii, 22, 71, 76
within cortex, 333, 342, 354-357, 362, 396
limits on returns, 283-284, 442
in sensors and senses, 58, 91, 235, 283-284, 333
strategies, 9, 91-92, 135
in tracts, 397
I/O function. See Input/output function
Ion channels. See also Calcium channel; Chloride Channel; CNG channel; Potassium channel; Sodium channel; TRP channel
and conductance, 142-143, 201, 213
enable electrical circuits, 138-151
energetics, 141
ligand gated (see Acetylcholine
receptor; GABA receptors; Glutamate receptors)
power transistors and, 141-142
response speed and, 141
single-channel conductance, 141-142, 201, 213
single-channel current, 141
structure and function, 139-142
voltage sensitive/gated, xvii, 18,38 , 130, 147-151 (see also Calcium channel; Potassium channel; Sodium channel)
Ion pumps and exchangers. See Calcium pumps and exchangers; Chloride pumps; Sodium-potassium pump
Ions. See also Calcium ions; Chloride ions; Potassium ions; Sodium ions and electrical signaling, $8,18,106$, 138-154
IP_{3}. See Inositol triphosphate

Kasparov, Garry, xi
$k_{B} T$, (Boltzmann's constant \times absolute temperature), 122
K_{d}. See Dissociation constant
Kenyon cell (mushroom body), 94-95
Kidney, xiv, 47-49, 60, 64, 67, 70, 393
Kinase
finite state machine, role in, 118
inactivate adrenergic receptor, 121
inactivate rhodopsin, 202, 209, 210
insect phototransduction, role in, 215, 217
isoforms, 462n11
memory and learning, role in, 32, 132, 412-413
Purkinje neuron, role in, 418
regulate glutamate receptors, 412-413
regulated by dopamine, 287
role in electrical coupling, 287

Lac operon (Escherichia coli), 12-14
Lactose, 12-16
Lagged cell, 331-335, 345 458n2
Lamina (insect visual system), 90, 94, 235-264

Language network, temporofrontal, 407-410
Large monopolar cell (LMC), 140, 236-264
LGN. See Lateral geniculate nucleus
Lateral geniculate nucleus, 325-331
axon arbors sculpted by experience, 405
cortical projections to, 348, 349
diameter of relay axons to cortex, 461n18
eye clusters separate but interleaved, 361
main computational task, 327
lagged cell (see Lagged cell)
parallel streams, 325-327
private lines preserve acuity, 328
projection to cortex, 333-334, 336, 340
role of quasi-secure synapse, 328-331
reduces redundancy and concentrates information, 327-328
six reasons for, 334-336
as a thalamic relay, 327
use of synaptic resources, 332-33,458n2
where located, 88, 324
Lateral inhibition, 249-250, 329, 434, 440, 454n5, n6, 455n10
Law of diminishing returns
governs investment in information and S / N, xvii, 52-54, 91, 134-136, 199, 245-246, 302
overarching constraint on design, xvii, xix, $89,105,433,442$
and wiring efficiency, xix, 54, 302, 365, 442
Laws of conservation. See Cajal's laws of conservation
Learn and forget, 430
Learning, 96
by C. elegans, 32
circuits for, 406-410
constraints on, 401
defined, 401
and emptying the trash, 408-410
motor (see Motor, learning)
and mushroom body, 102
to read, 406-410
role of NMDA receptor, 167
Learning, design principles, 401-410
sculpt circuits to match stable statistics, 405
store and retrieve without adding wire, 404
store for as long as needed, 402-404
store only what is needed, 402
Length constant, passive electrical transmission, 170
Level detector, chemical circuit, 132
LGN. See lateral geniculate nucleus
LMC. See Large monopolar cell
Locomotion
C. elegans, 22-27
E. coli, 15

Fly, 97
Paramecium, 17-20
Logarithm (mathematical operation), 128, 146, 172
Long-term potentiation (LTP), 159, 405, 413-416, 452n3
early, 413-415, 418
late, 414-415
Lovespot, 92
LTP. See Long-term potentiation

