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 Neuroscience abounds with stories of intellectual and technical daring. 
Every peak has its Norgay and Hillary, and we had imagined telling some 
favorite stories of heroic feats, possibly set off in little boxes. Yet, this has 
been well done by others in various compendia and reminiscences (Straus-
field, 2012; Glickstein, 2014; Kandel, 2006; Koch, 2012). Our main goal is 
to evince some principles of design and note some insights that follow. 
Stories deviating from this intention would have lengthened the book and 
distracted from our message, so we have resisted the natural temptation to 
memoir-ize. 

 Existing compendia tend to credit various discoveries to particular 
individuals. This belongs to the storytelling. What interest would there 
be to the Trojan Wars without Odysseus and Agamemnon? On the other 
hand, dropping a name here and there distorts the history of the 
discovery process — where one name may stand for a generation of thought-
ful and imaginative investigators. Consequently, in addition to forgoing 
stories, we forgo dropping names — except for a very few who early enunci-
ated the core principles. Nor do the citations document who did what first; 
rather they indicate where supporting evidence will be found — often 
a review. 

 Existing compendia often pause to explain the ancient origins of various 
terms, such as cerebellum or hippocampus. This might have been useful 
when most neuroscientists spoke a language based in Latin and Greek, but 
now with so many native speakers of Mandarin or Hindi the practice seems 
anachronistic, and we have dropped it. Certain terms may be unfamiliar to 
readers outside neuroscience, such as physicists and engineers. These are 
italicized at their first appearance to indicate that they are technical ( cation 
channel ). A reader unfamiliar with this term can learn by Googling in 210 
ms that  “ cation channels  are pore-forming proteins that help establish and con-
trol the small voltage gradient across the plasma membrane of all living cells  . . .   ”  
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(Wikipedia). So rather than impede the story, we sometimes rely on you to 
Google. 

 Many friends and colleagues long aware of this project have wondered 
why it has taken so long to complete. Some have tried to encourage us to 
let it go, saying,  “ After all, it needn ’ t be perfect  . . .  ”  To which we reply, 
 “ Don ’ t worry, it isn ’ t! ”  It ’ s just that more time is needed to write a short 
book than a long one. 
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 A laptop computer resembles the human brain in volume and power use —
 but it is stupid. Deep Blue, the IBM supercomputer that crushed Grandmas-
ter Garry Kasparov at chess, is 100,000 times larger and draws 100,000 times 
more power (figure I.1). Yet, despite Deep Blue ’ s excellence at chess, it too is 
stupid, the electronic equivalent of an idiot savant. The computer operates 
at the speed of light whereas the brain is slow. So, wherein lies the brain ’ s 
advantage? A short answer is that the brain employs a hybrid architecture 
of superior design. A longer answer is this book — whose purpose is to iden-
tify the sources of such computational efficiency.    

 The brain ’ s inner workings have been studied scientifically for more 
than a century — initially by a few investigators with simple methods. In the 
last 20 years the field has exploded, with roughly 50,000 neuroscientists 
applying increasingly advanced methods. This outburst amounts to 1 mil-
lion person-years of research — and facts have accumulated like a mountain. 
At the base are detailed descriptions :  of neural connections and electrical 
responses, of functional images that correlate with mental states, and of 
molecules such as ion channels, receptors, G proteins, and so on. Higher up 
are key discoveries about mechanism: the action potential, transmitter 
release, synaptic excitation and inhibition. Summarizing this Everest of 
facts and mechanisms, there exist superb compendia (Kandel et al., 2012; 
Purves et al., 2012; Squire et al., 2008). 

 But what if one seeks a book to set out principles that explain how our 
brain, while being far smarter than a supercomputer, can also be far smaller 
and cheaper? Then the shelf is bare. One reason is that modern neurosci-
ence has been  “ technique driven. ”  Whereas in the 1960s most experiments 
that one might conceive were technically impossible, now with methods 
such as patch clamping, two-photon microscopy, and functional magnetic 
resonance imaging (fMRI), aided by molecular biology, the situation has 
reversed, and it is harder to conceive of an experiment that can not  be done. 

 Introduction 
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Consequently, the idea of pausing to distill principles from facts has lacked 
appeal. Moreover, to many who ferret out great new facts for a living, it has 
seemed like a waste of time. 

 Yet, we draw inspiration from Charles Darwin, who remarked,  “ My mind 
seems to have become a kind of machine for grinding general laws out of 
large collections of facts ”  (Darwin, 1881). Darwin, of course, is incompara-
ble, but this is sort of how our minds work too. So we have written a small 
book — relative to the great compendia — intending to beat a rough path up 
 “ Data Mountain ”  in search of organizing principles.   

 Figure I.1 
  How do neural circuits use space and power so efficiently?  Computer: Image  http://

upload.wikimedia.org/wikipedia/commons/d/d3/IBM_Blue_Gene_P_supercomputer

.jpg . Brain: Photo by UW-Madison, University Communications  ©  Board of Regents 

of the University of Wisconsin System. 
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 Principles of engineering 

 The brain is a physical device that performs specific functions; therefore, its 
design must obey general principles of engineering. Chapter 1 identifies 
several that we have gleaned (not being engineers) from essays 
and books on mechanical and electrical design. These principles do not 
address specific questions about the brain, but they do set a context for 
ordering one ’ s thoughts — especially helpful for a topic so potentially intim-
idating. For example, it helps to realize that neuroscience is really an 
exercise in  “ reverse engineering ”  — disassembling a device in order to 
understand it. 

 This insight points immediately to a standard set of questions that we 
suppose are a mantra for all  “ reverse engineers ” :  What does it do? What are 
its specifications? What is the environmental context?  Then there are com-
mandments, such as  Study the interfaces  and  Complicate the design.  The latter 
may puzzle scientists who, in explaining phenomena, customarily strive for 
simplicity. But engineers focus on designing effective devices, so they have 
good reasons to complicate.  1   This commandment, we shall see, certainly 
applies to the brain. 

 Why a brain? 

 To address the engineer ’ s first question, we consider why an animal should 
need a brain — what fundamental purpose does it serve and at what cost to 
the organism? Chapter 2 begins with a tiny bacterium,  Escherichia coli  
which succeeds  without  a brain, in order to evaluate what the bacterium can 
do and what it cannot. Then on to a protozoan,  Paramecium caudatum , still 
a single cell and brainless, but so vastly larger than  E. coli  (300,000-fold) 
that it requires a faster type of signaling. This prefigures long-distance sig-
naling by neurons in multicellular organisms. 

 The chapter closes with the tiny nematode worm,  Caenorhabditis elegans , 
which does have a brain — with exactly 302 neurons. This number is small 
in absolute terms, but it represents nearly one third of the creature ’ s total 
cells, so it is a major investment that better turn a profit, and it does. For 
example, it controls a multicellular system that finds, ingests, and digests 
bacteria and that allows the worm to recall for several hours the locations 
of favorable temperatures and bacterial concentrations. 

 Humans naturally tend to discount the computational abilities of small 
organisms — which seem, well  . . . , mentally deficient — nearly devoid of 
learning or memory. But small organisms  do  learn and remember. It ’ s just 
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that their memories match their life contexts: they remember only what 
they need to and for just long enough. Furthermore, the mechanisms that 
they evolved for these computations are retained in our own neurons — so 
we shall see them again. 

 The progression bacterium  →  protozoan  →  worm is accompanied by 
increasing computational complexity. It is rewarded by increasing capacity 
to inhabit richer environments and thus to move up the food chain: proto-
zoa eat bacteria, and worms eat protozoa. As engineering, this makes per-
fect sense: little beasts compute only what they must; thus they pay only 
for what they use. This is equally true for beasts with much larger brains 
discussed in chapter 3. 

 Why a bigger brain? 

 The brain of a fruit fly ( Drosophila melanogaster ) is 350-fold larger than 
 C. elegans  ’ , and the brain of a human ( Homo sapiens ) is a million-fold larger 
than the fly ’ s. These larger brains emerge from the same process of natural 
selection as the smaller ones, so we should continue to expect from them 
nothing superfluous — only mechanisms that are essential and pay for 
themselves. We should also expect that when a feature works really well, it 
will be retained — like the wheel, the paper clip, the aluminum beer can, 
and the transistor (Petroski, 1996; Arthur, 2009). We note design features 
that brains have conserved (with suitable elaborations) across at least 400 
million years of natural selection. These features in the human brain are 
often described as  “ primitive ”  — reptilian — reflecting what are considered 
negative aspects of our nature. But, of course, any feature that has been 
retained for so long must be pretty effective. 

 This chapter identifies the core task of all brains: it is to regulate the 
organism ’ s internal milieu — by responding to needs and, better still, by 
anticipating needs and preparing to satisfy them before they arise. The 
advantages of omniscience encourage omnipresence. Brains tend to become 
universal devices that tune all internal parameters to improve overall stabil-
ity and economy.  “ Anticipatory regulation ”  replaces the more familiar 
 “ homeostatic regulation ”  — which is supposed to operate by waiting for 
each parameter to deviate from a  “ set point, ”  then detecting the error and 
correcting it by feedback. Most physiological investigations during the 20th 
century were based on the homeostatic model — how kidney, gut, liver, pan-
creas, and so on work independently, despite Pavlov ’ s early demonstration 
of the brain ’ s role in anticipatory regulation (Pavlov, 1904). But gradually 
anticipatory control has been recognized. 
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 Anticipatory regulation offers huge advantages.  2   First, it matches overall 
response capacity to fluctuations in demand — there should always be 
enough but not too much. Second, it matches capacity at each stage in the 
system to anticipated needs downstream, thus threading an efficient path 
between excess capacity (costly storage) and failure from lack of supplies. 
Third, it resolves potential conflict between organs by setting and shifting 
priorities. For example, during digestion it can route more blood to the gut 
and less to muscle and skin, and during exercise it can reverse this priority. 
This allows the organism to operate with a smaller blood volume than 
would otherwise be needed. Finally, it minimizes errors — which are poten-
tially lethal and also cause cumulative damage. 

 Anticipatory regulation includes behavior 

 An organ that anticipates need and regulates the internal milieu by over-
arching control of physiology would be especially effective if it also regu-
lated behavior. For example, it could reduce a body ’ s need for physiological 
cooling (e.g., sweating — which costs energy and resources — sodium and 
water) by directing an animal to find shade. Moreover, it could evoke the 
memory of an unpleasant heatstroke to remind the animal to take anticipa-
tory measures (travel at night, carry water). Such anticipatory mechanisms 
are driven ceaselessly by  memories  of hunger, cold, drought, or predation: 
 Pick the beans! Chop wood! Build a reservoir! Lock the door!  

 The memories of danger and bad times that shape our behavior can be 
our own, but often they are stored in the brains of our parents and grand-
parents. We are reared with  their  nightmares — the flood, the drought, the 
famine, the pogrom. Before written history, which spans only 6,000 years, 
all lessons that would help one anticipate and thus avoid a lethal situation 
could be transmitted only by oral tradition — the memory of a human life 
span. Given that the retention of memories in small brains corresponds to 
their useful span, and that retention has a cost, human memory for great 
events should remain vivid with age whereas recent memories of lesser 
events should fade (chapter 14). 

 The most persistent dangers and opportunities, those extending far 
beyond a few generations, eventually become part of the neural wiring. 
Monkeys universally fear snakes, and so do most humans — suggesting that 
the response was encoded into brain structure before the lines split — on the 
order of 35 million years. But beyond alertness for predators, primate soci-
eties reserve their most acute observations and recall for relationships 
within the family and the troop. The benefit is that an individual ’ s chances 
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for survival and reproduction are enhanced by the  group ’ s  ability to antici-
pate and regulate. The cost is that the individual must continuously sense 
the social structure — in its historical context — to receive aid when needed 
and to avoid being killed or cast out (Cheney & Seyfarth, 2007). 

 Consequently, primate brains have expanded significantly in parts con-
cerned with social recognition and planning — such as prefrontal cortex and 
amygdala. Humans greatly expand these areas and also those for social 
communication, such as for language, facial expression, and music. These 
regions serve both the cooperative and the competitive aspects of anticipa-
tory regulation to an awesome degree. They account for much of our brain 
structure and many of our difficulties. 

 Flies too show anticipatory behavior — to a level consonant with their 
life span and environmental reach. A fly need not wait for its blood sugar 
to fall dangerously low, nor for its temperature to soar dangerously high, 
before taking action. Instead its brain expresses prewired commands:  Find 
fruit! In a cool spot!  Anticipatory commands are often tuned to environmen-
tal regularities that predict when and where a resource is most likely to 
appear — or disappear. Thus, circadian rhythms govern foraging and sleep. 
Seasonal rhythms, which broadly affect resource availability, govern mat-
ing and reproduction. Consequently, specific brain hormones tuned to day 
length send orders to prewired circuits:  Court a mate! Intimidate a 
competitor!  

 What drives behavior? 

 To ensure that an organism will execute these orders, there are neural 
mechanisms to make it  “ feel bad ”  when a job is undone and  “ feel good ”  
when it has succeeded. These are circuits whose activity humans experi-
ence, respectively, as  “ anxiety ”  and  “ pleasure. ”  Of course, we cannot know 
what worms or flies experience — but the same neurochemicals drive similar 
behaviors. This is one wheel that has certainly been decorated over hun-
dreds of millions of years, but not reinvented. 

 To actually accomplish a task is vastly complicated. Reconsider Deep 
Blue ’ s task. Each side in chess has 16 pieces — that move one at a time, 
slowly (minutes), and only in two dimensions. Each piece is constrained to 
move only in certain ways, and some pieces repeat so that each side has 
only six different types of motion. This relatively simple setup generates so 
many possible moves that to evaluate them requires a Deep Blue. 

 But the organ responsible for anticipatory regulation takes continuous 
data from every sensory neuron in the organism — both internal and 
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external — plus myriad hormones and other chemicals. While doing so, it is 
calculating in real time — milliseconds — how to adjust every body compo-
nent inside and out. It is flying the fly, finding its food, shade, and mate; it 
is avoiding predators and intimidating competitors — all the while tweaking 
every  internal  parameter to match what is about to be needed. Thus, it 
seems fair to say that Deep Blue is stupid even compared to a fruit fly. This 
defines sharply the next engineering question: what constrains the design 
of an effective and efficient brain? 

 What constrains neural design? 

 When Hillel was asked in the first century  B.C.E.  to explain the whole Torah 
while standing on one leg, he was ready:  “ That which is hateful to you, do 
not unto another. The rest is commentary — and now go study. ”  

 There is a one-leg answer for neural design:  “ As information rate rises, 
costs rise disproportionately. ”  For example, to transmit more information 
by spikes requires a higher spike rate. Axon diameter rises linearly with 
spike rate, but axon volume and energy consumption rise as the diameter 
squared. Thus, the essence of neural design:  “ Send only information that is 
needed, and send it as slowly as possible ”  (chapter 3). This key injunction 
profoundly shapes the brain ’ s macroscopic layout, as explained in chapter 
4. We hope that readers will  . . .  go study. 

 If spikes were energetically cheap, their rates would matter less. How-
ever, a 100-mV spike requires far more current than a 1-mV response evoked 
by one packet of chemical transmitter. Obviously then, it is cheaper to com-
pute with the smaller currents. This exemplifies another design principle: 
minimize energy per  bit  of information by computing at the finest possible 
level. Chapter 5 identifies this level as a change in protein folding on the 
scale of nanometers. Such a change can capture, store, and transmit one bit 
at an energetic cost that approaches the thermodynamic limit. Chapter 6 
explains how proteins couple to form intracellular circuits on the scale of 
micrometers, and chapter 7 explains how a neuron assembles such circuits 
into devices on a scale of micrometers to millimeters. 

 It emerges that to compute most efficiently in space and energy, neural 
circuits should  nanofy : 

 1. Make each component irreducibly small: a functional unit should be a 
single protein molecule (a channel), or a linear polymer of protein sub-
units (a microtubule), or a sandwich of monomolecular layers (a 
membrane). 
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 2. Combine irreducible components: a membrane to separate charge and 
thus permit a voltage, a protein transporter to pump ions selectively 
across the membrane and actually separate the charges (charge the bat-
tery), a pore for ions to flow singly across the membrane and thus create 
a current, a  “ gate ”  to start and stop a current, an amplifier to enlarge the 
current, and an adaptive mechanism to match a current to circumstance. 

 3. Compute with  chemistry  wherever possible: regulate gates, amplifiers, 
and adaptive mechanisms by binding/unbinding small molecules that 
are present in sufficient numbers to obey the laws of mass action. 
Achieve speed with chemistry by keeping the volumes small. 

 4. For speed over distance compute  electrically : convert a signal computed 
by chemistry to a current that charges membrane capacitance to spread 
passively up to a millimeter. For longer distance, regenerate the current 
by appropriately clustered voltage-gated channels. 

 Design in the visual system 

 Having discussed protein computing and miniaturization as general routes 
to efficiency, we exemplify these points in an integrated system —
 phototransduction (chapter 8). The engineering challenge is to capture 
light reflected from objects in the environment in order to extract informa-
tive patterns to guide behavior. Transduction employs a biochemical cas-
cade with about half a dozen stages to amplify the energy of individual 
photons by up to a million-fold while preserving the information embod-
ied as signal-to-noise ratio (S/N) and bandwidth. We explain why so many 
stages are required. 

 The photoreceptor signal, once encoded as a graded membrane voltage, 
spreads passively down the axon to the synaptic terminal. There the ana-
logue signal is digitized as a stream of synaptic vesicles. The insect brain can 
directly read out this message with very high efficiency because the dis-
tance is short enough for passive signaling (chapter 9). The mammal brain 
can not  directly read out this vesicle stream because the distance is too great 
for passive signaling. The mammal eye must transmit by action potentials, 
but the photoreceptor ’ s analogue signal contains more information than 
action potentials can encode. Therefore, on-site retinal processing is 
required (chapters 10, 11). 

 Principles at higher levels 

 The principles of neural design at finer scales and lower levels also apply at 
larger scales and higher levels. For example, they can explain why the first 
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visual area (V1) in cerebral cortex enormously expands the number and 
diversity of neurons. And why diverse types project in parallel from V1 to 
other cortical areas. And why cortex uses many specific areas and arranges 
them in a particular way. The answers, as explained in chapter 12, are 
always the same: diverse circuits allow the brain to send only information 
that is needed and to send it at lower information rates. This holds compu-
tation to the steep part of the benefit/cost curve. 

 Wiring efficiency 

 Silicon circuits with very large-scale integration strive for optimal layout —
 to achieve best performance for least space, time, and energy. Neural cir-
cuits do the same and thereby produce tremendous diversity of neuronal 
structure at all spatial scales. For example, cerebellar output neurons ( Pur-
kinje cells ) use a two-dimensional dendritic arbor whereas cerebral output 
neurons ( pyramidal cells ) use a three-dimensional arbor. Both circuits 
employ a layered architecture, but the large Purkinje neurons lie  above  a 
layer of tiny neurons whereas the large pyramidal neurons lie  below  the 
smaller neurons. Cerebellar cortex folds intensely on a millimeter scale 
whereas cerebral cortex on this scale is smooth. 

 Such differences originate from a ubiquitous biophysical constraint: the 
irreducible electrical resistance of neuronal cytoplasm. Passive signals 
spread spatially and temporally only as the square root of dendritic diame-
ter ( √ d). This causes a second law of diminishing returns: a dendrite, to 
double its conduction distance or halve its conduction delay, must qua-
druple its volume. This prevents neural wires from being any finer and pre-
vents local circuits from being any more voluminous. In both cases 
conduction delays would grow too large. The constraint on volume drives 
efficient layout: equal lengths of dendrite and axon and an optimum pro-
portion of wire and synapses. Chapter 13 will explain. 

 Designs for learning 

 All organisms use new information to better anticipate the future. Thus, 
learning is a deep principle of biological design, and therefore of neural 
design. Accordingly, the brain continually updates its knowledge of every 
internal and external parameter — which means that learning is also a brain 
function. As such, neural learning is subject to the same constraints as all 
other neural functions. It is a design principle that must obey all the others. 

 To conserve space, time, and energy, new information should be stored 
at the site where it is processed and from whence it can be recalled without 
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further expense. This is the synapse. Low-level synapses relay short-term 
changes in input, so their memories should be short, like that of a bacte-
rium or worm. These synapses should encode at the cheapest levels, by 
modifying the structure and distribution of proteins. High-level synapses 
encode conclusions after many stages of processing, so their memories 
deserve to be longer and encoded more stably, by enlarging the synapse and 
adding new ones. 

 A new synapse of diameter (d) occupies area on the postsynaptic mem-
brane as d 2  and volume as d 3 . Because adding synapses increases costs dis-
proportionately, learning in an adult brain of fixed volume is subject to 
powerful space constraints. For every synapse enlarged or added, another 
must be shrunk or removed. Design of learning must include the principle 
 “ save only what is needed. ”  Chapter 14 explains how this plays out in the 
overall design. 

 Design and designer 

 This book proposes that many aspects of the brain ’ s design can be under-
stood as adaptations to improve efficiency under resource constraints. 
Improvements to brain efficiency must certainly improve fitness. Darwin 
himself noted that  “ natural selection is continually trying to economize 
every part of the organization ”  and proposed that instincts, equivalent in 
modern terms to  “ genetically programmed neural circuits, ”  arise by natural 
selection (Darwin, 1859). So our hypothesis breaks no new conceptual 
ground. 

 A famous critique of this hypothesis argues that useless features might 
survive pruning if they were simply unavoidable accompaniments to 
important features (Gould & Lewontin, 1979). This possibility is undeni-
able, but if examples are found for neural designs, we expect them to be rare 
because each failure to prune what is useless would render the brain less 
efficient — more like Deep Blue — whereas the brain ’ s efficiency exceeds 
Deep Blue ’ s by at least 10 5 . 

 So what do we claim  is  new? The energy and space constraints have been 
known for a while, as have various principles, such as  “ minimize wire. ”  The 
present contribution seems to lie in our gathering various rules as a concise 
list and in systematically exemplifying them across spatial and functional 
scales. When a given rule was found to apply broadly with constant explan-
atory power, we called it a  “ principle. ”  Ten are listed as a round number. As 
with the Biblical Commandments and the U.S. Bill of Rights, some readers 
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will find too many (redundancy) and others too few. We are satisfied to 
simply set them out for consideration. 

 Some readers may object to the expression  “ design ”  because it might 
imply a design er , which might suggest creationism. But  “ design ”  can mean 
 “  the arrangement of elements or details , ”  also  “  a scheme that governs function-
ing . ”  These are the meanings we intend. And, of course, there  is  a designer —
 as noted, it is the process that biologists understand as natural selection.  3   

 Limits to this effort 

 Our account rests on facts that are presently agreed upon. Where some 
point is controversial, we will so note, but we will not resort to imagined 
mechanisms. Our goal is not to explain how the brain  might  work, but 
rather to make sense of what is already known. Naturally what is  “ agreed 
upon ”  will shift with new data, so the story will evolve. We gladly acknowl-
edge that this account is neither complete nor timeless. 

 We omit  so  much — many senses, many brain regions, many processes —
 and this will disappoint readers who study them. We concentrate on vision 
partly because it has dominated neuroscience during its log growth phase, 
so that is where knowledge goes deepest at all scales. Also we have person-
ally concentrated on vision, so that is where our own knowledge is deepest. 
Finally, to apply principles across the full range of scales, but keep the book 
small, has required rigorous selection. We certainly hope that workers in 
other fields will find the principles useful. If some prove less than universal 
and need revision, well, that ’ s science. The best we can do with Data Moun-
tain really is just to set a few pitons up the south face. 
 





 During the Cold War, the Soviets would occasionally capture a U.S. military 
aircraft invading their airspace, and with comparable frequency a defecting 
Soviet pilot would set down a MiG aircraft in Japan or Western Europe. 
These planes would be instantly swarmed by engineers — like ants to a drop 
of honey — with one clear goal: to  “ reverse engineer ”  the craft. This is the 
process of discovering how a device works by disassembling and analyzing 
in detail its structure and function. Reverse engineering allowed Soviet 
engineers to rather quickly reproduce a near perfect copy of the U.S. B-29 
bomber, which they renamed the Tu-4. Reverse engineering still flourishes 
in military settings and increasingly in civilian industries — for example, in 
chip and software development where rival companies compete on the 
basis of innovation and design. 

 The task in reverse engineering is accelerated immensely by prior knowl-
edge. Soviet engineers knew the B-29 ’ s purpose — to fly. Moreover, they 
knew its performance specifications: carry 10 tons of explosive at 357 mph 
at an altitude of 36,000 feet with a range at half-load of 3,250 miles. They 
also knew how various parts function: wings, rudder, engines, control 
devices, and so forth. So to grasp how the bomber must work was straight-
forward. Once the  “ how ”  of a design is captured, a deeper goal can be 
approached: what a reverse engineer really seeks is to understand the  why  
of a design —  why  has each feature been given its particular form? And  why  
are their relationships just so? This is the step that reveals principles; it is 
the moment of  “ aha! ”  — the thrilling reward for the long, dull period of 
gathering facts. 

 Neuroscience has fundamentally the same goal: to reverse engineer the 
brain (O ’ Connor, Huber,  &  Svoboda, 2009). What other reason could there 
be to invest 1 million person-years (so far) in describing so finely the brain ’ s 
structure, chemistry, and function? But neuroscience has been somewhat 
handicapped by the lack of a framework for all this data. To some degree we 
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resemble the isolated tribe in New Guinea that in the 1940s encountered a 
crashed airplane and studied it without comprehending its primary func-
tion. Nevertheless, we can learn from the engineers: we should try to state 
the brain ’ s primary goal and basic performance specifications. We should 
try to intuit a role for each part. By placing the data in some framework, we 
can begin to evaluate how well our device works and begin to consider the 
why of its design. We will make this attempt, even though it will be incom-
plete, and sometimes wrong. 

 Designing de novo 

 Engineers knows that they cannot create a general design for a general 
device — because there is no general material to embody it.  1,2   Engineers 
must proceed  from  the particular  to  the particular. So they start with a list of 
questions: Precisely what is this machine supposed to accomplish? How fast 
must it operate and over what dynamic range? How large can it be and how 
heavy? How much power can it use? What error rates can be tolerated, and 
which type of error is most worrisome — a false alarm or a failure to respond? 
The answers to these questions are design specifications. 

 Danger lurks in every vague expression:  “ very fast, ”   “ pretty small, ”  
 “ power-efficient, ”   “ error free. ”  Generalities raise instant concern because 
one person ’ s  “ very ”  is another ’ s  “ barely. ”  To a biologist,  “ brief ”  is a millisec-
ond (10  – 3  s), but to an electronic engineer,  “ brief ”  is a nanosecond (10  – 9  s), 
and the difference is a millionfold. Engineers knows that no device can be 
truly instantaneous or error free — so they know to ask how high should we 
set the clock rate, how low should we hold the error rate, and at 
what costs? 

 The engineer realizes that every device operates in an environment and 
that this profoundly affects the design. A car for urban roads can be low 
slung with slender springs, two-wheel drive, and a transmission geared for 
highway speeds. But a pickup for rough rural roads needs a higher under-
carriage, stouter springs, four-wheel drive, and a transmission geared for 
power at low speeds. The decision regarding which use is more likely (urban 
or rural) suffuses the whole design. Moreover an engineer always wants to 
quantify the particular environment to estimate the frequencies of key fea-
tures and hazards. 

 One assumes, for example, that before building a million pickups, some-
one at Nissan bothered to measure the size distribution of rocks and 
potholes on rural roads. Then they could calculate what height of undercar-
riage would clear 99.99% of these obstructions and build to that standard. 
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Knowing the frequencies of various parameters allows rational consider-
ation of safety factor and robustness: how much extra clearance should be 
allowed for the rare giant boulder; how much thicker should the springs be 
for the rare overload? Such considerations immediately raise the issue of 
expense — for a sturdier machine can always be built, but it will cost more 
and could be less competitive. So design and cost are inseparable. 

 Of course, environments change. Roads improve — and then deteriorate —
 so vehicle designs must take this into account. One strategy is to design a 
vehicle that is cheap and disposable and then bring out new models fre-
quently. This allows adaptations to environmental changes to appear in the 
next model. Another strategy is to design a more expensive vehicle and 
invest it with intrinsically greater adaptive capacity — for example, adjust-
able suspension. Both designs would operate under the same basic princi-
ples; the main difference would lie in their strategies for adaptation to 
changes in demand. In biology the first strategy favors small animals with 
short lives; the second strategy, by conserving time and effort already 
invested, favors larger animals with longer lives. As we will see, these com-
plementary strategies account for many differences between the brains of 
tiny worms, flies, and humans. 

 Design evolves in the context of  competition . Most designs are not de 
novo but rather are based upon an already existing device. The new version 
tries to surpass the competition: lighter, faster, cheaper, more reliable — but 
each advance is generally modest. To totally scrap an older model and start 
fresh would cost too much, take too long, and so on. However, suppose a 
small part could be modified slightly to improve one factor — or simply 
make the model prettier? The advance might pay for itself because the 
device would compete better with others of the same class. A backpacker 
need not outrun the bear — just a companion — and the same is true for 
improvements in design. The revolutionary Model T Ford was not the best 
car ever built, but it was terrific for its time: cheaper and more reliable than 
its competitors. 

 How engineers design 

 An engineer takes account of the laws of physics, such as mechanics and 
thermodynamics. For example, a turbine works most efficiently when the 
pressure drop is greatest, so this is where to place the dam or hydro-tunnel. 
Similarly, power generation from steam is most efficient at high tempera-
tures, which requires high pressures. But using pressure to do work is most 
efficient when the pressure change is infinitesimally small — which takes 
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infinitely long. There is no  “ right ”  answer here, but the laws of physics 
govern the practicality of power generation and power consumption — and 
thus affect many industrial designs. 

 Similarly, a designer is aware of unalterable physical properties. Certain 
particles move rapidly: photons in a vacuum (3  ×  10 8  m in a second). In 
contrast, other particles move slowly: an amino acid diffusing in water (~1 
 μ m in a millisecond) — a difference of 10 14 . So for a communications engi-
neer to choose photons to send a message would seem like a  “ no brainer ”  —
 except that actual brains rely extensively on diffusion! This point will be 
developed in chapters 5 and 6. 

 Designers pay particular attention to the interfaces where energy is 
transferred from one medium to another. For example, an automobile 
designed for a V-8 engine needs wide tires to powerfully grip the road. 
This is the final interface, tire-to-road, through which the engine ’ s power is 
delivered; so to use narrow, lightly treaded tires would be worse than 
pointless — it would be lethal. More generally it is efficient to match 
components — for their operating capacities, robustness, reliability, and so 
on. Efficient designs will match the capacities of all parts so that none are 
too large or too small. 

 Matching may be achieved straightforwardly where the properties of the 
input are predictable, such as a power transformer driven by the line volt-
age, or a transistor switch in a digital circuit. But the engineer knows that 
the real world is more variable and allows for this in the design — by provid-
ing greater tolerances, or adjusting the matches with feedback. And to esti-
mate what tolerances or what sorts of feedback are needed, the 
engineer — once again — must analyze the statistics of the environment. 
Chapters 8 – 12 will do this for vision. 

 What components? 

 Having identified a specific task, its context and constraints, a designer 
starts to sketch a device. The process draws on deep knowledge of the 
available components — their intrinsic properties (both advantageous and 
problematic), their functional relationships, robustness, modifiability, and 
cost. A mechanical engineer draws from a vast inventory of standard 
bolts, gears, and bearings and exploits the malleability and versatility of 
plastics and metal alloys to tailor new parts to particular functions. For 
example, Henry Ford, in designing his 1908 Model T, solved the mechani-
cal problem of axles cracking on roads built for horses by choosing a 
tougher, lighter steel alloyed with vanadium.  3   An electrical engineer solves 
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an electronic problem by drawing on a parts catalog or else drawing on 
known properties and costs to design a new chip. Consequently, as models 
advance, the number of parts grows explosively: the Boeing 747 comprises 
6 million parts. 

 In these respects the genome is a parts catalog — a list of DNA sequences 
that can be transcribed into RNA sequences ( “ messengers ” ) that in turn can 
be translated into amino acid sequences — to create proteins that serve sig-
naling in innumerable ways. This extensive genetic parts list is not the end, 
but rather a start — for there are vast opportunities for further innovation 
and tailoring (see chapter 5). An existing gene can be duplicated and then 
modified slightly, just as an engineer would hope, to produce an alternative 
function. For example, the protein ( opsin ) that is tuned to capture light at 
middle wavelengths (550 nm) has been duplicated and retuned in evolu-
tion by changing only a few amino acids out of several hundred to capture 
longer wavelengths (570 nm). This seemingly minor difference supports 
our ability to distinguish red from green. 

 At the next level, a single DNA sequence can be transcribed to produce 
shorter sequences of messenger RNA that can be spliced in alternative pat-
terns to produce subtle but critical variants. For example, alternative splic-
ing produces large families of receptor proteins with subtly different binding 
affinities — which give different time constants. Other variants desensitize 
at different rates. How these variations are exploited in neural design will be 
discussed, as will the capacity to further innovate and tailor the actual pro-
teins by binding small ions and covalently adding small chemical groups 
(posttranslational modification). In short, with 20% of our genome devoted 
to coding neural signaling molecules, plus the additional variation allowed 
by duplication, alternative splicing, and posttranslational modification, the 
brain draws from a large inventory of adaptable parts. The versatility of 
these components, as explained further in chapter 5, is a major key to the 
brain ’ s success. 

 At a still higher level biological design builds on preexisting structures 
and processes. Where a need arises from an animal ’ s opportunity to exploit 
an abundant resource, natural selection can fashion a new organ from an 
old one that served a different purpose. Famously, for example, the panda ’ s 
 “ thumb ”  evolved not from the first digit that humans inherited from earlier 
primates but from a small bone in the hand of its ancestors that served a 
different purpose (Gould, 1992). Thus, efficient designs can be reached via 
natural selection from various directions and various developmental 
sequences. This was recognized a century ago by a key founder of neurosci-
ence, Santiago Ram ó n y Cajal (1909): 
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 We certainly acknowledge that developmental conditions contribute to morpho-

logical features. Nevertheless, although cellular development may reveal how a par-

ticular feature assumes its mature form, it cannot clarify the utilitarian or teleologi-

cal forces that led developmental mechanisms to incorporate this new anatomical 

feature. (edited for brevity) 

 Neatening up 

 A designer ’ s list of needed functions might also reveal several that could be 
accomplished with a single, well-placed component. This has been termed 
 “ neatening up, ”  which Ford certainly did for the Model T. For example, 
rather than manufacture separate cylinders and bolt them together (the 
standard method), he cast the engine as a solid block with holes for the 
cylinders. Moreover, rather than use a separate belt to drive the magneto 
(which provides spark to initiate combustion), he built magnets into the 
engine ’ s flywheel — thereby reducing parts and weight. The sum of his 
efforts to improve components (vanadium steel) and design (flexible sus-
pension) and neaten up (engine block, magneto) produced a model that 
was 25% lighter and delivered 25% more horsepower per pound than the 
competition, such as the Buick Tourabout. 

 Brain design reflects this process of neatening up. For example, one syn-
apse can simultaneously serve two different pathways: fast and slow; ON 
and OFF. One neuron can alternately serve two different circuits: one dur-
ing daylight and another during starlight (chapter 11). But this strategy 
must not compromise functionality. 

 Complicate but do not duplicate 

 Scientists are constantly lashed with the strop from Occam ’ s razor. That is, 
we are forcefully encouraged to keep our explanatory models and theories 
 simple . So the following design principle seems, not merely surprising, but 
actually counterintuitive:  if one design is simple and another complicated, 
choose the complicated  (Glegg, 1969; Pahl et al., 2007). Here is the reasoning: 
when one part is forced to do two jobs, it can do neither well. An example 
is the two-stroke engine. 

 The operating cycle of a four-stroke automobile engine involves four 
sweeps of the piston through the cylinder. One draws in the fuel, the next 
compresses it, the third delivers power as combustion drives the piston out-
ward, and the fourth sweeps out the exhaust. The two-stroke engine dis-
charges the exhaust with the same stroke that draws in fuel at the bottom 
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of the combustion stroke and the beginning of the compression stroke. This 
serves well for a lawn mower or a power saw because the simpler design 
avoids the need for a valve gear to separately port fuel and exhaust, giving 
a better ratio of power to weight. However, the four-stroke engine ’ s more 
complicated design delivers much more power per liter of fuel and runs 
smoother and quieter. Moreover, its more efficient combustion discharges 
fewer pollutants (French, 1994). 

 There are general advantages to providing a separate part for each task. 
First, each part can be independently tuned for speed, sensitivity, and so 
forth — without compromise. Second, each part can be regulated indepen-
dently. Third, more parts provide more opportunities for further refine-
ment, innovation, and improvement — simply because there are more 
starting points. 

  Complicate!  is such an important principle for neural design that it 
seems justified to give one example. The vertebrate retina might have 
used only one type of photoreceptor but instead it uses two: rod and 
cone. The rod photopigment is more stable but slower to regenerate, so it 
serves best in dim light. The cone photopigment is less stable but 
faster to regenerate, so it serves best in bright light. Having complicated the 
retina ’ s cellular architecture with two cell types, each type has developed its 
own molecular refinements — specialized versions of the transduction mol-
ecules and of  their  regulatory molecules — all tuned for different 
light intensities. To take full advantage of these refinements, the two cell 
types have developed different circuits within the retina. However, just 
before the retinal output, there is a neatening up: rod and cone circuits 
merge to share a set of excitatory synapses onto a set of common output 
cells (ganglion cells). Further explanation is to be found in chapters 8 
and 11. 

 There is another way to complicate a design: include several parts that 
appear to serve the same function. For example, a neuron may express sev-
eral enzymes that produce the same product. And neighboring cells may 
express different versions of a similar protein; for example, axons and astro-
cytes (glial cells) in optic nerve both express a sodium/potassium pump but 
with subtly different properties. Also one region may connect to another 
via multiple pathways: dorsal spinocerebellar tract, ventral spinocerebellar 
tract, spino – reticulo – cerebellar tract, spino – olivo – cerebellar tract, and so 
on. These parallel features might once have been regarded as  “ redundant ”  —
 to increase reliability and protect against failure. But now most biologists 
appreciate that multiple pathways generally serve different roles and thus 
are not truly redundant. 
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 Indeed, engineers try avoid redundancy, and for good reason. A part 
waiting for a function occupies space, adds weight, and costs extra. So, this 
consideration raises suspicion that the multiplicity of intracellular phos-
phatases, sodium/potassium pumps, spinocerebellar tracts, and so on repre-
sent complexity of the good kind. 

 Choosing materials 

 Engineers can choose from diverse materials. However, they must try to 
select the least costly material that is appropriate for the task. For a sailboat 
mast, wood was traditional, but it is heavy. Graphite can be equally stiff for 
less weight, but it is brittle; titanium gives the best physical performance, 
but it is costly. So the choice depends on whether the boat is a dinghy for 
weekend sailing or a 12 meter yacht for the America ’ s Cup. 

 Brain design is forced to select from a far narrower set of materials. For 
example, biological membranes are composed of lipids and proteins. 
Although mechanisms for regulating the passage of substances and ions 
 across  the membrane in either direction are myriad (ion channels, pumps, 
cotransporters, antiporters, flippases, etc.), the intrinsic properties of the 
membrane itself are relatively constant. In particular, the membrane ’ s spe-
cific capacitance is fixed at around 1  μ F cm  − 2 . Neurons generate electrical 
signals by opening and closing channels in the membrane that allow ions 
to move down their electrochemical gradient and carry charge in and out 
of the cell. 

 The time constant of this electrical response is the product of the mem-
brane resistance and capacitance, but capacitance is fixed. Therefore, to 
speed up an electrical process, a neuron of given surface area must reduce 
its membrane resistance by opening more channels, thus allowing more 
ions to cross the membrane. The cost of restoring these ions so as to main-
tain the electrochemical gradient is high — in fact, it is the human brain ’ s 
major energy cost: more than 60% goes for pumping ions, making this a 
key constraint upon design. Thus, for the brain, as for 12 meter yachts and 
automobiles, speed comes at a premium — and the brain is forced to use it 
sparingly. This theme will recur. 

 Integrating across systems 

 Engineers look for trade-offs among individual components to improve 
overall performance. For example, because a truck ’ s suspension reduces 
shock, investment in better springs and shock absorbers can be traded for 
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weight and strength in the axles. So designers evaluate the whole system to 
discover where investment in one component is more than compensated 
by savings in others. This integrated approach to design extends the prin-
ciple of matching components to include cost. 

 An example relevant to neural design is the mobile telephone (Macken-
zie, 2005). Like many animals, it is small and roams on limited power. Mod-
els compete fiercely, and success depends upon performance, beauty, and 
energy efficiency. One notable innovation provides the phone ’ s  “ brain, ”  its 
tiny internal computer, with a  turbo code  that extracts wireless signals from 
environmental noise. This code employs an algorithm for  belief propagation  
that is computationally expensive. But the investment pays because the 
code eliminates noise so effectively that the efficiency of wireless commu-
nication approaches the theoretical limit defined by Shannon ’ s equation 
(chapter 5). 

 Optimizing efficiency allows the phone to reduce the amplitude of its 
output signals. These consume the highest proportion of the phone ’ s power 
because more energy is needed to transmit radio signals long distances in 
all directions than to send electrical pulses along short connections in a 
tiny computer. Consequently, the energy invested in the phone ’ s brain for 
turbo coding produces much larger savings in the heavy work of signal 
transmission. By analogy, an animal ’ s small brain saves energy by efficiently 
directing the activities of large, power-hungry muscles. 

 To understand the design of an integrated system requires teamwork. 
When no single person can grasp the details of every component and pro-
cess, designers team up. Specialists integrate their detailed knowledge of 
each particular into an efficient whole. It was a team of specialists that 
reverse engineered the B-29. They needed to combine expertise in aerody-
namics, structural engineering, materials science, fluid mechanics, control 
systems, and so on. Neuroscientists are reaching the same conclusion and 
forming teams that integrate specialized knowledge to reverse engineer 
their systems. Brains are integrated systems because they evolved to inte-
grate, so how else can we understand them? 

 How to proceed and a caution 

 To consider brain design as a problem of reverse engineering, we must begin 
with an overview of its main tasks, establish some basic measures of perfor-
mance, and then see how these relate to the investment of resources in 
particular mechanisms (chapters 2 and 3). Having established some basic 
principles, we select one important system — vision — and treat each stage of 
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processing in the framework of design. We present the environmental con-
text, then the circuit structure and some  “ hows ”  of its functioning. Then 
for each stage we will point out some  “ whys ”  of the design and note where 
other neural systems use similar principles. 

 The design principles evinced here do not explain everything. In fact, 
principles cannot explain how anything works — not the B-29, not the 
Model T, and certainly not the brain. What, then, is their use? Design prin-
ciples deepen our understanding of why things work the way they do, and 
armed with this deeper understanding, we can reverse engineer more effi-
ciently. Of course, applying inappropriate or misguided principles would 
slow us down. Thus, principles derived theoretically, without real objects 
and mechanisms to illustrate them, are not yet of much use. So we attempt 
to balance the insights that come from principled explanations against the 
doubts that come from overdoing them. 



 Essentially only one thing in life interests us: our psychical constitution. The consid-

erations which I have placed before you employ a scientific method in the study of 

these highest manifestations in the dog, man ’ s best friend.  

  — Ivan Pavlov, Nobel lecture, 1904 (edited for brevity) 

 Brain books generally begin at the lowest levels — neurons, axons, synapses, 
and ion channels. But that approach ill suits our goal of reverse engineer-
ing. One cannot explain a B-29 by starting with the nuts and bolts. So we 
postpone the parts lists and detailed schematics to consider first a larger 
question: why do we  need  a brain? 

 One ’ s first thought, of course, is that we need it for the magical activities 
and feelings it confers: art, music, love  . . .  consciousness. But although 
these features arouse intense curiosity — as Pavlov emphasized — we shall see 
that they are merely baroque decorations on the brain ’ s fundamental pur-
pose and should not be mistaken for the purpose itself. What we identify 
here as the brain ’ s purpose, especially because we are seeking principles, 
should apply not only to humans but as well to the nematode worm, 
 C. elegans , and to flies. The deep purpose of the nematode ’ s brain of 302 
neurons, the fruit fly ’ s brain of 10 5  neurons, and our own brain of 10 11  neu-
rons (Azevedo et al., 2009) must be the same. By identifying the basic pur-
pose, we set a context for later considering the  “ decorations. ”  We expect 
that research on the mammalian cerebral cortex will not reveal many new 
principles — rather it will elaborate the core ones. In general, it should be 
easier to discover them in simpler brains. 

 The brain ’ s purposes reduce to regulating the internal milieu and help-
ing the organism to survive and reproduce. All complex behavior and men-
tal experience — work and play, music and art, politics and prayer — are 
but strategies to accomplish these functions. Sharing these fundamental 
tasks, the brains of worms, flies, and vertebrates show significant 

 2   Why an Animal Needs a Brain 
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similarities — which will be discussed. But first, consider that a tiny bacte-
rium,  E. coli , and a much larger single-celled protozoan,  Paramecium,  man-
age these two tasks quite well without a brain. How? 

 Lives of the Brainless 

 A bacterium foraging 
  E. coli  is miniscule (1  ×  3  μ m) and thrives in a nutritive soup — adrift in the 
intestinal digests of a large animal (figure 2.1; Alberts et al., 2008). The 
microbe is equipped with  “ taste ”  receptors, a battery of proteins each of 
which specifically binds an attractant (such as an amino acid or sugar) or a 
repellant. These receptor proteins cluster on the surface membrane and 
form signaling complexes within which they cooperate to increase sensitiv-
ity and response speed. The largest cluster is at the forward end ready to 
taste what comes as the bacterium ploughs through the soup. Although 
each cluster comprises thousands of molecules — to increase the chance of 
catching a taste — there are only five types of receptor molecule, each 
responding to a range of related compounds.    

 The first function of these receptors is to evaluate the  soup du jour . Each 
potential nutrient (amino acid, sugar, etc.) requires its own specific trans-
porter ( permease ) for uptake into the bacterium, plus a particular enzyme or 
even a whole set of enzymes to process it for energy and materials for 
growth. It would be uneconomical to maintain high levels of all possible 
transporters and processing enzymes when only a subset is needed at a 
given moment. Therefore, a cell refrains from synthesizing proteins for 
uptake and digestion until a taste receptor binds the target molecule. A 
receptor ’ s binding affinity determines the concentration at which protein 
synthesis becomes economical. 

 For its default fuel  E. coli  uses glucose. But when glucose is off the menu, 
it can use lactose. This requires lactose detectors to call for two proteins: a 
permease to admit lactose and an enzyme, galactosidase, to split it. The 
genes coding these proteins are adjacent in  E. coli  ’ s DNA, comprising an 
 operon  (genes that work together). Their expression is blocked by a repressor 
protein that binds to this stretch of DNA and blocks the entry of RNA poly-
merase, the molecular machine that transcribes DNA to RNA ( RNA poly-
merase ) to initiate protein synthesis (  figure 2.2 ). The repressor  is  the lactose 
detector which, upon binding allolactose (an isomer that always accompa-
nies lactose) changes shape and releases from the DNA. This allows 
RNA polymerase to move off and transcribe the operon (  figure 2.2 ; Phillips 
et al., 2009).    



Why an Animal Needs a Brain 13

 In effect, the lactose receptor  predicts  for the organism what it will need 
to exploit this new resource. By encoding the permease and the digestive 
enzyme together, one sensory signal can evoke all necessary components in 
the correct ratios. Thus, a given level of lactose in the soup calls for the 
proper amount of permease which is matched by the proper amount of 
galactosidase. This design principle — matching capacities within a coupled 
system — is a key to the organization of multicellular animals where it is 
called  “ symmorphosis ”  (Weibel, 2000). We see here that symmorphosis 
begins in the single cell. 

E. coli

Paramecium

C. elegans

E. coli
Paramecium

C. elegans
2 mm

sensory
dendrites head ganglia

nerve ring
ventral nerve cord

tail ganglia

dorsal nerve cord

motor neuron 
commissures

 Figure 2.1 
  Three organisms of increasing size: bacterium, protozoan, and a nematode worm . 

Note the different scales: micrometers to millimeters. Body lengths are drawn to the 

same scale at the bottom of the diagram.  Paramecium   caudatum  and  C. elegans  photos 

are light micrographs of live specimens. Diagram of worm indicates the positions 

of neurons that form the brain. Light micrographs from Wiki commons.  C. elegans  

from Wikimedia Commons, CC BY-SA 3.0 / Bob Goldstein, UNC Chapel Hill,  http://

bio.unc.edu/people/faculty/goldstein/ .  Paramecium  by Alfred Kahl, public domain, 

from Wikimedia Commons. 



14 Chapter 2

 On occasions, such as when its host has eaten an ice cream,  E. coli  is 
presented with both lactose  and  glucose. Now the bacterium need not 
metabolize lactose and so need not build machinery to process it. To block 
this futile activity, there is a second molecular switch. RNA polymerase, to 
step along the DNA transcribing the lac operon, must be activated by the 
protein CAP, and CAP must be binding a small signaling molecule, cAMP. 
Biochemical pathways couple the production of cAMP to the concentration 
of glucose. As glucose rises, cAMP falls; this turns off the RNA polymerase 
(  figure 2.2 ), and  E. coli  stops producing unneeded machinery. 

 Thus, a molecular control system combines information from two inputs 
to compute the correct conditions for processing lactose: IF lactose AND 
NO glucose, then GO; IF lactose AND glucose, then NO GO. The chemical 

The lac operon

cAMP

A-lac

off

– glucose
– lactose

R

R

CAP 

R

cAMP

on

– glucose
+ lactose

CAP RNA-p

A-lac

off

+ glucose
+ lactose

R

off

+ glucose
– lactose

 Figure 2.2 
  The lac operon: a molecular mechanism that discriminates between patterns of in-
put and determines action . To transcribe the lac operon ’ s genes, RNA polymerase 

( RNA-P ) must bind to its site and move into the operon ’ s DNA. Its movement is 

blocked by the repressor R, but R cannot bind and block when holding a molecule 

of allolactose (A-lac). To start moving,  RNA-p  must be activated by the protein CAP. 

This activator protein only binds to its site on the DNA when it is binding cAMP, and 

cAMP is eliminated in the presence of glucose. Thus,  RNA-p  only transcribes the lac 

operon when glucose is absent and lactose is present. 
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network controlling the lac operon enables a single cell to detect specific 
patterns of events and to mount concerted patterns of response that pro-
mote survival and reproduction. Of course, this is what a brain does on a 
larger scale, and in doing so it builds upon the capacities for executing logic 
that reside in the molecular control systems of single cells (Bray, 2009). 

  E. coli  does more than just taste the soup and reprogram its digestive 
enzymes. The taste receptors also direct the cell to forage, that is, to dis-
cover and migrate to regions of higher nutrient concentration. To execute 
this process,  chemotaxis , the bacterium propels itself with flagella, which are 
helical screws that rotate at 6,000 rpm. Their beating sends it tumbling off 
in random directions for brief periods, each followed by a short, straightish 
run. A surface receptor, sensing the instantaneous concentration of a nutri-
ent, compares it to the past concentration —  “ past ”  lasting 1 s. If the new 
concentration is higher, the motor apparatus holds the forward course for a 
bit longer.    

 This search strategy ( biased random walk , figure 2.3) resembles the party 
game where an object is hidden and a searcher is simply told  “ warmer  . . .  
cooler  . . .  warmer, warmer . . .  ”  The mechanism can sum signals from sev-
eral attractants — maintaining the direction of motion for a longer time. Or, 
it can sum antagonistic signals (attractant + repellent) and change direction 
sooner. Thus, with a sensor, plus a  “ working memory ”  that controls a pro-
peller, a microbe ’ s wandering eventually delivers it to a greener pasture 
(Berg, 1993). 

 A microbe ’ s memory 
  E. coli  ’ s working memory is simple: it is imprinted on the receptor protein 
by means of a negative feedback loop. The activated taste receptor causes an 
enzyme to attach methyl groups to the receptor complex, decreasing its 
sensitivity. The number of methyl groups on a receptor indicates how 
strongly it has been activated, and because the feedback loop is sluggish, 
the record stretches back into the bacterium ’ s frantic past — 1 s. The mecha-
nism, by using the past to set receptor sensitivity, determines the bacteri-
um ’ s response in the present — a reasonable definition of memory. Thus, a 
single cell can store information cheaply through chemistry — by covalently 
modifying a signaling molecule. 

 In accomplishing the basics (preserve internal milieu and reproduce), 
this single cell uses mechanisms that are either optimal or highly economi-
cal: just the right number and distribution of taste receptors, just the right 
ratios of transporters and digestive enzymes, just the right levels of protein 
expression to match costs versus resources, plus the smallest signaling 



16 Chapter 2

network for chemotaxis that could provide sufficiently robust performance. 
Moreover, its working memory suffices to steer the motor toward food and 
mates. Although a memory lasting only 1 s may not seem impressive, real-
ize that to store a long history of lactose concentrations would be pointless —
 because they are themselves evanescent. Given its lifestyle, the bacterium ’ s 
memory is just about as long as it  should  be. 

 This microbe easily lives like a Zen master — in the moment. Feed the 
cell, and in an hour it is gone, divided among its progeny. But once an 
organism becomes large enough for a brain, the Zen injunction —  “ Live in 
the moment ”  — itself becomes a Zen koan. A brain provides the organism 
with a more significant individual past and a more extended future with 
which to exploit it. But so equipped, staying in the moment becomes as 
unimaginable as the sound of one hand clapping. 

50 μm

 Figure 2.3 
   E. coli  ’ s biased random walk . By moving forward more and turning less, as the con-

centration of attractant increases,  E. coli  approaches the attractant ’ s source. Tracing 

shows 26 runs over about 30 s with a mean speed of 21.2  μ m/s. Reprinted with 

permission from Berg and Brown (1972). For videos of  E. coli  swimming see  http://

www.rowland.harvard.edu/labs/bacteria/index_movies.html/.  
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 Limitations to life as a microbe 
 Given that bacteria accomplish the basics so well, one must consider the 
limitations. First, their ability to respond to environmental challenge 
resides largely in genetic memory. A  population  thrives by reproducing rap-
idly and exchanging genetic material — so that when the environment 
changes, at least one individual in the population will contain a gene to 
deal with it. Thus, a population can  “ learn ”  to exploit new resources — such 
as potentially delicious industrial waste. However, an individual microbe, 
suddenly losing glucose in a lactose-rich medium, can respond only if its 
genome already contains the lac operon. 

 Second, an individual microbe cannot actively move very far. It can nei-
ther return to the site of its last meal nor deliberately transfer to a new host. 
This confines each species of microbe to the restricted environment for 
which it has specialized: a termite ’ s gut or the skin of a human inner elbow 
(Grice et al., 2009) — where the bacterial genome is prepared for what it will 
likely encounter, and where surprises are relatively few. But this leaves a 
wider world unexplored and thus unexploited. 

 To explore would certainly increase the chances of encountering a more 
favorable medium — but there is a limiting challenge: size. For such a minis-
cule object, water is tremendously viscous. Top speed for  E. coli  is 30  μ m per 
second, and when its effort ceases, there is insufficient inertia to carry it 
forward, so it abruptly stops within 0.01 nm (chapter 5; Purcell, 1977; Nel-
son, 2008). For a human it would be like swimming in thick molasses —
 agonizingly slow and energetically expensive. Consequently, to move over 
long distances, bacteria have evolved other methods, for example, by being 
sticky and hitching rides on animals. 

 In short, a bacterium inhabits a tiny universe — barely a few centimeters —
 where the critical factors are beyond its control. When transportation relies 
on random, energetically expensive self-propulsion or the kindness of 
strangers, life is precarious. A cell that could propel itself more rapidly and 
cheaply could forage more widely, but to overcome the effects of Brownian 
buffeting and high viscosity it must enlarge. And it need not get very large 
before motor coordination becomes an issue — as we now explain. 

 Protozoa: bigger and faster but still brainless 

  Paramecium , the familiar single-celled protozoan, measures up to 350  μ m  ×  
50  μ m. Being 300,000-fold larger than  E. coli , it is less subject to viscous 
forces.  Paramecium  propels itself with cilia that cover its surface and coordi-
nate their beating to send synchronous waves from head to tail. Cruising 
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speed can reach roughly 1,400  μ m per second, 50-fold faster than  E. coli  and 
with lower relative energy cost. In human terms this is the difference 
between exploring on foot at 4 mph and racing a car at 200 mph. Conse-
quently,  Paramecium  can explore relatively enormous volumes of pond 
water and harvest bacteria by sweeping them into its  “ mouth. ”  This 
microshark is guided by a variety of taste receptors to approach sites where 
bacteria proliferate, for example, clumps of rotting vegetation. It also has 
nociceptors to detect toxic sites, such as overripe sludge contaminated with 
hydrogen sulfide. 

 In its cluttered environment  Paramecium  inevitably encounters immov-
able obstacles, and to avoid the futility of continual ramming,  Paramecium  
has evolved a useful response (  figure 2.4 ; Jennings, 1904; Eckert, 1972). At 
the first bump it throws its cilia into reverse and backs off by a few millime-
ters. Then it does a quick twiddle, switches to forward, and sets off in a new 
direction. This avoidance response is fast — completed within a fraction of a 
second — and it has to be. Futile activity wastes time and energy; moreover, 
the immovable object might be a predator!    

  E. coli  ’ s chemical signaling systems could not trigger and coordinate this 
rapid response. Diffusion suffices for  E. coli  because the distance is short — a 
small intracellular messenger molecule diffuses throughout the bacterium 
in about 4 ms. But diffusion time increases as the distance squared (Nelson, 
2008), so for a  Paramecium  that is 100-fold longer than  E. coli , diffusion 
from  “ head ”  to  “ tail ”  would be 10,000-fold slower, about 40 s. Obviously, 
this is far too slow for receptors at the head to call  “  Reverse!  ”  to the tail cilia. 
Electrical signals spread much faster: a change in membrane voltage initi-
ated at the head reaches the tail in milliseconds. 

 Electrical signaling for this avoidance response requires several new 
components. First, a mechanoreceptor is needed to detect the bump. This 
involves a specialized cation channel inserted into the cell membrane. 
Stretch on the membrane deforms the channel, opening it to sodium ions 
that rapidly depolarize the membrane ( < 100  μ s). Depolarization opens 
voltage-sensitive calcium channels that admit a rush of calcium ions —
 further depolarizing the membrane, opening still more calcium channels, 
and so on. This positive feedback produces a robust response that recruits 
calcium channels across the entire membrane (  figure 2.4 ). They open 
briefly, then close and inactivate. Thus, the two components — stretch-gated 
sodium channel plus voltage-gated calcium channel — cooperate to deliver 
a synchronous pulse of calcium over the cell ’ s entire surface. 

 The reason to spread the electrical signal via a calcium channel, rather 
than a voltage-gated sodium channel (such as used by nerve and muscle), is 
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   Paramecium  ’ s avoidance response: behavior and electrical mechanism .  Left : The four 

stages of behavior. (1) Bumps up against immovable object, (2) backs off by reversing 

cilia, (3) gyrates while cilia switch from reverse to forward, and (4) sets off in a new 

direction.  Upper right : Measuring electrical response to mechanical stimuli. Intracel-

lular microelectrode records membrane potential and probes prod the membrane. 

 Middle right : Membrane potential recorded following stimulation with anterior 

probe. A weak prod depolarizes membrane for 300 ms (lower trace). A strong prod 

generates a short calcium action potential followed by longer depolarization (upper 

trace).  Lower right : Posterior prod hyperpolarizes. The response to the weaker prod 

is smaller and has a longer latency. Adapted from Eckert (1972), with permission.  
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that a calcium ion can also serve intracellularly as a chemical messenger. In 
this case the chemical message arrives synchronously at the base of all cilia, 
saying  “  Reverse beat , ”  and their simultaneity adds power to the reversal. As 
 Paramecium  backs up, calcium pumps in the membrane vigorously reduce 
the calcium level, allowing patches of cilia to slip back into  “ forward ”  —
 explaining the indecisive twiddle. Once most of the calcium has been 
extruded and all cilia again beat forward,  Paramecium  heads off in a new 
direction (  figure 2.4 ). 

 The system is polarized. The stretch channels are at the head, ensuring 
that the calcium pulse that reverses the cilia will also reverse the animal. 
The decision to reverse is structured as a simple threshold: when a bump is 
sharp enough, stretch channels open sufficiently to depolarize the mem-
brane smartly enough to kick the calcium channels into their regenerative 
cycle. The numbers and sensitivities of stretch channels are adjusted to dis-
criminate a truly immoveable obstacle from a yielding one. Conceivably, 
they are even tuned by experience via the attachment of some chemical 
group as with  E. coli ’  s working memory. 

 Finally, the twiddle that sets  Paramecium  off in a new direction occurs 
because some patches of cilia enter forward gear before others, perhaps by 
the molecular noise in calcium pumps (chapter 6). Whatever the exact 
mechanism, the twiddle generates a random direction — which is good. 
Lacking distance receptors,  Paramecium  cannot predict which search direc-
tion is most likely to be best, so random behavior is optimal (Reynolds  &  
Rhodes, 2009). Also, random motion prevents a predator from predicting 
 Paramecium  ’ s next move, thus making it harder to catch. 

 Where brains emerge 
 Despite the advantage of its fast control system for locomotion,  Parame-
cium  ’ s behavioral repertoire is limited. One impediment to richer behavior 
is that there is only one cell membrane and thus only one line for fast (elec-
trical) communication. But more deeply, the cell is still so small that loco-
motion must be slow, and the environment remains so evanescent that 
richer behavior and longer memory offer no advantage.  Paramecium  ’ s 
exploitable world remains sufficiently restricted that one communication 
channel is plenty. Multicellularity can pay — but only when an animal 
becomes slightly larger and lives slightly longer in an environment where 
clues to food and danger persist. 

 The crossover — where multicellular animals arise and dominate (eat the 
unicellular) — occurs at a size of around 1 mm and a lifetime of days.  1   Then 
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cells specialize and associate to form tissues, tissues form systems, and sys-
tems cooperate to form a more versatile organism. Thus, multicellularity 
follows the engineering principle  complicate  (Glegg, 1969/2009a). The many 
tasks performed by a single cell are now divided among many specialized 
components. Naturally, coordination is required at each level (cell, tissue, 
organ, system, and organism) and across levels. 

 Coordination demands some mechanism with an overview that enables 
it to weigh alternatives, set priorities, and then exert ultimate authority to 
execute. Fortunately, the multicellular design that demands such integra-
tion also provides a special class of cells to accomplish it. These cells —
 neurons — now do what  Paramecium  could not: provide multiple fast lines 
for communication. In short, for a multicellular organism a brain becomes 
necessary, possible, and profitable. 

 Worm with tiny brain 

 The nematode worm,  C. elegans , measures about 1  ×  0.1 mm (  figure 2.1 ) and 
in its predominant hermaphroditic form comprises exactly 959 somatic 
cells (Herman, 2006). It lives close to the soil surface and feeds on bacteria 
in rotting vegetable matter. Unlike  Paramecium  ’ s pond water chemicals in 
soil and humus are not swept away by convective currents — they move by 
diffusion and capillarity through a matrix, so traces persist (F é lix  &  Braendle, 
2010). The matrix and surface film provide firmer substrates for locomo-
tion, and these allow the worm ’ s sinuous crawl to open up whole new con-
tinents for exploitation. 

 The worm ’ s enlarged territory and its locomotion through a labyrinthine 
matrix with persistent chemical traces warrant an upgrade. The worm 
improves the chemotaxis system and adds diverse sensors (of current state, 
opportunity, and danger), plus a larger repertoire of behavioral responses 
and a longer memory (de Bono  &  Maricq, 2005). Because bacteria-rich 
patches are oases where many species compete, the worm ’ s success requires 
that it move smartly across a patch to efficiently find and exploit the pro-
ductive regions, meet, mate, and lay eggs. 

 Improved foraging must be matched by more efficient systems for diges-
tion, absorption, metabolic storage, and elimination. And as the behavioral 
repertoire expands, there is more need to evaluate and prioritize. For exam-
ple, upon encountering a good hunting ground, how much heat or acidity 
should it tolerate? Upon encountering two chemical traces, which should it 
follow? When to search and when to graze? When to mate and when to be 
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stilled by  “ satisfaction ” ? In short many of the choices posed for humans by 
Ecclesiastes arise even for this apparently simple worm — which decides 
with its tiny brain. 

 The worm ’ s brain may be small, but its 302 neurons plus 56 glial and 
support cells comprise nearly 40% of its body ’ s entire complement. The 
figure in humans is close to 1%. So we first consider some behavioral advan-
tages that justify its immense investment. Then we consider the brain ’ s 
design, noting the features shared with larger brains that suggest they are 
governed by principles of neural design. 

 Locomotion 
 Grazers must keep on the move. The worm moves forward by bending 
just behind the head and then propagating the bend toward the tail. 
Driven by this sinusoidal wave, it threads its way through soil and rotting 
vegetable matter, swims through pools of fluid, and crawls across moist 
surfaces (e.g., decaying fruits, agar plates in laboratories). A worm travels 
fastest when rigid objects are regularly spaced at 0.5 mm (  figure 2.5 ), 
and if this spacing is changed by just 10%, their forward speed halves. 
A worm seems designed to cope best with the average particle size in 
its preferred habitat, like a pickup truck designed for rough roads (Park 
et al., 2008). 

 But  C. elegans  is both truck and driver, continually adapting its propul-
sion to cope with changing conditions. When the worm goes from swim-
ming in a pool to crawling across a wet surface, the surface tension increases 
viscous forces 10,000-fold, and the worm adjusts its undulations accord-
ingly (  figure 2.5 ). Frequency falls tenfold, wavelength shortens threefold, 
and more muscular power is transferred to the viscous medium. The worm 
continuously adjusts its drive train over a wide range of conditions, main-
taining the wave ’ s angle of attack at an efficient value, close to 45 o  (  figure 
2.5 ). To understand how, we must examine the integrated locomotor sys-
tem: brain, muscles, body, and substrate.    

 A sequence of muscular contractions produces the moving wave (Sen-
gupta  &  Samuel, 2009). Muscle cells on the upper side of the body contract 
to bow out the lower side, and when the upper cells relax, the body springs 
back, driven by an internal hydrostatic pressure of 0.5 atmospheres. The 
wave is propagated by sending two opposite bends along the body, one 
after the other (  figure 2.6 ), and this sequence repeats at the frequency of 
undulation. When the head leads the tail, the wave moves down the worm, 
pushing it forward, and when the tail leads, the worm moves backward. 
The head also wags from side to side, and when the worm decides to 
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   C. elegans  locomotion matches the terrain and adapts to viscosity . Spacing of soil 

particles affects forward speed, as shown when worm crawls through a regular array 

of agar posts of given spacing.  Upper left : Superposition of 10 photos taken at 200-

ms intervals as a worm traversed the array in which it moved forwards at maximum 

speed.  Lower left : Tracings of five of the above photos, taken at 400-ms intervals, 

show why speed is maximum: body wavelength matches post spacing to distribute 

thrust efficiently.  Upper right : The wavelength of undulation is longer in a low-

viscosity medium and shorter in high viscosity.  Middle right : Body posture is de-

scribed by  y ( s , t ), the lateral displacement,  y , changing with position along body,  s , 

and time,  t.  The angle of attack at a given position and time,   θ  a  ( s , t ), is critical for 

determining thrust against the substrate.  Lower right : The factors determining body 

posture and its dependence on viscosity. These vary with position along the body, 

 s , and change with time  t . In a simple biomechanical model the muscle force  M ( s, t ) 

interacts with body elasticity and viscous damping by the medium, to determine lat-

eral displacement  y ( s, t ) and the angle of attack   θ  a  ( s, t ). Left reprinted with permission 

from Park et al. (2008). Right reprinted with permission from Fang-Yen et al. (2010). 
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suddenly change direction, it bends the whole body and then springs 
back — a good tactic for evasion and escape. 

 These four distinct patterns (forward, reverse, wag, and turn) are pro-
duced by 75 motoneurons that control 95 muscle cells. Each muscle cell 
receives input from one excitatory and one inhibitory neuron which are 
activated in strict alternation (Bullock, Orkand,  &  Grinnell, 1977). To bend 
the head, an excitatory motor neuron on one side of the body activates a 
muscle, and an inhibitory motor neuron suppresses the corresponding 
muscle on the other side. To propagate the bend as a wave, motor neurons 
activate sequentially along the body. Their output frequency determines 
the frequency of the undulation, and their phase determines its waveform. 
Excitatory motoneurons on one side activate with inhibitory motoneurons 
on the opposite side and alternate with excitatory motor neurons on that 
side (  figure 2.6 ). Where should one look for the oscillators that produce 
these cycles of motor neuron activity?    

 Search for the oscillators 
 Early studies of animal locomotion were fraught with bitter argument about 
the origins of cyclical activity — such as stepping. Oscillations might be pro-
duced within the nervous system by local circuits ( central pattern generators ). 
Or they might be produced outside the nervous system by cycling sensory 
feedback (Marder  &  Bucher, 2001; Goulding, 2009). The feedback mecha-
nism was proposed early for vertebrate stepping. One set of motor neurons 
excites muscles that extend the limb. This activates sensors that inhibit the 
extensor motor neurons and excite the flexor motor neurons, thus retract-
ing the limb. Flexion activates sensors that inhibit the flexor motor neu-
rons and excite the extensor neurons, and so on. 

 Many animals combine the two mechanisms. A central pattern genera-
tor sends cyclical commands to the motor neurons, and sensory feedback 
adjusts their phase, frequency, and amplitude to match changes in external 
load (Burrows, 1996). But the worm ’ s circuitry seems not to use a central 
pattern generator. No intrinsically oscillating neurons have been found, 
nor does the brain ’ s wiring diagram (see below) show the typical oscillatory 
circuit — a small group of neurons that send signals around a closed loop. 
Worms are capable of making central pattern generators — some of their 
cells use internal biochemical oscillators to control the rhythmical move-
ments of ingestion, defecation, and copulation. That the worm can make 
central pattern generators but does not do so for locomotion suggests that 
it might have found a better way. Rather than relying on a pattern genera-
tor in its brain, the worm exploits its body. 
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 Cycling with the body 
 The worm builds its oscillator by combining feedback with body mechan-
ics. A burst of activity in motor neurons drives the muscles on one side. 
Their contraction bends the body and tensions the body ’ s intrinsic spring —
 internal hydrostatic pressure. Sensors excited by these forces feed back to 
inhibit motor neurons, whereupon the muscles relax and the body springs 
back. This terminates the negative feedback, allowing the motor neurons to 
reactivate and start a new cycle (  figure 2.6 ). Because the spring is damped 
by viscous forces (figure 2.5), the oscillation is well behaved. Also, it auto-
matically adjusts to changes in viscous load, smoothly shifting the worm ’ s 
gait to match operating conditions. 

dorsal muscle cell dorsal muscle cell

head
tail

DB DD

VB VD

DB DD

VB VD

ventral muscle cell ventral muscle cell

dorsal contraction
dorsal relaxation

dorsal contraction

ventral relaxation
ventral contraction ventral relaxation

 Figure 2.6 
  Neural circuit that bends the worm . Excitatory motor neurons (DB, VB) alternately 

cause dorsal and ventral muscles to contract, whereas inhibitory motor neurons (DD, 

VD) alternately cause them to relax. The excitatory motor neuron on one side drives 

the inhibitory neuron on the other side so that the body bows downward (DB and 

VD active), or upward (VB and DD active). This cross-inhibitory circuit repeats along 

the worm to promote a traveling wave. Modified from Sengupta  &  Samuel (2009), 

with permission. 
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 So by using its biomechanics the worm can dispense with a central pat-
tern generator, thus freeing up brain space. Here, then, is a useful design 
principle for motor systems: lighten the brain ’ s load by using the body. 
Engineers call this  embodied computation  (also embodied intelligence or cog-
nition; Pfeifer  &  Bongard, 2006). 

 In the early days of robots, crawling and stepping movements were gen-
erated by an all-powerful central computer — an omniscient central pattern 
generator. This artificial intelligence collected sensory information and fed 
it into a complicated program that, by modeling the robot ’ s mechanics, 
worked out the necessary commands and sent them to slavish limbs. To 
implement this top-down design required the robot to drag around a heavy 
computer, which, in turn, meant thicker limbs and stronger actuators — the 
result, a power-hungry behemoth. It was eventually realized that the robot 
and its limbs  are  a computer, an analogue computer that runs its mechanics 
in real time (Brooks, 1990). This analogue computer comes for free and can 
be set up to process information for control by, for example, being part of 
an oscillator. This insight inspired a new generation of small, efficient, and 
adroit stepping machines that blew away the behemoths. Thus, the worm 
exemplifies embodied computation with a neuromechanical system that 
matches and integrates a few basic components to meet specifications 
efficiently. 

 Neural circuits coordinate patterns of movement 
 Despite the contribution of body mechanics to the oscillator, neural circuits 
are still essential — they close the loop inside the worm. The neural circuits 
must be correctly configured and tuned to work with the biomechanics. 
Sensors must give the right feedback to motor neurons, and motor neurons 
must send the right signals to the right muscles with the right timing. Cir-
cuits are constructed to make this happen by ensuring that as muscles on 
one side of the body contract, the antagonistic muscles on the other side 
relax: motor neurons on one side inhibit the excitatory motor neurons for 
the antagonists and also excite their inhibitory motor neurons (  figure 2.6 ). 
Here, then, is a circuit motif,  reciprocal inhibition  (Sherrington, 1906), that is 
widely employed in brains because it simply and effectively solves a com-
mon problem. 

 Changing direction 
 The brain produces motor rhythms for  “ forward ”  and  “ backward ”  using 
two separate sets of motor neurons. Each set has its own circuit: one works 
with the biomechanics to send the undulatory wave head-to-tail and the 
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other works to send the wave tail-to-head. This is not a popular design. 
Most animals use a single set of motor neurons as the final common path-
way for all commands to muscle. Using two independent sets, each with a 
full complement of connections and synapses to muscles, seems wasteful, 
so why does the worm do this? We speculate that for a small brain with 
neuromechanical oscillation, two sets of motor neurons are cheaper than a 
complicated central pattern generator. 

 Directing action 
 Like  E. coli  and  Paramecium , the worm acts to improve its chances of com-
pleting its production on the ecological stage. Equipped to move further 
and faster, its costs are higher and the risks greater, but so are the opportu-
nities and rewards. So the acts must be directed appropriately (de Bono  &  
Maricq, 2005; Lockery, 2011). 

 The simplest acts are aversive responses, similar in purpose and effect to 
 Paramecium  ’ s avoidance response. Tap the worm ’ s head, and it immediately 
wriggles backward; tap its tail, and it wriggles forward. Two simple circuits 
generate this behavior (  figure 2.7 ). Mechanosensory neurons at the front 
drive interneurons that activate the  “ backward ”  set of motor neurons, and 
mechanosensory neurons at the rear drive interneurons that activate the 
 “ forward ”  set. The two sets have cross connections to prevent their working 
in opposition.    

 Just as the purpose of  E. coli  ’ s actions is laid out in chemical circuits in a 
single cell, so the purpose of the worm ’ s behavior is laid out in the connec-
tions between neurons. Naturally a brain with many neurons can generate 
richer behavior because, by forming connections between cells, it makes 
more circuits. How has the worm ’ s brain harnessed this potential and 
moved its behavior beyond the simple reactions of  E. coli  and  Paramecium ? 

 Brain and behavior 
 Like the single-celled organisms the worm retreats from noxious chemicals, 
but its decision is more finely judged. A single sensor, the neuron labeled 
ASH in the brain ’ s wiring diagram, controls this behavior by driving a 
 “ retreat ”  command interneuron, AVA, which shuts down the  “ forward ”  
motor neurons and activates the  “ backward ”  motor neurons (  figure 2.8 ). 
The sensor ASH expresses molecular receptors and detectors for a variety of 
potential threats, such as heavy metals, detergents, acids, or high tempera-
ture. Each input contributes to ASH activity, and when their sum suffices to 
trigger the command neuron, the worm backs off. Thus, a single neuron 
ASH serves as lawyer, jury, judge, and enforcer. It defines what constitutes 
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evidence by selecting which receptors to express on its surface, collects the 
evidence, weighs it, judges if it warrants escape, and mandates the decision. 
The worm has several such sensory neurons, collecting other lines evidence 
for other actions. 