Make neural components irreducibly small 234, 436
Maps, 43, 70, 73, 79, 81
advantages, 389-392
of body surface, 378-380
in cerebral cortex, 350-351, 364
motor, in colliculus, 81
of orientation and place, 96-97, 400, 419
reorganization of, 402, 405
in visual systems, 93-94, 236-238, 326-327, 350-351, 364
and wiring efficiency, 389-392, 439
Matched filter, 231, 257-258
Mathematical operations in circuits, $117,125,127-131,145-146,287-$ 288, 301-302, 339-341
Mechanosensor, 27-28, 30, 74, 81, 83, 92, 265-269, 455n3
Membrane
capacitance, 8, 138, 143 (see also Analogue circuit elements)
potential, 142, 162
resistance, 8, 144, 166, 170-171, 185, 230-231, 255 (see also Analogue circuit elements)
supports RC circuit, 142-143, 172, 204
time constant, 8, 138, 144, 230
Memory, xv
in E. coli, 15-17
genetic cf. population, 17
match to lifespan and lifestyle, 16,21 , 38-39
molecular design for long term, 413-417
molecular design for short term, 412
Memristor. See Analogue circuit elements

Metabotropic receptor, 168
mGluR receptor, 168
Microtubules, 175, 176, 185, 213,291, 295, 374
Microvillus (compartment for phototransduction) 196, 215-222, 225, 227-228, 453n8, 453n10

Mindful practice, importance of, 87, 432
Miniature postsynaptic current (MPSC), 160
Minimize wire, 88, 105, 238, 396, 414, 438

Mitochondria
constrain rates and efficiency, 54, 152-153, 157, 436
distribution and demand, 393-394, 396, 397. See also Cytochrome oxidase
generate ATP, 152
in glia, 181
Mitochondria and the cost of space and materials
in axons, 54, 182,185, 374, 377, 397
in photoreceptors, 200, 212, 222
in tracts and nerves, 396-397
Mobile telephone, 9, 112
Molecular motors, 175
Mormyrid fish, 76-77
Mossy fiber, 184, 186-189, 372
Moth, bat detection, 92
Motion (visual), 214, 344
Motor control, 34, 68
Motor errors, 44
Motorize sensors, 29, 79-82, 92
Motor learning, 44, 100
Motor maps. See Maps, motor
Motor neurons
C. elegans, 13, 224-28, 31, 34, 36-37
columns, dendritic overlap, 70-73
inhibitory and excitatory, 24
insect, 98
mammal, 51, 60, 66, 68, 70, 425, 431
Motor pattern
distribution 98
generator, 98
Motor system
E.coli 15-17
C. elegans, 22-29, 34, 36
insect, 96-104
mammal, 68-73, 79-84, 86-87
Movement, design for integration and coordination 18-21, 22-31, 61-73, 79-85, 98-101, 325, 425
Multicellularity, 20

Multiplication (arithmetical operation), 132, 146, 172

Multivesicular release, 163, 168
Muscle
brain saves energy used by, 9
control of energy production, 91
coordination of, 61, 70-73
cost of, 48-49, 137
part of oscillator, 22-26, 34, 103
sculpting of, 401
sensors of, 84
signals to, 60, 64-68
Mushroom body, 43, 90, 94-95, 100-102

Music
social and personal benefits, xvi, 11, 76, 92, 403, 429, 431, 462n3
specializations for, 76, 359-360, 392, 403, 431, 463n16
Myelinated axons, 63, 68, 71, 87-88, $374,385,389,392$

Myelinated tracts, 42-43, 443
Myelination
benefits of, 57, 181-183
costs, 181-182, 397, 443

Naming, disconnection syndrome, 360
Nanodomain, 150
Nanofy, xvii
Natural scenes and images, power spectra $229,261-262,314,337$
Natural scene and image statistics, 198, 208, 229, 236, 259, 302, 314, 337, 339, 342, 351. See also Adapt and match; Predictive coding; Receptive field
Natural selection, xiv, 36, 58, 76, 155, 201, 405, 447n1, 447n3
can it do better? 441-444
design and designer, xx—xxi, 5
Natural statistics 352, 357. See also Natural scene and image statistics
Navigation, 96-98, 400-401, 419, 458n4