 Finding warmth, food, and mates 
 The worm seeks congenial places to feed, grow, and mate.  C. elegans  thrives 
and reproduces in a fairly narrow range of conditions: dim light, 
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  The circuit for aversive behavior . Mechanosensory neurons in the nose and in other 

anterior parts of the body drive command neurons for  “ backward ”  motor neurons. 

Mechanosensory neurons at the posterior end drive command neurons for  “ forward ”  

motor neurons. These two pathways cross inhibit at the levels of command neurons 

and motor neurons. Adapted from de Bono  &  Maricq (2005), with permission. 
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temperature 13 °  – 25 °  C, oxygen concentration 7% – 14%, moderate pH, 
ample bacteria, and so on. To find these conditions, the worm needs a sig-
nal to warn it of imminent departure from the range —  “ bacteria depleted, ”  
 “ temperature dropping, ”  and so forth. This search signal activates forward 
crawl. Foraging now for bacteria by taste and smell, the first whiff activates 
gradient ascent. Upon reaching favorable conditions, the worm needs a 
stop signal to announce  “ satisfaction ”  — what was sought is found. This sig-
nal activates a sequence of turns that places the worm in graze mode. But 
the worm remains vigilant. If at any moment sensors for noxious condi-
tions are activated, they suppress the forward movement and turning, and 
they activate reverse. 

 The worm retains  E. coli  ’ s basic strategy for moving up or down a gradi-
ent, the biased random walk. As conditions improve, the worm turns less 
and runs ahead more; as conditions worsen, it turns more and runs ahead 
less. The mechanism is also similar: molecular receptors that drive the for-
ward run adapt, and the decay of their output signals allows a turn. Stron-
ger signals decay more slowly, prolonging the run. 

 However, with multicellularity comes an advance: ascending the gradi-
ent with paired sensors. For salt, a sensor on the right side of the head is 
excited by  increasing  salt, and a sensor on the left side is excited by  decreas-
ing  salt. The right sensor excites the  “ forward ”  circuit and inhibits turning. 
Once the worm finds the peak concentration, this cell falls silent. If the 
worm moves off the peak, the left cell, excited by decreasing salt, reduces 
forward motion and excites turning. This search pattern, brief forward 
motion followed by turning, continues until the concentration starts to rise 
again. 

 The worm uses head wagging to expose both sensors to new territory 
and combines this action with forward thrust. This exemplifies a motor 
output modulated by sensing. This system also provides a case where two 
communication channels collect  identical  information, by sensing the same 
gradient, but extract different patterns and use them to drive opposite 
motor responses. Here is something else that a brain offers — new forms of 
pattern recognition that improve foraging. 

 Improved sensing and control are needed because  C. elegans  is to  E. coli  
as a supertanker is to a rowboat. To steer a whole organism in random direc-
tions with gradual correction works on a small scale, but on a larger scale it 
becomes wasteful. Better for the worm to be more discriminating, to search 
with its  head  and inform the body once a course can be plotted. In still 
larger animals the sensors themselves are motorized — an insect antenna, a 
cat external ear, a human eye (chapter 4). 
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 Because most worms use the same foraging circuits, they accumulate at 
the same sites — like undergraduates at a good caf é . And the subtext is simi-
lar: a place to feed is also a place to find mates. Moreover, the worms, unlike 
most undergraduates, are commonly hermaphroditic, so doubling their 
chances of a satisfying encounter. Even so, many worms enhance their 
attractiveness by releasing a pheromone to which intrinsically social worms 
are attracted. Movement toward the pheromone is controlled by a single 
neuron, RMG, a network hub that collects and integrates inputs from a 
suite of sensors and pheromones and drives the appropriate command 
interneurons (  figure 2.8 ). A worm ’ s degree of sociality is adjusted by a par-
ticular peptide released within the brain in response to changing condi-
tions. The peptide, one member of a class of  neuromodulators , binds to 
receptor proteins on specific neurons to change their activity — and hence 
behavior (Bargmann, 2012).    

 Stick and carrot 
 When local conditions begin to deteriorate, some definite signal is needed 
for the worm to move on. One such signal is the neuromodulator, octopa-
mine. When food reserves fall, certain neurons release octopamine, which 
binds to receptors on particular target neurons, modifying their excitability 
and changing their synapses. This inhibits turning and activates the for-
ward motor pattern. Thus, a single agent, released in response to a change 
in conditions, acts on specific neurons to alter circuits and switch the 
worm ’ s program from  “ graze ”  to  “ roam. ”  

 When food is found, roaming stops and grazing resumes. This involves 
a second neuromodulator, dopamine. In mammalian brain, dopamine 
signifies (among other things) that a reward has exceeded its expected 
value. In worm, dopamine is released by the presence of food when, for 
example, mechanosensors touch particles the size of bacteria. Dopamine 
binds to receptors on target neurons, turning off the octopamine recep-
tors and restoring the circuit to its previous configuration. This switches 
the worm from roaming to collecting its food reward. Thus, two neuro-
modulators, octopamine and dopamine, provide this tiny brain with a 
primordial stick and a primordial carrot to mediate, as they do in larger 
brains,  “ anxious ”  searching and  “ pleasurable ”  repetition (de Bono  &  
Maricq, 2005). 

 Imminent starvation is not the only stress. Others include low oxygen, 
high CO 2 , acidity and overcrowding. All suggest an exhausted patch — time 
to move on. As with humans, stress increases urgency. A comfortable worm 
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moves leisurely up a promising chemical gradient, but a worm subjected to 
low oxygen for several hours ascends quickly. To change from stroll to rush, 
neuromodulators reconfigure the circuit for gradient ascent (Bargmann, 
2012). For example, the sensors ADF and ASG respond to low oxygen by 
releasing another neuromodulator, serotonin. 

 Just as  “ carrot and stick ”  oversimplify human motivation, so it is for the 
worm. Competing for limited resources requires many factors to be weighed 
in deciding whether to roam or graze. A rich suite of neuromodulators 
allows the worm ’ s brain of 302 neurons to evaluate contextual factors, such 
as nutritional status, food availability, crowding, and social signals, and 
then reconfigure accordingly. 
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 Associative learning and memory 
 When life is good, the worm completes its life cycle (egg to egg) in 3.5 days 
and lives for several weeks. With a life span extending beyond the next 
mitotic cycle, allowing a past and a future, it now pays to recall what was 
good and what was bad. Far from living in the moment like  E. coli , the 
worm uses its brain to associate events over time and thus draw on its expe-
rience (Ardiel  &  Rankin, 2010). 

 A worm remembers the temperature at which it was well fed and later 
seeks this temperature by moving up or down a thermal gradient. Finding 
the preferred temperature, it hangs there, searching along the isotherm. But 
dopamine decays promptly, so if the cupboard is bare, preference turns to 
aversion and the worm crawls off. Upon finding food and thus earning 
another shot of dopamine, the worm resets its temperature preference. 

 The mechanism for this learning resides within the thermal sensor that 
drives oriented crawling. This neuron senses changes of 0.003 o  C. Its 
response is minimal at the preferred temperature and rises on either side. 
The temperature for this minimum is reset by adjustments to the neuron ’ s 
internal signaling; this requires protein synthesis and takes several hours. 
This learning process — chemical reprogramming within a single neuron —
 changes protein molecules but not synaptic connections. 

 Chemical preferences can also become associated with particular signals. 
For example, NaCl (salt) normally attracts worms, but when a worm has 
been starved in the presence of salt for only 10 minutes, it later avoids salt. 
A particular neuron downstream from the salt sensor releases another neu-
romodulator (insulin) that feeds back to an insulin receptor on the salt sen-
sor to activate an internal signaling pathway (involving PIP3-kinase) to 
suppress attraction. Again, reprogramming a signaling pathway  within  a 
neuron allows experience to change the balance between attraction and 
repulsion. This mechanism also serves odorants.  C. elegans  even learns to 
avoid odorants from a particular pathogenic strain of bacteria that has 
made it sick. 

 These memory traces promote survival by extending the time over 
which an animal can identify and use patterns. The number of trials needed 
to establish an association is modest, five to ten repeats over 20 minutes. 
This makes sense in an environment where conditions are sufficiently 
shifty that to be useful, an association must establish rapidly and decay 
rapidly. In short, the worm ’ s behavior demonstrates its reliance on informa-
tion from three distinct sources: outside, inside, and the past. Its brain inte-
grates these streams to select behaviors that, reflecting a wider context, 
improve the worm ’ s vitality and reproductive success. 
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 Some design aspects of this tiny brain 

  C. elegans  ’  brain may be small, but it is not simple. To achieve its panoply 
of behaviors, the worm draws on a large catalog of molecular parts. This 
includes diverse proteins for intracellular chemical and electrical signaling, 
plus numerous parts for processing information at synapses. For example, 
signaling proteins occupy 20% of the worm ’ s genome, and its 300+ synap-
tic parts amount to one third the number for mammals (Emes et al., 2008). 
In fact the worm brain uses many of the same components present in larger 
brains. Since parts are shared, one might expect some design rules to be 
shared as well. If some rules were not shared, that would also be instructive, 
for it might suggest costs and benefits of scaling up. 

 Here then are some design features gleaned from considering the worm ’ s 
brain and what they might imply for bigger brains. 

 Computes as much as possible within a single cell 
 This feature is exemplified by the worm ’ s  receptors  and their  sensors . We 
distinguish these terms:  “ receptor ”  refers to an individual  protein molecule  
that responds to a specific event — like stretch, temperature, protons, or 
chemical binding;  “ sensor ”  refers to an individual  neuron  that expresses one 
or more types of receptor. Although neuroscientists understand this differ-
ence perfectly well, for historical reasons they often use  “ receptor ”  for both 
the molecule and the neuron. We use different terms to reduce confusion 
for readers unfamiliar with the jargon, and also because they raise two 
design problems. 

 First, a single receptor molecule is subject to stochastic fluctuations, such 
as thermal noise. Therefore a neuron might need to improve the signal-to-
noise ratio of signals conveyed by one receptor by averaging over a popula-
tion of the same type. This raises the following design question: How many 
receptors of the same type should be expressed by each sensor? The answer 
will be given in chapter 6. 

 Second, receptors are more diverse than the sensor neurons that express 
them. Therefore, how should diverse receptor types be apportioned among 
sensors? For this problem  C. elegans  has a rule. If a set of receptors all lead 
to the same final action, they share a common sensor. For example, the sen-
sor ASH collects signals from various types of receptor for noxious stimuli 
that require an aversive response; ASH couples its output to a single neuron 
that executes a command:  Scram!  

 This rule explains receptor grouping generally. The worm uses more 
than 1,700 different types of receptor molecule for chemoreception (taste 
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and olfaction). This considerably exceeds the 800 or so used in mammals, 
but unlike mammals where each receptor type is typically assigned its own 
sensor, the worm provides only about 30 separate sensor neurons. Like sen-
sors of noxious stimuli, each chemosensor sends its signal to a specific com-
mand neuron. So the signals from 1,700 different input channels (receptors 
for taste and olfaction) are assembled for action, not by circuits higher in 
the brain, but by a few dozen sensory neurons. 

 Computing  within  a cell economizes on neuron numbers. The worm 
meets all basic requirements for behavior (sensory pattern recognition, sen-
sorimotor integration, and motor control) with small numbers of neurons. 
Thirty-eight sensors connect to 82 interneurons (whose processes are con-
fined within the brain) that contact 119 motor neurons (cells whose pro-
cesses leave the brain to contact the worm ’ s 100 muscle cells). This reserves 
about 70 neurons for internal regulation and mating. 

 Yet there is a downside to performing several operations in a single cell. 
A cell ’ s capacity to handle information is limited by factors such as internal 
noise, dynamic range, and energy supply. So a sensor that processes inputs 
from several types of receptor compromises its ability to handle the infor-
mation from any one receptor type. A dedicated sensor can devote more 
receptors to its particular modality and thus improve sensitivity and signal-
to-noise. This is the engineer ’ s principle from chapter 1: to prevent one 
component from doing two tasks suboptimally, complicate. 

 Complication goes up the line. Better sensors warrant better sense 
organs: eyes for vision, ears for hearing, and so on. To benefit from these 
more accurate and discriminating sense organs, specialized sensory systems 
evolve in larger brains, each devoted to processing a single modality. The 
conclusion is obvious: as brains scale up to improve behavior, neurons spe-
cialize. Chapter 3 will suggest how and why, but now we consider a related 
question, how does a worm ’ s tiny neuron manage to compute efficiently? 

 Uses chemistry wherever possible 
 Many worm neurons use internal molecular circuits to perform functions 
that in larger brains use a circuit of several neurons. For example, a single 
sensory neuron, AFD, determines the worm ’ s temperature preference by 
adding new proteins to its intracellular signaling network. Another neuron, 
AWC ON , changes a behavioral response to suit the situation. When an odor-
ant is present  without  food, AWC ON  ’ s molecular receptors adapt and chemo-
taxis declines. However, when the same odorant is present  with  food, its 
receptors are sensitized, and chemotaxis increases (de Bono  &  Maricq, 
2005). These competing responses are controlled by an intracellular 
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mechanism that switches the connection between sensor and behavioral 
output to reverse the control of chemotactic turning behavior (Pereira  &  
van der Kooy, 2012). 

 These examples show that chemical computing by circuits  within  a neu-
ron can manage behavior. Moreover, this can be very efficient because 
chemical signals are orders of magnitude cheaper than electrical signals 
(chapters 5 and 6). Chemical diffusion is slow for long distances, but the 
worm  is  small and slow. Thus, the worm ’ s size and speed well suit its reli-
ance on cheap chemical signaling. In addition, chemical signals can be 
broadcast to specific targets, which brings us to another design feature. 

 Uses neuromodulators to switch behaviors 
 Three neuromodulators were mentioned (octopamine, serotonin, and 
dopamine) that switch the worm ’ s behavior in response to stress or the 
prospect of reward. But this is just page one from the parts catalog since the 
worm expresses 250 small peptides with known neuromodulatory func-
tions. Their diversity and ubiquity is understandable because neuromodula-
tion is so ingenious (Harris-Warrick  &  Marder, 1991). A neuromodulator 
can be broadcast widely yet still act locally and specifically, affecting only 
neurons that express an appropriate receptor. The receptors often couple to 
a protein that modulates intracellular signaling, so in effect a neuromodula-
tor uses  trans cellular chemistry to modulate  intra cellular chemistry. 

 A neuromodulator ’ s reach is further enhanced because its receptor diver-
sifies into multiple subtypes that couple to different intracellular signaling 
networks. Consequently, one small molecule can retune and reconfigure a 
whole neural circuit without altering the anatomical connections. This 
allows every circuit to always be doing something and then to be recruited 
for something else as required. Thus, neuromodulators allow the brain to 
use components to their fullest. 

 Conserves synapses 
 The worm brain makes only about 6,400 chemical synapses. This is roughly 
the number that in a mammal contact a single retinal ganglion cell or a 
single cortical pyramidal cell. How can a worm operate with so few syn-
apses? The neurons are far smaller and therefore can be driven by fewer 
synapses. But since a single synapse is unreliable, how can so few synapses 
signal reliably? 

 One answer is:  slowly  — a neuron can improve reliability by averaging 
over time. This can be tolerated because, compared to many animals, the 
worm lives in the slow lane. For example, its olfactory sensor uses a 
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chemical amplifier, a G protein signaling cascade that integrates for more 
than 20 s (chapter 5, figure 5.6). This sensor drives a synapse that integrates 
over several minutes. By comparison, a fly ’ s olfactory system acts in less 
than 1 s. Locomotor waves descend the worm ’ s body at 1 Hz, but an insect 
moves its legs faster than 10 Hz. So the worm can prosper with few synapses 
because it is slow. This suggests another feature:  send information as slowly as 
possible  because this uses fewer synapses, smaller cells, and less energy. Later 
chapters explain more. 

 Uses stereotyped components 
 Efficient design gives every component a definite task. Once all compo-
nents are optimized for their tasks and optimally fitted together, it is effi-
cient to repeat them across individuals. Similarly, every neuron in  C. elegans  
has a definite role optimized by natural selection to meet a specified level 
of performance. Correspondingly every neuron is  “ identified, ”  meaning 
that it exhibits a stereotyped morphology, chemistry, and location in every 
animal (White et al., 1986). The circuits are also identified, meaning that 
the synaptic connections are essentially identical across animals. This was 
established by reconstructing the entire nervous system from thousands of 
electron micrographs of serial sections — to produce the worm ’ s  connectome  
(  figure 2.9 ). Identified neurons and circuits are consistently found in small 
brains: worm and water flea, leech and lobster, and so on.    

 Minimizes wiring costs 
 The layout of  C. elegans  ’  neural wiring suggests that all 302 neurons are 
located as near as possible to the sites where they are needed (Varshney et 
al., 2011). Chemical and thermal sensors concentrate at the head; tactile 
sensors that guide locomotion distribute along the body axis; motor neu-
rons that propel the worm forward distribute along the rear half of the 
body, and motor neurons for reverse locomotion distribute along the front 
half (  figure 2.6 ). But does the layout approach the optimum sought by chip 
designers — the unique set of placements that minimizes the total length of 
connections in the brain? 

 Designers of silicon chips have developed algorithms to optimize com-
ponent placement. Their rule: place the most densely interconnected com-
ponents close together and the more sparsely connected components 
further apart (  figure 2.9 ). This algorithm applied to the worm ’ s brain shows 
that 90% of neurons are optimally positioned (Cherniak, 1995; Chen et al., 
2006; P é rez-Escudero  &  de Polavieja, 2007). The 10% of neurons not in 
their optimal position suggests competing needs. For example, neurons 
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that communicate most frequently with each other may be placed closer 
together to save energy and reduce conduction delays between them. 
Although layouts in larger brains certainly reflect this, conduction delay 
may be less relevant for  C. elegans  because the distances are so short, and 
the worm is so slow.  “ Short and slow ”  suggests another design feature. 

 Favors analogue over pulsatile 
 Because electrical signals in the worm travel less than a millimeter, neurons 
can conduct passively, as graded (analogue) changes in electrical potential. 
The brief, sharp, energy-intensive action potentials that dominate long-
distance signaling in larger brains are unneeded, so the worm can rely 
solely on analogue computations, which are direct and energy efficient 
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   C. elegans  connectome reconstructed from serial sections photographed in the elec-
tron microscope.  Each neuron is identified, and its synaptic connections are shown 

in gray. At the time of writing this is one of the most complete wiring diagrams estab-

lished for any part of any brain (the other is the fly lamina cartridge, figures 9.2 and 

9.3). Careful estimates suggest that this worm connectome is 93% accurate. Such are 

the technical difficulties of tracing neurons ’  thin connections that, after two decades 

of work on 302 neurons, 7% of connections are  “ missing. ”  Reprinted with permis-

sion from Varshney et al. (2011). 
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(Sarpeshkar, 1998). Even its motor neurons operate in analogue mode. Over 
these short distances, analogue signaling transmits more information per 
neuron and at lower cost (chapter 7). So firmly does  C. elegans  hold to this 
feature that it has abandoned the gene that encodes the voltage-gated 
sodium channel used by larger, faster species to produce spikes. 

 Conclusions 

 Three organisms of ascending size,  E. coli ,  Paramecium , and  C. elegans , show 
why an animal needs a brain to process information on a larger scale. It is 
to increase opportunities for survival and reproduction in a competitive 
and variable environment. 

 The small single cell,  E. coli , survives with surface receptors that relay 
information to the internal chemical signaling networks that determine 
metabolism, growth, reproduction, and movement. However,  E. coli  is a 
mere speck in space and time with most opportunities beyond its reach. A 
larger cell,  Paramecium , moving more briskly travels farther, expanding 
opportunities, but is ultimately limited by its chemical signaling networks —
 diffusion and internal communication by intracellular motors are both too 
slow. Voltage-gated ion channels added to the cell membrane allow fast 
electrical signaling, but trapped in a viscous world, a single cell can only do 
so much. 

 The multicellular worm,  C. elegans , overcomes viscosity by enlarging, 
and it moves faster and farther by specializing cells. This leads it to 
more opportunities and dangers — richer sources of information to be 
gathered and processed that finally need a brain. The key innovation is 
the neuron, a cell type specialized to collect, process, and communicate. 
Each neuron links its rich web of internal chemical communication to 
the electrical network at the surface membrane and thence to other 
neurons via synapses. Neuromodulators retune selected neurons to recon-
figure whole circuits. Thus, a brain of only 302 neurons extends the worm ’ s 
horizon by providing a behavioral repertoire that adapts to changing 
contexts. 

 The worm accomplishes the same tasks as a bacterium or protozoan —
 finds growth conditions and mates while avoiding unproductive or toxic 
sites. And it does so with similar behaviors, such as gradient ascent by 
biased random walk and avoidance. But with its brain  C. elegans  can cover 
more territory, and with its longer lifespan (weeks instead of minutes), it 
can adapt to nasty surprises as an  individual  rather than as a miniscule part 
of an adapting  population . 
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 Here emerges another design principle. Life span and lifestyle are related 
to the appearance of particular types of memory and particular decay times. 
Nothing should be remembered that is unlikely to enhance survival and 
reproduction. Nor should memories exceed the typical time constants of 
useful correlations — because when correlations decay, memory ceases to 
predict anything useful. But it  is  useful to establish the memory trace rap-
idly before it is outdated — and that seems to occur — few trials, closely 
spaced. This suggests that the longest and deepest human memories are not 
mere decoration but serve to shape character over a lifetime, promoting 
survival in our complex social fabric (chapter 14). 

 Finally, given that  C. elegans  does so well with only 302 neurons, one 
might look critically at an assumed truth — that it is better to have a bigger 
brain. So why  have  animals evolved still bigger brains? 
 
 
 
 
 
 
 
 
 





 This chapter will explain why, despite the worm ’ s success with 302 neu-
rons, brains expand. The mouse cerebral cortex contains about 10 7  neu-
rons. This seems like a lot until you consider that the cortex of the macaque 
monkey, a key experimental model, is larger by 100-fold, and that human 
cortex is 10-fold larger still (Herculano-Houzel, 2011). Despite this huge 
range of scales, one feels comfortable generalizing about the  “ mammalian 
brain ”  — because every part identified in mouse can also be identified in 
macaque and human (  figure 3.1;  Kaas, 2005). 

 Consider also the fly brain. It has 500-fold fewer neurons than the mouse 
brain, but 500-fold more neurons than the worm brain, plus a rich 
structure — so warranting a slot in the  “ large brain ”  category. Insect and 
mammal brains share many similarities. For example, both gather their 
neurons into clusters and their axons into cables ( tracts ). Both employ spe-
cial structures to accomplish the same broad tasks: store high-level input 
patterns, generate low-level output patterns, and retrieve patterns using 
reduced instructions. Of course, there are differences, given the differences 
in body design and behavior. Yet, despite half a billion years of evolutionary 
opportunity to diverge, brain designs in insect and mammal seem to have 
followed the same rules.    

 For designs to have persisted across this immensity of time and spatial 
scale implies that they are neither arbitrary nor accidental. Rather, they 
must have emerged as responses to some broad constraint. That is what 
elevates the shared responses to the status of  principles . This chapter will 
identify the key constraint and indicate how it leads to three principles that 
govern the organization of larger brains. 

 3   Why a Bigger Brain? 
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 A brain ’ s core tasks 

 As animals emerge from the soil to a wider, less viscous world, the possibili-
ties for foraging expand immensely. A worm explores mainly in two dimen-
sions over an area of 0.01 m 2  whereas a honeybee typically covers an area 
of nearly 10 7  m 2 , and a fly somewhat less. So foraging area expands by 10 9  
(1 billionfold). Add the third dimension, and the volume to be explored 
becomes astronomical. Larger animals, such as fish, birds, and mammals, 
may migrate and thus forage over thousands of kilometers — thus millions 
of square kilometers. 

 Such gigantic territories contain immense resources and, of course, har-
bor innumerable dangers. For an animal to find the one and avoid the 
other requires it to rapidly gather vast amounts of information from the 
environment. To calibrate  “ vast ”  with one example, the eye sends the brain 
about 10 megabits per second, roughly the rate of an Ethernet connection 
(Koch et al., 2006). All sense data reach the brain in the form of tiny 
patterns — evanescent pieces of a dynamic jigsaw puzzle — and to be of any 
use, they require assembly to reveal a larger pattern. So if gathering infor-
mation is to be at all rewarding, the brain must commit resources to assem-
bling larger patterns on spatial and temporal scales that are relevant to 
behavior. 

 Yet, even a larger pattern might be useless until it is compared to a library 
of stored patterns where it can be identified:  edible/toxic ,  friend/foe , or  search 
item not found . Either outcome provides a basis for behavioral choice. A 

 Figure 3.1 
  Mammalian and insect brains share many broad aspects of design .  Upper : Cross 

section through mouse brain; inset indicates plane of section.  Left : Fine dots are 

neurons; dark regions are neuron clusters; bright regions are myelinated tracts 

(chapter 4).  Right : Numbered regions dedicated to core tasks: (1)  hypothalamus ; 

(2)  thalamus ; (3)  cerebral cortex ; (4)  amygdaloid complex ; (5)  hippocampus ; (6)  striatum . 

Reprinted with modifications and permission from Franklin and Paxinos (1996). 

 Lower : Cross section through fly brain; inset indicates plane of section. Brain is built 

of more than fifty clusters, each specialized for particular tasks. Depicted here are 

ME, medulla — detect and map local visual patterns; LO, lobula — assemble local vi-

sual patterns into larger patterns;   AL, antennal lobe — preprocess olfactory signals for 

pattern recognition; VLP, ventrolateral protocerebrum; SLP, superior lateral protoce-

rebrum; SMP, superior medial protocerebrum — all involved in high-level integration; 

MB, mushroom body — store and recall; SEG, subesophageal ganglion — integrate in-

formation for wired and wireless output to body. 
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match allows confident choice: eat or decline, approach or flee. A non-
match suggests caution and need to gather more data. Thus, the brain 
requires  “ pattern comparators, ”  and these must couple to mechanisms that 
select behaviors:  feed ,  fight ,  copulate ,  investigate . These, in turn, couple to 
mechanisms for detailed motor patterns to drive muscles for moving limbs 
or wings. 

 Any given motor behavior  might  match exactly the action that was 
ordered: the arrow might strike the exact point at which it was aimed. But 
often there are errors due to environmental or neural perturbations, and 
these need to be identified, so that performance can progressively improve. 
Thus, a brain needs mechanisms to evaluate the mismatch between the 
orders it gave and the actual motor performance. So, in addition to sensing 
and processing patterns to discover  “ what ’ s important out there, ”  the brain 
also devotes considerable resources to sensing and processing its own motor 
errors, and other errors of internal  “ intentional ”  signaling in order to 
improve the accuracy and efficiency of the next round. This is  “ motor 
learning. ”  

 Behaviors are subject to another important class of errors. Every action 
has both costs and consequences. The costs are partly energetic: how much 
energy was spent? But also there are  “ opportunity costs ” : could the return 
have been greater and the risk less for some different action? Every behav-
ior, even when perfectly executed, needs to be evaluated from this perspec-
tive: wise or foolish? repeat or not? These evaluations of  reward prediction , 
like those for motor errors, are used to update stored knowledge in order to 
improve the next round of predictions. The nematode worm already shows 
this type of evaluation to some degree, but animals in the wider world allot 
it major neural resources. 

 In sum, to succeed in the wider world, an animal must exchange larger 
amounts of information with its external environment and also evaluate 
the costs and consequences of its actions. The seven core tasks that every 
brain must accomplish are summarized in   figure 3.2 . What the brain does 
for the external environment it also does for the internal environment 
which has also expanded and complexified. Moreover, the mechanisms for 
managing the internal and external environments need to couple closely in 
order to serve each other (  figure 3.2 ).    

 Why the internal milieu needs a brain 

 To support richer external behaviors, an animal requires specialized inter-
nal tissues and organs. Some digest the bounty foraged from the outer 
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world; others store metabolites and energy-rich compounds for release 
upon demand. Still others regulate ionic balance and cleanse the internal 
milieu, or distribute oxygen and metabolites to hungry tissues. Specialized 
organs of immunity protect against infectious agents and parasites. Organs 
couple to form systems, and systems cross-couple to optimize overall 
function. 

 The standard idea is that the internal systems more or less take care of 
themselves. Each parameter is supposed to have a set point, like a thermo-
stat, from which deviations trigger feedback to correct the mismatch 
( homeostasis ). Internal regulation also employs  autonomic nerves  — so termed 
because they are in some sense independent of voluntary control — thus, 
autonomous. We cannot  “ will ”  our heart to beat faster or our blood pres-
sure to decrease. However, we can accomplish these shifts by recalling or 
imagining the appropriate scene. This implies the existence of neural 
pathways from pattern stores to pattern generators for autonomic circuits. 
Thus, although the autonomic nerves are generally supposed to serve 
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 Figure 3.2 
  Large brains accomplish the same broad tasks . Note that inner and outer tasks cou-

ple to serve  each other  ( ↔ ). 
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emergencies ( “ fight or flight ” ), they actually serve continuous regulation —
 not just for panic, but for efficiency. 

 Efficient regulation anticipates 
 In fact, all internal regulation, even the mildest sort, is far from autono-
mous. As the external environment presents opportunity or cause for con-
cern, internal processes must predict what the external environment is 
about to deliver and must prepare particular responses that will probably be 
needed in support. For internal processes the goal is not to correct mis-
matches but to prevent them. 

 Such predictive regulation was demonstrated for feeding and digestion 
by Ivan Pavlov more than a century ago: the brain processes small patterns 
from the outside (sight or smell of some substance) and matches them to a 
stored pattern that identifies a particular food. Then the brain triggers secre-
tions all along the digestive system to prepare for what ’ s coming, starting in 
the mouth (if bread, then amylase; if fat, then lipase), then on to the stom-
ach (if meat, then acid plus protease), the intestine (if fat, then bile), and 
finally the circulation (if glucose, then insulin). All of these secretions occur 
 before  and  during  the meal, triggered  predictively  — anticipating what will be 
coming down the gastrointestinal tract — thus preparing systems for absorp-
tion and uptake in order to prevent deviations that would need correction 
by negative feedback (Fu et al., 2011). 

 Modern work extends this point: as the stomach releases its contents to 
the next stage, it also signals the brain to prepare for the next bout of forag-
ing. The brain responds by tuning up sensitivity of the olfactory receptors 
and by increasing the rate of sniffing (Julliard et al., 2007; Tong et al., 2011). 
Thus, the stomach warns the brain  “ Prepare to forage again ”  — well before 
the body has begun to deplete its reserves. Moreover, as fat reaches the 
small intestine, the gut can predict confidently the approach of satiety. 
Therefore, the gut warns the brain  “ cease feeding and proceed to the next 
activity ”   1   (Fry et al., 2007). 

 Each  “ next activity ”  requires the brain to predict continuously, and in 
timely fashion, the need for a particular blood pressure. Consider the record 
of mean arterial pressure over 24 hours (  figure 3.3 ). In early afternoon, as the 
subject attends a lecture, his brain anticipates reduced demand and allows 
him to doze: pressure falls. Startled awake by the jab of a pin, the brain pre-
dicts danger: pressure spikes; then, identifying a prank, the brain directs the 
nap to resume: pressure falls. At midnight the subject has sexual intercourse: 
pressure spikes, but then falls profoundly and stays low during sleep. Come 
morning, the brain predicting a busy day, restores the pressure.    
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 Such anticipatory tuning requires coordinated action of multiple organs 
and organ systems. To raise pressure, the heart accelerates and vessels con-
strict. Also the kidney expands blood volume by pumping more salt water 
into the circulation. The kidney also signals the brain that the body will 
soon need more supplies of salt and water. Thus, like the gastrointestinal 
tract, the kidney alerts the brain well in advance of an upcoming need to 
resupply. Each contribution operates on a different timescale: faster for 
heart and vessels, slower for kidney ’ s pumping, and still slower for the 
brain ’ s rise of salt appetite and thirst. These contributions to internal regu-
lation are all initiated simultaneously — and largely by the same signals. 

 In short, every move we make is matched by a corresponding cardiovas-
cular and renal pattern. Of this we are generally unaware. Yet if the motor 
command ( “ Arise! ” ) slightly precedes the internal command ( “ Tighten ves-
sels! ” ), blood flow to the head drops, and we faint. That this experience, 
 postural hypotension , occurs rarely attests to the rigorous coupling between 
the cardiovascular pattern and muscular patterns on a 100-ms timescale. 
On a slower timescale  “ Arise! ”  increases by eightfold a signal to the kidney 
to save water.  2   

 Note that matching blood pressure to environmental context requires all 
of the brain ’ s broad tasks as diagramed in   figure 3.2  — the collecting and 
assembling of patterns, the comparison to stores, and so forth. How else to 
decide if the jab is from a friend or enemy? Moreover, every high-level call 
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to external action is delivered simultaneously to multiple internal organs. 
Thus, collecting patterns and distributing patterns are both thoroughly 
coupled between inner and outer worlds. Where and how the brain effects 
this coupling will be treated in chapter 4. 

 Adapt, match, trade 
 Although this book concerns efficient neural design, we must keep in mind 
that the brain comprises only 2% of the body ’ s mass and 20% of its energy. 
So the body also needs to operate efficiently. Each organ should match its 
capacity to the anticipated need of the organ downstream. Too little and 
the system will fail; too much and capacity is wasted. So each organ needs 
constant tuning to anticipate the next demand (  figure 3.4 ). But what hap-
pens when a need exceeds the capacity to supply? This problem is solved 
by arranging various short-term  “ trade-offs. ”  Such cooperation enhances 
the range of performance while greatly reducing average excess capacity 
(  figure 3.4 ).    

 For example, the  “ resting ”  heart pumps 6 L of blood per minute through 
the respiratory system and then out to the general circulation. Resting skel-
etal muscle uses about 20% of the oxygenated blood — matched to its mod-
est need for maintaining posture. During peak exercise, muscle must 
increase its supply by nearly 20-fold, but the pulmonary and systemic cir-
culation can increase their outputs only fourfold. Therefore, the body must 
either reduce its peak capacity for exercise or increase its peak pulmonary 
and cardiovascular capacity by fivefold — imagine the chest! Or it can 
borrow. 

 Indeed, during peak exercise the splanchnic circulation (gut and liver) 
and the renal circulation (kidney) both reduce their shares by four- to five-
fold, enough to pay part of muscle ’ s bill for exercise. During digestion, 
when the splanchnic circulation needs more blood, it borrows from muscle 
and skin — unless skin needs blood for cooling. The brain neither makes 
loans nor allows overdrafts that might cause it to overheat. Anyone who 
has eaten and then exercised in the sun will recall how these conflicting 
demands from muscle, gut, and skin are resolved: by corrective motor com-
mands to internal systems ( “ Vomit! ” ) and to external systems ( “ Lie down! ” ). 
Moreover, the experience receives a strongly negative evaluation that 
updates the knowledge store ( “ Do not repeat! ” ). 

 This example illustrates three key rules for efficient regulation: (1) adapt 
response capacity to changes in input level, (2) match response capacities 
across the system, and (3) trade between systems. Regulatory responses 
begin promptly — as soon as there is sufficient statistical evidence to predict 
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a new target level. By comparison, self-regulation by feedback to a set 
point would be hopelessly inefficient. But to execute these principles of 
predictive regulation requires an organ with knowledge of the outside, 
knowledge of the inside, and knowledge of the past to anticipate what 
the whole animal will need over various timescales — the whole brain 
(Sterling, 2012). 

 Bigger brains 
 We seem to have answered  “ Why a bigger brain? ”  In a wider world, a more 
effective brain expands the possibilities for behavior. Control of append-
ages such as fins, wings, and legs lends speed and scope to exploration, so 
that vastly more small patterns are encountered which then require selec-
tion and assembly. More large patterns require more comparisons, requir-
ing a larger library; more comparisons also require more decisions, and 
these require more evaluation. Naturally, more neurons are needed, and 
since neuronal components are irreducibly small (chapter 7), a brain must 
enlarge.  3   

 The larger brain, to be effective, must operate in real time. One need not 
watch a sloth for very long to realize the limits to life in slow motion. The 
larger, faster brain must still remain portable and also metabolically afford-
able. So a brain needs to be both functionally effective and cost-effective. 
These demands for speed, portability, and affordability all interact; there-
fore, individually and together they raise questions of brain design. We turn 
now to the fundamental constraint on any brain design that leads to the 
first three design principles. Then, in the context of these few principles, we 
discuss some actual designs (mammal and insect). 

 Design constraints 

 The fundamental constraint on brain design emerges from a law of physics. 
This law governs the costs of capturing, sending, and storing  information.  
This law, embodied in a family of equations developed by Claude Shannon, 
applies equally to a telephone line and a neural cable, equally to a silicon 
circuit and a neural circuit. This law constrains neural design at all scales 
and cannot be avoided any more than a B-29 bomber can avoid the law of 
gravity. But, though the brain is fundamentally an organ that manipulates 
information, few neuroscientists are familiar with this law or aware of its 
value for understanding brain organization. We explain it briefly here and 
give more detail in chapters 5 and 6. 
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 What  is   “ information ” ? 
 Information is  the reduction of uncertainty about some situation X associated 
with observing any variable Y that is causally correlated with X.  Uncertainty 
defines the standard measure: one  bit  is the information needed to decide 
between two equally likely alternatives. Information depends on causality 
because, to reduce uncertainty, a message must be reliably relatable to 
its source, the event that caused it. Any factor that reduces the reliability of 
this connection, such as noise, increases uncertainty and destroys 
information. 

 Reduction of uncertainty succinctly describes the brain ’ s purpose. A 
spike in an ON ganglion cell reduces the brain ’ s uncertainty that a brighter 
than average object is located in a particular region of the visual field (chap-
ter 11). And when the brain matches the sensory pattern coded by a patch 
of ganglion cells to a stored pattern, it reduces a key uncertainty:  “ Friend or 
foe? ”  The answer helps to select the next behavior and implement it. To 
this end, a motor neuron spike decreases the uncertainty that its target 
muscle fibers will contract and help the animal move in the appropriate 
direction. In short, to achieve its core purpose, the brain uses physical 
devices (neurons and circuits) that represent and manipulate information. 
So now we must ask: how much information can a neuron represent, and 
what constrains its capacity? 

 A neuron ’ s information capacity 
 To convey information, a neuron must represent the state of its input as a 
distinct output (input and output must be causally related). It follows that 
a neuron ’ s capacity to convey information is limited by the number of dis-
tinctly different outputs that it can generate. The number of different out-
puts a spiking neuron can generate in a given time is the number of 
distinctly different spike trains that it can produce in that time. This 
depends on two factors, mean firing rate ( R  spikes per second) and the pre-
cision of spike timing (  Δ t  seconds). The upper bound on firing rate is set by 
spike duration plus the period following a spike when a neuron is refractory 
(cannot spike). Certain neurons reach this limit during brief bursts, but 
most neurons operate far below this limit. Precision is limited by channel 
noise and membrane time constant. Here biophysics limits information 
capacity. 

 What is the relation between spike rate, timing precision, and the num-
ber of different spike trains a neuron can produce? When a neuron trans-
mits for 1 s, it produces  R  spikes with a timing precision of   Δ t  (Rieke et al., 
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1997). The number of different spike trains,  M , is the number of ways the 
neuron can place its  R  spikes in  T  = 1/  Δ t  intervals (  figure 3.5 ). Deriving  M  is 
a standard exercise in calculating combinations that is often set to students 
in quaint terms, such as placing peas in pots. The solution is 

  M  =  T !/( R !( T   –   R )!), (3.1) 

 where ! denotes factorial and ( T   –   R ) is the number of empty (spikeless) 
intervals. 

 The number of different messages,  M , that a neuron can generate in 1 s 
converts to information rate. According to Shannon, the information,  H , is 
given by 

  H  = log 2 ( M ). (3.2) 

 Substituting for  M  using (3.1) gives 

  H  = log 2 ( T !/( R !( T   –   R (!)) = log 2 ( T !) — log 2 ( R !) — log 2 (( T   –   R )!). (3.3) 

 Because Shannon used a logarithmic scale, a message lasting twice as long 
conveys twice as much information. And, because he used log base 2, infor-
mation is in bits. Thus,  H , the information that a neuron can transmit with 
messages 1 s long, is its information capacity in bits per second (figure 3.5). 

 With this expression we can  “ follow the money. ”  That is, using a stan-
dard currency (bits) we can ask like good engineers: how fast does a neuron 
send information (bits per second) and how efficiently (bits per spike)? And 
at what cost in space (bits per cubic millimeter) and energy (bits per mole-
cule of adenosine tri-phosphate)? This molecule, abbreviated  ATP , is the 
standard intracellular molecule for transferring energy.    

 Information costs energy and space 
 Information rate increases with spike rate and with spike timing precision, 
that is, reduction in   Δ t . However, for any given precision, information rate 
increases sublinearly with spike rate (  figure 3.5) . Consequently, as spike rate 
rises, bits per spike should fall, and this theoretical decline in bits per spike 
is observed experimentally (  figure 3.5 ). 

 There is another way to explain why more frequent spikes carry less 
information. A symbol that occurs less frequently is more surprising and so 
more informative (chapter 4, equation 4.2). This effect, which Shannon 
called  surprisal , makes a code with fewer spikes more efficient. For example, 
a code that distributes spikes sparsely among a population of neurons con-
veys more bits per spike (chapter 12; Levy  &  Baxter, 1996). 

 This simple law — infrequent spikes carry more bits — profoundly influ-
ences neural design because, following the money, one finds that spikes are 
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  Mathematics and biophysics govern the representational capacity of signal trains.  
 Upper : Distinct sequences of spikes in time intervals   Δ t  represent different inputs. 

 Middle left : Theory predicts information rate to increase sublinearly with spike rate, 

with the consequence shown at  middle right : Increasing spike rate reduces the in-

formation transmitted per spike. These theoretical curves were calculated using the 

standard approximation for signal entropy at low spike rates (Rieke et al., 1997, equa-

tion 3.22). In general neurons do not achieve their theoretical capacity because of 

noise and redundancy; consequently, measured values of bits/spike are lower (figure 

11.25).  Lower : Measured bits per spike falls as mean spike rate increases. Data pooled 

from several classes of guinea pig retinal ganglion cell. Reprinted with permission 

from Balasubramanian  &  Sterling (2009). 
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expensive. They use about 20% of the brain ’ s energy (Attwell  &  Laughlin, 
2001; Sengupta et al., 2010). A spike charges a neuron ’ s membrane capaci-
tance by about 100 mV, and the membrane area is substantial due to a 
neuron ’ s local branching. Higher mean spike rates require a larger cell body 
with greater membrane area; this increases energy cost per spike and adds 
to the cost of transmitting bits at high rates. Consequently, where spikes are 
sent sporadically and at low mean rates, more information can be sent for 
the same energy — more bits per ATP. This saving in energy by low rates is 
compounded by a saving in space. 

 Higher spike rates also require thicker axons.  4   Because axon diameter,  d , 
increases directly with firing rate, axon volume rises as  d  2 ; therefore, dou-
bling the firing rate quadruples axon volume. The concentration of mito-
chondria, an indicator of energy cost, tends to be constant with axon 
diameter; therefore, as volume quadruples, so does the energy supply (Perge 
et al., 2009, 2012). In summary, there is a  law of diminishing returns : cost per 
bit, both in energy and space, rises steeply with bit rate (  figure 3.6 ).    

 Three principles of neural design 
 The inescapable cost of sending any information and the disproportionate 
cost of sending at higher rates lead to three design principles:  send only what 
is needed ;  send at the lowest acceptable rate ;  minimize wire, that is, length and 
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diameter of all   neural processes . This last principle seems obvious, but it actu-
ally reflects a subtle point that arises from the constraint on rate. 

 Designs should reduce wire, of course, because wire uses space and 
energy. But wires also use  time  for transmission, and that is time lost to 
processing and action (Howarth et al., 2012). The constraint is particularly 
onerous for neural wires because they transmit more slowly than copper 
wire. Neural conduction velocity is 100 millionfold lower and, for biophysi-
cal reasons, faster conduction requires thicker wires (chapter 7). Thus sav-
ing time by sending at higher information rates (bits per second) and higher 
conduction velocities (meters per second) requires thicker axons, which, as 
noted, involves disproportionate costs in energy and space (Wen  &  Chk-
lovskii, 2005). Thus, the only economical way to save time is to rigorously 
shorten wires. This principle shapes brain design across all scales, from an 
axon ’ s branching and the microscopic design of local circuits, to the overall 
layout (chapter 13). 

 With these few principles we can now consider how the mammalian and 
fly brains are organized on a scale of about 1 mm and why. This macro-
organization cannot explain the actual computations because those occur 
mostly on a finer scale. Nor do we claim that every feature represents the 
best of all possible designs. Others might work just as well — but they have 
not been tested. All we can say is that these three principles illuminate the 
layout of real brains — across a millionfold range of scale and half a billion 
years of evolution. 
 
 
 
 
 
 





 I sensed the earth ’ s slow turning into the dark. The shadow of night is drawn like a 

black veil across the earth, and since almost all creatures, from one meridian to the 

next, lie down after the sun has set, one might in following the setting sun, see on 

our globe nothing but prone bodies, row upon row, as if leveled by the scythe 

of Saturn.  

  — W. G. Sebald, paraphrasing Sir Thomas Browne (edited for brevity) 

 The preceding chapter established that for the brain to send information 
requires energy and space. Moreover, higher rates (more bits per second) 
require disproportionately more energy and space because they need thicker 
axons — for which both space and energy rise as the diameter  squared . Con-
sequently, the most efficient designs will send only information that is 
essential and will send it at the lowest rate allowable to serve a given 
purpose. If information can be sent without any wire at all, that is best. 
If wires are absolutely needed, they should be as short and as thin as 
possible. These principles allow substantial insight into how bigger brains 
are organized. 

 One design decision is so ubiquitous as to require immediate mention. 
Brains segregate the wires that interconnect local circuits with each other 
and with distant circuits. The reason is simple and fundamental: to mingle 
the wires with the circuits increases total wire length and thickness —
 violating the principle minimize wire (chapter 13). In mammals axons seg-
regate if they travel beyond a few millimeters. The reason is that increasing 
distance requires increasing conduction speed to avoid computing delays, 
and this requires thicker axons. When axon diameter exceeds about 0.5  μ m, 
the axon becomes wrapped in  myelin , which increases conduction speed by 
about 6 mm ms  – 1  for every 1- μ m increase in diameter (chapter 7). Because 
myelin in the living brain glistens white, extended sheets of myelinated 
axons are termed  white matter . 

 4   How Bigger Brains Are Organized 
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 Saturn ’ s scythe sets brain design 

 The most profound condition for all life on Earth, the one that uniquely 
shapes every cell in every organism, is the daily rotation of our planet about 
its axis. This motion shifts the intensity of arriving solar radiation over the 
course of 24 hours by a factor of 10 10 . The impact of this motion is so pro-
found that for many cultures it opens the story of Creation. One familiar 
example waits only until line 4:  “  . . .   and God divided the light from the dark-
ness  . . .  and there was evening and there was morning, one day  ”  (Genesis   1:4 – 5). 

 Animals can certainly survive without light (e.g., in caves), but those 
with access to light generally choose a particular time of day to forage and 
thus a particular range of light intensities. The basic choices are diurnal, 
nocturnal, and crepuscular (dawn and dusk).  1   This decides their investment 
in sensors: fine spatial vision with color versus acute hearing, possibly with 
echolocation, versus olfaction plus whiskers. Foraging period also decides 
their strategies to deal with predators occupying the same slot: camouflage, 
evasive flight, or skulking behavior. 

 During its active period the body expends chemical energy to support 
external behaviors, such as foraging, and internal activities, such as diges-
tion and absorption. Some needs rely on both internal and external actions, 
for example, thermoregulation. Thus, the active phase involves a broad 
metabolic pattern,  catabolism : (1) disassemble large polymeric molecules 
(proteins, fats, carbohydrates, nucleic acids) into their monomeric building 
blocks (amino acids, fatty acids, sugars, nucleotides); (2) distribute mono-
mers to metabolically active tissues; (3) convert monomers into energy-
bearing molecules, such as ATP, that drive cellular processes; and (4) use an 
aerobic (oxygen requiring) pathway to produce ATP because it is sixteenfold 
more efficient (ATP per glucose monomer) than the anaerobic pathway. 

 During its  in active period, the body shifts to a broad pattern of renewal, 
 anabolism : (1) assemble new polymers for growth, repair, remodeling, and 
immunity, and (2) replenish reserves by storing residual monomers as 
resynthesized polymers. Thus, liver converts spare glucose to the storage 
polymer glycogen; fat cells convert excess glucose to monomeric fatty acids 
which are then used to build the storage polymer, fat. Because catabolism 
and anabolism involve opposing sets of biochemical reactions, it would be 
inefficient to run them simultaneously. Thus, natural selection has sepa-
rated internal processes into complementary patterns for different seg-
ments of the daily cycle. 

 The brain itself participates in the catabolic/anabolic cycle. During 
wakefulness it collects, processes, and distributes immense amounts of 
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information. During sleep, the brain switches over to anabolism via a spe-
cific regulatory enzyme and uses this phase to store recently acquired infor-
mation (Dworak et al., 2010). This involves remodeling local circuits by 
retracting certain synapses and adding new ones and, in some cases, gener-
ating new neurons (chapter 14). 

 The obligatory alternation between catabolism and anabolism involves 
throttling down one set of biochemical pathways and revving up another —
 both of which take time. Consequently, each pattern needs to anticipate 
the environmental shift — in order to optimally match the key time win-
dows for sleep and foraging. Thus, the pattern seen in figure 3.3, where 
blood pressure falls with sleep and rises with waking, is completely general: 
all processes in body and brain move through this cycle. So it is efficient for 
them to share the same broad signals, and although some processes cease 
during darkness and others during light, all must follow Saturn ’ s scythe. 

 Brain clock 
 Many somatic cells contain an intrinsic clock, established by oscillations of 
interacting proteins, with a period of approximately 24 hours ( circadian ). 
But without a mechanism to trim them up, these clocks would soon drift 
out of phase. So a master clock is needed to track the day, including its con-
tinual shift, due to Earth ’ s axial tilt, during its annual revolution about the 
sun. The master clock comprises a discrete cluster of neurons (about 8,600 
in human), the suprachiasmatic nucleus ( SCN ).  2   One subgroup of SCN neu-
rons contains a circadian clock that resets daily based on signals from the 
retina that track the slow shifts of light intensity across the day and season 
(  figure 4.1 ). 

 The master clock requires neither color, nor spatial, nor fine temporal 
information — only slow intensity changes. Therefore, following two design 
principles, the retina sends as little as needed and sends as slowly as possi-
ble. It uses just a small fraction of retinal output neurons (0.2%), types that 
cover the retina sparsely and fire at very low rates, a few Hertz averaged over 
the day (Crook et al., 2013; Wong, 2012). SCN neurons themselves fire 
between about 8 Hz (day) and about 1 Hz (night; H ä usser et al., 2004). To 
follow another principle, minimize wire, the SCN locates exactly where the 
optic tracts join the brain (see   figure 4.1 ). But how does the master clock 
govern patterns across the entire body and the brain as well?    

 The SCN ’ s relatively few neurons, about 10 4  in rat, could not conceivably 
contact all other cells directly (G ü ldner, 1983). Nor should they because 
their job is not to micromanage every cell but mainly to keep the time. 
Except for time, the SCN is fairly ignorant — largely unaware of internal 
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physiology and external behavior. Therefore, it could not responsibly tell 
either the body or the brain when to shift the broad pattern. For example, 
a rat normally forages at night, but what if food becomes sparse at night 
and plentiful at noon? Were the SCN to directly instruct a command center 
for foraging, it might send the rat to sleep without its supper. 

 Coupling clock to behavior: A hypothalamic network 
 Instead, the SCN couples to an adjacent region, the hypothalamus, that for 
its comparatively small extent is extremely well informed (  figure 4.1 ; Saper 
et al., 2005; Thompson and Swanson, 2003). This region monitors myriad 
internal parameters, including temperature, blood levels of salt, and metab-
olites, hormonal signals for satiety, hunger, thirst, pain, fear, and sexual 
state. Some of its neuron clusters express their own endogenous oscillators, 
and at least one of these responds to changes in food availability (Guilding 
et al., 2009). This territory also monitors stored patterns — such as best 
places and times to forage and past dangers. And it monitors the external 
environment using every sense. Integrating all these data, plus SCN clock 
time, this region calculates which needs are urgent. Then, balancing 
urgency against opportunity and danger, it tells the rat whether to forage, 
mate, fight, or sleep. To execute, it does not micromanage but instead 
calls the appropriate pattern of behavior (Saper et al., 2005; Thompson  &  
Swanson, 2003). 

 Hypothalamic circuits, designed to anticipate impending needs, gener-
ate signals that elicit various  “ motivated behaviors, ”  that is, foraging for 
food, or drink, or sex in response to these integrated signals. As these moti-
vating signals are broadcast to other brain regions, there arises a subjective 
component that we (among other animals) experience as desire. If one area 
can be considered as the wellspring of unconscious desires, this is it. It 
seems amazing that such a small region could access and integrate so much 
information and evoke such a variety of core behaviors. How could there be 
sufficient space for hypothalamic neurons to do so much? 

 Part of the answer is that this well-informed region dictates  sequences  of 
low-level patterns. For example, feeding behavior requires the sequence: 
sniffing  →  biting  →  chewing  →  swallowing. These components are pro-
grammed in detail by dedicated pattern generators located down in the 
brain stem near their effector muscles. The local pattern generators manage 
the exact timings of muscle contraction required for coordinated behavior. 
The broad sequence that smoothly calls each component into play can be 
dictated to local pattern generators with a reduced instruction set —
 something like a music conductor following a score to call forth a Beethoven 
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symphony from 80 low-level players with nothing but a slender baton. The 
analogy does not explain the magic in either case, but it does emphasize the 
design principle: send simple instructions and compute the complex details 
locally (B ü schges et al., 2011). 

 This economical design allows the hypothalamic region to accommo-
date a dedicated circuit for each behavioral pattern. These are sufficiently 
compact that a fine electrode can stimulate them separately, revealing that 
each circuit evokes a full behavioral pattern, plus the appropriately matched 
visceral pattern (Hess, 1949; Bard  &  Mountcastle, 1947). For example, a cat 
with an electrode placed to evoke  “ angry attack ”  arches its back, hisses, and 
strikes with bared claws and teeth (somatic pattern). Simultaneously it 
dilates pupils, raises hackles, and increases cardiovascular activity (visceral 
pattern; B ü schges et al., 2011; Hess, 1949). 3  Moving the electrode by a few 
millimeters can activate circuits for other behaviors: feeding or drinking or 
copulating or curling up to sleep. In short, many circuits fit in a small space 
because their output messages are simple. 

 Each behavior circuit is demonstrably guided by a rich set of input sig-
nals. For example, a cat electrically stimulated to feed will attack a ball of 
cotton that mimics a mouse, but only briefly, whereas it persistently attacks 
a real mouse until the current stops. If the mouse is replaced by a substan-
tial rat, the cat retreats to its home corner. Evidently the feeding circuit is 
modulated by inputs that identify prey, distinguish true prey from false, 
and recognize dangerous prey — all based on comparison to stored patterns. 
Moreover, each behavior is imbued with a motivational component —
 apparent when an animal stimulated to feed will seek hidden food and 
work to obtain it (press a lever). 

 How does this small region, the hypothalamus, access the brain ’ s core 
systems for perception, spatial memory, danger, economic value, and 
urgency? Again, it relies on details computed elsewhere and delivered only 
as conclusions: time from the SCN; integrated physiological data from myr-
iad sources that define internal state; selected memories of location and 
danger from hippocampus and amygdala; recent history of reward value 
from the striatal system; high-level analysis of choices from prefrontal cor-
tex. Because these inputs to the hypothalamic region all send summaries, 
they can use low information rates and thus fine fibers, thereby greatly 
conserving space (  figure 4.1 ). Energy is also conserved, allowing this crucial 
region to have among the lowest metabolic rates (Sokoloff, 1977). 

 This strategy allows a major organ for memory, the hippocampus, to 
access key aspects of an animal ’ s life history but send only modest clips to 
guide a particular behavior. This might explain why its output tract ( fornix ) 
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can manage with mostly fine fibers, resembling the optic nerve, which 
itself sends strongly edited summaries from the retina (chapter 11). An 
apparently similar strategy allows sensorimotor areas of the cerebral cortex 
to lend speed and agility to motor behaviors via an output tract ( corticospi-
nal tract ) of similar fine structure (  figure 4.2 ; Quallo et al., 2012). In short, 
the hypothalamic network is designed to receive executive summaries as 
input and deliver broad memoranda as output (Perge et al., 2012).    

 Resurrection 
 To be awakened from a deep sleep feels horrible. And no wonder: every cell 
in the body and brain struggles to function according to its catabolic 
phase — against all central instructions to remain in anabolic phase. But 
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  Fiber tracts that transmit summaries share an economical design . Their axon diame-
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when anabolism has gone to completion — when the body has replenished 
stores, healed wounds, rebuilt muscles and immune systems, and when the 
brain ’ s sorting mechanisms have punched  “ delete ”  or  “ save ”  — then all the 
cells and tissues finally wake up more or less simultaneously. 

 The SCN signals  “ dawn ”  to the hypothalamic network — which then 
decides, based on many factors, whether it is auspicious to awaken.  4   If so, 
the network signals a nearby cluster of neurons (comparable in size to SCN) 
to secrete the peptide transmitter  orexin . The orexin neurons project widely 
over the brain to activate a cascade of systems that regulate arousal (Sakurai, 
2007). Because orexin neurons couple the clock to the brain ’ s arousal sys-
tem, an animal lacking orexin tends to collapse unpredictably into sleep. 

 The orexin cluster specifically awakens olfactory sensors, enhancing 
their sensitivity, and it awakens motor mechanisms for foraging (Julliard et 
al., 2007). Informed by the master clock, the orexin cluster uses the hypo-
thalamic pattern generator network to coordinate alertness, olfactory sensi-
tivity, and the sense of hunger — all to initiate foraging at the proper time. 
Now it is time for brain signals to reinstate the broad catabolic pattern: 
mobilize energy stores from liver and oxygen carriers (red blood cells) from 
spleen and bone marrow; re-expand the vascular reservoir with salt water 
from the kidney. And it is time to  de mobilize anabolic processes for growth, 
repair, and immunity. 

 In summary, the hypothalamic network manages the whole brain and 
all of its functions — without micromanaging. But now, what about micro-
managing? A conductor is all well and good, but someone must play the 
bassoon. So how are the processes that do involve micromanaging gov-
erned by the design principles considered here? 

 Distributing output patterns 

 Wireless signaling 
 Design principles dictate that the slowest processes should be governed by 
the slowest effectors and the least wire. Where signals can be sent with zero 
wire, that is best. Consequently, the effectors for micromanaging the broad 
catabolic and anabolic patterns are endocrine glands. For example, the 
adrenal gland secretes a steroid hormone that enhances the kidney ’ s uptake 
of sodium and a different one that enhances catabolism, mobilizing energy 
and suppressing growth and repair. Testis secretes anabolic steroids that 
enhance muscle, and liver secretes a hormone that stimulates red blood cell 
production. What coordinates these low-level effectors? Higher-level endo-
crine signals from the pituitary gland, which is in turn governed by 
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hormones from the brain. Wireless regulation of two particular functions, 
blood pressure and muscle contraction, is summarized in   figure 4.3 .    

 Brain hormones are secreted directly into the circulation by neurosecre-
tory neurons whose clusters lie adjacent to the hypothalamic network of 
pattern generators. The pattern generators deliver their well-informed but 
simple orders via very fine, very short wires (  figure 4.1 ). Each node in the 
hypothalamic network can call a particular pattern of brain hormones for 
release into the blood just upstream of the pituitary, thus stimulating it to 
release its own hormones into the general circulation. The whole endocrine 
network reaches every cell in the body within seconds. Not blazingly fast, 
but on the other hand, the messages are broadcast without any wire at all 
and with zero energy cost above what the heart is already doing. 

 The genius of this wireless system lies partly with the receivers. Although 
all somatic cells are exposed to all hormones, only certain cell types down-
load a given message. To do so, they produce a specific molecular receptor 
that binds a particular hormone and triggers a particular intracellular 
response. Thus, information broadcast diffusely to the whole body can be 
read out by a restricted number of cell types — whose responses to the signal 
are thereby coordinated. The molecular mechanism and reasons why it is so 
economical are described in chapter 5. 

 Another clever feature is that receiver cells can express different subtypes 
of the molecular receptor. Each subtype can couple within the cell to a par-
ticular  second messenger  with its own stereotyped action. For example, one 
messenger can greatly amplify the hormonal signal and use it to either acti-
vate or suppress some intracellular process. Thus, a single message broad-
cast wirelessly can evoke complex response patterns among different tissues 
that include negative as well as positive correlations. 

 For example, skeletal muscle acts rapidly on the outer world via fast sig-
nals over thick wires. Yet, it is also a tissue within the body and is thus regu-
lated wirelessly by various hormones, including anabolic steroids, insulin, 
growth hormone, and thyroxin (  figure 4.3, lower panel ). Thus, wireless sig-
naling helps the brain to efficiently couple inner and outer worlds. 

 Wireless collecting 
 The brain also uses wireless receivers, a small set of  circumventricular organs  
that locate at specialized interfaces between brain and blood vessels. There 
the normal barrier between blood and brain parts, thus exposing neurons 
to circulating chemicals. These neurons select just what they need by 
expressing the appropriate molecular receptors. For example, the  subforni-
cal organ  locates near the hypothalamic pattern generators that regulate 
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appetite for salt and water (  figure 4.4 ). The neurons sense the blood ’ s 
sodium level, plus levels of hormones ( angiotensin II  and  aldosterone ) that 
tell the kidney to conserve sodium (  figure 4.3, upper panel ). Thus, this wire-
less receiver closes the loop for anticipatory regulation: the brain sends 
instructions to kidney regarding salt and water, and the brain ’ s subfornical 
organ wirelessly receives information about the current state  5   of sodium 
balance. 

 Need for wires: Faster, spatially directed signaling 
 Neurosecretions spread slowly (over seconds) and modulate target cells 
slowly because the packets of hormone molecules released into the volumi-
nous vascular system become greatly diluted (to concentrations ~10  – 9  M). 
Therefore, molecular receptors need high affinity to capture the hormone, 
and thus their  un binding is slow (chapter 6). However, this delay is incon-
sequential because the intracellular processes that they are regulating typi-
cally span minutes or hours. Thus, the slow rhythms of wireless signaling 
match their targets, physiological processes that rise and fall slowly. 

 Where faster responses are needed, the hormone is released into a  portal 
vessel  leading directly to a target downstream. Because the hormone is less 
diluted, it can be captured by lower affinity receptors, which unbind faster, 
and operate on the steep limb of the binding/response curve. For example, 
the brain hormone corticotropin-releasing hormone is secreted into portal 
vessels leading to the pituitary; the adrenal cortex secretes steroid hor-
mones into portal vessels leading to the adrenal medulla. Yet certain inter-
nal process must proceed still more smartly, and that needs wire. 

 For example, for the brain to initiate a change in body posture, it must 
alter the pattern of muscle contraction. This will require a change in the 
distribution of oxygen and thus an altered vasomotor pattern to redistrib-
ute blood. Furthermore, active muscle will need to take up glucose, and that 

 Figure 4.3 
  Wireless regulation broadcasts slow signals to efficiently couple inner and outer 
worlds .  Upper : To adjust blood pressure rapidly and locally, the brain uses wires 

(autonomic nerves). But to shift pressure slowly and broadly, it uses wireless signals 

(hormones) ( italicized ). Dashed lines indicate wireless feedbacks to brain. Feedbacks 

by wire are used by certain sensors, such as for oxygen and pressure, but are not 

shown.  CRH, corticotropin releasing hormone .  Lower : Catabolism in muscle activates 

rapidly to support contraction; so to rapidly activate catabolism, the brain uses wires. 

But anabolism in muscle is slower, so the brain activates those processes with wireless 

signals ( italicized ). 
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will require triggering insulin secretion from pancreatic cells. These vascu-
lar and endocrine adjustments need to be initiated along with the muscle 
activity, and these faster, spatially localized signals demand wires. 

 This need is served by autonomic neurons whose axons contact every 
internal organ and blood vessel. Their mean firing rates are less than 1 Hz, 
and thus in Shannon ’ s sense they transmit at low information rates. This 
seems intuitive, since a message —  “ Secrete some insulin ”  or  “ Constrict this 
vessel ”  — goes somewhat beyond  “ yes ”  or  “ no ”  (one bit), but not by much, 
and thus it can be accomplished with few spikes. Signals that transfer at 
rates below 1 Hz use the finest, cheapest axons. 

 What manages these autonomic effectors?  Answer : low-level pattern gen-
erators located in the brain stem and spinal cord near the output clusters 
(  figure 4.1, right ). The latter form two subsystems ( sympathetic  and  parasym-
pathetic ), which employ different transmitters. Each transmitter couples to 
several receptor types, which in turn couple to different second messengers. 
Consequently, the autonomic effectors can generate rich internal patterns. 
They are the orchestral players — ready and waiting for the conductor to 
select the next pattern and tempo. 

 What manages the muscles that change the body ’ s posture? Again the 
answer is low-level pattern generators located near the motor neuron clus-
ters. These pattern generators must increase force from certain muscles and 
decrease it from others — in just the right amounts and at just the right 
instants. Sharp timing requires large currents, rapid integration (short time 
constants), and high mean firing rates (chapter 7). Therefore, these pattern 
generators need large neurons with thick dendrites and thick axons.  6   To 
reduce costs, they locate near their effectors. This lengthens the descending 
pathways that supervise them, but as noted, those are cheaper (  figure 4.2 ).  7   

 Motor control requires rapid feedback. The fastest signals from skin and 
joint receptors travel at about 50 m s  – 1 , and those from muscle receptors 
travel at about 100 m s  – 1 . These velocities require very thick, myelinated 
axons, 8 – 17  μ m in diameter.  8   These fibers are 10-fold thicker than for the 
descending tracts and thus 100-fold greater in volume. Were pattern gen-
erators located higher in the brain, for example, nearer to the hypothalamic 
pattern generators, feedback would be delayed, even though these axons 
are huge. Thus, the combined needs for fast output and fast feedback con-
strain the low-level generators of motor patterns to locate near their effec-
tors, the motor neurons (  figure 4.5 ).    

 Arrangement of effector clusters 
 The neurosecretory clusters locate adjacent to the hypothalamic network, 
which can thus modulate them with very little wire (  figure 4.1 ). But the 
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  Longitudinal section through rat brain.  This section shows relative size and loca-

tion of various structures discussed in this chapter. From  http://brainmaps.org/ajax-
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the University of California, Davis campus, 2014. 



70 Chapter 4

autonomic and somatic motor neuron clusters lie far from the hypotha-
lamic network, distributing from the midbrain down through the spinal 
cord. This extended distribution allows space for their low-level pattern 
generators. The total volume of the autonomic effectors and their pattern 
generators, summed over the length of the spinal cord, is about 100-fold 
greater than that of the hypothalamic network.  9   This need for space easily 
justifies extending the brain tailward and helps explain why this design has 
been conserved. Moreover, the extension allows additional efficiencies. 

 Neurons that share input from the local-pattern-generator should cluster 
close together. Thus, the autonomic effector neurons that regulate internal 
organs and endocrine cells align in a column, allowing them to share input 
from the columnar low-level generator of autonomic patterns. Somatic 
motor neurons also align in columns — parallel to the autonomic column 
and near it; therefore, circuits for internal physiology and external behavior 
can be coordinated locally via short wires (  figure 4.1 ). 

 Because low-level pattern generators for internal physiology and behav-
ior locate together, descending tracts can regulate them together with no 
extra wire. For example, the corticospinal tract sends a reduced instruction 
set from motor cortex to low-level pattern generators for muscle (Yak-
ovenko et al., 2011) and also to adjacent autonomic pattern generators for 
kidney (see   figure 4.1 ). Thus, the descending message,  “ Arise! ”  can be sent 
efficiently to both effectors (Levinthal  &  Strick, 2012). 

 Somatic motor neurons extend this design for efficient component 
placement to a still finer level (  figure 4.5 ). Motor neurons for a given mus-
cle often fire together, implying shared inputs, so they cluster. Motor neu-
rons for muscles that act synergistically across a joint also often fire together, 
also implying shared inputs, so their clusters stay close. Motor neurons for 
muscles that cooperate across multiple joints also fire together, but less 
often, so their clusters are further apart, distributing longitudinally with 
separations roughly corresponding to their frequencies of coactivation. 
Finally, motor neurons for antagonistic muscles tend to fire reciprocally, 
flexors excited/extensors inhibited. This reciprocity depends on a shared 
circuit (cross-inhibition, like the worm), so the clusters of antagonistic 
motor neurons also stay close — in parallel columns that run down the spi-
nal cord (Sterling  &  Kuypers, 1967;   figure 4.5 ). 

 In short, somatic motor neurons distribute according to a broad design 
rule:  neurons that fire together should locate together .  10   This rule also governs 
sensory maps and all the brain ’ s orderly topographic connections (chapters 
12 and 13). 
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 Design for an integrated movement 
 The placement of motor neurons in longitudinal columns allows a pattern 
generator to economically evoke an integrated limb movement (Bizzi  &  
Cheung, 2013). The task is to excite contractile units in dozens of muscles 
across several joints and suppress their antagonists (Sherrington, 1910; 
Creed  &  Sherrington, 1926). The key is for motor neurons to send their 
dendrites longitudinally within a column for long distances (about 1 mm) 
so that dendrites of synergists overlap. Then, an input axon can coactivate 
synergists simply by branching as a T within the column and distributing 
synapses at regular intervals. Strong synergists will greatly overlap 
their dendrites and thus share more input than weaker synergists that over-
lap less (  figure 4.5, lower ). All inputs to the motor neuron columns follow 
this rule, including axons from sensory receptors, axons from local pattern 
generators, and axons from cortex (  figure 4.5, lower ). This design uses 
less wire than any other conceivable geometry, and thus it is optimal 
(chapter 13).    

 Pattern-generator neurons use thick, myelinated axons to synchronously 
activate motor neurons at different levels of the motor neuron column. To 
do this while least disturbing the synaptic circuitry, the axons are routed 
into the white matter where upon reaching the appropriate levels, they 
reenter the motor column and connect (figure 4.5). 

 One benefit of this architecture is that different sensory receptors from 
the same location can efficiently evoke opposite responses. Here, pressure 
receptors from the foot connect to the extensor pattern generator, so as 
weight shifts to that foot, all the extensors are excited to support the limb. 
Pain receptors connect to the flexor pattern generator, so as weight shifts to 
that foot, all the flexors are excited (and extensors inhibited) to withdraw 
the limb. These alternative decisions are accomplished at the lowest level, 
thereby avoiding the costs in time, space, and energy of consulting higher 
levels. The corticospinal tract delivers  “ executive summaries ”  from motor 
cortex to the pattern generators. So a corticospinal axon can simply say 
 “ Flex! ”  and local circuits do the rest (Bizzi  &  Cheung, 2013). 

 Collecting input patterns 

 Different senses, different costs 
 The wider world that makes a larger brain such a good investment contains 
a seeming infinity of patterns carried by diverse forms of energy: electro-
magnetic (light), heat, mechanical vibration of air (sound), direct 
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mechanical contact, volatile molecules (odorants), molecules in solution, 
electrical patterns, magnetic fields, and gravity. Animals evolve mecha-
nisms to collect information carried by all these forms — and use them to 
find food and mates, to avoid predators, and to orient in space and time. 
The challenge is to decide which forms to invest in and how much. Some 
are intrinsically cheap whereas others are intrinsically costly. Yet for certain 
lifestyles, cheap won ’ t work and expensive is well rewarded. So an animal 
selects from the universe of patterns according to how it makes a living and 
during what phase of the planet ’ s daily rotation. 

 Animals that forage by day invest heavily in photoreceptors sensitive to 
wavelengths between 300 – 700 nm. Animals that forage by night invest 
heavily in other receptors. Snakes that hunt mice use temperature receptors 
to extend their range to the infrared  11   (about 800 nm). Moths and frugivo-
rous bats invest heavily in olfactory receptors, but certain bats prefer moths 
over fruit and so invest heavily in sonar systems that produce, detect, and 
process ultrasound (frequencies up to 180 kHz). 

 Figure 4.5 
  Efficient wiring for integrated movement. Upper:  Cross section through the spinal 

cord. Flexor and extensor motor neurons for the leg form separate clusters, which 

locate near each other and also near to the pattern-generator neurons that recipro-

cally excite and inhibit them. The flexor and extensor clusters form parallel columns 

extending over several segments of spinal cord. Each column is structured as a motor 

map: motor neurons for thigh muscles locate at higher spinal levels, then in descend-

ing order: knee, ankle, and toes. Within a column, the motor neuron dendrites ex-

tend longitudinally for about 1 mm in both directions; consequently motor neuron 

dendrites for synergistic muscles overlap. Their overlap allows a pattern-generator 

axon to excite motor neurons for synergistic muscles simply by spreading its axon 

arbor longitudinally within the dendritic plexus. This uses the least possible wire to 

excite motor neurons for several muscles. The longitudinal dendrites appear in this 

plane as dots scattered within the motor neuron clusters. Motorneuron clusters for 

hip muscles locate separately, near the midline. Patt gen, pattern generator.  Lower:  
Longitudinal section through spinal cord in the plane indicated by arrows in upper 

diagram. This plane reveals the motor neurons ’  longitudinal dendritic plexus that 

spans the motor map from hip to toe. This plane shows the pattern generator axons 

leaving the white matter to enter a flexor or extensor dendritic plexus where they 

encounter overlapping dendrites of synergistic motor neurons. The pattern genera-

tor neurons do not orient longitudinally and thus do not overlap. Consequently, a 

sensory axon or a corticospinal axon, coursing longitudinally within the pattern-

generator columns, can efficiently access a discrete subset of pattern-generator neu-

rons and thus a subset of motor neurons for a particular integrated limb movement. 
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 Fish that inhabit clear water invest in photoreceptors and, because the 
spectral content shifts with depth toward blue, those that inhabit deeper 
waters shift their peak photosensitivity correspondingly. Fish residing in 
caves  dis invest in photoreceptors and are essentially blind. Certain fish 
inhabiting rich, but turbid tropical rivers invest in electrosensory systems 
that interrogate their surroundings by emitting brief electrical pulses or 
sinusoidal waves up to 2 kHz, and measuring the electrical field with 
electroreceptors. 

 Sensors differ greatly in cost. Olfactory sensors are slow and relay infor-
mation at low mean rates, so their axons are extremely fine, approaching 
the limit set by channel noise (chapter 7). Vision is faster, so retinal gan-
glion cell axons (optic nerve) fire at higher mean rates and are somewhat 
thicker; and hearing is still faster, so auditory axons are far thicker (  figure 
4.6 ). This progression of axon calibers corresponds to a linear progression of 
firing rates (  figure 4.6 ). However, since space and energy costs rise steeply 
with diameter and firing rate, the thickest auditory axon costs 100-fold 
more than an olfactory axon (Perge et al., 2012).    

 Systems for sensing at the skin follow similar design rules. Mechanosen-
sors employ various mechanisms to transduce and filter pressure and touch. 
Some sense high frequencies (vibration) and transmit via thick axons (fig-
ure 10.3); other mechanosensors sense lower frequencies and transmit 
via finer axons. Sensors for pain and temperature send at the lowest spike 
rates and use the finest axons. Centrally, the fast and slow systems are pro-
cessed in parallel and to a large degree arrive at their thalamic relay over 
separate tracts (Willis  &  Coggeshall, 1991; Maksimovic et al., 2013; Boyd  &  
Davey, 1968). 

 Of course, these costs of collecting primary patterns are merely down 
payments. Auditory patterns arriving at high rates must be  processed  at high 
rates — so their initial central circuits use thick wires and fast (expensive) 
synapses (Carr  &  Soares, 2002). The most expensive parts in a mammalian 
brain are those devoted to early auditory processing, for example, the  supe-
rior olivary nucleus and inferior colliculus  (see   figure 4.4 ; Mogensen et al., 
1983; Borowsky  &  Collins, 1989). Thus, the ultrasonic imaging system of an 
insectivorous bat is intrinsically more expensive than the olfactory system 
of a frugivorous bat. 