Neatening up, 6-7, 103, 224, 309-311
Negative feedback, 149, 216299
Nernst equation, 140
Neural superposition, 237-258
Neuromodulators, 30-32, 35, 38, 89, 231-233, 287. See also Dopamine; Octopamine; Serotonin
sculpt neurons and circuits, 31-32, 35, 231-233, 287
switch behaviors, 32
Neuron, 21, 155-194
basic structure and function, 156-157
build for particular task, 180
design for local processing, 179-180
design for speed over distance, 155-194
design serves a larger circuit, 184-190
efficiency, need for, 157
energy budget 190, 191-193
generic, 190
identified, 36
as key innovation, 38
as shape-shifter, 176-194
Neuronal array, 95-96, 236, 249-252.
See also Wiring efficiency, designs for connection of neuronal arrays
matched to natural statistics, 306-309
maximizes transmitted information, 249-252, 303
Neurons, numbers in given species, 22, 41, 76-77, 86, 102,448n3
Neuropeptide, 89, 388, 448n1
Neuroscience, field of endeavor, viixiii, xxi, 1, 5, 439, 444
Neurosecretory clusters. See Endocrine glands
Neurotransmitter, 129, 139, 140, 146, 158, 183, 169, 427, 452n5
NMDA receptor, 165-168, 330, 417
as coincidence detector, 167, 172, 189
role in learning and memory, 167,
412-413, 417-418

Noise, 111. See also Signal-to-noise ratio (S/N)
and information, 111-114
in protein circuit, 133-137, 151-152
Noise reduction mechanisms
in axon, 174-175, 255-258
in photoreceptors, 206, 218
in protein circuits, 133-137, 152-153,
in retinal circuits, 280-284, 309
Noise sources
axon, 174-175
diffusion, 133
ion channels, 151-152, 185
photons, 198
signaling molecules, 117, 120
synapses, 161-164
thermal, 33, 114, 120, 122, 137-138, 151, 185 (see also Brownian noise; Opsin, dark noise and thermal activation)

Nyquist limit, 79, 92, 303, 337

Object identification, 356
Occam's razor, 6
Octopamine, 35, 91, 101, 426
Ocular dominance, 344, 390-391, 405
Olfactory systems, 33-36, 43, 46, 64, 84, 92-95
architecture of, 84, 92-96, 253, 267269, 274, 454n5
investment in, 33-34, 58, 73-75, 92
Oligodendrocyte. See Glial cells
ON and OFF, parallel visual pathways, 291-322, 306-309
Operon, lac 12
Opsin
cone photoreceptor, 210
dark noise and thermal activation, 198-199, 207-209, 213-214
fly photoreceptor, 213-214
rod photoreceptor, 196-204
trade stability for rate, 207-209, 213

Optic nerve, 7, 63, 6975
astrocytes in, 181
bit rate, 85
connection to central targets, 323-325
distribution of axon diameters, 63, 321
information bottleneck, 320-322
myelination, 182
number of axons, 267
space and energy, 182, 397
spike rates in, 74, 320-322
Orexin, 64
Oscillator
chemical circuits for, 59, 130-132, 449n1 24, 103
circadian, 59, 61, 449n1
neuromechanical, 24-27, 103
Output patterns, distribution to effectors 64-70

Paddington Station, 419-420
Pain receptors, 71
Parallel array. See also Sensor array; Neuronal array; Synaptic array efficiency optimized, 135-137 noise reducer of last resort, 134
Parallel channels. See also ON and OFF formed by synaptic mechanisms, 291-322
increase efficiency by reducing rates, 291-311

Parallel fiber (cerebellar). See Granule cell

Parallel pathways, 84, 322, 325, 335, 434
Paramecium xiii, 13, 17-21, 38
Parasympathetic nervous system. See Autonomic system

Parts, catalogue or list, $5,35,125,155$, 169. See also Choosing or selecting components; Genome
Pattern generators
central, 24, 26-27, 92, 96, 98, 101
high-level (see Hypothalamus)