 For fish that use electrical signaling, the cost is tremendous. One set of 
neurons needs to produce high-frequency pulses; another needs to detect 
them and signal the brain. Then, as for the insectivorous bat, processing is 
expensive. The computations required by this system are executed by cere-
bellar circuits, so the cerebellum greatly expands (  figure 4.7 ). Consequently, 
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  Unit cost of sending information differs greatly across senses .  Upper row : Electron 

micrographs of cross sections through the olfactory, optic, and cochlear nerves 

shown at the same magnification.  Lower left : Distributions of axon diameters. The 

auditory axons are nearly sevenfold thicker than the olfactory axons, so their unit 

volume and energy cost are nearly 50-fold greater. In parentheses are the number of 

axons serving that sense. The relation is reciprocal: low unit cost allows a many-unit 

design (olfactory) whereas high unit cost restricts the design to fewer units (audi-

tory).  Lower right : Higher mean firing rates require thicker axons. Vestibular axon 

unit cost is 100-fold greater than that unit cost of an olfactory axon. Reprinted with 

modifications and permission from Perge et al., 2012. 
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the brain of a mormyrid fish that uses electrical signaling is huge compared 
to a trout of comparable body size (  figure 4.7 ) and requires 60% of the rest-
ing animal ’ s energy budget! This emphasizes that the purpose of 
brain design is not necessarily to operate on the cheap — for that would 
limit functionality. Rather, it is to ensure that the brain ’ s investment 
pays off.    

 Design and usage of sensor arrays 
 In the mammalian ear each auditory hair cell is tuned to a particular range 
of frequencies — with the cells mapped along the cochlea ’ s basilar mem-
brane from lowest frequency (20 Hz in human) at the apex to highest 
(20,000 Hz) at the base.  12   The axons serving the highest frequencies fire at 
higher mean rates and are roughly threefold thicker than those for the low-
est frequencies. Consequently, they use nearly 10-fold more volume and 
energy (  figure 4.8 ). For humans the most critical frequencies are those for 
speech — which peak below 500 Hz and decline gradually out to 3500 Hz 
(  figure 4.8) ; From the perspective of brain economy it is fortunate that nat-
ural selection has placed human speech at the lower end of the auditory 
nerve ’ s frequency range, which is the most economical (  figure 4.8 ). This 
design decision also saves costs downstream for central processing. 

 It turns out that music uses the same frequencies as human speech. The 
most frequent intervals in music correspond to the greatest concentrations 
of power in the normalized spectrum of human speech. Moreover, the 
structure of musical scales, the preferred subsets of chromatic scale inter-
vals, and the ordering of consonance versus dissonance can all be predicted 
from the distribution of amplitude – frequency pairings in speech (Schwartz 
et al., 2003). Thus, music ’ s tonal characteristics match those of human 
vocalization, which are the predominant natural source of tonal stimuli. 
This match seems understandable given that music serves to express and 
communicate emotions. It seems that the blues evoke sadness because 
those are the sounds that ancient humans uttered in communicating  their  
sadness (Bowling et al., 2012; Han et al., 2010). 

 Music is processed by auditory areas in the right hemisphere, the side 
specialized for perceiving and expressing emotion; language is processed by 
corresponding areas on the left. It might seem redundant to analyze sounds 
with the same frequencies and structure in both hemispheres, but the com-
putations are quite different, so it is economical to separate the circuits. 
What is the payoff for investing such substantial neural resources? Human 
survival and reproduction requires social cooperation — which depends 
upon communicating emotionally as well as cognitively. In short, music 



How Bigger Brains Are Organized 77

cerebrum

cerebrum

cerebellum

cerebellum

Mormyrid

Mormyridtrout

mid brain

 Figure 4.7 
  Mormyrid brain greatly expands cerebellar structures .  Upper : Electrosignaling Mor-

myrid from turbid waters resembles trout in body size but requires a far larger brain, 

most of which is a highly elaborated cerebellum.  Lower:  Longitudinal section shows 

that the cerebellum (outlined) occupies most of the brain, completely obscuring the 

cerebrum. Central processors of high temporal frequencies often use a cerebellar-like 

design, including, in mammals, the dorsal cochlear nucleus (Oertel  &  Young, 2004; 

Bell et al., 2008). Reprinted from Nieuwenhuys  &  Nicholson (1969). 
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  Speech uses lower frequencies and thus finer axons. Upper : Axons from the high-

frequency end of cochlea (basal) are thicker and cost more space and energy than 

axons from the low-frequency end.  Lower : Human speech occupies mostly frequen-

cies below 500 Hz — the cheaper end. Upper, reprinted with permission from Perge et 

al., 2012); lower, after Freeman (1999). 
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helps communal life, made difficult by large brains, to be at least tolerable 
and occasionally joyous (Chanda  &  Levitin, 2013).    

 A sensor array must be fine enough to resolve the details that are critical 
to its task. For example, human vision resolves a spatial pattern of 60 cycles 
per degree, and this requires 120 cones per degree (Nyquist ’ s rule). In two 
dimensions this amounts to 200,000 cones mm  – 2  (Packer et al., 1989). 
Again, this is just the down payment — for to  preserve  this spatial resolution, 
the communication line from each cone must remain separate all the way 
up to the visual cortex. All design must foresee the subsequent costs. 

 The general solution is to sample densely with a small part of the array 
and more sparsely with the rest. Therefore, our retina packs half of all its 
cones densely in a tiny patch ( fovea ), which occupies only 1% of the retinal 
surface. In this design the visual cortex devotes half of its volume to pro-
cessing what the fovea delivers — thus allowing a fine analysis without 
unacceptably expanding the cortex. 

 For this strategy to work, it is often necessary to make the sampling array 
mobile — so that it can be trained on any feature of potential importance. 
Therefore, a fovea requires a system of muscles to move the eye, plus a con-
trol system to direct its constant exploration, and a higher-level system to 
select an object to be tracked. The effect is to stabilize the object on the 
fovea, allowing it to be sampled at high spatial resolution.  13   Stabilization 
confers an additional economy: it reduces the range of temporal frequen-
cies on the fovea, allowing foveal neurons (and their subsequent proces-
sors) to operate at lower information rates, that is, on the steep segment of 
the rate-versus-cost curve for space and energy (figure 3.6). 

 This strategy also works for the tactile sense — dense distributions of sen-
sors to fingertips, lips, and tongue — and explains the distorted  homunculus  
in maps of human cortex, also the  barrel fields  in mouse cortex that repre-
sent the whiskers (Pammer et al., 2013) and the bizarre countenance of the 
star-nosed mole (  figure 4.9 ).    

 Motorizing the sensors 
 The strategic choice of a fine, mobile sampler raises two other design issues: 
first, how to point the sensor where it is needed and, second, how to tell the 
brain that the sensor is  being  pointed. Both design issues require a dedicated 
part, the  superior colliculus  (  figure 4.4 ). 

 The mechanism that chooses where to point the sensor needs visual 
input. When a retinal region outside the fovea senses a moving object, reti-
nal signals drive a motor mechanism to smartly move the fovea onto that 
object and track it. The superior colliculus does this efficiently by placing a 
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retinal map in register with a motor map so that each retinal point, using 
extremely short axons (~0.1 mm) can excite the corresponding point in the 
motor map and drive the eyes toward that location. Other senses also cou-
ple to the same motor map so that any of them — a flash, a bang, a slap — can 
announce which region of space needs the brain ’ s immediate attention.  14   

 Of course, we also attend to milder stimuli that match some stored pat-
tern, especially when aroused by an internal signal of desire (food, sex). So 
the collicular mechanism for orienting the sensors needs to be informed by 
many issues. Decisions regarding where to look are made at the cortical 
level, which requires the cerebral cortex to communicate with the superior 
colliculus. 

 The upper collicular layers receive visual patterns and relay upward for 
further processing by cortical areas concerned with motion, and they 
receive signals from the same areas (Berman  &  Wurtz, 2010). The deeper 
collicular layers collect signals from the highest executive levels — frontal 
and parietal cortex — which convey a highly informed decision regarding 
where to look. The computations needed to reach that decision are exten-
sive, involving much of the brain. But the decision can be relayed to the 
superior colliculus via a rather modest tract that requires only 6% of the 
corticocollicular pathway (Collins et al., 2005). 

 In short, the deeper layers of the colliculus know  where  to direct the 
eyes — that circuit is hardwired between the motor map and the low-level 
pattern generators that coordinate eye muscles. The deeper layers learn 
 whether  to move the eyes and  when , by integrating raw-ish sensory inputs  15   
with processed signals descending from cortex. The integrated output deliv-
ers instructions regarding vector and timing to pattern generators in brain-
stem that micromanage eye movements, and to those in the upper spinal 
cord that micromanage head movements. Thus, the descending collicular 
tract resembles various other tracts, such as fornix, hypothalamic, optic, 
and corticospinal, in being organized to send minimal instructions. 

 Figure 4.9 
  Design of sampling arrays . Fine sampling required for spatial acuity requires large 

areas of cortex. Shown here is the mechanosensory system of the star-nosed mole. 

 Upper:  Frontal view shows tip of nose surrounded by 22 fleshy appendages.  Middle 
left : Each nostril surrounded by 11 appendages, all covered by mechanoreceptors. 

No. 11 bears the densest distribution of receptors and thus serves as a mechanosen-

sory fovea.  Middle right : Each appendage is represented separately in somatosensory 

cortex (S1), with no. 11 occupying the greatest area.  Lower:  When a lateral append-

age contacts an object of interest, the nose shifts to touch it with no. 11, the foveal 

appendage. Reprinted with permission from Sachdev and Catania (2002). 
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 The motor stratum of the superior colliculus represents an intermediate-
level pattern generator. It is tweaked by succinct executive decisions from 
above and delivers succinct instructions to low-level pattern generators. But 
it must also fulfill one more responsibility — to inform higher levels that its 
order:  “ Look! ”  has been sent.  16   This signal, termed  corollary discharge , 
informs frontal cortex that the sensor is being repositioned. Why is this 
signal needed? 

 Corollary Discharge   ,    
 When the retina is swept passively across a scene, the scene appears to 
move. The reader can confirm this by closing one eye and jiggling the other 
with a forefinger (gently!). However, when the superior colliculus  orders  the 
eye to sweep actively, the scene appears stable. The trick to stabilizing the 
scene when the brain moves the eye is to relay the order:   “  move! ”  to brain 
regions where the smaller patterns have finally been assembled into large, 
coherent patterns — corresponding to integrated perceptions. These areas, 
lying anteriorly in the parietal and prefrontal cortex ( frontal eye field ), know 
where the eye is looking — but they also need to know where the eye is  about 
to look , so that they can compensate in advance before the motion occurs. 
This prediction, by allowing compensation, stablilizes perception — when 
we move our eyes, the world appears to remain stationary, as it should 
(Sommer  &  Wurtz, 2008; Wurtz et al., 2011). 

 The anterior frontal cortex is as far away from the superior colliculus as 
it is possible to be, so one might wonder why spend so much wire? One 
reason is that large patterns are assembled step-wise by cortical areas that 
press ever forward (chapter 12). By the stage where behaviorally relevant 
patterns have been assembled, compared to stores, and readied for use in 
selecting an action, the anterior frontal lobe is pretty much the last bit of 
available real estate. Moreover, because this cortical region decides where to 
look, it is precisely the site that needs corollary discharge to compensate for 
self-motion. 

 Another reason to control eye movements from the anterior frontal lobe 
is that, beyond their aid to sensing, eye movements also serve social com-
munication. When someone looks us in the eye (or fails to), we notice. 
Even a dog notices and becomes aggressive when stared down by an unfa-
miliar human. Thus, as the cortical areas for social communication expand 
in the frontal and temporal lobes (chapter 12), they require a mechanism 
for sending executive summaries down to the superior colliculus. So design 
again economizes by using long pathways to send modest messages:  “ Look 
here! ”  or  “  Don ’ t  look here! ”  — skipping long, expensive explanations. 
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 In summary, to build efficient sensors, the brain makes them mobile. It 
also compensates for self-induced motion, targeting the highest levels 
where choices and actions are being selected. These high-level mechanisms 
can then efficiently direct the low-level circuits that generate stereotyped 
patterns of movement. This  motif  drives orienting movements: the pri-
mate ’ s eyes, the cat ’ s external ear, and the rodent ’ s whiskers and sniffing. 
These circuits use modest tracts to govern low-level pattern generators 
located near the relevant motor neuron clusters. This is the same motif that 
regulates internal systems and behavior. 

 Processing and storage of input patterns 

 Patterned inputs encounter the same constraints as patterned outputs, and 
to economize, they follow the same principles. First, the inputs deliver 
what can be computed locally; second, they relay upward only what is 
needed to assemble larger patterns. Each successive stage of processing 
sheds unneeded information. These principles also apply to storage: 
save only what is needed, for as long as it is needed, and in the most 
compact form. 

 Compute locally 
 Economy begins with sensory transduction. Because sending information 
at high rates costs more (figure 3.6), sensors use separate lines for different 
rates. For example, certain mechanosensors in the skin are wrapped in an 
onion-like capsule that filters out slow changes and delivers the fast ones to 
a mechanosensitive cation channel in the nerve terminal at the onion ’ s 
core (figure 10.3). Other types with different capsules locate at different 
depths within the skin to help filter out the fast changes and capture slower 
ones. Skin sensors of temperature, noxious pressure, and noxious chemicals 
operate still more slowly — which allows still lower spike rates and finer 
axons. Consequently, the distribution of fiber diameters from sensory 
nerves resembles that of central tracts: many fine fibers and fewer 
thick ones. 

 Exemplifying the rule,  compute locally,  are two types of pressure receptor 
located on the foot. Each demands a prompt behavioral response without 
waiting 200 ms and expending more wire to consult higher processors. The 
responses are opposite: one extends the limb to support the body; the other 
flexes the limb to remove it from contact with the ground. 

 For example, pressing your bare foot on a smooth surface activates an 
array of low-frequency pressure receptors that excites the pattern generator 
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for limb extension to support your weight. But pressing your foot on a 
sharp point activates higher frequency pressure receptors that excite the 
pattern generator for limb flexion to withdraw your weight and for limb 
extension on the opposite side to support your weight. This occurs faster 
than you can  feel   “ Ouch! ”  because the higher frequency pressure responses 
travel over thick, fast-conducting wires that couple directly to the local pat-
tern generator (  figure 4.1 ). 

 Such direct functional connections between specific sensory inputs and 
specific motor outputs were historically termed  reflexes  (Sherrington, 1906). 
By now the design is seen as coupling each receptor type to the appropriate 
pattern generator. This design saves time, wire  . . .  and grief. 

 Relay to cortex 
 The small pattern carried by a single sensory axon resembles a piece of jig-
saw puzzle to be assembled with other pieces into a larger pattern of suffi-
cient quality for comparison to stored patterns. Assembly is a task for the 
cerebral cortex, but to reach that level, input arrays require serial  “ prepro-
cessing ”  to reduce firing rates by stripping away redundancy and unneeded 
information. This requires that slow and fast signal components that were 
transduced separately maintain their separation via  parallel pathways  all the 
way to cortex. Thus, skin sensors signaling pain and temperature with low 
mean rates are processed by one set of circuits near their entry points (spi-
nal cord and lower brainstem) whereas sensors signaling joint angle, mus-
cle length, and whisker deflection with high mean rates are processed by 
different circuits  17   in lower brainstem. 

 For most sensors the spike rates are still too high for direct relay to cor-
tex, so a central integrator ( thalamus ) is interposed to concentrate the mes-
sage, that is, more bits per spike (figure 3.5C). This allows a two- to fourfold 
reduction in mean spike rate on the path to cortex. The thalamus is also 
used by other brain regions, such as cerebellum,  striatum , and superior col-
liculus, for the same function (Bartlett  &  Wang, 2011; Sommer  &  Wurtz, 
2004).  18   The computational strategy and synaptic mechanisms to achieve 
this function are described in chapter 12. The exceptions to this design are 
the olfactory sensors which signal at such low rates that, following a single 
stage of preprocessing in the  olfactory bulb , they are allowed to skip the tha-
lamic relay and ascend directly to cortex (Friedrich  &  Laurent, 2001). 

 Cortex finds larger patterns 
 The task of sensory cortex is to rapidly capture correlations of higher order 
from the array of local correlations relayed from thalamus. This proceeds by 
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stages, first across layers of each primary area ( V1, S1, A1 ) and then across 
successive areas, until single neurons eventually report patterns of clear 
behavioral relevance that identify an object by sight, touch, or sound (fig-
ure 12.11). Such patterns emerge in specialized patches where most neu-
rons respond only to that pattern and not to the fragments that comprise 
it, thus an area for faces, objects, scenes, and so on (chapter 12). 

 A reader might worry that the world ’ s infinity of categories would require 
a corresponding infinity of cortical areas, but actually, the number only 
needs to match categories that matter most deeply to the animal. Smaller 
brains operate with fewer categories, so the whole mouse cortex divides 
into about 20 areas, whereas human cortex has about 200 (Kaas, 2008). As 
areas attain higher levels of abstraction, each contains less information and 
thus requires less space. So the early cortical areas, which first process tha-
lamic input, are large, whereas later areas for high-order patterns are small 
(figure 12.11) 

 This design — many small areas operating in parallel — continues the 
principles of economy. Resources can be assigned according to what mat-
ters most to the animal. Processing can proceed at lowest acceptable rates 
and at lowest acceptable spatial resolution. For example, an  object-grasp area  
that needs only coarse patterns can download them at an earlier stage than 
an  object identification area  that needs more detail (Srivastava et al., 2009; 
Fattori et al., 2012). Wire is saved by locating areas that assemble the pat-
terns near to the areas that use them (chapters 12 and 13). For example, face 
areas locate anteriorly in the temporal lobe on the path toward areas that 
evaluate facial expression. An object-grasp area locates posteriorly in the 
parietal lobe — on the path toward motor cortex that guides grasping. Thus, 
the overall processing scheme for cortex reflects the three design principles 
seen at lower levels: send only what ’ s needed; send slowly as possible; mini-
mize wire. 

 Storing Patterns 
 To store small, evanescent patterns encoded by an array of thalamic neu-
rons, would be costly. If patterns were all stored at this level, high-level 
images could in principle be reconstructed. However, with the optic nerve 
delivering 10 Mbit s  – 1  to the thalamus, storage needs would soon exceed 
any conceivable capacity. Moreover, if data were stored raw, it could only be 
filed by order of arrival — so to retrieve images from stored fragments would 
be a computational nightmare and impractically slow. So an animal should 
store high-level patterns and only  particular  ones that can improve future 
behaviors. 
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 Each species stores patterns critical for its economic strategies. For exam-
ple, a nutcracker jay living at high altitude caches nuts at numerous sites in 
autumn and descends to a valley for winter. Returning in spring, it recalls 
myriad cache locations to sustain itself until the summer brings fresh gro-
ceries. For humans, what matters most is our ability to rapidly recall a face, 
along with any historical significance that we can attach to the face we are 
facing. This allows the best chances for selecting an appropriate behavior. 

 Yet we must not store every face encountered on a stroll through the 
park — only ones likely to prove significant. So a potentially important face 
needs to be tagged — cognitively and affectively — and then filed. Upon 
reencounter, the original image is retrieved and held in  “ working memory ”  
for comparison to the current image. These various processes require coop-
eration between several neural structures. The main cortical face 
area connects with the amygdala, which  “ stamps ”  the image from its 
catalog of innate emotional expressions. To further annotate the image, 
the striatal system for reward prediction connects to the face area via a 
long loop and to the amygdala (Middleton  &  Strick, 1996). Then, they 
all connect to sites for working memory and behavioral choice in 
prefrontal cortex. 

 These organs for pattern recognition, storage, evaluation, and behavioral 
choice interconnect strongly; therefore, by locating near each other, wire is 
reduced. Their location anteriorly in temporal and frontal lobes is no mys-
tery: the posterior regions are already occupied by areas concerned with 
pattern assembly. Thus, in mammals where higher degrees of sociality 
require the brain to enlarge, the expansion occurs disproportionately in 
anterior regions for cognition and emotional expression (Dunbar  &  Shultz, 
2007). Thus, although human and macaque collect similar amounts of sen-
sory information (e.g., their retinas are nearly identical),  19   humans greatly 
expand the number and size of cortical areas for assembling the higher 
order patterns. This occurs especially in forward regions that include amyg-
dala, prefrontal cortex, and hippocampus. 

 Correcting errors 

 Evaluating behavior: Two kinds of prediction error 
 The parts of the motor system that directly generate and distribute final 
output patterns (behavior) require only a small fraction of total brain vol-
ume. However, the adjective  “ final ”  is slightly misleading. Each motor act 
is also a beginning: it is a provisional answer to some predicted need. Since 
needs recur, output patterns might be improved if their effectiveness could 
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be evaluated. Therefore, the brain invests heavily in several systems for 
evaluation and error correction. 

 One system asks,  “ How precisely did the actual output pattern match the 
intended pattern? ”  This system computes the difference between the 
intended pattern and the actual pattern; then it feeds the error back to com-
mand structures that gradually improve performance. This serves  motor 
learning  — what is gained from practicing the piano or the golf swing. Mind-
ful repetition improves speed and accuracy — and also efficiency — since a 
motion that begins awkwardly eventually gains grace and saves energy 
(Huang et al., 2012). This system also serves cognitive and affective pro-
cesses: it compares intended cognitive and emotional patterns to what 
actually occur and then feeds back to improve subsequent performance. 
Thus, motor learning is subset of  intention learning . 

 Another system asks,  “ Was the act, however well performed, worth the 
energy and the risk? ”  This system compares the expected payoff from a 
particular act to what was actually gained. The neural mechanism rewards 
a better outcome by releasing a pulse of dopamine at key brain sites and 
punishes a poorer outcome by reducing dopamine and enhancing other 
chemical signals. This is  reward-prediction learning , and one can easily imag-
ine its myriad ramifications. Reward-prediction learning evaluates every 
choice and thus charts the course of our lives: cereal or toast; law or medi-
cine; choice of mate, friends, and retirement fund (chapter 14). 

 Intention learning and reward-prediction learning employ different 
brain structures, and both are large (Doya, 2000). The organ for intention 
learning is the cerebellum, and the organ for reward-prediction learning is 
the striatum (  figure 4.10 ). Neither structure directly modulates the final 
output: they do not send wires to the low-level pattern generators. Rather, 
they return error signals to particular high-level organizers of behavior. For 
example, the cerebellar region that serves motor learning ( anterior lobe ) 
returns its updating signal to motor cortex. Cerebellar regions that serve 
perceptual, cognitive, and affective learning return their updates to cortical 
areas for pattern recognition in temporal and parietal cortex and to areas 
for behavioral choice, such as prefrontal cortex (Strick et al., 2009; Schmah-
mann  &  Pandya, 2008). 

 Cerebellar and striatal output tracts both use high spike rates that require 
thick axons. In fact, the striatum is named for striations due to bundles of 
thick, myelinated axons (  figure 4.10 ). High spike rates should be reduced 
before the messages are broadcast. Both circuits do this, as noted, via a tha-
lamic relay. Cerebellar and striatal design will be considered further in 
chapter 13.    



88 Chapter 4

 Conclusions regarding organization of mammal brain 

 This chapter has sketched how three principles ( send only what is needed ; 
 send at the lowest acceptable rate ;  minimize wire ) shape brain design to 
accomplish its seven broad tasks (see figure 3.2). The layout explained here 
extends upward from a scale of millimeters. It does not explain design of 
local circuits that analyze and integrate input patterns or generate output 
patterns. Those compute on a scale of nanometers to micrometers and 
are topics for chapters 7 – 11. This chapter also does not explain the brain ’ s 
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 Figure 4.10 
  Rat brain in horizontal section . Note that striatum lies nearest to the anterior cerebral 

cortex. Striatum contains dense bundles of myelinated axons (pale) whose large cali-

ber reflects their high spike rates. Note also the deep cerebellar clusters which reduce 

the number of high-rate axons before projecting to thalamus where rates are reduced 

before relay to cerebral cortex. Left optic tract is dark because a protein tracer injected 

into the eye was taken up by ganglion cells and transported inside their axons to the 

brain. Tracer is visualized here by a specific chemical reaction. Image courtesy of H. J. 

Karten and reprinted with permission;  ©  The Regents of the University of California, 

Davis campus, 2014. 
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striking structural diversity on the scale of micrometers to millimeters, 
such as the different structures for cerebellar versus cerebral cortex and 
the specialized substructures of cerebral cortex. These are treated in 
chapter 13. 

 Insect Brain 
 We consider now the insect brain, emphasizing  Drosophila , because of its 
importance for genetic analysis — like mouse. But we also include other 
insects, such as locust, wasp, cricket, and bee that share various broad fea-
tures of somatic and neural design and are profoundly specialized for par-
ticular lifestyles and habitats (Burrows, 1996; Strausfeld, 2012). Just as we 
referred to  “ mammalian ”  brain in preceding sections, we will refer to 
 “ insect ”  brain in this section.  20   

 The first point is that the insect brain needs to accomplish the same 
basic tasks as the mammalian brain (figure 3.2). Second, it is governed by 
the identical constraints: the law of diminishing returns (figure 3.6), plus 
the need to minimize wire (  figure 4.1 ). Third, the insect brain also predic-
tively regulates the internal environment and efficiently couples the inter-
nal organs (see figure 3.4). Finally, the insect brain couples the inner and 
outer worlds (  figures 3.2 and 4.3 ) and, following the scythe of Saturn, 
encounters the same types of information, which it must analyze and 
integrate to satisfy similar behavioral demands. So we should expect simi-
larities of macro-organization. Indeed, they are numerous and striking 
(  figure 4.11 ).    

 The insect brain, like the mammalian, is organized into defined neural 
clusters with locally dense connections plus distinct tracts for more distant 
connections (Chiang et al., 2011). Brain outputs include a rich system for 
wireless signaling, starting with two neurosecretory bodies at the back of 
the brain ( corpora cardiaca  and  corpora allata ) whose neurons secrete neuro-
modulators and hormones into the circulation (analogous to the hypotha-
lamic neurosecretory clusters). These neuromodulators and hormones, 
which include over 50 neuropeptides, govern the insect ’ s internal milieu by 
acting on energy metabolism, salt and water balance, growth/molting, and 
reproduction. Autonomic neurons cooperate with these hormones to coor-
dinate visceral function with behavior (Cognigni et al., 2011). For example, 
gut neurons interact with hormones to increase intestinal throughput to 
fuel egg production and also to control appetite. These concerted actions of 
wireless and slow wire processes in insects resemble those of the vertebrate 
hypothalamo-pituitary and autonomic systems, and there appears to be a 
common evolutionary origin (Arendt, 2008). 
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  Frontal view of fly brain shows prominent areas devoted to specific functions .  Vision:  

Compound eye, hexagonal array of optical sampling units passes information se-

quentially to lamina — collect and sort inputs, medulla — detect local patterns, lobula 

(and lobula plate not seen in this view) — assemble small patterns into larger patterns, 

anterior optic tubercule — associate larger patterns.  Olfaction:  Glomeruli in antennal 

lobe — collect and sort inputs and project to mushroom bodies, which identify pat-

terns.  Learning : mushroom bodies — integrate diverse information, learn patterns 

and associate with punishment and reward.  Integration:  Pars intercerebralis connects 

two sides of brain.  Distribution:  Suboesophageal ganglion — integrate information for 

wired and wireless output to body. View of a three-dimensional reconstruction of a 

 Drosophila  brain stained with antibody for synapses to show areas where processing 

takes place. Image courtesy of Ian Meinertzhagen. Reconstruction can be rotated and 

viewed from different angles at h ttp://flybrain.neurobio.arizona.edu/Flybrain/html/

contrib/1997/sun97a/.  
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 Insect brain uses these systems to coordinate visceral, behavioral, and 
immune responses to stress, but instead of the vertebrate ’ s adrenalin ( epi-
nephrine ), insects use octopamine (Verlinden et al., 2010). Thus, during 
emergencies,  “ fight or flight, ”  octopaminergic neurons raise octopamine 
concentration in hemolymph (like adrenalin in vertebrate blood), which 
acts broadly on endocrine cells and fat body (similarities with vertebrate 
liver) to mobilize energy reserves, on muscle to increase power, and on sen-
sory receptors and circuits to increase sensitivity and response speed. Octo-
pamine neurons also directly contact endocrine glands, heart, muscle, and 
certain brain regions for specific purposes. For example, in locust 40 identi-
fied neurons ( DUM ) innervate flight muscles to regulate fuel supply   (Bur-
rows, 1996). At rest the neuron fires steadily, maintaining the supply of 
 “ fast burning ”  sugars needed for takeoff. During steady flight the DUM is 
silenced, and energy supply switches to the larger reserves of slower burn-
ing fats. The DUM ’ s low mean firing rate, 0.5 – 1 Hz, resembles mammalian 
autonomic nerves. 

 Insect brains also have clocks set by light — indeed the molecular mecha-
nism of animal clocks was first determined in  Drosophila  (Weiner, 1999). 
 Drosophila  ’ s roughly 150 clock neurons form a distributed system that gov-
erns catabolic/anabolic phases, including a sleep phase for the consolida-
tion of neural processing (Allada  &  Chung, 2010; Crocker  &  Sehgal, 2010). 
Some clock neurons form small clusters, mini-SCNs, that collect specific 
entraining inputs from the compound eye, the simple eyes ( ocelli ), and a 
pair of photoreceptor cells within the brain. Other clock neurons express 
their own photopigment and so can collect photons through translucent 
cuticle. Thus, the fly ’ s clocks locate anywhere they are needed. We specu-
late that this distributed design saves wire in a small brain. 

 Collecting patterns 
 Investment in sensors to collect patterns is strongly tuned to social and 
economic strategies.  Drosophila  ’ s compound eye is relatively small, and the 
photoreceptors gather information at a low rate — good enough for hover-
ing over decaying fruit. However,  Coenosia , a close relative with similar 
body size, is an aerial predator and, to resolve and track its prey, requires a 
threefold larger eye and photoreceptors with fourfold higher bit rates 
(Gonzalez-Bellido et al., 2011). In accordance with the law of diminishing 
returns for photoreceptors,  Coenosia  ’ s high-rate eye costs more space and 
energy per bit (chapter 8). 

 To identify rotting fruit and detect  pheromones  (secreted chemical factors 
that trigger social responses),  Drosophila  invests in about 50 types of 
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olfactory receptor. These are more than are used by the louse that parasit-
izes humans (10) but fewer than are used by the honeybee (160) and fire ant 
(400) for their extensive foraging and chemical communication. Certain 
insects also invest in mechanical apparatus to improve their efficiency at 
pheromone detection. For example, male moths commonly use broad 
antennae as molecular sieves, which they push through the air to trap mol-
ecules of female attractant. 

 Meanwhile,  Drosophila  ’ s antennae specialize to register not the aroma of 
courtship but its music. Both sexes sing to each other. The vibrations, reach-
ing 500 Hz, are received via the antenna and transmitted to its base to 
activate about 500 mechanosensors ( Johnston ’ s organ ). These are equipped 
with mechanical feedback to boost the gain, like hair cells in the mamma-
lian cochlea, to operate near the sensitivity limit set by Brownian noise 
(Immonen  &  Ritchie, 2011). 

 Moths are hunted by bats using echolocation. So the moth invests in a 
pair of simple ears, each with only one or two sensors, and couples their 
outputs to a simple pattern generator for evasive flight. When the sensors 
detect a bat ’ s ultrasonic chirp, evasive flight is engaged, and the moth dives 
to the ground (Roeder, 1967). This system provides a cheap answer to the 
bat ’ s high-tech, super-expensive sonar. 

 Insect sensor arrays, like mammalian sensor arrays, are subject to the 
sampling theorem (Nyquist ’ s rule). To achieve high resolution at acceptable 
cost, they too combine broad, coarse sampling with local, fine sampling —
 both in space and time. For example, a male housefly pursuing an evasive 
female at high angular velocities is aided by his visual  lovespot . The forward-
facing photoreceptors pack especially densely to improve spatial resolution, 
and they produce especially fast electrical responses to improve temporal 
resolution — both needed to track the speedy female (Burton  &  Laughlin, 
2003). But the lovespot, like a mammalian fovea, must not be too broad, 
because it is expensive, so the fly uses the same solution: motorize the sen-
sor. During pursuit, a dedicated tracking system controls head and body 
movements to keep the lovespot centered on the target. 

 In short, insects invest in sensors according to need and locate the sen-
sors where they will be most useful: olfactory and auditory sensors on the 
antennae that project into the air stream; auditory sensors on crickets ’  fore-
legs to space them widely (thereby improving sound localization), taste 
sensors on the landing gear (feet), mechanosensors on the wing. Each sen-
sory system is used to inform the others; for example, an odor that attracts 
 Drosophila  increases the accuracy with which its visual system guides its 
flight (Chow et al., 2011) — cross-modal interactions that are also used by 
mammals (Burge et al., 2010). 
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 Processing and storage 
 Insect sensory processing resembles mammalian processing in that small 
patterns collected by sensors are filtered and then assembled into larger pat-
terns. To assemble visual patterns, the fly identifies spatial and temporal 
correlations via successive neural layers (  figure 4.12 ). First, the lamina sums 
correlated inputs and removes redundancy associated with the level of illu-
mination. Then the medulla identifies local features which the next layers 
( lobula  and  lobula plate ) use to detect larger and more complicated patterns. 
Then their outputs distribute to various smaller regions ( optic glomeruli ) 
where they are processed before projecting forward to integrative centers in 
the  protocerebrum . Each optic glomerulus collects inputs from a particular 
ensemble of neurons in the lobula, suggesting that higher order patterns 
are being segregated. 

 The architecture of the fly visual system resembles in several respects 
that of mammal. The fly preserves spatial continuity of the retinal image by 
mapping the output from one layer, point by point, onto the next layer —
 across the many stages of processing. However, at the final stage, the optic 
glomeruli abandon retinotopic organization, thus shedding  “ where ”  infor-
mation while sorting out  “ what, ”  reminiscent of the  ventral stream  of the 
mammalian cortical pathway (chapter 12). 

 The layers and maps of vision ’ s earlier stages are computationally effi-
cient because all parts of an object represented in the retinal image are 
spatially and temporally continuous. These properties of the input allow 
local features (local motion, local edges) to be extracted and mapped at the 
lower levels and then assembled at higher levels to define objects and 
scenes. Extracting all local features first, as with insect medulla and mam-
malian visual cortex, provides a communal data set to be shared by various 
higher order mechanisms, and this conserves space and energy. Local pro-
cessing, mapping, and the orderly projections from each layer to the next 
also save wire, as do the orderly maps of different modalities within a tract 
(Niu et al., 2013; chapter 13). 

 Despite an efficient architecture, visual processing for form, motion, and 
color is computationally demanding. The visual system uses 70% of the 
fly ’ s neurons, of which most are in the medulla, which extracts local fea-
tures using about 150 different types of identified neuron. Thirty-five types, 
replicated in each of the medulla ’ s 800 retinotopic columns, interrogate the 
image for local features. In this respect the fly ’ s medulla is analogous to the 
mammal ’ s primary visual cortex, also the largest visual area (chapter 12).    

 The olfactory system is structured differently (  figure 4.12 ). Whereas 
vision assembles patterns stepwise across four layers, olfaction uses just two 
(Masse et al., 2009). The first layer ( antennal lobe ) collects input from 45 
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  The visual system is deep and maps spatial position. The olfactory system is shallow 
and processes globally, without reference to spatial position. Left:  Fly visual system 

processes retinal image in four successive layers. Lamina assembles and sums cor-

related inputs and reduces redundancy (chapter 9); medulla extracts local features; 

lobula and lobula plate assemble larger patterns (lobula — color, form and motion; 

lobula plate — motion). The first three layers map retinal image (arrow) across col-

umns of neurons. The last layer, optic glomeruli, does not map, it generalizes. Each 

glomerulus collects from all neurons coding the same pattern, irrespective of spatial 

position.  Right:  Fly olfactory system processes information in just two layers. First 

the antennal lobe assembles and sums correlated inputs from receptor neurons. A 

glomerulus collects from neurons with same olfactory receptor and filters to reduce 

redundancy. Then 2500 Kenyon cells in mushroom body extract from all 45 glom-

eruli the patterns that define odors. Each Kenyon cell associates synaptic input (tri-

angles) from small subset of 10 glomeruli to form an efficient sparse code (2 associ-

ated synapses shown on starred Kenyon cell). Diagrams simplified and not to scale. 

Visual based on Strausfeld (2012); olfactory based on Masse et al. (2009). 
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types of olfactory receptor on the antenna, collects each type in a separate 
synaptic glomerulus, sums these correlated inputs to reduce noise and fil-
ters to reduce redundancy. The results are relayed to the second processing 
layer, residing in the mushroom body, which is the insect ’ s seat of learning 
(see below). The second-stage neurons compare all 45 olfactory inputs and 
learn by association the unique patterns of glomerular input that define 
particular odors. The mammalian olfactory system employs a remarkably 
similar structure (Wilson  &  Mainen, 2006). It uses an olfactory bulb with 
glomeruli, one for each receptor type, and after filtering, it projects straight 
to cortex for association and learning. 

 Two-stage processing works for olfaction because, unlike vision, there 
are no local features. The molecule or mixture that characterizes an odor 
arrives in a volume of air for a certain time, but there are no higher order 
spatial correlations to help identify it. The correlations that identify an 
odor are distributed across receptors: each type binds a spectrum of molecu-
lar species, each with different affinity. Thus, an odorant, whether from a 
single molecular species or a mixture, activates several receptor types to dif-
ferent degrees, to produce a correlated pattern of receptor activations — and 
that defines an odor. 

 The pattern from the array of glomeruli transfers to the mushroom body 
(Laurent, 2002;   figure 4.12 ). Because each odorant stimulates several recep-
tors, and each receptor contributes to the coding of many odorants, the 
mushroom body ’ s task is to find correlations across receptor inputs — the 
pattern that defines a particular odor. When a new and significant odor is 
encountered, the new pattern is learned. To optimize the number of differ-
ent patterns that can be represented by the mushroom body ’ s 2500 Kenyon 
cells, the information is coded sparsely with few spikes (Jortner et al., 2007). 

 In short, there are profound differences across sensing systems within an 
animal, and profound similarities for a given sensing system across animals 
(insect vs. mammal). Olfactory and visual designs differ because the small 
patterns that they collect present different statistics and thus require differ-
ent processing. Olfactory designs are similar because the input statistics for 
insect and mammal are the same and thus require similar processing. The 
same goes for visual designs. 

 Nonetheless, insect and mammalian designs are not identical, probably 
because they are differently constrained. For example, the fly visual system 
lacks a thalamus, which the mammal needs to reduce spike rates. Many 
fly visual neurons connect centrally over distances less than 0.5 mm, 
which means that signals can travel passively in graded (analogue) form. 
This saves space and energy in two ways: analogue can transmit high 
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information rates cheaply (chapter 5), and can avoid costly analogue  →  
pulsatile and pulsatile  →  analogue conversions. Thus the insect brain uses 
a more efficient design that cannot be implemented in a larger brain. 

 Assembling patterns and choosing an action 
 A fly assesses its current state from sensory patterns, compares this state to 
stored patterns to learn how its state is changing, and adjusts behavior 
accordingly. For example, it may steer flight to maintain a constant bearing 
with respect to the sun or change course to approach a rewarding object or 
avoid an aversive one. The  central complex , a compact modular structure 
strategically placed deep in the brain, plays a pivotal role in these processes 
of assessment, decision, and direction (Strausfeld, 2012; Strauss et al., 2011).    

 The central complex links sensory patterns to motor commands within 
a framework of body orientation (  figure 4.13 ). Its three largest structures, 
the  protocerebral bridge , the  fan-shaped body , and the  ellipsoid body  are linear 
arrays of neural modules that map the angle of azimuth (compass bearings 
on a horizontal plane) around the fly. The 16 modules of the protocerebral 
bridge map 16 sectors, eight on the fly ’ s left and eight on its right (  figure 
4.13 ), and project to eight modules in the fan-shaped body. Each fan-shaped 
body module accepts input from a protocerebral bridge module on the left 
side, and from its opposite number on the right side. This convergence 
establishes eight horizontal axes that pass through the center of the fly. 

 The eight fan-shaped body modules then connect straight to the eight 
modules of the ellipsoid body which, in turn, connect to the lateral acces-
sory lobes. Here the outputs from the central complex contact the descend-
ing neurons that drive motor pattern generators in the segmental ganglia. 
In short, by explicitly linking signals to azimuthal bearings (horizontal 
lines of sight from the fly ’ s cockpit), the central body relates the position of 
a sensory pattern to the body ’ s orientation and direction of movement. 

 Information on sensory patterns and stored patterns project across the 
directional modules via  horizontal neurons . Some horizontal neurons estab-
lish memory traces, and this allows generalization. Information gathered 
from a pattern observed in one direction is distributed so that an object 
learned in one location can be recalled in another. The horizontal projec-
tions stratify the fan-shaped body, and two of its layers have been linked to 
specific components of visual patterns: one layer to the orientation of visual 
contours and the other to the elevation of an object above the horizon. 

 Some patterns processed by the central complex are used for navigation. 
The central complex serves as a sky compass that enables locusts and mon-
arch butterflies to fly on a constant bearing by maintaining the body at a 
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  Central complex maps horizontal lines of sight.  Protocerebral bridge ’ s 16 modules 

map 16 sectors viewed from head, 8 on insect ’ s left and 8 on its right. Projection to 

fan-shaped body ’ s 8 modules connects opposite sectors (e.g. Left 1 and Right 8) to 

establish and map axes that pass through centre of head. This map is projected to 

ellipsoid body ’ s 8 modules, for output to neurons that select and control motor pat-

terns. The central complex then sends information about position of stimuli with 

respect to the head to neurons that control body orientation and the direction of 

locomotion. Figure based on Strausfeld (2012) and Strauss et al. (2011). Fly image 

from http://openclipart.org/image/800px/svg_to_png/120457/HouseFly2_.png. 
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given angle to the solar azimuth. When the sun is obscured, the pattern of 
polarized light in blue sky is used instead. For bees returning to the hive, 
and especially for monarch butterflies migrating 3,000 miles from Canada 
to Mexico, it is important to maintain the same true bearing (e.g., 185 
degrees South Southwest) throughout the day. For this, the sky compass 
mechanism uses clock information to correct for the sun ’ s movement, and 
neurons in the central complex are involved (Heinze  &  Reppert, 2011). 

 In short, the central complex is aptly named because it is both centrally 
located and central to the brain ’ s broad tasks that were indicated in figure 
3.2 (assemble larger patterns, compare to stored patterns, predict a promis-
ing output pattern, and call an integrated output). Thus in many ways the 
central complex is homologous to the mammal ’ s basal ganglia (Strausfeld  &  
Hirth, 2013). It seems remarkable that the central complex achieves all this 
with less than 600 neurons (592 at the last count). But how are output pat-
terns implemented? 

 Distributing motor patterns 
 The insect brain places its motor neurons in the body segments where they 
are needed and drives their detailed firing sequences with pattern genera-
tors located at the same site (like the mammalian spinal cord). These final 
pattern generators are coordinated across segments (e.g., three pairs of legs) 
via fibers that connect to pattern generators in other segments. These are 
organized into complex behaviors which the brain can call or restrain via 
descending neurons. Most famously, for a male mantis to copulate, he 
needs only to shed a descending restraint — which occurs when an obliging 
female  . . .  bites off his head. 

 Significantly, though perhaps anticlimactically, the distribution of fiber 
diameters in the connecting tracts resembles the mammal: many fine axons 
and fewer thick ones (  figure 4.14 ).    

 The activation or disinhibition of some rhythmic and stereotyped 
behaviors — for singing, mating, fighting, and so on — is controlled by small 
numbers of command neurons that activate dedicated networks (Hedwig, 
2000). To an observer, these behaviors appear quite complex and plastic —
 for example, Google  “ drosophila aggression ”  and watch a YouTube film 
that resembles a professional boxing match. Complex behaviors can be 
evoked from larger insect brains by electrical stimulation of single com-
mand neurons — recalling the complex behaviors evoked with fine elec-
trodes from the mammalian hypothalamus. 

 The insect brain, like the mammal, needs to distinguish activity created 
by its own motor commands from activity originating in the environment, 
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  Distribution of fiber diameters in insect nerve cord . This distribution resembles 
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that is, it needs mechanisms for corollary discharge. For example, a cricket 
producing loud chirps risks desensitizing its own auditory system, which 
would prevent it from detecting softer external sounds (Poulet  &  Hedwig, 
2007). To avoid desensitization, the small motor circuit that generates the 
chirp drives a single neuron that directly blocks inputs from the two ears 
(  figure 4.15 ). This simple circuit shuts down auditory inputs for precisely 
the duration of a chirp, leaving the cricket free to listen for responses 
between chirps. This precise blanking-out of disruptive input resembles the 
suppression of visual inputs during a saccadic eye movement. The point 
here is that for most tasks that a mammalian brain needs to accomplish, so 
too must an insect brain. Moreover, the insect brain often uses similar 
strategies — but benefits from the smaller scale: fewer neurons and shorter 
distances (Chittka  &  Niven, 2009).    

 Correcting errors: Motor learning 
 The prominence of the cerebellum in mammalian brain might predict an 
obvious insect analogue, but there is no structure totally dedicated to motor 
learning. The suggestions are that motor learning is one of many tasks 
assigned to the mushroom bodies and to the central complex (Farris, 2011; 
Strauss et al., 2011). Indeed, with fewer body segments to coordinate, stiffer 
mechanics, and a body that is not continually growing, an insect arguably 
has less need for motor learning. 

 Nonetheless, some motor learning is essential. For example, flies improve 
their motor performance with practice (Wolf et al., 1992). Normally when 
a fly (or any animal) turns in one direction, the visual scene moves in the 
opposite direction. If this relationship between action and consequence is 
reversed by placing the fly in a flight simulator, the fly adjusts within 24 
hours. Now when it wants to approach a promising target, it turns  away  
from the target, and  voil á ,  the target enters its field of view. This resembles 
Kohler ’ s famous experiment: after students wore inverting spectacles for a 
day or two, the world appeared to be right-way up, but when they removed 
the spectacles, it appeared upside down. Why do flies need this motor 
learning? Motor learning is built into their flight control system to cope 
with changes of body mass (feeding, defecating, growth, and laying eggs) 
and damage to the wings. 

 Reward-prediction error 
 Insect brains are wired for associative learning and employ a system for 
computing reward-prediction error that follows the same basic learning 
rules as in mammals. The internal reward system uses dopamine and 
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  CD1, the neuron that prevents a cricket being deafened by its own chirp.   Right: 
 CD1 ’ s circuit. Central pattern generator (CPG) drives motononeurons (MN) rhyth-

mically to produce wing movements that generate chirps. Each chirp excites sensory 

neurons (SN) in cricket ’ s ear. SN output synapses excite omega neuron (ON), which 

conveys auditory information to brain. CPG also drives CD1, which inhibits ON1 

and output synapses of SN, thereby blocking signal to brain while chirp is being 

produced.  Middle : Recordings of signals within circuit. Bottom trace: Extracellular 

recording of spikes in MN, driven rhythmically by CPG. Middle trace: Intracellu-

lar recording from CD1. Excitatory synapses from CPG depolarize CD1 to produce 

bursts of spikes that follow CPG rhythm. Top trace: Intracellular recording from ON. 

Inhibitory synapses made by CD1 produce rhythmical bursts of IPSPs that block ON1 

output during chirps.  Left:  Morphology of CD1 revealed by intracellular dye injec-

tion. Axon connects dendritic arbors in the three thoracic ganglia, meta-, meso-, and 

pro-. Mesothoracic dendrites receive excitatory synapses from CPG. Prothoracic den-

drites make inhibitory synapses onto omega neuron, ON1, and all sensory neurons, 

SN. Vertical scale bar: 20 mV for CD1; 5 mV for ON1. Reproduced from Poulet and 

Hedwig (2006) with permission. 
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octopamine. The systems for computing reward-prediction error and for 
storing the lessons both reside in the mushroom body (figure 14.11). 

 The mushroom body, like mammalian cerebral cortex, participates in 
olfactory learning, associative learning, spatial learning, visual pattern rec-
ognition, attention, and sensory integration. The mushroom body, like cor-
tex, shapes its circuit architecture to view multiple inputs, looking for 
coincidences to associate with reward or punishment. This suggests a mul-
tipurpose cross-correlator that can be wired to evaluate a variety of associa-
tions and store the lessons. 

 As with other computing devices, new models allow new opportunities. 
Primitive parasitic wasps (early model) use elaborate mushroom bodies to 
find and store the locations of grubs hidden at particular sites within a 
plant (Farris  &  Schulmeister, 2011). Social wasps (later model) use this 
capacity to recognize each colony member by its distinctive face and body 
markings and to store this information along with knowledge of its posi-
tion in the dominance hierarchy (Sheehan  &  Tibbetts, 2011). Thus, the 
later model supports a complex social behavior that confers the benefits of 
communal foraging and the division of labor. Social insects, like social pri-
mates, build upon the low-level sensors, adding brain parts that enable 
social behavior. The parts that expand are those that recognize patterns, 
store them, and evaluate them via the system of reward prediction. 

 What a honeybee can do with a brain of 10 6  neurons seems prodigious. 
A bee learns to break camouflage, to navigate a maze via symbolic cues 
(blue, turn left; yellow, turn right), and to associate a flower with the time 
of day during which that particular species produces nectar. Bees can also 
perform delayed match-to-sample and symbolic match-to-sample tasks  21   
that were thought, until recently, to be confined to monkeys, human, dol-
phin, and pigeon (Srinivasan, 2010; Menzel, 2012). In short, absolute num-
bers of neurons seem not to be everything. What seems most important is 
that design takes full advantage of small size. 

 Efficiencies of small size 
 Because an insect is small, it can use an external skeleton. Small body and 
exoskeleton both allow a smaller brain, which is intrinsically more effi-
cient. A small brain uses disproportionately less wire than a larger brain, so 
it can locate cell bodies at the brain ’ s margins, out of the way of wires and 
tracts (chapter 13). As well as saving space, this also saves energy because a 
distant cell body reduces load on a neuron ’ s electrical circuit (chapter 7). 
Shorter wires allow more analogue signaling (e.g., worm; chapter 2), and 
what spikes are needed can travel at lower velocities on thinner axons. 
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Furthermore, a small brain allows a compact neuron to coordinate the 
activities of an entire system (figure 4.15) or to spread its dendrites broadly 
enough to extract a pattern from an entire sensory field. 

 An insect brain economizes by relaxing the specifications for workaday 
behavior. A low-mass insect, clad in tough exoskeleton, sustains less dam-
age in a collision or a stumble, so it can tolerate accident rates that would 
for humans be criminally negligent. The exoskeleton also lessens the bur-
den of motor control. Shorter limbs with stiffer joints and viscous damping 
are easier to manage, and the ability to place sensors in the exoskeleton to 
measure the most informative forces reduces the need to compute at higher 
levels. Mammals use the same strategy (see above), but an exoskeleton pro-
vides insects with more opportunities for sensor construction and place-
ment. Insects do require some high-performance control systems; it would 
be impossible for a fly to fly without one, but in many respects the insect 
body is less demanding and more adaptable. 

 The exoskeleton provides opportunities to reduce demands on the brain 
through embodied computation. For example, to beat its wings at 200 Hz, 
 Drosophila  builds an oscillator from its flexible exoskeleton and muscles 
that, when excited, contract in response to stretch (Dickinson  &  Tu, 1997). 
To kick start, a dedicated neural circuit excites an auxiliary muscle to con-
tract sharply and stretch the muscles that elevate the wings. As the eleva-
tors contract, they stretch the muscles that lower the wings. Coupled by the 
resonant exoskeleton, the antagonists pull back and forth, beating the 
wings. To keep the muscles excited, the brain need only deliver spikes at 
less than 10 Hz. Thus, an intermittent, low-rate input from the brain pro-
duces a high-rate, patterned output from the body, significantly reducing 
computational load. The kick-start muscle also yanks the legs straight, 
thrusting the fly upward as the wings start to beat, a case of  “ neatening up ”  
(chapter 1). 

 The brain can further reduce its computational load by taking shortcuts. 
Challenging problems are solved with simpler solutions that, while inexact, 
work well enough, and many animals, including humans, use these effi-
cient  heuristics  (Gigerenzer, 2008). Insects often use them to judge the sizes 
of much larger objects (Wehner, 1987) — an egg to be parasitized by a tiny 
wasp, a chamber in which to build a whole ants ’  nest, a target of given 
angular diameter — is it small and close by or big and far off? 

 A big problem for any animal is how to find its way in the world and 
return. The honeybee uses the sun as a compass to set its bearings from the 
hive to a productive clump of flowers. When the sun is obscured, the bee 
infers the sun ’ s position from the pattern of polarized light in patches of 



104 Chapter 4

blue sky. To relate a fragment of this polarization pattern to its stored map 
seems difficult, but the bee employs a shortcut: it reduces the two-
dimensional sky map to a one-dimensional map of  e-vector  versus bearing 
to the sun, ignoring the sun ’ s arc as it travels across the sky (Rossel  &  Weh-
ner, 1982). As expected, this extreme simplification produces serious errors 
(up to 30 degrees depending on the time of day), but these are of little con-
sequence because the bees all use the same map. Thus, when a scout returns 
to the hive on a bearing that, according to her faulty map is 50 degrees from 
the sun, she communicates this bearing to food gatherers. When these for-
aging bees set off, they head in the right direction because they use the 
same faulty map to set a bearing of 50 degrees. 

 In short, what insect designs demonstrate to an astonishing degree is the 
advantage of specialization. If a task is specified for a modest range of con-
ditions, then it can be done with a highly specialized design. This is the 
significance of J.B.S. Haldane ’ s famous remark that God seems to have had 
an  “ inordinate fondness for beetles. ”  Their primordial design apparently 
allowed them to specialize enormously — so each could do with great effi-
ciency what its niche required. A brain comprising small, specialized areas 
will, like an ecosystem of interacting specialists, be complicated. 

 Conclusions 

 Mammalian and insect brains accomplish the same core tasks and are sub-
ject to the same physical constraints, so both are designed to  send at the 
lowest acceptable rate  and  minimize wire . Both brains regulate the body ’ s 
internal milieu via slow, wireless (endocrine) signals, plus thin wires with 
extremely low firing rates (autonomic). Both send long-distance signals via 
tracts with mostly thin axons. Both arrange their sensors and brain regions 
in similar positions and use similar structures to perform similar computa-
tions. These designs operate at or above the level of the single neuron. But 
lower levels — molecules and intracellular networks — are subject to similar 
constraints and therefore follow similar principles, as described next in 
chapter 5. 
     
  
  
 
 
 

 

 
 



 Chapter 3 explained that information is transmitted when a signal reduces 
uncertainty about the state of a source. It further explained that in trans-
mitting information by pulses, the information rate (bits/s) depends on the 
pulse rate and timing precision. That chapter noted a law of diminishing 
returns: as pulse rate rises, there is less information per pulse (figure 3.6). 
Moreover, higher information rates (i.e., higher pulse rates and greater tim-
ing precision) use disproportionately more space and energy, both of which 
are limiting resources. These resource constraints directly suggested three 
principles for efficiency in transmitting information:  send only what is 
needed ;  send at the lowest acceptable rate ;  minimize wire . Chapter 4 showed 
that these principles shape many aspects of brain design on a spatial scale 
of centimeters down to micrometers. 

 Yet, as pulses transfer information over distance, they are mainly report-
ing results. The actual processing of information occurs mostly on a 1,000-
fold finer spatial scale, the scale of molecules. There information is processed 
by chemical reactions: molecules diffuse, bind, exchange energy, change 
conformation, and so on. The key actors at this level are single protein mol-
ecules (~6 nm). They are targets for diverse inputs, such as small  “ messen-
ger ”  molecules that, upon binding to a receiver protein, reduce its 
uncertainty about a source. Protein molecules also provide diverse outputs 
that, for example, alter the energy or concentration of other molecules, 
thereby reducing their uncertainty. 

 These processes not only operate at different scale, they often use a dif-
ferent format. Rather than being pulsatile, molecular signals are often 
graded, that is, analogue. Despite the change in format, the task remains 
the same: to reduce uncertainty. Therefore, the same principles for com-
municating information still apply. Chapter 5 explains how information is 
processed by single molecules. It identifies constraints on the information 

 5   Information Processing: From Molecules to Molecular 

Circuits 



106 Chapter 5

capacity of a single protein molecule, and the irreducible cost of registering 
one bit. A logical place to begin is where information from an electrical 
pulse is forced to change format to a chemical concentration. 

 When one neuron sends a pulse to another neuron, there is a problem. 
The source wire that delivers it is separated physically from the receiver 
neuron by a gap of 20 nm. When a signal manages to cross that gap, there 
is another formidable barrier, a double layer of hydrophobic membrane 
about 5 nm thick. How to cross both barriers and finally deliver informa-
tion to the receiver? The membrane is equally a problem for wireless signals 
(chapter 4): how can a hormone outside the cell deliver its information to 
the inside? The solution in both cases is for the message to change format. 
This presents boundless opportunities to process information and also 
opportunities to lose it. 

 Information from a pulse crosses the gap as a puff of small molecules —
 appropriately termed  transmitter . Information finally enters a receiver neu-
ron when one or more transmitter molecules bind to a protein molecule 
that spans the cell membrane. Binding triggers the protein to change con-
formation, and that carries information into the cell. A wireless messenger 
(hormone) works the same way — binds to a transmembrane protein to 
change its conformation.  1    Thus, most transfer of information from a source 
neuron to a receiver neuron occurs via chemistry (concentrations, binding reac-
tions) and physics (changes in molecular structure).  

 Information can enter a cell in myriad ways. The change in protein con-
formation may open a channel through the membrane to admit ions that 
carry electrical current. Or it may cause a protein ’ s cytoplasmic tail to 
release a small molecule that binds and alters other proteins. An altered 
protein may search out targets by random walk (diffusion). To save time its 
search may be reduced from three dimensions to two by allowing the 
altered protein to skate with little feet along the membrane ’ s inner 
surface. 

 Such mechanisms accomplish much of the brain ’ s information process-
ing. They amplify, perform logical operations, store and recall, and so on. 
Although these mechanisms may be triggered by an all-or-none pulse, they 
themselves are generally graded: small molecules vary in concentration, 
activated proteins vary in number, ionic currents vary in amplitude, and so 
on. The information content of these analogue signals, as for the pulse 
code, can be usefully analyzed by Shannon ’ s formulas. A very few equa-
tions, all intuitive, can explain fundamentally: (1) what constrains infor-
mation processing by signals; (2) what reduces their information; and (3) 
why higher information rates are more expensive. 
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 The reward is the same as for pulses (equation 3.3): with these formulas 
one can  “ follow the money ”  and thereby discover how constrained neural 
resources are spent. Moreover, following the money at this nanoscale leads 
to all the remaining principles of neural design. So now we explain how 
Shannon calculated the amount of information needed to specify a source 
and how much information a signal can carry (figure 5.1; Shannon  &  
Weaver, 1949).    

 How much information is needed to specify a source? 

 The information needed to specify a source increases with the number of 
states that the source might occupy. Where there is only one state, there is 
no uncertainty, so no information is required and signals indicating this 
known state are  redundant.  Efficient designs will reduce redundancy to sat-
isfy the principle  send only what is needed . 

 If there are two equally likely states,  A  and  B , then by definition 1 bit of 
information eliminates uncertainty by identifying  A  or  B  (e.g.,  A  = 0;  B  = 1). 

Shannon
communication

 
channel

SA, SB, SC

PA

source receiver

Protein
communication

 

enzyme receptor

substrate, A Products, a and PA
a

 Figure 5.1 
  Shannon ’ s general communication system maps onto communication between two 
protein molecules . When Shannon ’ s source is in states  A ,  B , or  C , it transmits signals 

 S A  ,  S B  , or  S C   ,  so eliminating the receiver ’ s uncertainty about the state of the source. 

The protein source is an enzyme that, upon encountering substrate  A , produces two 

products  P A   and  a . The protein receiver is a receptor that specifically binds  P A  .  P A   ’ s 

presence or absence at the receptor ’ s binding site establishes the state at the source, 

namely, that  A  is present or absent. 
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Increase the source ’ s degrees of freedom from two to four states,  A ,  B ,  C ,  D , 
and the probabilities are lower, for example, 

  p ( A )  = p ( B )  = p ( C )  = p ( D ) = 0.25. 

 Now the situation is more uncertain, and to decide requires two bits. The 
first bit decides between two equally likely pairs, for example, ( A, B ) versus 
( C, D ), and the second bit decides between members of the pair. These two 
bits constitute a 2-bit code for states, such as 

  A  = 00;  B  = 01;  C  = 10;  D  = 11. 

 The fact that 1 bit specifies two states and 2 bits specifies four states illus-
trates a general relationship. When a source can be in any one of  U  equally 
likely states, to identify the state of the source a receiver must obtain 
at least 

  I  = log 2 ( U ) bits. (5.1) 

 Note that, as expected, the quantity of information needed to define the 
state of a source increases with the complexity of the situation — here the 
number of possibilities,  U.  

 Most sources in nature have states whose likelihoods differ, and this 
affects the quantity of information needed to specify a state. For example, 
when we change the probability distribution of the four states,  A ,  B ,  C ,  D  to 

  p ( A ) = 0.125;  p ( B ) = 0.5;  p ( C ) = 0.25;  p ( D ) = 0.125, 

 all four states can be identified by a 2-bit code: ( A  = 00;  B  = 01;  C  = 10;  D  = 
11), but a 3-bit code is more efficient (  figure 5.2 ). The first bit decides if the 
state is  B,  the second if it is  C,  and the third if it is  D  or  A . Note that each 
choice is binary and equiprobable — 1 bit. When used repeatedly, this 3-bit 
code is, on average, more efficient than the 2-bit code. On 50% of occasions 
the 3-bit code needs just 1 bit to identify the correct state,  p ( B ) = 0.5. On 
25% of the occasions, it needs 2 bits to identify the correct state,  p ( C )  = 
 0.25), and on 25% it needs three bits to identify the correct state,  p ( A )  + 
p ( D ) = 0.25. With usage so distributed, the average number of bits per deter-
mination of state is 

 0.5  ×  1 bit + 0.25  ×  2 bits + 0.25  ×  3 bits = 1.75 bits. 

 Thus, the 3-bit code is 12.5% more efficient than a 2-bit code. This illus-
trates one of Shannon ’ s discoveries: it is efficient to match a coding scheme 
to the statistical distribution of the states being coded. The brain got there 
first (chapter 9).    
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 The 3-bit code also reminds us that the number of bits needed to 
specify a state increases with the state ’ s uncertainty. One bit specifies 
the most likely state,  p ( B )  =  0.5; two bits the next most likely,  p ( C ) = 0.25; 
and three bits the least likely,  p ( A )  = p ( D )  =  0.125. In general, when the 
probability of encountering state  x  is  p ( x ), the information required to 
specify  x  is 

  I x   = log 2 (1/ p ( x )) =  – log 2 ( p ( x )) bits. (5.2) 

 This relationship is consistent with   equation 5.1 : when there are  U  equally 
likely states,  p ( x ) = 1 /U . 

 The four-state source explains the basics, but how does information the-
ory apply to the riotous possibilities of the real world? For practical applica-
tions, such as the design of his employer ’ s telephone network, Shannon 
derived a general equation. The number of bits needed to specify the state 
of  any  source is 

  H x p x p x
x

( ) ( )log ( ( ))= −∑ 2
1

 . (5.3) 
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  Two ways to improve efficiency with which signal states represent information. Left : 
This decision tree implements a 3-bit code to represent four states that have different 

probabilities. An alternative would be to assign 2 bits to every state, but 3-bit code 

is more efficient because half the signals transmitted (those for state  C ) use only 1 

bit, and this more than compensates for giving the least frequent states ( A ,  D ) 3 bits. 

 Right : A limited number of signal states is used most efficiently when all states are 

used equally often. In this two-state system the condition  p ( A ) =  p ( B ) = 0.5 maximizes 

information capacity at 1 bit per state. Left reprinted from Laughlin (2011). 
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 This quantity,  H ( x ), takes the information per state, as defined by its prob-
ability  p ( x ) in   equation 5.2 , multiplies it by the proportion of time the state 
is used,  p ( x ), and sums this quantity across all states. 

 Shannon named this quantity,  H ( x ),  entropy  because its equation (5.3) 
has the same form as Boltzmann ’ s equation for the entropy of a thermody-
namic system. Indeed, the two entropies derive similar quantities. 
Boltzmann ’ s entropy quantifies a system ’ s total disorder. Shannon ’ s entropy 
quantifies a system ’ s total uncertainty, and it enabled him to answer our 
next question. 

 How much information can a signal carry? 

 The number of bits carried by a signal is given by the entropy equation, 
here the entropy of signal states. We start with a signal ’ s ability to specify a 
source. When every source state is allotted its own signal state 
(a 1:1 mapping of source onto signal), the signal can carry all of the infor-
mation needed to specify the source because it can always represent each 
and every state of the source, and from equation 5.3 this information is the 
 source entropy . This equality suggests a general method to calculate 
the information carried by a signal. Identify the signal ’ s states and use them 
to calculate the signal ’ s entropy in bits. The calculation obviously holds 
when source states map 1:1 onto signal states, but is it valid when 
the source and signal states greatly differ? For example, is it valid when 
analogue signals from a microphone are transferred to the digital format 
of a CD or when analogue synaptic potentials trigger trains of action 
potentials? 

 Shannon proved mathematically that entropies equate across formats. 
Thus, it is always possible to devise a mapping whereby a signal with 
entropy  H  bits specifies the states of a source with an entropy  H  bits. Thus 
the information from a meandering source with many rare states, such as 
sounds in a telephone conversation, can be compressed into snappier codes 
that use fewer states more often, such as high frequency radio signals or bits 
in a digital network.  2   In short, to quantify how much information a signal 
can carry, just calculate its Shannon entropy using equation 5.3. Having 
done so, one can consider design issues for the signals that couple a neural 
source to a neural receiver. 

 Entropy sets the upper bound to a system ’ s information capacity, but 
communication systems generally and neural systems in particular are 
unable to fill that capacity. The first constraint is noise because, when noise 
enters a system, information is lost. Thus, we must consider how noise 
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affects the design of neural circuits. The second constraint is redundancy 
because, repeating a signal reduces a system ’ s capacity to send  new  informa-
tion. However, when noise is present, repetition can enhance the system ’ s 
ability to specify the source. Consequently, noise and redundancy in every 
real communication system are complementary. 

 How noise destroys information 
 Noise (random fluctuation that does not correlate with changes in signal 
state) destroys information by introducing uncertainty. In a noise-free sys-
tem, the receiver can associate a given signal state with a source state with 
total confidence; however, when noise is present, is a change sensed by the 
receiver signal, or is it noise? The quantity of information destroyed by 
noise depends on the uncertainty introduced by noise and, because bits 
resolve uncertainty, this is also the number of bits required to describe the 
noise — its Shannon entropy (equation 5.3). It follows that the information 
carried by a signal in the presence of noise is the signal entropy minus the 
noise entropy. Because entropy tends to increase logarithmically with the 
number of states (equation 5.1), and subtracting logarithms is equivalent to 
division, information increases as the logarithm of the ratio between signal 
and noise; log 2 ( S / N ). 

 Redundancy 
 Redundancy (signal state that represents something already known) carries 
no information. Redundancy comes in two forms. The first is a less extreme 
form of repetition — states are no longer completely correlated; they are par-
tially correlated. When state  A  correlates with state  B , receiving  A  increases 
the probability of receiving  B , thus reducing the uncertainty associated 
with  B , and hence  B  ’ s information content. Circuits commonly use lateral 
and self-inhibition to remove this form of redundancy in order to  send only 
what is needed , information (chapters 9 and 11). 

 In the second form of redundancy, the signal states are carrying less 
information than they might because they are used too frequently or too 
rarely. Consider a binary signal with two states,  A  and  B . The information 
carried by these two states depends upon the signal entropy, 

  H p A p A p B p B= − −( )log ( ( )) ( )log ( ( ))2 2  , (5.4) 

 and  H  peaks at 1 bit per state when  p ( A ) is equal to  p ( B ) (  figure 5.2 ). This 
optimum coding strategy, use states equally often, generalizes to systems 
with many states, and is widely employed in systems where the number of 
available signal states is severely limited by power restrictions and noise 
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(e.g., satellites, mobile phones). Retinal neurons face similar limitations 
and use this same strategy as do many other cell signaling systems (chapters 
9, 11; Bialek, 2012). 

 Now we know: (1) how much information is needed to describe a set of 
events (equation 5.3); (2) how much information a signal conveys about 
these events (also equation 5.3); and (3) how these quantities depend on 
redundancy and noise. This leads to another question: when events change 
rapidly, how can the brain keep up? To answer this, we derive an expression 
for information rates in bits per second. 

 Calculating the information rates of continuously changing signals 

 The rate of information transfer depends upon the amount of information 
conveyed by each signal state and the rate at which these states evolve over 
time. Chapter 3 gave the information rate for action potentials by calculat-
ing their entropy. This quantity depends on a physical property of the sig-
nal: discrete pulses timed with a given precision, a property that makes low 
rates cheaper. Other formats have different properties, and these impose 
different constraints on relationships between signal quality, bit rate, and 
efficiency. 

 Much of the brain ’ s information is represented by analogue signals that, 
by definition, change continuously. These include changes in concentra-
tion of messenger molecules, changes in the number of receptor proteins 
activated by a ligand, and changes in the electrical potentials generated 
across neural membrane by ion channels. As an analogue signal varies, it 
runs through a series of signal states (  figure 5.3 ). These states deliver infor-
mation at a rate that is the number of bits conveyed per state multiplied 
by the rate at which states change. The number of discriminable states 
is the range of response covered by signal and noise, ( S  +  N ), divided 
by the noise (  figure 5.3 ). Thus, from   equation 5.2 , each state delivers 
log 2 (1 +  S / N ) bits. The analogue signal can change level in time   Δ t  (  figure 
5.3 ). Thus, states are delivered at a rate  R  = 1/  Δ t , and when successive signal 
states are uncorrelated (i.e., no redundancy in the input), the information 
rate is 

  I  =  R .log 2 (1 +  S / N ) bits s  – 1 . (5.5)    

 In many practical systems, calculating rate is more complicated.   Equa-
tion 5.5  assumes that redundancy is zero, that is, there is no correlation 
between signal states. To achieve this, signal states must change randomly. 
To be truly random, the signal must be able to jump from any one state to 
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any other, but this ability is constrained by the time needed to make the 
jump. For example, an enzyme generates a product at a finite rate, so it 
requires time to change the product ’ s concentration in a compartment of 
given volume; similarly an electrical current supplied through a resistor 
requires time to charge a capacitor. Thus, the number of different states to 
which a signal can jump in one time interval,   Δ t , is limited by the rate 
at which the signal can change, but given sufficient time, it can move 
to any state. This time dependency complicates the calculation of 
information rates. 

 Shannon solved this problem by using the Fourier transform to convert 
the continuous analogue signal and noise into their frequency compo-
nents. Each frequency component is independent, in the sense that chang-
ing the amplitude or phase of one frequency component has no effect on 
any other frequency; consequently, every frequency carries its own infor-
mation. It follows that the total information carried by the signal is the sum 
of the information carried by each of its component frequencies. 

  I S f N f df
co

= + ⋅∫ log [ ( ) / ( )]2

0

1  , (5.6) 

 where  I  is bits per second,  S ( f ) and  N ( f ) are the power spectra  3   of signal and 
noise, and  co , the signal ’ s cutoff frequency, defines its bandwidth. 
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  Signal range, noise, and response dynamics determine the information rates of 
analogue signals . Noise divides a waveform ’ s signal range into discriminable states, 

and states can change at time intervals   Δ t . The faster, more reliable waveform obvi-

ously conveys more details of the signal. From equation 5.5, it also has a higher 

information rate because it has a higher  S/N  and, with shorter   Δ t , changes level at a 

higher rate. 
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 There are two provisos to this derivation of information rate (  equation 
5.6 ). The system must be linear, and both the signal and the noise must 
vary randomly with Gaussian distributions so that the frequencies being 
transmitted are uncorrelated. These conditions are reasonably well met 
when systems are driven with low-amplitude Gaussian inputs (e.g., Rieke et 
al., 1997). Note that when the spectrum of  S ( f )/ N ( f ) is flat, the sum across 
frequencies reduces to   equation 5.5 , with a bandwidth of 1/2 Δ  t  replacing 
the rate  R , 

  I  = ( bandwidth )log 2 (1 +  S / N ). (5.7) 

 This relationship between  bandwidth ,  S / N , and information rate,  I , affects 
neural design because to transmit information at higher rates, a neuron 
needs a wider bandwidth (faster responses) plus higher S/N, and these 
require extra materials and energy. Thus, we have a trade-off between 
resources and performance that, as we will see, profoundly influences neu-
ral design. 

 Information in any real system must be embodied physically or chemi-
cally. The brain uses  signaling proteins  to process information, so we now 
examine their physics and chemistry. 

 How protein molecules transmit and process information 

 A protein acquires its specific function by folding to reduce its free energy 
 A protein molecule is formed from a linear chain of amino acids linked in a 
genetically specified sequence (Alberts et al., 2008). The linear sequence 
becomes a useful molecule as follows. The chain is flexible, so it bends and 
folds to reduce its free energy by minimizing potential energy and maxi-
mizing entropy (Williamson, 2011; Dror et al., 2012). The charged amino 
side groups attempt to form pairs of attractive opposites (+ with  – ) and to 
avoid repellant likes (+ with +) or ( –  with  – ). To increase entropy, the hydro-
phobic side chains avoid polar groups and coalesce into oily cliques. All of 
this jostling for position must be achieved within packing constraints. 

 Buffeted by thermal energy, yanked up and down potential gradients, 
exchanging order for disorder, the protein molecule constantly changes its 
three-dimensional structure ( conformation ) until it falls into a local mini-
mum free energy that is deep enough to resist thermal motion. The protein 
molecule has reached a stable conformation (  figure 5.4 ). 

 This stable conformation determines the protein molecule ’ s physical 
and chemical properties (Williamson, 2011). A typical protein, with several 
hundred amino acids, folds into a 5- to 10-nm structure to adopt a form 
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that supports its function: long fiber to make a hair, globular block with 
attachment knobs to build the cytoskeleton, part of a stepping leg to move 
materials, and so on. A protein may locate a subset of amino acids where 
they can bind and interact with a specific molecule. Such a binding site 
enables the protein to collect and send information. 

 Binding specificity allows information transfer 
 Recall that information transfers when a change at the receiver can be asso-
ciated with the state of the source. Chemical binding satisfies this require-
ment. For example, when an enzyme molecule reacts with its substrate to 
produce its product, the enzyme only binds the substrate, and the receiver, 
a receptor protein, only binds the product (  figure 5.1 ). Thus, the source tells 
the receiver  “ substrate present ”  by using a diffusible messenger, the prod-
uct. If the enzyme and/or the receptor were to relax their binding specifici-
ties, other molecules in the cytoplasm would also bind. Such cross talk 
would reduce the probability that the receiver is responding to the presence 
of one particular substrate at the source. Thus, binding specificity enables 
information transfer. 

 Once a protein ’ s binding site receives information, how can it be further 
processed? By  allostery . This is a protein ’ s ability to respond to a specific 
input, such as binding a messenger, by switching to a new stable 
conformation.  4   

 How allostery works 
 Consider the protein molecule continuously changing conformation as it 
descends to its lowest available free energy level. This progression is, in 
effect, a voyage across an energy landscape (  figure 5.4 ) in which the map 
coordinates represent the protein ’ s conformation and the altitude repre-
sents its free energy.    

 The descent follows gradients in the energy landscape, and thermal jig-
gles push it over bumps. Thus, the protein explores a locale and finds a path 
to lower regions. When the protein enters a valley too deep for thermal 
forces to boost it out, it is trapped, and the conformation becomes confined 
to a small region (  figure 5.4 ). Here the protein may shuttle between a small 
set of functionally distinct conformations, or it may remain centered on 
one stable conformation (  figure 5.4 ). Thus confined, the molecule assumes 
a role dictated by its conformation. 