Pattern generators (cont.)
intermediate-level, 82
motor (see Motor, pattern generator)
Pattern generators, low-level 60, 61-62, 64
coordination by corticospinal tract, 69-70
for eye and ear movements, 81-82, 83
for flexion and extension, 83-84
manage autonomic effectors, 68
manage motor neurons for skeletal muscle, 68
regulate posture, 68
retinal input to, 316
space for, 70
where located 68, 72-73
Pattern recognition, 29, 34, 43, 86-87, 102, 167, 343
Pavlov, Ivan xiv, 11, 46
PDE. See Phosphodiesterase
Phosphodiesterase (PDE), 196, 201-204, 209
Perception
pathways to, $325,342,344,353$
threshold for, 20, 27-28, 199, 279, 323, 443
Pheromones, 30, 91
Phosphatidyl inositol biphosphate (PIP ${ }_{2}$, 215-218, 224
Phospholipase C (PLC), 196, 215-218
Photon noise, 219, 229, 231, 252, 260263, 280, 313
Photoreceptors, xviii, 7, 73-74. See also Cone photoreceptor; Fly photoreceptor; Rod photoreceptor
common coding strategies, 218-222
common physical constraints on design, 213-214
counterintuitive design, 195-197, 234
of drone bee as mate detector, 231-233
of fruit fly Drosophila cf. killer fly, Coenosia, 91
gain and gain control, 120, 147
of housefly lovespot, 92
of locust, 231-232
Photoreisomerization, 214
Phototransduction, xviii. See also Cone photoreceptor; Fly photoreceptor;
Rod photoreceptor 195-234
Piano tuners, 400-401
PIP_{2}. See Phosphatidyl inositol biphosphate
Pituitary gland, 60, 64-67, 69, 89
PLC. See Phospholipase C
Pleasure, xvi
Ponzi scheme, 283-284
Portal vessel, 67
Positive feedback, 18, 147-149, 216218, 222-224
Postural hypotension, 47
Potassium channels, 140
increase efficiency, 230-234
in myelinated axon, 182-183
role in action potential, 141, 147-149
role in basic circuit, 142-147
role in dendrites, 170, 172, 414
role in gain control, 212, 222, 230
tune membrane bandwidth, 227-234
Potassium conductance
role in gain control, 145-146, 222
and shunting inhibition, 145-146, 169
Potassium ions 140-142, 147. See also Sodium-potassium pump
driving force, 138, 141, 143, 149, 162
Potential synapses or connections, 269, 371, 382-387, 442. See also Connectivity repertoire
Prediction, 13, 401, 439
Predictive coding, 248-252,284
matching to image statistics, 251-252
matching to $\mathrm{S} / \mathrm{N}, 252$
Predictive regulation, digestive system, blood pressure, kidney, 46-48

Presynaptic subtraction. See Subtraction Protein circuit
for bandwidth and S/N, 206-210
for high gain, 197-204, 206-210
gain control in, 206
trades gain for speed, 216
Protein diversity, $5,33,35,125,155$, $164,169,210,234,451 \mathrm{n} 5$
Protein molecule. See also Allostery; Energy landscape
ability to process information, 105-107, 114-12
binding specificity, 115,121
computes in circuit, 114-124, 127-131
energy efficiency, 122-124, 141
fixed cost, 135
size, 105, 114, 116
Protons, as chemical messenger, 216
Purkinje cell, 184, 371, 376
Push-pull circuit, 308-309, 341

Quantal rates, step down, 280
Quantizing cone signal, 287-291
Quantum, unit signal at chemical synapse, 163
Quasi-secure synapse. See Synapse, quasi-secure

Ramón y Cajal, Santiago, 265, 363, 399, 447n3, 456n7, 462n4
Receptive field
adapt and match to input statistics, 251-252, 287, 303-305
computation by local circuit, 288, 302
optimal overlap, 303-305
Receptor (protein molecule), 12, 33 117-123

Receptor cluster, size range at synapses 163-165

Reciprocal inhibition. See Inhibition, reciprocal. See also Inhibition, cross
Recoding, 265-276, 279

Rectification, 276, 296-298, 322.
See also ON and OFF parallel visual pathways
Redundancy
and amplification, 120
definition, 107,111-112
and information capacity, 53, 111-112
and S/N, 111, 134-135, 303-306, 334
and sparse coding, 341-343
Redundancy reduction, 84, 93-95, 270, 327-328, 334, 386-387, 404
summary of, 433-434 (see also Send only what is needed)
Redundancy reduction mechanisms. See also Predictive coding; Lateral Inhibition
adjust response waveform, 261-263
inhibition, 111, 169, 192
ion channels, 168, 231
subtraction of mean, 248-255, 270
synapstic, 252-255, 270-272, 279, 287, 411
Reflexes, 84
Repackage signals, 327
Resistance. See Membrane; Analogue circuit elements
Response dynamics, tuned to optimize efficiency, 260-263

Resurrection, 63-64
Retina
insect, 90, 94
mammal, 277-322, 365, 369
Retinal amacrine cells
AII, 308-310, 313, 458n17
polyaxonal, 179-180
starburst, 179-180, 313, 317-318, 370
Retinal bipolar cells, 205-207, 258-259, 278, 296
enhance timing precision, 300
sparsify and rectify, 280, 291-298
step down rates, 279-281

Retinal ganglion cells, 278
core computational task, 300
function and evolution of different types, 311-319
maximize information sent by array, 303-307, 434
optimize summation, 300-303
Retinal horizontal cells
connection to cone synapse, 281, 292-293, 295
energy costs, 393-394
location in retina, 278, 280
minimize wire, 287
network function and design, 284-287
role in color coding, 337
role in computing difference-ofGaussians, 288-289
types of, 287
Retinal, 11 -cis and all trans. See Chromophore
Reversal potential, 143, 162. See also Driving force
Reverse engineering, xiii, 1, 9, 278, 311
Reversible computation, 122
Reward prediction, 44, 422-428
brain region (see Ventral tegmental area)
error, 100, 102, 422, 427-430
learning, 87, 422-425
theory of, 422
Reward signal, 418
Rod photoreceptor (mammal)
compared to other photoreceptors, 199-200, 212, 225, 453n1
costs, energy and space, 196, 212225
dimensions, 199
role in starlight, 197-207
role in twilight and daylight, 206-207, 212
single-photon response, optimization and transmission, 199, 201-206
synapse, 204-207
working with cones, 207, 210

Salt appetite, 47
Satisfaction, episodic, 399, 428
Scaffold, 133, 215-217, 410. See also Cytoskeleton
SCN. See Suprachiasmatic nucleus
Scythe of Saturn, 57-59, 89
Sebald, W.G., 57
Second messenger, 65, 68, 168, 214. See also Cyclic adenosine monophosphate, (cAMP); Cyclic guanosine monophosphate (cGMP); Calcium ions, as chemical messenger
Self-shunting, 143, 260
Send at the lowest acceptable rate, 88, 105, 123, 234
Send only what is needed, 88, 105, 111, 133, 175, 263, 348-349, 434
Sensor arrays, 76-82, 92, 212-213, 268274, 280-296
Sensors, motorized, 29, 79-82
Sensory patterns, collection of, 71-83, 96
Serotonin, 31, 35, 184, 231-233, 452n5
Shannon, Claude E., 9, 50, 52, 106-113, 123-124, 247, 450n3
Shunting inhibition, 169, 299, 343
Signal attenuation
by diffusion, 127, 159, 200, 295
by passive electrical transmission, 170-171, 255-258 (see also Adapt and match, electrical coupling to input statistics)
Signaling cost. See Cost, signaling
Signaling protein, 114
Signaling complex, 12, 15, 133-134, 137-138, 159-163, 202, 209, 234, 435
Signal-to-noise ratio (S/N). See also Adapt and match array to input S / N; Bandwidth, trade for energy, S / N;
Law of diminishing returns, governs
investment in information and S / N; Noise reduction mechanisms;
Redundancy, and S/N; Synapse designed for, high S / N
constrains information, 111-114, 135137, 226, 241-245, 248
improved by transmitting via parallel arrays of components, 134-137
increases according to square root law, 134
of input determines efficient investment, 134-137
Simple cell (V1), 338, 343-344. See also Gabor filter
adapts to improve efficiency, 343-344
advantages of sparse coding by, 341-343
circuit for Gabor filter, 339-341
distribution of outputs, 345-359
insecure synapse, 338-339
motion coding by, 344-345
and optimal coding, 337-338
Single photon response. See Fly photoreceptor; Rod photoreceptor
Sky compass, 96-97
Sleep, 91
S/N. See Signal-to-noise ratio
SNARE complex (for synaptic vesicle release), 160
Social behavior, xvi, 30-31, 76, 82, 91
and brain size, 86, 102, 401
and specialization of brains within community, 431
Sodium channel, 18, 38, 140-141
and action potential, 147-150
in basic electrical circuit, 141-147
cost of, 152-153
in dendrites, 172, 304
in myelinated axon, 182-183
specialized for task, 270, 438, 456n6
subthreshold amplification by, 172, 231-233