 Consider now what happens when an external factor alters the energy 
landscape. An external input could be a change in pH or electrical poten-
tial, it could be binding or releasing a specific molecule, or it could be an 
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  Protein structure, conformational state, energy landscape, and allostery. Upper : 
The  β 2 adrenergic receptor protein spans the cell membrane ’ s lipid bilayer. Here 

it is shown in the conformation where binding an adrenaline molecule at a site 

on the outside has opened a cleft for binding a G protein molecule on the inside. 
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put changes the energy landscape and the protein moves to conformation B. This 

is allostery. Upper adapted from  http://en.wikipedia.org/wiki/Beta-2_adrenergic_

receptor#mediaviewer/File:2RH1.png . 
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injection of energy via the attachment of a high-energy phosphate group to 
an amino side group. Such inputs alter the protein ’ s energy landscape, 
depressing some regions and elevating others (  figure 5.4 ). The protein 
responds by moving, within microseconds to milliseconds (Williamson, 
2011; Dror et al., 2012), to a new stable conformation. The new conforma-
tion differs physically and chemically from the previous one, so the mole-
cule reacts differently to chemical and physical inputs. This change enables 
it process information. 

 How a protein uses allostery to process information 
 A finite-state machine  5   processes information by running through a well-
defined sequence of state changes (transitions), each triggered by a particu-
lar condition, such as the presence or absence of an input, or a conjunction 
of inputs. This is allostery. As a protein molecule runs through a sequence 
of state changes, each conditional upon a particular input, it produces an 
output conditional upon those inputs (Huber  &  Sakmar, 2011). Thus, allo-
stery enables a single protein molecule to compute (Bray, 1995). For exam-
ple, a single molecule is easily programmed to perform the Boolean 
operation, AND (  figure 5.5 ).    

 The rest of this chapter treats one particular finite-state machine that 
comprises a pair of interacting proteins. The receptor protein accepts the 
wireless signal, adrenalin, a hormone that prepares an organism to fight or 
flee, then relays the information ( “ Adrenalin present! ” ) across the cell 
membrane. There it transmits to receiver proteins on the membrane ’ s inner 
face that amplify and broadcast the information within the cell. Both pro-
teins then reset for the next signal. The receptor protein is the  β 2 adrenergic 
receptor, and the receiver protein is a G protein. 

 We choose this example for several reasons. First, the  β 2 adrenergic 
receptor and its G protein represent a broad, ubiquitous class of finite-state 
machines (chapters 2, 7, and 8). The human genome specifies more than 
800 different receptor proteins that couple to a G protein and more than 
100 different G proteins. Second, this example indicates the spatial scale 
used by most neural computations. Third, it exemplifies computation by 
amplifying, and in doing so illustrates molecular solutions to a broad design 
problem, overcoming noise. Fourth, it clarifies the reason to compute at 
this spatial scale: high efficiency in space and energy. The energy cost of 1 
bit in this system, as will be explained, approaches the theoretical lower 
limit to within a factor of about 30. 

 The final reason to choose this example over other possibilities is 
that the sequence of conformational changes, triggered by adrenalin ’ s 
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binding to the receptor and completed by the release of activated G pro-
teins, has been documented at the atomic scale, by x-ray diffraction 
(Rasmussen et al., 2011; Chung et al., 2011; summarized in Schwartz  &  
Sakmar, 2011). 

 Allostery in action 

 The system is ready to receive when the receptor ’ s conformation exposes its 
adrenaline binding site on the cell membrane ’ s outer face and masks the G 
protein ’ s binding site on the inner face (figure 5.6). G proteins diffuse on 
the inner face, colliding with receptors, but encounter no signal. When 
adrenalin binds to the receptor, the protein changes conformational state 
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  The allosteric protein as a finite-state machine . How a sequence of stimulus-evoked 

changes in allosteric state could enable a single protein molecule to perform a simple 

computation, here a logical AND on the two inputs A and B .  Ligand A binds to the 

protein, exposing two sites to be phosphorylated by kinase B. The pair of attached 

phosphates alters the protein ’ s conformation, exposing a catalytic site that digests 

the substrate s to produce products j and C. Bottom row gives the corresponding 
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(  figures 5.4 and 5.6 ). One of the seven helical coils that span the membrane 
(coil number 6) moves 1.4 nm and others move shorter distances. Together 
they open a cleft in the receptor molecule at the inner face to expose the G 
protein ’ s binding site. At the next collision, a G protein engages this site 
with a special knob and docks securely (  figure 5.6 ).    

 This coupling changes the energy landscape of both molecules. The G 
protein embarks on a sequence of conformational changes (  figure 5.6 ). Two 
of its three subunits,  β  and  γ , detach and diffuse into the cytoplasm. The  α  
subunit responds to the loss of its partners by swinging apart two large sec-
tions at their hinge. This motion, spanning more than 110 o  and requiring 
several hundreds of microseconds, reveals, like an oyster showing its pearl, 
a small molecule, guanosine diphosphate ( GDP ), bound deep within the 
protein. The exposed GDP promptly exchanges with a molecule from the 
cytoplasm, guanosine triphosphate ( GTP ), whose additional phosphate 
gives it higher energy. 

 GTP ’ s binding transfers energy to the  α -subunit, again changing the 
landscape. The hinged gates swing closed, retaining the high-energy GTP 
that is fueling the sequence of state changes. The knob retracts, thereby 
uncoupling the  α  subunit from the receptor and freeing it to diffuse on the 
membrane ’ s inner face. Now another binding site on the  α  subunit is 
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   β 2 adrenergic receptor and its G protein use allostery to operate as a finite-state 
machine . Receptor receives a wireless signal outside the cell and, by changing con-

formation, relays it across the membrane to G protein. G protein dissociates and  α  

subunit broadcasts signal to effector proteins by diffusing on inner surface of the 

membrane.  α  subunit hydrolyses bound GTP and reverts to conformation that the 

binds the other subunits. G protein is reconstituted, ready to signal again. Further 

details in text. Figure adapted from summary diagram from the definitive study of 

structural changes that pass information through these two molecules (Rasmussen et 

al., 2011), with permission. 
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exposed for other proteins to bind and change  their  conformation in 
response to the signal  “ Adrenaline! ”  (  figure 5.6 ). In short, an orderly 
sequence of conformational state changes has carried information,  “ Adren-
aline!, ”  across the cell membrane, and by releasing an activated GTP- α  sub-
unit, it has started the process of broadcasting this information wirelessly 
within the cell. 

 How allostery amplifies 
 This form of allostery easily amplifies. When one GTP- α  uncouples from 
the activated receptor protein, another docks in its place, is activated, then 
is released, and so on. The rates vary from 10 – 500 per second, depending 
mainly on the density of G proteins on the membrane — for this sets their 
frequency of encountering a receptor protein. The number of G proteins 
activated and released by a receptor increases with time as the cleft 
stays open. The amplification ( gain ) varies across systems, ranging from 4 in 
a system with short time constant, such as a fast fly photoreceptor (chapter 
8) to 100 in systems with long time constant, such as a slow-acting 
hormone. 

 Amplification is a form of redundancy since each copy simply repeats a 
message without adding new information. Thus, multiple G proteins acti-
vated by the  β 2 receptor simply repeat,  “ Adrenalin!, ”   “ Adrenalin! ”   . . .  Yet 
this redundancy is essential for two reasons. To produce a concerted 
response to adrenalin, the signal must reach many parts of the cell in good 
time, hence the activation of several G proteins. Second, the system must 
guard against noise. Because a thermal bump occasionally activates a single 
G protein molecule, the receptor must activate several molecules to gener-
ate a reliable message. Thus, when amplification protects information from 
noise, it also introduces inefficiency in the form of redundancy. An efficient 
design will strike an appropriate balance by matching the gain of amplifica-
tion to the level of noise (chapter 6). 

 Although the  β 2 receptor and its G protein have worked together to 
amplify and broadcast the signal  “ Adrenaline!, ”  the process is incomplete. 
This finite-state machine, which turned on in order to signal danger, must 
turn off when the warning has been sent. Then the machine must reset to 
be ready once again to deliver the message. 

 How allostery terminates the message and resets the system 
 Turnoff and reset are accomplished by continuing to move the receptor and 
the G proteins it activated through their sequences of conformational 
states. As for the all preceding steps of activation, each transition for 
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deactivation serves a specific purpose. To inactivate the  β 2 receptor, an 
enzyme ( kinase ) accepts a high-energy phosphate group from an ATP mol-
ecule and attaches it covalently to a particular site on the  β 2 receptor. The 
phosphorylation of several such sites raises the receptor ’ s energy level suf-
ficiently to change its conformation, now exposing a binding site for a dif-
ferent protein molecule,  arrestin . When arrestin binds, it blocks access to 
the G protein ’ s docking cleft, thus preventing transmission. 

 Something is needed to protect unoccupied  β 2 receptors from being 
inactivated while they are in the receptive conformation, waiting for adren-
alin. The receptor is engineered so that the receptive conformation hides 
the phosphorylation sites, and they become exposed only in the conforma-
tion triggered by binding adrenalin. Something is also needed to give time 
for an activated receptor to amplify, that is, to activate and release several G 
proteins. To achieve this, the kinases that attach high-energy phosphates 
are designed to work slowly. Moreover, by modulating this rate of phos-
phorylation, both the gain and time constant of amplification are adjusted 
for no extra space and little extra energy. 

 Once arrestin blocks transmission to the G protein, the  β 2 molecule 
resets — by continuing its journey through conformational states. The 
adrenalin molecule, whose initial binding to the receptor opened a 
cleft for docking the G protein, eventually  un binds adrenalin, and this 
closes the docking cleft. This allows a  phosphatase  enzyme to remove 
the added phosphates, releasing arrestin, and restoring the receptor to 
its initial state. Its  signaling cycle  is complete: it has received, transmitted, 
and reset. 

 But what prevents the activated  α  subunit from continuing its diffusive 
search for partners? This subunit is also an enzyme that removes the high-
energy phosphate from its own bound GTP (  figure 5.6 ), and this provides 
an automatic cutout. Withdrawing the high-energy phosphate from the  α  
subunit triggers its final sequence of conformational state changes. It 
rebinds the  β  γ  units and once more protrudes its docking knob. Now the G 
protein has reset to the inactive  α  β  γ -GDP form and is again ready to dock 
with an adrenalin-bound receptor. 

 In summary, this molecular finite-state machine uses two parts, receptor 
and G protein. It exploits three properties of a protein molecule — binding 
specificity, allostery, and diffusion — to execute a program of state changes. 
The program receives a signal at the cell surface and transmits it  mechanically  
across the cell membrane. The program then amplifies the signal, 
broadcasts it within the cell, and resets. This computational device, the 
G-protein-coupled receptor ( GPCR ), being ubiquitous, will be discussed 
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further (chapters 6 – 8). But here we explain another invaluable property of 
signaling proteins — how their energy efficiency approaches the thermody-
namic limit. 

 Energy efficiency of protein devices 

 Why must molecular devices consume energy to process information? 
 A protein ’ s signaling cycle starts and finishes at the same point in the 
energy landscape. If every conformational state within the cycle had the 
same free energy, the cycle could be completed without consuming energy. 
However, the protein would then depend on random thermal fluctuations 
to change states. Moreover, if free energy were constant, each transition 
would be reversible — with equal probabilities of moving forward or back-
ward. To complete the cycle would be theoretically possible: a signal could 
be delivered without expending energy. However, such a lossless system 
would be impractical because, relying on a chain of improbable and revers-
ible events, the receiver would wait for long and indeterminate times (Ben-
nett, 1982, 2000). 

 Energy eliminates this intolerable wait by driving the protein through 
the conformational state transitions in the intended direction. Moreover, 
the effect is progressive: adding more energy speeds the cycle. But what 
about the lower bound: what is the least energy that can deliver informa-
tion usefully? 

 Lower bound to energy cost in signaling 
 Thermodynamics suggests a minimum, the energy required to register one 
bit of information (Landauer, 1996; Schneider, 2010), 

   Δ E  =  k B T  ln(2)  ≈  0.7  k B T  joules  ≈  3  ×  10  – 21  joules per bit, (5.8) 

 where  k B   is Boltzmann ’ s constant and  T  is temperature in degrees Kelvin.   Δ E  
is tiny,  6   but single protein molecules are also tiny and so approach this 
thermodynamic limit to energy efficiency. 

 The signaling cycles of the  β 2 adrenergic receptor and its G protein can 
each register a bit by switching from OFF to ON and then resetting to OFF. 
Each protein draws energy from the cell ’ s standard currency, the high-
energy molecule, ATP. Hydrolysis of one ATP delivers 25  k B T  joules, and the 
receptor uses at least three ATP molecules when it is phosphorylated (  figure 
5.5 ). This gives an efficiency of 75  k B T  joules per bit, which is two orders of 
magnitude above the thermodynamic limit (equation 5.8). The G protein 
consumes the equivalent of 1 ATP when it hydrolyzes its GTP to GDP 
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(  figure 5.6 ), giving an efficiency of  25   k B T  joules per bit, between one and 
two orders of magnitude above the thermodynamic limit. 

 Thus, both proteins process a bit of information for less than the cost of 
a covalent bond (~100  k B T ). This seems plausible because a protein is a soft 
device, more like a machine made from jelly than a rigid clockwork (Wil-
liamson, 2011). Indeed, the free energy to stabilize a protein (folded vs. 
unfolded) is less than a quarter of the free energy to form a covalent bond 
and is about equal to the energy delivered by ATP. 

 What prevents these two protein molecules from operating closer to the 
thermodynamic limit? Realize that the 0.7  k B T  limit is the cost of simply 
registering a bit as a change of state. It does not include transmitting the 
bit. To send a bit across the membrane, the  β 2 receptor moves its helix 
number 6 by 1.4 nm, and to relay the bit into the cytoplasm, the G protein 
opens its large hinged section by 110 o . Both movements require work 
(Howard, 2001), and work consumes energy. Energy is also used to drive the 
cycle at a rate appropriate for the function — recall that the  β 2 receptor sig-
nals  “ Emergency! ”  Considering that the energy cost of transmission by 
the GPCR includes these extra tasks, protein signaling appears astonish-
ingly close to the thermodynamic limit. An order of magnitude is a reason-
able guess. 

 Energy and the design of efficient signaling molecules 
 The receptor and G protein turn on and off abruptly and reliably — like a 
mechanical switch. The latter avoids accidental tripping by using an energy 
barrier. Some of the energy needed to trip it is recycled so that once trig-
gered, the change goes quickly. Where safety is critical, the energy barrier is 
high, but where it is less critical, the barrier can be lowered to save energy. 
Likewise, a protein ’ s energy landscape seems engineered to require just the 
right energy input for each state transition. The design also involves trade-
offs between speed, reliability, and energy. For example, were viscous forces 
within a protein to increase with switching rate, the energy cost per transi-
tion would increase disproportionately, making lower rates more efficient. 
Thus, a design principle observed at the microscopic level for axons,  send at 
the lowest acceptable rate  (chapter 3), may also hold at the nanoscopic level 
for protein molecules, albeit for different reasons. 

 Summary 

 The signaling systems established by protein molecules receive and trans-
mit information, as defined by Shannon, using different physical and 
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chemical processes from the ones that Shannon originally treated. Three 
physical and chemical properties of proteins support the transmission and 
processing of information. Binding makes specific connections between 
molecules, enzymatic activity provides a potent means of generating and 
amplifying signals, and allostery enables information to pass through sin-
gle molecules. Allostery also equips a single protein molecule to compute 
by operating as a finite-state machine. By running through a well-defined 
program of state changes, triggered by specific inputs, the molecule 
completes a program only when it encounters a specific combination of 
inputs. These properties equip proteins to form circuits of molecules that 
compute. 

 Circuits built from proteins satisfy two design principles. First, if we rule 
out quantum computation, these circuits are irreducibly small, and this 
saves space and materials. Protein circuits also save energy because protein 
molecules operate near the thermodynamic limit of energy efficiency. 
Moreover, protein chemistry allows energy to be delivered efficiently in just 
the amounts needed to meet the circuit ’ s need for speed and accuracy. Thus, 
the performance of components in protein circuits can be matched to their 
tasks to gain economies that come with sending at the lowest rate. 

 These advantages — compactness, energy efficiency, and ability to adapt 
and match — all suggest the principle  compute with chemistry . It is cheaper. 
But to realize the savings, protein circuits must support the brain ’ s core 
tasks. Chapter 6 now explains how proteins equip molecular circuits to 
meet a brain ’ s requirements for information processing. 
 
 
 
 
 
 



 Chapter 5 explained that information is encoded whenever a source ’ s 
change in state registers as a change in state at a receiver. The primary 
mechanism at the nanometer scale is a protein ’ s ability to connect specific 
inputs to specific outputs by, for example, binding molecules, catalyzing 
reactions, and changing conformation. These reactions are employed uni-
versally in biology and have two advantages for brains — energy efficiency 
and compactness. As noted in the previous chapter, the energy used by a 
protein molecule to register 1 bit approaches the thermodynamic mini-
mum. Also, for changing conformation, its unique task, a protein is irreduc-
ibly small. Smaller would be better since a moderate-sized protein molecule 
(100 kDa) spans about 6 nm and occupies about 100 nm 3 . But although a 
smaller peptide can serve as a ligand, it lacks a protein ’ s rich possibilities for 
stable folds, pockets, and allostery that are essential to its receiving and 
processing information. 

 Chapter 5 noted that a protein molecule can compute. For example, it 
can amplify (one adrenalin bound to one  β 2 receptor protein activates sev-
eral G proteins), and it can do logic (e.g., compute the Boolean AND; figure 
5.5). However, one logical operation doesn ’ t make a brain. A brain needs to 
do a lot more math than that. For starters, it needs mechanisms on the 
nanometer scale to calculate the four linear arithmetical operations (+, -,  × , 
 ÷ ) and various nonlinear operations such as log( x ) and  x  n . It also needs 
switches (where an input causes a step change in output), filters (to remove 
certain frequencies and attend to particular timescales), correlators (to asso-
ciate events), and so on. 

 For such nanometer-scale computations, the genome serves as a parts 
catalog — listing the codes for thousands of protein structures, each speci-
fied for some particular input/output (I/O) function. But executing an 
orderly sequence of operations that computes something requires some-
thing more: a specific subset of I/O components that link correctly. A cell ’ s 

 6   Information Processing in Protein Circuits 
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internal mechanism ensures that this occurs — that the right proteins are 
delivered to the right places at the right times (Alberts et al., 2008). In both 
respects — using components with specific I/O functions and linking them 
correctly — protein circuits resemble electronic circuits (  figure 6.1 ).    

 To understand neural computing at the nanometer scale, one must con-
sider what shapes a protein ’ s I/O function. What determines, for example, 
whether it will take a sum or a logarithm, whether it will switch or filter? 
These functions emerge from a protein ’ s three-dimensional structure, 
through its ability to react chemically, mechanically, and electrically, and to 
change state in response to these inputs — allosterically. 

 One must also consider how a sequence of I/O functions should couple 
to make a useful circuit. For example, should a protein couple directly to its 
target, should it diffuse, should it anchor and send a small messenger, or 
should it communicate electrically via the cell membrane? Here the broad 
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  Circuit for cascade amplifier: silicon versus protein . In silicon, an input voltage,  v 1  , 

drives the first transistor  Q 1  , which amplifies the signal.  Q 1   ’  s output drives transistor 

 Q 2  , which amplifies the signal again and generates the output  v o  . In protein, a photon 

( hv ) activates one molecule of a receptor protein (R), changing its conformation to (R*). 

Like the  β -adrenergic receptor (figure 5.6), R* amplifies by catalyzing 20 G proteins to 

change from G α  β  γ -GDP to G α -GTP. Each G α -GTP activates a molecule of the enzyme 

phosphodiesterase (PDE), which again amplifies by catalyzing the hydrolysis of 100s 

of messenger molecules of cGMP to GMP. Both silicon and protein amplifiers multi-

ply the input by the product of the gains of the two amplification stages. Electronic 
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totransduction in rods is described in chapter 8. GDP, guanosine diphosphate; GTP, 

guanosine triphosphate; R*, the photosensitive molecule rhodopsin, activated by 

a photon. 
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answers are simple: diffusion slows as the square of molecular weight, and 
proteins are heavy, so the best choice for coupling depends on the required 
distance and allowable time. Diffusion time increases as distance squared 
and concentration decays exponentially. Thus, molecular size and concen-
tration, plus the laws of diffusion, shape protein circuit design. Conse-
quently, when distances are large and time is short, circuits use electrical 
signals. This chapter will explain further with some simple examples, start-
ing with ligand binding. The concepts and principles introduced here will 
be exemplified more thoroughly in all subsequent chapters. 

 I/O functions emerge from the kinetics of chemical binding 

 I/O functions from a single binding site 
 A ligand diffuses under thermal bombardment to a specific site on a 
protein and binds. That is, it sticks for a time, and then comes off. 
While the ligand is bound, the protein adopts an active conformation in 
which it produces its  output , for example, it is able to bind a downstream 
protein or catalyze a chemical reaction. Thus, the protein ’ s  output  is propor-
tional to the fraction of time it binds the ligand, and this is determined 
(Phillips et al. 2009, chapter 6,  “ Entropy Rules! ” ; Bialek, 2012) by the 
ligand concentration [ligand] and rate constants for unbinding ( k OFF  ) and 
binding ( k ON  ): 

  output/output max   = [ligand]/( k OFF  / k ON    +  [ligand]). (6.1) 

 This I/O function is  hyperbolic ; it rises steeply at first, and then tapers off as 
the binding site approaches saturation,  output max   (  figure 6.2 ). The ratio 
 k OFF  / k ON   is the dissociation constant  k D  , and equals the ligand concentration 
required to produce a half maximal  output . The same binding kinetics apply 
to protein – protein binding, so what is here explained for ligand – protein 
binding applies also to protein – protein binding.    

 The hyperbolic I/O function computes. It can perform, depending on 
input, three analogue operations: 

 1. At lower inputs levels (those causing  <  0.25 maximum output), the func-
tion is linear (  figure 6.2 ), so small inputs add. 
 2. At medium input levels (those causing 0.25 to 0.75 maximum output), 
the function is approximately logarithmic (  figure 6.2 ). This reduces the 
sensitivity of the output to the absolute level of the input and scales the 
inputs proportionally such that a constant fractional change in input, 
 Δ [ligand]/[ligand,] causes a constant change in output,   Δ output . This type of 
scaling exists at the behavioral level for many categories of sensory 
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discrimination ( Weber  –  Fechner law ). Thus, a computation that serves behav-
ior starts with chemical kinetics at the nanometer scale. 
 3. When large, sudden increases in input drive the response from zero to 
maximum, the function is a step and thus can serve as an ON/OFF switch 
for Boolean operations. 

 Sensitivity depends on the protein ’ s affinity for the ligand. Higher affinity 
(tighter binding) decreases the OFF rate, thus reducing the  k D .  The effect is 
to reduce the concentration of ligand needed to cause a half-maximum 
output. By adjusting  k D  , a given I/O function can execute the same set of 
computations across a wide range of mean ligand concentrations (  figure 
6.2 ). All that is needed is to tweak the protein ’ s binding site to match its 
affinity to the level of ligand by changing the protein ’ s conformation 
slightly. This can be executed stably in the genome, by changing the codons 
that specify influential amino acids, to produce a different  isoform  of the 
protein, or it can be done dynamically as the protein operates — for exam-
ple, by using a kinase to add an energetic phosphate. 

 This capacity of a protein to implement its I/O function with altered 
binding affinity serves in innumerable ways. For example, at low affinity 
(high  k D  ) a protein can receive information from its ligand across a 
short distance at high concentration, in a brief time, for example, 
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  Input/output (I/O) function generated by binding kinetics performs the same com-
putations across widely different input ranges   by altering dissociation constant, and 
hence binding affinity .  Left:  Output (normalized to its maximum) is plotted against 
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rated regime (0.75 max  –  max) function ’ s slope approaches zero. 
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neurotransmitter diffusing across a 20-nm synaptic cleft. At high affinity 
(low  k D  ) the protein can receive information from the same ligand at 1,000-
fold lower concentration over a much longer time, for example, a circulat-
ing hormone. These capacities are implemented for adrenalin by adrenergic 
receptors, probably by different isoforms. Dynamic adjustments to affinity 
can be used for physiological adaptation — to match the I/O function to 
changes in mean concentration of ligand (figure 3.4). 

 Protein molecules with different binding affinities transmit different 
temporal frequencies. High-affinity receptors cannot transmit high fre-
quencies because they do not release their ligand quickly. Consequently, 
they maintain the same level of output for some time after the input ligand 
concentration falls. Thus, a high-affinity receptor acts as a low-pass filter —
 for example, at retinal synapses (chapter 11). By comparison, low-affinity 
receptors release their ligands promptly, so they transmit high frequencies 
as well as low, and this gives them a wider bandwidth. 

 Temporal filtering by a single protein molecule can be modified by  desen-
sitization . This property curtails the output even while the input ligand 
remains bound, so allowing a protein with sufficient binding affinity for a 
low mean concentration of ligand to cut off its response faster than the 
ligand can unbind. Now, the protein is a high-pass filter. For example, upon 
binding synaptic transmitter, a protein receptor changes conformation to 
open an ion channel, but conformational change continues and closes the 
channel long before the ligand comes off. Speed of desensitization is 
designed into a protein as part of its energy landscape (Sun et al., 2002), and 
its use in temporal filtering will be exemplified in chapter 11. 

 Steeper I/O functions from cooperative binding 
 A protein ’ s hyperbolic I/O function is steepened by adding more binding 
sites for the ligand and requiring that several bind to generate the output 
(Koshland et al., 1982). When  n  sites have to cooperate, the I/O function 
follows the  n th power of the ligand concentration: 

  output/output max   = [ligand]  n / ( k D      +  [ligand]  n  ).  (6.2) 

 Now the I/O function ’ s lower region (  figure 6.3 ) approximates a power 
function:  output/output max   = [ligand]  n  , and its logarithmic midregion (  figure 
6.3 ) is  n  times steeper:  output/output max   = log([ligand]  n  ) =  n  log([ligand]). By 
adjusting both binding affinity and  cooperativity , an I/O function ’ s position 
and slope can be matched to the distribution of its input levels (figure 
3.4) — which in the fly visual system optimizes coding efficiency (figure 
9.10; Laughlin, 1981; Nemenman, 2012).    
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 A high cooperativity provides a steeper I/O function for digital switching 
(  figure 6.3 ,  n  = 8) which, by thresholding, can prevent input noise from 
passing further along a protein circuit. For example, in the protein circuit 
that releases a synaptic vesicle (chapter 7), a critical step is triggered by the 
protein synaptotagmin binding calcium ions at several sites. This coopera-
tivity shifts the I/O function to higher concentrations (  figure 6.3 ), so that 
noisy fluctuations in a cell ’ s baseline calcium concentration rarely release a 
vesicle. Cooperativity also narrows the range of calcium concentrations 
that trigger release by increasing the I/O function ’ s slope. Thus, when a 
voltage-gated calcium channel releases a puff of calcium, synaptotagmin 
responds promptly, and this increases the temporal precision of release. 

 Chemical circuitry supports analogue processing 
 In addition to the functions implemented by binding, proteins ’  chemical 
reactions support analogue processing with a rich repertoire of primitives. 
In brief, simple chemical circuits have equivalent electronic circuits 
(Sarpeshkar, 2010;   figure 6.1 ) and are capable of implementing procedures 
used in analogue electronics, namely, amplify, oscillate (Tyson et al., 2003), 
differentiate, and integrate (Oishi  &  Klavins, 2011). As well as taking logs 
(  figure 6.2 ) and raising to powers (  figure 6.3 ), chemical circuits support the 
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  Cooperativity changes the input/output (I/O) function generated by binding kinet-
ics to provide different computations . I/O functions are plotted with cooperativities 

 n  = 2 and  n  = 8 and, for comparison, without cooperativity ( n  = 1).  k D   is constant. 
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ity creates a switch.  Right : Cooperativity implements the function  n log( input ) in the 

medium output range (0.25 – 0.75 max). 
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arithmetic operations add, subtract, multiply, and divide (  figure 6.4 ). Small 
chemical circuits also have the ability to perform more complicated 
functions — for example, take  n th roots (Buisman et al., 2008), compute 
polynomials, and solve quadratic equations. Whether the brain explicitly 
implements this more advanced algebra in small chemical circuits  1   is an 
open question, but the point is made. Chemical circuits support Turing ’ s 
Universal Computation (Hjelmfelt et al., 1991), which means that they can 
in principle be configured to compute any function.    

 Chemical circuits cover the time domain 
 Not only does chemistry compute, it equips the brain to compute over the 
range of timescales observed in animal behavior — from the microseconds 
of the electric sense and hearing to a century of memory. Binding and con-
formational change take microseconds to seconds. Sequences of reactions 
executed by protein circuits take from milliseconds (phototransduction, 
chapter 8) to days (the circadian clock, chapter 4). In chapter 14 we describe 
how memories that are first laid down by the modification of synaptic 
receptor proteins are then consolidated for years by the chemical synthesis 
of new proteins and the assembly of new structures. 

 What makes a protein circuit efficient? 

 Computation by circuits built from protein molecules is efficient for several 
reasons. It is efficient in energy because binding and conformational change 
approach the thermodynamic limit (chapter 5). It is efficient in space 
because a single molecule computes. Moreover, computation at this level 
proceeds directly — that is, by implementing  “ analogue primitives ”  (Sarpesh-
kar, 1998; 2014). Analogue computation typically needs fewer steps than 
digital to complete a basic operation. For example, analogue multiplies 
directly, but digital takes PR 1.585  steps, where PR is the numerical precision 
in bits (Moore  &  Mertens, 2011), so even with a low precision of 4 bits, 
eight steps are saved. 

 Transmission within a chemical circuit is wireless, so space for wires also 
reaches an absolute minimum and circuits share space seamlessly. Wireless 
transmission distributes signals with a minimum of equipment. Once a 
messenger molecule is broadcast, it can be received by any protein with the 
appropriate binding site. Thus, wireless transmission makes it easier to 
reconfigure circuits to change behavior — in the short term by sculpting cir-
cuits with neuromodulators (chapter 2) and in the long term by evolving 
new connections (Katz, 2011). Nor is additional energy needed for wireless 
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  Computation by chemical circuits .  Left : Circuits that divide, calculate square root, 

and multiply. The steady-state concentrations of enzymes [X] and [Z] determine the 

steady-state concentration [Y]. The substrate S is replenished to maintain its high 

concentration, and the waste product, W, is eliminated so that neither limit reaction 

rates.  k 1   and  k 2   are rate constants. In the square-root circuit, two molecules of Y react 

to form W. In the multiplication circuit, the enzyme X produces an intermediate 

I. Adapted from Buisman et al. (2008).  Upper middle : Oscillates when enzyme G is 

activated. J builds up rapidly and also activates two delayed negative feedback loops 

(dashed line) by promoting the slower buildup of K P  and R P . R p  depresses J by catalyz-

ing its removal of J and blocking its production. As J falls, K P  and R P  convert back to 

K and R, negative feedback ceases, and the next cycle starts with the production of J. 

Adapted from Nov á k and Tyson (2008).  Upper right : Autocatalytic switch implicated 

in synaptic memory storage (chapter 14). The switch protein, CAM Kinase II (CAM-

KII) has 12 phosphorylation sites. If two sites are phosphorylated by the input, the 

calcium binding protein CaCM, then CAM Kinase II becomes autocatalytic and at-

taches more phosphates to itself. Rate of phosphate attachment,  P +, increases steeply 

with  nP,  the number of attached phosphates, but then declines at high  nP  as more 

phosphorylation sites are occupied. The rate of phosphate removal,  P  – , by the phos-

phatase PPI increases with  np  and saturates at a medium  nP . Consequently, when 

CaCM is strong enough to drive CAM Kinase II phosphorylation to the trip point, 

 T , where  P+   >   P  – , autocatalysis drives  nP  to the ON position. Here  P +  = P  –  and the 

switch can remain ON indefinitely. When CaCM fails to drive the system to  T , PPI 

wins out and removes all phosphates — the switch remains OFF. Adapted from Miller 

et al. (2005).  Lower middle/right : Level-detector circuit responds by generating M p  

when concentration of [L] lies between [L 1 ] and [L 2 ]. Two receptor types bind L, high-

affinity R H  and low-affinity R L . LR H  phosphorylates M to active M P , but LR L  just binds 

M reversibly At low [L] only the high-affinity LR H  binds, and M p  production increases 

with L. At high [L] the low-affinity R L  also binds; it outcompetes LR H  for M, so M p  

production falls. Adapted from Bray (1995). 
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transmission. Once the messenger is synthesized and concentrated, it dif-
fuses down its gradient, agitated by thermal bombardment (Brownian 
motion). 

 The thermal bombardment that aids diffusion also randomizes move-
ment, and this limits efficiency by introducing noise. Each messenger mol-
ecule that reaches a binding site has done so independently of all other 
messenger molecules; moreover, it has arrived  accidentally  by random walk 
(figure 2.3). It is the same for a protein designed to deliver information 
by skating on the membrane (chapters 5 and 8): it finds a receiver by ran-
dom walk in two dimensions. Moreover, the processes that pass informa-
tion  through  a protein — binding, allosteric state-transition, catalysis, and 
release — are also randomized by thermodynamic fluctuations. Therefore, 
chemical computation in molecular circuits has an associated degree of 
noise that, as noted in chapter 5, destroys information. Such thermody-
namic noise cannot be eliminated, so it must be managed, as we now 
explain. 

 Managing noise in a protein circuit 
 Following the principle  send only what is needed , a circuit should generally 
avoid sending noise.  2   Where noise is inevitable, it should be minimized 
before transmission, so most neural designs try to prevent noise or reduce 
it at early stages. 

 Where proteins remain tightly bound in small complexes, signals go 
directly, thereby avoiding Brownian noise. For more extensive circuits, mol-
ecules must move more freely. Now Brownian motion introduces uncer-
tainty. This is reduced by placing proteins close to each other, on the 
membrane or attached to the cytoskeleton, and by confining diffusible 
messengers to small compartments. Small compartments also reduce 
costs — less messenger need be made to produce a signal of given 
concentration. 

 By reducing diffusion distances, complexes and compartments shorten 
delays and lower noise. This occurs where proteins are held together by a 
protein scaffold — for example, on both sides of a chemical synapse (chapter 
7). A presynaptic complex of at least five different proteins (Eggermann et 
al., 2012) binds a synaptic vesicle and attaches it to the membrane, ready 
for release. When activated by a surge of calcium, the proteins run through 
their finite-state routines within 100  μ s, to release the vesicle with a mini-
mum of Brownian noise. Postsynaptically, a larger complex of protein spe-
cies couple to each other and to the membrane. When the vesicle ’ s 
transmitter molecules cross the 20-nm synaptic cleft and bind a receptor 
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protein, the change in state triggers a host of postsynaptic protein path-
ways. This complex occupies a 25- to 50-nm layer beneath the postsynaptic 
membrane (figure 7.3). Compartments and complexes are used in all chem-
ical synapses, in dendrites (chapter 7), in photoreceptors (chapter 8), and 
indeed in all cells, to promote economy, to speed responses, and to 
reduce noise. 

 Some of the noise associated with changes in a protein ’ s conformational 
state can be prevented by elevating the barriers on the molecule ’ s energy 
landscape (chapter 5). Although this reduces reaction rates and hence band-
width, these can be restored by injecting more energy to drive the process. 
Thus, there are trade-offs between energy consumption, response speed 
(bandwidth), and reliability (S/N). This sort of intramolecular noise can also 
be removed by thresholding with a molecular switch (  figure 6.3 ), but there 
are three penalties: (1) the high energy cost of having a system full ON 
when only partial ON would do; (2) the low information capacity of a 
binary system; and (3) the loss of analogue ’ s ability to process directly. But 
despite complexes, small compartments, and binary switches, some noise 
remains. What then? 

 Noise reducer of last resort 
 There is another way to reduce noise, or more precisely, to improve S/N. 
The trick is to replicate a noisy signal, then send the replicates in parallel 
through multiple components, and sum their outputs. The amplitude of 
the transmitted signal increases linearly with the number of components, 
but because their noise is uncorrelated, noise increases as the square root. 
Thus, with an array of  M  identical components generating noise indepen-
dently, the output S/N increases as  √ M . Such a parallel array can increase its 
S/N to arbitrarily high levels by adding more components. However, the 
solution must be used as a last resort, and then judiciously, because it is 
expensive. 

 The dependence of S/N on   √ M  imposes a law of diminishing returns. 
Cost rises in proportion to  M,  but benefit rises as   √ M , so efficiency falls as 
1/  √ M . Here then is the downside of molecular processing. A single molecule 
can process near the thermodynamic limit to energy efficiency, but that 
molecule suffers thermodynamic fluctuations. This noise can be countered 
with a parallel array of the self-same molecules, but the additional resources 
consume some of what was saved by operating near thermodynamic limit. 
Therefore, the best a circuit can do is maximize the efficiency of its parallel 
array, and this it does by matching the size of the array ( M ) to the costs 
associated with the array, and to the S/N of the input. 
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 Maximizing efficiency in a parallel array 
 To evaluate costs and benefits in the design of a parallel array, we use a gen-
eral measure of performance, information capacity (Schreiber et al., 2002). 
An array ’ s information capacity depends on  S/N  (chapter 5) and increases as 
log 2  (1 +  S/N ) = log 2  (1 +   √ M ). However, the energy cost of passing the signal 
through the array increases as  M . Thus, as  M  increases, the array ’ s efficiency 
falls — unavoidably — because the array is redundant: all components try to 
transmit the same signal. Therefore, efficiency is maximum when  M  = 1. 
Unfortunately the signal generated by one protein molecule is usually too 
weak and noisy to be useful.    

 A more practical optimum emerges upon including the  fixed cost  of 
building and maintaining the circuit that contains the array. Then, as  M 
 increases, information per unit cost of signaling falls through redundancy, 
but information per unit fixed cost rises. An optimum occurs where these 
two competing tendencies balance. Consequently, a higher ratio of fixed 
cost to signaling cost gives a larger optimum array (  figure 6.5 , inset). The 
optimum array size also depends on the costs in other parts of the circuit. 
Where expensive components generate a high S/N and then couple to 
cheaper components, the cheaper array should enlarge beyond its opti-
mum to retain the hard-won benefit. In general, good design distributes 
investment among components to maximize performance across the entire 
system (Alexander, 1996; Weibel, 2000). 