Sodium ions, 18, 152, 163, 166, 168. See also Sodium-potassium pump in basic electrical circuit, 140-142, 144, 149
driving force, 138, 141, 143,147,162
Sodium-potassium pump, xvii, 7-8, 138, 141-143
constrains rates, 152-153, 435-436
energy cost, 174, 212, 224, 245-246, 393-394 435-436
location, 183, 200, 212, 222, 393-394, 396
Sparse coding, 153-154, 185, 188, 192, 276
in cerebral cortex, 341-343, 353, 359, 411
Sparsify, 188, 280, 298-300, 322, 339, 438
Specialization, 34, 104, 225
Specialize, 234, 354, 438
Speech, 408
frequencies of, 76-78
Speed over distance, xviii, 18-20, 138142, 147-151, 155, 194, 234, 435
Spillover, 188-190, 281, 330, 377
Spine. See Dendritic spines
Square root law, 279-280, 283
Starburst amacrine. See Retinal amacrine cells
Starlight image and its capture, 198-200
Star-nosed mole, 79-81
Stellate cell (cerebellum), 156, 184, 186, 189, 190
Stereopsis, 344
Stick and carrot, 30-31
Stress, 30, 35, 91
Striatum, 43, 60, 69, 84, 87-88, 377378, 418-419, 425
Subfornical organ, 65, 67, 69, 448n1
Subtraction (arithmetical operation), 128, 145, 172, 253-256, 284
efficient implementation, 253
presynaptic, 253-256, 286-287

Summation, optimized, 300-304
Superior colliculus
function, 79-82, 84, 177, 324-325, 347-348, 351, 450n18
location, 60, 69, 324
Superior olivary nucleus, 74
Suprachiasmatic nucleus (SCN), 59-64, 323-324
Switches, 125, 132, 161
Symmorphosis, 13, 137, 151, 160, 230, 263
Sympathetic nervous system. See
Autonomic nervous system
Synapse
active zone,158, 186-187, 207, 212, 291-297, 328
axo-axonic, 178-179
basic structure and function, 157-154
chemical, 159-174
dendro-dendritic, 176-179
electrical, 158, 178-179
energy cost, 160-164, 168, 175, 191194, 212, 245-246, 394-395
gain control, 299-300
glomerular, 95, 186-188, 328-355, 377
inhibitory, 169-170, 178-179
insecure, 338
matched to signal, $161,166,186,248$, 259-260, 290-292, 295
postsynaptic electrical response, 163-164
quantal pulse, 163-164, 295, 299-300, 306
quasi-secure, 328-331,333, 335, 338
reciprocal, 299
structure and function, 157-174
tetradic increases efficiency, 239, 242, 247-248, 263
trade-offs in design, 164
Synapse designed for
coincidence detection, 167-168, 172, 189, 418-419
concentration of information, 328-332
high rate, 186-188, 204-207, 225, 241, 245-247, 279-291, 299
high S/N, 187-188, 204-207, 245-247, 260, 279-291, 299
local computation, 176-179
noise reduction, 204-206
reduction of redundancy, 168, 248263, 279-283
separating timescales/bandwidth, 164168, 291-296
stepping down rate, 186-188
Synaptic amplification, optimization of, 258-260
Synaptic array
cost and performance, 245-248
match capacity to input, 248
Synaptic cleft, 158-160
optimization of width, 160
Synaptic homeostasis, 162, 411-412
Synaptic noise. See Noise sources, synapses
Synaptic plasticity, short term, 404. See also Calcium ions, and synaptic plasticity and memory; Long-term potentiation; Synaptic weight
Synaptic resource allocation, 248, 332-334
Synaptic ribbon
bipolar cell, 299-300, 457,n9
cone, 275, 292-293, 295, 455n5
hair cell, 270-271
Synaptic vesicle
diameter and performance, 164, 270, 290, 296
recycling, 162-163, 193
structure and function, 158-164
Synaptic vesicle release
energy storage and cost, 161, 163
mechanism, 159-162
rate and performance, 186, 204-207, 225, 245-247, 260, 290, 299
temporal precision and bandwidth, 161, 270, 272
tonic, 197, 241, 308
Synaptic weight, 162, 286, 301-303
and memory, 404, 410-417
Synaptotagmin, 130, 160-161

Taxi drivers, 400-402
Teaching neurons
mammal, 425-427
worker honeybee, 426
Teaching signal, 401, 419, 422, 424425, 427-428
Telephone, mobile, 9
Temperature sensors, $32-33,73,74,83$, 84, 449n11

Temporal difference model, 422
Tetradic synapse. See Synapse, tetradic
Thalamic relay
design of, 325-327
six reasons for, 334-335
striatal and cerebellar inputs to, 87
why and how concentrates information, 327-329

Thalamus
function (concentrate information), 84
location in brain, 60, 69, 88
Thermal noise. See Noise sources, thermal

Thermodynamic
entropy (see Entropy, Boltzmann's thermodynamic)
fluctuations and noise, 133-134, 151
limits, xvii, 122-124, 131, 134, 137, 142, 435
Thermodynamics, 3, 122-124, 441
Three fifths rule (optimal volume fraction of synapses), 367, 375
Threshold. See also Decision, behavioral and noise
action potential, 148-149, 162
behavioral 199, 241, 279, 323
and cooperativity, 130
and decision making, 20
in fly phototransduction, 218, 222
reduces information rates, 332-333
reduces noise, $130,134,206,306,309$, 322, 437

Time constant. See Membrane time constant
Tracts, 41, 89
axon diameters (see Axon diameter;
Axon diameter distribution)
economical design, 63
Trade-off, 8, 48-49
Tranquilizers, 169
Transmitter molecule, 106. See also Hormones; Neuromodulators; Neurotransmitter; Gliotransmitters; Second messenger; Wireless signaling
Transporter proteins, xviii, $8,12,15$, 29. See also Dopamine transporter;

Glutamate transporters; Ion pumps and exchangers
at cone synapses, 281, 296
energy consumed by, 163, 168, 191-192
function in glomerular synapses, 188, 330
function in other synapses, 158, 161, 163, 164, 452n5, 461n19
glial, 183
and synaptic timescale/bandwidth, 166-169
TRP channel, 215-218
as AND gate, 218
mechanical gating of, 216
reduces dark noise, 218
Tu-4 (Tupulov), 1

Uncertainty and information, 51, 105, 107-111, 133

V1 (primary visual cortex), 325, 335353. See also Complex cell; Simple cell

V2 (secondary visual cortex), 351-353
Ventral stream, "what," 93, 356, 358 356-359, 361
Ventral tegmental area, 60, 69, 427
Vesicle. See Synaptic vesicle
Vestibular axon, 75, 267, 274-275, 377
Vision, xxi, 4, 9, 58, 74, 79, 456n4, 449n14
and central mechanisms, 319, 324325, 391
color, 284, 319
high speed, 235-264
and photoreceptors, 195, 199, 214, 220, 225, 231
Voltage sensitive channel. See Ion channels, voltage sensitive/gated
VWFA (visual word form area), 406410, 419

Wakefulness, 58-59
Weber-Fechner law, 128
Weighting function, optimal, 337, 340, 352-354
White matter, 57, 71, 73, 88, 443
benefits, 181-183
cellular composition, 181
in cerebellum, 371-373, 379, 395
in cerebral cortex, 346-347, 381-387, 395, 400
costs and efficiency, 181-182, 395
Wireless signaling
in brain, 42, 64-67, 69, 89-90, 425-428
and efficiency, 131, 137, 363, 435
in protein circuit, 117, 119, 120
Wireless regulation, 67
Wires (axons and dendrites)
need for, 67-68
total length in human nervous system, 460n1
Wiring costs, minimization, 36-37
Wiring diagram, lamina cartridge, 239, 242

Wiring efficiency, xix, 363-398. See also Component placement; Three fifths rule
biophysical constraints on, 365-367
in cerebellum, 185-190, 369-389
in cerebral cortex, 379-389
and connection of neuronal arrays, 367, 369, 379
and folding, 378-379
improved by matching meshworks, 368, 370-371
increased by subdividing areas, 389-392
in lamina cartridge, 238-241
and potential contacts, $366,371,379$, 382-387
in retina, 367-370
Wiring efficiency, axonal and dendritic branching, xix, 71-73, 173, 363-368
cerebellum,185-190, 370-380
cerebral cortex, 380-384, 387-389
retina, 367-380,457n15
spines, 366, 371, 375-377, 379, 383, 387-388

Wiring efficiently for integrated movement, 72-73
Wiring preserves information, 236-241
Working memory, 358
Worm. See Caenorhabditis elegans

Zen, 16