 A good design does not necessarily optimize an array ’ s efficiency. Ini-
tially information capacity and efficiency both rise steeply with  M  (  figure 
6.5 ). But then the capacity curve starts to flatten, and an optimum is 
reached for given fixed cost where efficiency peaks (  figure 6.5 ). As  M  rises 
above the optimum, capacity continues to increase, but efficiency declines, 
albeit more gradually than it rose. Consequently, an array should set  M  
somewhat above the optimum to reduce the possibility of losing both effi-
ciency and information when unexpected perturbations force it to operate 
below the optimum. Thus operating at the exact optimum may not be best. 
Robustness is important, too (Schreiber et al., 2002; Sterling  &  Freed, 2007). 

 But what  is  a protein circuit ’ s fixed cost? Given that a circuit ’ s viability 
requires the whole animal, must one count all vital functions? Although 
the far end to fixed costs looks hazy, the beginning is certainly clear: it is 
the cost of making a circuit ’ s protein molecules. The average cost to synthe-
size an amino acid and insert it into a protein is approximately 5.2 mole-
cules of ATP (chapter 5; Phillips et al., 2009), so to build a typical protein of 
300 amino acids costs about 1,700 ATP molecules. Protein delivery and 
installation are extra. By comparison, the cost per signaling cycle is one to 
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five ATP molecules (chapter 5), and this suggests a rule of thumb: the cost 
of operating a protein molecule (signaling cost) will exceed its construction 
cost when the molecule has completed 500 – 1,000 signaling cycles. 

 Returning to efficiency, the S/N of an input profoundly affects the array ’ s 
optimum size. The array cannot reduce input noise but can only let noise 
cancel by averaging. Consequently, input noise imposes a ceiling to be 
approached by the array ’ s S/N. This reduces the efficacy of a large array at 
low input S/N (  figure 6.5 ) and the size of the most efficient array (  figure 
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  Optimizing the noise reducer of last resort — an array of  M  identical components . 
 Upper left : Increasing an array ’ s size increases its information capacity with dimin-

ishing returns.  Upper right : Energy efficiency (information capacity/energy cost) is 

optimized at an array size,  M , that depends on the fixed cost,  b . Efficiency is in 

arbitrary units,  b  is in units of signaling cost. Inset shows how optimal array size in-

creases with fixed cost.  Lower left : With a noisy input the output S/N cannot exceed 

the input S/N (dashed lines). Lowering this ceiling reduces the advantage of larger 

arrays.  Lower right : Reducing input  S/N  reduces the size of the optimum array. Upper 

and lower right redrawn from Schreiber et al. (2002). Upper and lower left calculated 

using their formulae. 
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6.5 ). In other words, because an input with low S/N contains less informa-
tion, and a smaller array has a lower information capacity, the optimum 
array matches its capacity to its input. 

 The matching of array size to input S/N follows the principle of symmor-
phosis (Weibel, 2000), whereby capacities match within a system to avoid 
waste. What was illustrated for flow of oxygen through lungs, heart, vessels, 
and muscle (figure 3.4) applies equally to the flow of information through 
an array of protein molecules. We will see that symmorphosis also holds for 
parallel arrays of ion channels in a membrane (below), for photoreceptors 
in a retina (chapter 8), for synapses in a neural circuit (chapter 9), and for 
neurons in a pathway (chapter 11). 

 Summary: Pros and cons of computing with chemical circuits 
 A chemical circuit processes information efficiently on several counts. 
Operating near the thermodynamic limit it is energy efficient, and its mol-
ecules makes efficient use of space and materials. Chemical computation is 
direct (analogue), which uses fewer steps than digital. Chemistry is wireless, 
which reduces space and energy for transmission and, by making it easier 
to form new connections, facilitates behavioral plasticity and evolutionary 
innovation. A downside is noise, which is handled in four ways. Some 
Brownian noise is avoided by coupling proteins in complexes and small 
compartments; some thermodynamic noise is avoided by raising intramo-
lecular energy barriers; and some noise is removed by molecular switches. 
Unavoidable noise can be mitigated by signaling with parallel, redundant 
components that add n signals linearly and noise as the square root. 

 The cost of signaling increases with the concentration of the messenger. 
Therefore, efficiency might seem to favor high-affinity receptors that bind 
at low concentration. Yet, there is a penalty and, hence, a trade-off. High-
affinity receptors decrease signal bandwidth by slowing the rate at which a 
signal decays. Low-affinity receptors need higher concentrations, which 
cost more but, releasing the ligand faster, provide higher bandwidths 
(Attwell  &  Gibb, 2005). Thus, speed and bandwidth consume materials and 
energy, making it advisable to send at the lowest rate. 

 Despite the advantages of chemical computing, there remains the impor-
tant proviso  compute with chemistry   wherever possible . Chemistry is fast at the 
nanometer scale, but because diffusion slows and dilutes signals, chemistry 
beyond a few microns is too slow to coordinate immediate behavior. Thus, 
as for  Paramecium  (chapter 2), the need for speed over distance forces 
a more expensive option — protein circuits that process information 
electrically. 
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 Information processing by electrical circuits 

 How electrical circuits meet the need for speed over distance 
 Electrical current in a silicon device is carried by electrons, but in a biologi-
cal device it is carried by ions. The cell membrane, comprising a bilayer of 
nonpolar lipid, is impermeant to ions, so it separates charge, sustains a volt-
age difference across it, and has a capacitance of about 1  μ F cm -2 . Charging 
the membrane ’ s capacitance constrains the speed of electrical signaling. 
The membrane ’ s time constant,   τ  , is its resistance times its capacitance,  RC , 
so   τ   can be shortened to speed up the signal by shrinking the membrane 
area and by reducing its resistance to the passage of ions. 

 An ion passes through the membrane via a channel (Hille, 2001); a large 
protein molecule assembled as a ring of subunits to form an aqueous pore 
in the membrane (  figure 6.6 ). The pore is constructed to selectively pass 
particular ion species in single file by adjusting its width and strategically 
positioning charged amino acid side groups. A typical sodium ion channel 
is 10 times more permeable to sodium than to either calcium or potassium, 
and a potassium channel is more selective still — 100-fold more permeable 
to potassium than to sodium, and almost totally impermeable to calcium. 

 The channel ’ s energetically stable conformation sets it either closed or 
open. And thus it remains until a specific input, such as a ligand binding 
or a change in membrane potential, and/or thermal fluctuations cause 
the channel to open or close, allosterically. Any net transfer of charge 
through a channel changes the voltage across the membrane. This voltage 
signal transmits further and faster along the membrane than chemical dif-
fusion allows, millimeters in milliseconds. But although allostery allows a 
cheap input, a channel ’ s ionic current is an expensive output, as we now 
explain.    

 To charge the membrane quickly, ions must be driven through channels 
at high rates. The primary driving force is a concentration gradient main-
tained across the membrane by ion pumps (  figure 6.7 ). Most important is 
the sodium – potassium pump, which maintains low sodium concentrations 
and high potassium concentrations inside the neuron. This pump is a 
molecular machine, a protein complex spanning the membrane which 
hydrolyzes one ATP molecule to export three sodium ions and import two 
potassium ions. This asymmetrical exchange generates an outward current 
of one positive charge per pump cycle and sets up the two concentration 
differences, [K] in   >  [K] out  and [Na] in   <  [Na] out . These two gradients power most 
of the brain ’ s electrical circuits. Consequently, the sodium – potassium pump 
consumes 60% of the brain ’ s energy (Attwell  &  Laughlin, 2001).    
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  An ion channel is a large protein with a pore that conducts ions across the mem-
brane.  Ligand gated channel from the electric organ of a torpedo ray opens to admit 

sodium ions and potassium ions when it binds two molecules of the neurotransmit-

ter acetylcholine, Ach.  Left:  Channel imaged side-on. The channel is formed by a 

ring of five protein subunits, two  α s,  β ,  γ , and  δ . All contribute to the extracellular 

vestibule, the narrower pore that crosses the membrane ’ s lipid bilayer, and the intra-

cellular domain. Asterisks show binding sites for neurotransmitter acetylcholine on 

the two  α  subunits. When both bind the channel opens and passes sodium ions and 

potassium ions. Large intracellular domain has phosphorylation sites for modulating 

channel ’ s sensitivity.  Right:  Cross section through channel at level indicated on left 

by dashed line. Three-dimensional structure of channel reconstructed from electron 

micrographs of crystalline channel arrays, with a resolution of 0.4 nm. Image cour-

tesy of Nigel Unwin. Further details in Unwin (2013). 
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 The concentration gradient is equivalent to a battery whose voltage 
drives ions through the channel at the same rate (  figure 6.8 ). The battery ’ s 
voltage is given by the Nernst equation, which converts the chemical 
potential of the concentration difference into an equivalent electrical 
potential. Thus, for ionic species,  x , its battery ’ s voltage is 

   E x   =  RT /( zF ) ln([X] o /[X] i ) = 2.303  RT /( zF ) log([X] o /[X] i ),  (6.3) 

 where [X] o  and [X] i  are the concentrations of ion  x  outside and inside the 
cell,  z  is its charge,  R  is the universal gas constant,  T  is the temperature in 
Kelvin, and  F  is Faraday ’ s constant. 
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  Concentration gradients drive ions through channels that open and close rapidly 
in response to a specific input .  Left : Sodium and potassium ions cross the mem-

brane through ions channels, driven by concentration gradients.  Right : A chloride 

ion channel opens to pass ~4 pA of current when it binds the neurotransmitter 

histamine. Currents recorded from a single channel, by patch clamp, at three his-

tamine concentrations: 30, 70, and 100  μ M. The open probability increases with 

histamine concentration according to the binding equation, 6.2, with cooperativity 

 n  = 3. Channel recorded in membrane of a large monopolar cell from the fly lamina 

(chapter 9). Left, after Hille (2001). Right modified and reprinted with permission 

from Hardie (1989). 
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 The two ionic batteries that dominate electrical signaling, potassium 
with  E K   ~  – 85 mV and sodium with  E Na   ~ +50 mV, provide a dynamic range 
of about135 mV. A neuron exploits this to the fullest when it generates its 
fastest signal, an action potential. Before the action potential the neuron is 
at rest. Mainly potassium channels are open, and the membrane potential 
sits close to  E K  . Here a sodium ion experiences its maximum force, pulled 
inward by a membrane potential of  – 85 mV, and pushed inward by a con-
centration difference equivalent to +50 mV. So when a sodium channel 
opens to initiate an action potential, sodium ions surge in, driven by 135 
mV, and their powerful current helps meet the need for speed. 

 Less than a millisecond later, when the action potential peaks close to 
 E Na  , a potassium ion experiences its maximum force, so when a potassium 
channel opens to return the membrane to rest, potassium ions surge in, 
driven by 135 mV. Again, this helps meet the need for speed by increasing 
the power of the potassium current. 

 To improve power delivery, a channel ’ s bore is designed to transmit rap-
idly: ions pass at rates up to 10 8  s  – 1  (Williamson, 2011). These are the high-
est output rates known for protein molecules (Hille, 2001). By comparison, 
the fastest chemical output by an enzyme (carbonic anhydrase) is 20-fold 
slower, and most enzymes are 100-fold slower (Williamson, 2011). 
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 Figure 6.8 
  The simple resistor – capacitor (RC) circuit formed by ion channels in the neuronal 
membrane . The input opens sodium channels, and the output is the membrane po-

tential,  E M  . A bank of potassium channels, each with conductance  g K ,  passes outward 

current  i K  , driven by the potassium ion battery  E K  . Without input, the potassium 

channels maintain a  resting potential  of  E K  . Input opens sodium channels,  g Na  , which, 

driven by the sodium battery,  E Na ,  pass inward current,  i Na  . To change the output,  E M  , 

the membrane capacitance,  C M  , is charged and discharged by the capacitative cur-

rent,  i C .  Sodium-potassium pump, P, keeps batteries charged using energy obtained 

from hydrolysis of one molecule of ATP to ADP to export 3 sodium ions and import 

2 potassium ions, thereby generating an outward pump current. 
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Chemical signaling by molecules, such as ligand-binding receptors and G 
proteins, operate slower than an ion channel by 4 to 7 orders of magnitude. 
With its exceptional output rate, a voltage-gated sodium channel opening 
for 1 ms admits 6,000 Na +  ions. This 1 pA ionic current delivers 2.4  ×  10 4   k B T  
joules, giving a power rating of 200 fW. 

 Fast processing also requires molecules that switch quickly. Channels are 
structured to open or close in tens of microseconds (  figure 6.7 ) — near the 
limits of allosteric state change (Chakrapani  &  Auerbach, 2005). The energy 
used to open a channel,  ∼ 25  k B T  joules (Chowdhury  &  Chanda, 2012), is 35 
times the thermodynamic minimum for a bit (chapter 5), high enough 
above to be reliable, but low enough not to put too much of a brake on 
processing speed. With an input energy of 25  k B T  joules and an output of 
2.4  ×  10 4   k B T  joules, a sodium channel opening for 1 ms has a power gain 
 × 1,000. Thus, a channel ’ s combination of sensitivity, fast switching, and 
gain satisfies the need for speed. But as noted, it comes at a price. 

 The price is paid to keep ionic batteries fully charged. An ion passing 
through a channel drops its battery ’ s voltage by reducing the concentration 
gradient (equation 6.3). The gradient is restored by pumping the ion back 
across the membrane, so when a sodium channel opens for 1 ms and admits 
6,000 Na +  ions, sodium-potassium pumps hydrolyze 2,000 ATP molecules 
to ADP to pump these ions back. The efficiency of the conversion of the 
chemical energy supplied by ATP to the electrical energy delivered by the 
channel is reasonably high, 50%.  3   Nevertheless, a channel ’ s signaling cycle 
(open, admit ions for a millisecond, close, restore ions) uses 2,000 times 
more ATP than a G protein ’ s cycle. This is the price paid for speed over 
distance. 

 In summary, an ion channel changes a neuron ’ s membrane potential 
rapidly by operating as a power transistor that is irreducibly small and oper-
ates close to thermodynamic limits. Engineers seek similar efficiency sav-
ings by developing their version of a single molecule power transistor. 
Biology evolved this device over a billion years ago and solved the not 
inconsiderable problem of connecting its molecular  “ transistors ”  to form 
circuits. 

 How circuits built from ion channels operate electrically 
 Ion channels naturally form electrical circuits because they connect two 
lower resistances (extracellular space, cytoplasm) across an insulating mem-
brane. Consider the simplest circuit, two types of ion channel working 
against each other to code an analogue input as an analogue output, 
namely, a change in membrane potential,  E M   (  figure 6.8 ).   
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 The circuit ’ s behavior is captured by an electrical model in which each 
channel is a switched resistor, connected to its battery (  figure 6.8 ; Koch, 
1999). The resistor represents the channel ’ s conductance,  g , (conductance = 
1/resistance) and the switch opens the channel. For a channel that passes 
ions of species  x , the current,  i x  , is given by Ohm ’ s law: 

  i x   =  g x   ( E x      –   E m  ), (6.4) 

 where  E m   is membrane potential,  E x   is the electromotive force (EMF) of the 
ionic battery (equation 6.3), and  g x   is the single-channel conductance for 
ion  x . Note that when  E M  = E x  , there is a tipping point where the direction 
of current reverses. This point is used to determine  E x   experimentally, so it 
is often called the  reversal potential . 

 For ion channels to change the membrane potential, they must charge 
and discharge the membrane ’ s capacitance ( ∼ 1  μ F cm  – 2 ), represented in the 
model by the capacitor,  C M  . The fourth component, the sodium – potassium 
pump, P, hydrolyzes ATP to keeps the ionic batteries charged. Because the 
rate at which the pump exchanges three sodium ions for two potassium 
ions is effectively independent of membrane potential, it is treated as a 
constant current source. 

 This RC circuit model describes how the membrane potential changes 
when channels open and close. Applying Kirchoff ’ s law, 

  i Na  + i K  + i C  + i P   = 0,  (6.5) 

 where  i C   is the capacitative current and  i P   is the pump current. Substituting 
for the currents flowing through the channels and the capacitor, 

 ( E Na   –  E M  ) N Na g Na   +   ( E K   –  E M  ) N K g K   +  C M  dE M  / dt  +  i P   = 0,  (6.6) 

 where  N Na   and  N K   are the numbers of open sodium channels and open 
potassium channels. Because the pump maintains the concentration gradi-
ents for sodium and potassium,  i P   = 0.5  i K  , giving 

 ( E Na   –  E M  )  N Na g Na   +  3 / 2(E K   –  E M ) N K g K   +  C M  dE M  / dt  = 0.  (6.7) 

 This current-balance equation captures the biophysics of electrical signal-
ing across a neural membrane and easily extends to include other channels 
(including ones that depend on time and voltage), other pump currents, 
and currents generated by ion exchangers. Consequently, an equation of 
this form is the core of the many more complicated models of electrical 
interactions in neurons (Hodgkin  &  Huxley, 1952; Koch, 1999). One insight 
is that this irreducibly simple circuit is inherently  self-shunting . That is, cur-
rent driven through a channel pushes the membrane voltage toward the 
channel ’ s reversal potential, thereby progressively diminishing the current 
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passed per channel as more channels of this type open. This nonlinear 
behavior shapes the circuit ’ s I/O function and supports information 
processing. 

 I/O function of the basic circuit 
 To explain the circuit ’ s I/O function we drive it with an input that opens 
sodium channels. Sodium ions enter, pushing  E M   toward the positive poten-
tial of the sodium battery. This shift in voltage encodes the input intensity, 
 I , as an output. To derive the relationship between input and output, 
assume that the input acts linearly, so the number of open sodium 
channels is 

  N Na   =  aI ,    (6.8) 

 where  a  is channel gain, in open channels per unit input. Thus, the sodium 
conductance is 

  G Na  = g Na N Na  = g Na aI .  (6.9) 

 The opposing potassium conductance is held constant,  G K   =  g K. N K  , where  g K   
is the conductance of a single potassium channel and  N K   is the number of 
open potassium channels. 

 The circuit ’ s I/O function now follows. Without input,  G Na   = 0, and the 
circuit rests with  E M   =  E K  . A step rise in  I  opens  aI  sodium channels whose 
inward current charges the membrane capacitance to a new steady voltage 
with a time constant 

   τ  M   =  C M. R M  ,  (6.10) 

 where  R M ,  the membrane resistance, is 1/( G Na   +  G K  ). This steady state is 
reached long before pump currents change because they are slow (see 
below) whereas   τ  M   is typically milliseconds; consequently  i C   =  i P   = 0. Solving 
the circuit ’ s current balance equation gives the new steady-state membrane 
potential 

  E M  =  ( G Na E Na   +  G K E K  )/( G Na   +  G K  ).  (6.11) 

 Dividing through by  G K  , we see that  E M   depends on the conductance ratio, 
 G Na /G K  , 

  E M   = ( E Na G Na   / G K   +  E K  )/( G Na /G K   + 1).  (6.12) 

 This relationship is simplified by expressing the voltage output relative to a 
baseline of zero input so that  output = E M   –  E K  , then normalizing output to 
its maximum,  output max   =  E Na   –  E K  . Note that the setting of  E K   to zero simply 
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  Input/output (I/O) function generated by the basic electrical circuit allows the same 
computations across different input ranges   by changing the shunting conductance 
 G K   . Normalized output,  O / O max  , is plotted against input,  I , for three different shunt-

ing conductances.  Left : When output is small ( < 0.25 max), the I/O function adds. 

 Right:  When the output is medium (0.25 – 0.75 max), the function is logarithmic. In 

saturated regime (0.75 max  –  max) function ’ s slope approaches zero. Note similarity 

with I/O function produced by chemical binding (  figure 6.2 ).  

shifts the voltage scale without altering the EMFs experienced by ions, so 
response amplitudes are unaffected. Now 

  output/output max   = ( G Na  /G K  )/ (G Na  / G K   + 1).  (6.13) 

 Substituting  aIg Na   for  G Na  , we obtain a simple form of the circuit ’ s I/O 
function 

  output/output max   =  kI /( kI  + 1),  (6.14) 

 where the gain factor  k  =  ag Na /G K  . The electrical circuit ’ s I/O function is 
hyperbolic (equation 6.14;   figure 6.9 ), like the I/O function for chemical 
binding, because it too saturates. And like the chemical circuit, the electri-
cal circuit ’ s hyperbolic I/O provides operators for processing information 
(Koch, 1999; Silver, 2010).    

 An electrical circuit ’ s hyperbolic I/O supports six operators 
 1.    Addition  (A + B) occurs when the circuit operates in the bottom quartile 
of the I/O function where it is approximately linear (  figures 6.2 and 6.9 ), 
When inputs A and B open the same species of ion channel, they add. 
 2.    Subtraction  (A  –  B) also occurs in this linear region when input A opens 
an ion channel that carries current inward and B opens a channel that 
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carries a current outward. The changes in conductance and voltage must be 
small enough for the channels to approximate constant current sources 
driving a constant load. 
 3.   The  log  transform occurs in the middle region of the I/O function, where 
 output   ∼   k log  I  (  figure 6.9B ). As with chemical circuitry, this log transform is 
widely used in sensory circuits to scale responses to changes in input level, 
so that a constant   Δ I/I  produces equal changes in output throughout this 
logarithmic range. 
 4 & 5.    Multiplication  ( × )  and division  (  ÷  ) are performed by changing the gain 
factor,  k , in the I/O function (equation 6.14). This can be accomplished by 
altering the channel gain ( a ) and/or the potassium conductance ( G K  ). For 
example, increasing  G K   shunts the input from  G Na  . This mechanism is 
widely used for multiplicative gain control and divisive normalization 
(chapters 8 and 12), procedures that optimize coding and facilitate the 
extraction of patterns (Koch, 1999; Carandini  &  Heeger, 2012). Changing 
channel gain,  a , does not, strictly speaking, multiply and divide within the 
circuit, but it has this effect on the I/O function. The important distinction 
for design is that increasing  G K   increases both signal quality (S/N, band-
width) and energy consumption by increasing the number of open chan-
nels, whereas reducing  a  reduces signal quality and energy consumption by 
reducing the number of open channels. 
 6.    Exp  (inverse of log) is implemented by installing cooperativity in ion 
channels — for example, by requiring that  n  binding sites be occupied to 
open a ligand-gated channel. As in chemical circuits, cooperativity raises 
the output to the  n  ’ th power of the input, so steepening the I/O curve and 
shifting it to higher input levels. Cooperativity is used at blowfly photore-
ceptor output synapses to match a neuron ’ s coding function to the range of 
input levels (figure 3.4). The neurotransmitter, histamine, must occupy 3 
binding sites to open a postsynaptic chloride channel. This steepens the I/O 
function (  figure 6.7 ) to help achieve a match with the probability distribu-
tion of input signals (figure 9.10). 

 How electrical circuits support analogue processing 
 Ion channels implement the four elements of analogue electrical circuits, 
resistance, R; capacitance,  C ; inductance,  L ; and memristance,  M  (Chua, 
1971). Resistance and capacitance are obvious (  figures 6.7 and 6.8 ), but 
the uses of inductance and memristance need explanation. With an induc-
tance the voltage is proportional to the rate of change of current. Thus, 
when the current is increasing more rapidly, the voltage is larger, and this 
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advances the phase of the response to a sinusoidal input. Voltage-gated 
potassium channels advance phase by means of delayed negative feedback 
(Koch, 1999). 

 A memristor changes its resistance in proportion to the quantity of 
charge it has conveyed and then holds this resistance when charge stops 
flowing (Strukov et al., 2008). This resistance with memory is provided by a 
channel that couples electrical signaling to chemical signaling. For exam-
ple, take an ion channel that passes mostly sodium with a little calcium. 
This calcium provides a measure of the total charge flowing through the 
channel. Arrange that calcium binds to the mechanism that opens the 
channel, and alters its open probability. Now one has a memristor in which 
charge entry couples to the channel ’ s effective conductance. Photorecep-
tors use this mechanism to control their gain (chapter 8). 

 How voltage-gated channels meet a need for speed over distance 
 A voltage-gated channel opens or closes allosterically, in response to mem-
brane potential. Thus, a voltage-gated channel can be activated within mil-
liseconds by channels opening millimeters away. In addition, a voltage-gated 
channel amplifies an electrical input. By virtue of these properties, voltage-
gated channels can produce a larger signal that transmits more quickly and 
reliably than the signals generated by ligand-gated channels — most notably 
an action potential (  figure 6.10 ).    

 A typical action potential, an approximately 100-mV pulse lasting 
about 1 ms (  figure 6.10 ), is produced by a large and sudden influx of 
sodium ions followed by a similar efflux of potassium ions. These currents 
are produced by sodium channels and potassium channels (  figure 6.10 ) 
that, gated by depolarization, generate the action potential and propagate 
it along the membrane at speeds of 0.3 – 80 mm ms  – 1  without loss of 
amplitude. 

 The voltage-gated channels generate the action potential as follows (  fig-
ure 6.10 ). At resting potential, typically  – 70 mV to  – 60 mV, the voltage-
gated channels for sodium and for potassium open with a low probability. 
When an analogue input depolarizes the membrane, the open probability 
increases and a small proportion of sodium channels opens immediately. 
Driven by their maximum force, sodium ions surge in and depolarize the 
membrane further, creating a positive feedback loop (  figure 6.10 ). Almost 
all of the voltage-gated potassium channels remain closed because they 
respond to depolarization more slowly. A longer activation time constant is 
programmed into their finite state transitions to keep them closed while 
the sodium channels are starting to open. This delayed opening increases 
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 Figure 6.10 
  Voltage-gated sodium channels and voltage-gated potassium channels meet the 
need for speed by producing an action potential .  Upper left : Action potential wave-

form. Spike initiated when suprathreshold current depolarizes membrane potential 

from resting potential, V rest  to threshold, V thresh . Fast upstroke overshooting to peak 

height and repolarizing phase complete rapidly to produce spike with narrow width 

(measured at 50% spike height). Slower negative after-potential follows.  Upper right : 
Positive feedback loop that accelerates spike upstroke and drives overshoot to maxi-

mum amplitude. Increase in voltage-gated sodium conductance, g Na , increases in-

flow, depolarizes membrane and increases voltage-gated sodium conductance.  Lower 
left : Time course of spike (E M , left axis) and voltage-gated sodium and potassium 

conductance, plotted as density of open channels (right axis). The rapid increase in 

the number of open sodium channels that drives the upstroke is short-lived because 

sodium channels quickly inactivate. The voltage-gated potassium channels open 

more slowly to repolarize, and generate the negative after-potential.  Lower right : Re-

cordings of the activity of two voltage-gated sodium channels show that, following 

a step depolarization, each opens with a randomly varying latency for a randomly 

varying time. Averaging 352 individual responses demonstrates that a large array of 

channels averages out noise to produce a reliable sodium current. Upper left redrawn 

from Bean (2007). Upper right and lower left from Shepherd (1994) with permission. 

Lower left, data from J. B. Patlek, plotted after Hille (2001), with permission.  
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the efficiency with which sodium channels charge the membrane capaci-
tance by preventing the charge being carried in by sodium from being 
negated by charge carried out by potassium. Blocking this futile cycle allows 
the action potential to develop and, by reducing the number of ions cross-
ing the membrane, saves pump energy. 

 At a critical level of depolarization, the  threshold  potential (  figure 6.10 ), 
sodium ’ s positive feedback takes off. All available sodium channels open 
(  figure 6.10 ), more sodium ions surge in, and, unopposed by the more slug-
gish potassium channels, their current depolarizes the membrane toward 
equilibrium potential ( E Na   = 50 mV) in less than 1 ms. As the membrane 
potential approaches this peak, large numbers of voltage-gated potassium 
channels are starting to open (see   figure 6.10 ). Potassium ions experience 
their maximum force and surge out, driving the membrane potential back 
down, toward rest. At the same time, the open sodium channels change 
conformation and lock shut. This  inactivation , programmed into a sodium 
channel ’ s state changes, stops incoming sodium ions from negating the 
charge being carried by outgoing potassium, thereby increasing efficiency. 
The voltage-gated potassium channels drive the membrane potential to 
resting potential within 0.5 ms and, being no longer depolarized, start to 
close. But because potassium channels change their state more slowly, 
many remain open; the membrane potential dips below rest and approaches 
 E K  , creating a negative afterpotential (  figure 6.10 ). 

 While potassium channels are repolarizing the membrane, the voltage-
gated sodium channels remain inactive. To reset to its initial state (closed 
but responsive to depolarization), a sodium channel must experience the 
strong negativity of potentials close to rest. This state change is programmed 
to have a time constant of  ∼ 3 ms. The resulting delay, plus the residue of 
open potassium channels, makes it impossible to trigger another action 
potential during a  refractory period  of 2 ms.  4   Although being refractory places 
a ceiling on action potential frequency, it ensures that an action potential 
cannot trigger a resurgent sodium current during its repolarizing phase. 
This prevents a single action potential from starting a continuous train of 
spikes. 

 In summary, an action potential is the product of three electrical feed-
back loops, all formed by voltage-gated channels. Sodium ’ s positive feed-
back loop depolarizes the membrane to the action potential ’ s peak (  figure 
6.10 ), and potassium ’ s delayed negative feedback repolarizes to rest. Speed 
and efficiency are enhanced by a third negative feedback loop, mediated 
allosterically by sodium channel inactivation. Because channels gate each 
other electrically, the action potential is brief. This increases timing 
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precision and hence the number of bits carried by an action potential 
(chapter 3). Being electrical, an action potential travels rapidly along a neu-
ron ’ s membrane at speeds up to 100 mm in a millisecond (chapter 7) yet 
retains its information because it is faithfully regenerated by feedback. But 
how can the information carried by such an electrical signal drive a chemi-
cal circuit? The answer is a voltage-gated channel with a chemical output. 

 How a voltage-gated calcium channel links electrical to chemical 
 A voltage-gated calcium channel admits an ion that readily binds a protein 
and changes its conformation. As noted in a chemical synapse, calcium 
entering via channels opened by presynaptic depolarization binds the pro-
tein synaptotagmin, which then changes conformation and triggers vesicle 
release. A calcium ion is especially effective at changing a protein ’ s confor-
mation because, being divalent, it pulls negatively charged parts of a pro-
tein closer together. 

 Calcium is especially effective as a chemical messenger because cells 
pump it out to keep the internal concentration low, 30 – 200 nM. This cre-
ates a steep concentration gradient, equivalent to a battery of 130 mV that, 
aided by the  – 70 mV resting potential, drives calcium in through a channel 
at a rate of  ∼ 10 7  ions per second. With so little internal calcium, the pro-
teins within nanometers of the channel experience a 100-fold increase in 
calcium concentration within 100  μ s. This nanodomain calcium signal has 
a wide bandwidth because it decays as rapidly as it rises. The puff of calcium 
injected by a channel vanishes within 500  μ s by diffusing rapidly into a 
large sink, the well-buffered bulk of the cell ’ s cytoplasm. Viewed from the 
channel ’ s nanodomain, this rapid removal mechanism comes for free. The 
calcium puff is mopped up by buffering proteins, distant pumps, and 
exchangers. 

 In summary, the simplest electrical circuits demonstrate how the brain 
satisfies the need for speed over distance. Whereas chemical signaling can 
send information in a millisecond, but only over 1  μ m, passive electrical 
signaling can send it a millimeter in the same time — 1,000-fold faster. Active 
electrical signaling (action potentials) can send it still faster, by another 
100-fold, over much longer distances. Electrical circuits can be constructed 
to use the same operators as chemical circuits (  figure 6.2 ; cf. figure 6.9). But 
operating more rapidly over longer distances requires more power. An elec-
trical circuit consumes orders of magnitude more energy than a chemical 
circuit and, because electrical signaling uses wires, costs more space. 

 Given the costs, one expects efficient design. Since ion channels are allo-
steric proteins and operate stochastically, they present the same issues of 
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S/N, bandwidth, and redundancy that were identified for chemical circuits. 
We should also expect the same need to match output to input —
 symmorphosis. Moreover, when short-range chemical circuits have 
filtered signals into parallel streams with different S/N and bandwidth 
and information content, the electrical circuits that relay this information 
rapidly over distance need to match these inputs with appropriate 
outputs. This requires a diversity of ion channels with subtly different sen-
sitivities and speeds — that is, access to the large  “ part list ”  contained in the 
genome.  5   

 Constraints on information processing by circuits of ion channels 

 Biophysical constraints 
 Three biophysical factors limit the performance of electrical circuits formed 
by ion channels: (1) the high electrical resistance of single channels, (2) 
membrane capacitance, and (3) channel noise from thermal fluctuations in 
single proteins. 

 First, channel resistance. Despite having a high transport number for a 
protein molecule, a single channel nevertheless has a high resistance,  R Ch    ∼  
10 11   Ω . The reason is that selectivity requires the ions to pass in single file. 
Driven by a typical range of voltages, 10 mV – 100 mV, a channel passes 
0.1 – 1 pA. In a neuron with typical input resistance, 10 8   Ω , such currents are 
sufficient to change membrane voltage by 10  μ V to 100  μ V. That ’ s not 
much. For example, the voltage change needed to reliably trigger an action 
potential is about 1 mV – 10 mV, that is, 10 to 1,000-fold larger. Moreover, 
voltage decays exponentially with distance, so a single channel ’ s signal 
soon disappears in the membrane voltage noise. A larger voltage signal will 
travel further and support a workable S/N at its destination, and this is eas-
ily achieved (equations 6.9 and 6.11;   figure 6.9 ) — by opening more 
channels. 

 Second, membrane capacitance. As noted, capacitance limits a signal ’ s 
rate of change. One channel, passing 0.5 pA, charges the membrane slowly, 
and this limits temporal frequency and bandwidth. For example, one chan-
nel charges the 314  μ m 2  membrane of a spherical neuron, 10  μ m in diam-
eter, with a time constant of 88 ms, giving a bandwidth of 12 Hz. This limit 
too can be raised — by opening more channels. 

 Third, channel noise. Channels, like other proteins, change conforma-
tional state stochastically because they are subject to thermodynamic fluc-
tuations. Therefore, a channel opens and closes stochastically with 
probabilities that depend upon its input (figure 6.7). This stochastic 



152 Chapter 6

opening adds noise. The ratio of signal to noise can be improved — by open-
ing more channels. 

 Channels operating in an electrical parallel array, as in figure 6.8, obey 
the same rule as molecules in a chemical array (  figure 6.5 ). The S/N of an 
array of  M  parallel channels increases as  √  M , and as  M  increases, efficiency 
falls. Consequently, an efficient electrical circuit will match its number of 
channels to three factors: fixed cost, costs of other signals in the circuit, and 
input S/N (  figure 6.5 ). In summary, one adjustment, opening more chan-
nels, improves four measures of performance: signal amplitude, signal 
bandwidth, S/N, and information capacity (equation 5.6). So, what con-
strains the numbers of channels that a circuit can employ to improve its 
performance? 

 What limits the number of channels in a circuit? 
 A circuit could maximize its performance by maximizing the number of 
channels it uses. Some parts of protein circuits (e.g., ligand-gated channels 
on a postsynaptic membrane) achieve this locally by packing channels in 
the cell membrane as a crystalline array ( ∼ 2.5  ×  10 3  channels per  μ m 2 ). This 
produces tremendous local currents which charge the membrane with 
extreme rapidity, a design used by the electric eel to discharge its electric 
organ. However, such a power drain could not be sustained globally across 
an entire neuron. 

 The number of channels is limited by membrane space for pumps. A 
pump molecule has approximately the same footprint as a channel, but, 
operating at 200 cycles s  – 1 , it extrudes only 600 sodium ions s  – 1 . To match 
the throughput of one open sodium channel (6  ×  10 6  sodium ions s  – 1 ) 
requires 10,000 pump molecules, which occupy 4  μ m 2  of membrane. Thus 
the density of  open  channels that a neuron can sustain is reduced to one 
channel per 4  μ m 2 , 10,000-fold less than their maximum packing density. 
This translates into a 10,000-fold lower bandwidth and a 100-fold reduc-
tion in S/N. Being proportional to bandwidth and log 2  (S/N), the sustain-
able information rate is cut by almost five orders of magnitude. Placing the 
circuit ’ s battery chargers (pumps) alongside the circuit ’ s transistors (ion 
channels) limits a neuron ’ s ability to process information, but cell biology 
offers few alternatives.  6   

 Were a neuron to fully pack its membrane with channels and their oblig-
atory pumps, could it power them? The essential ATP is generated within 
the neuron by mitochondria. These occupy space, so the maximum sus-
tainable ATP production is proportional to cytoplasmic volume and mito-
chondrial density. Typically 4  ×  10 5  ATP s  – 1  can be generated per  μ m 3  (based 
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on a specific metabolic rate for cortical neurons of 40  μ moles ATP/g/min; 
Attwell  &  Laughlin, 2001), which means that generating the power for one 
open sodium channel requires about 5  μ m 3  of cytoplasm. Thus, when oper-
ating at the pump limit of one open channel per 4  μ m 2  of membrane, 5  μ m 3  
of cytoplasm is required to provide the pumps ’  ATP, giving a surface area to 
volume ratio of 1:1.25. Therefore, a spherical neuron must be greater than 
7.5  μ m in diameter to operate at the pump limit, but a smaller sphere has a 
larger surface area:volume ratio, so it is limited by the ability of mitochon-
dria to generate ATP. Many neuronal cell bodies have diameters greater 
than 7.5  μ m, but to connect efficiently they branch (chapter 13), and this 
increases surface area:volume. Thus, a pyramidal neuron, with a surface 
area:volume ratio of about 3:1, cannot reach the pump limit to open chan-
nel density. Forced to operate with fewer open channels, it must reduce the 
rate, temporal precision, and accuracy of its electrical signals. Housing the 
system that burns fuel to supply energy also limits a neuron ’ s processing 
power, but again, that ’ s cell biology. 

 In short, the molecular power transistor (ion channel), its molecular bat-
tery charger (ion pump), and its intracellular power station (mitochon-
drion) prevent the brain from reaping a major benefit of irreducibly small 
molecular components, high-density computing. Thus, unlike conven-
tional engineering design, neural design must maximize performance at 
low-power density. Given that opening more channels inevitably costs 
space — membrane area for pumps and cytoplasmic volume for 
mitochondria — it is all the more critical to open the minimum number of 
channels required to meet functional specifications. To paraphrase a now 
familiar principle, a low-energy-density brain should send information 
with the lowest rate of channel opening. 

 Providing speed and accuracy with low energy density circuits 
 Given that low energy density limits the minimum time constant and max-
imum S/N by limiting the number of open channels, how can a brain 
respond quickly and accurately? A solution adopted by most brains is to 
open many channels infrequently in concentrated groups — that is, use 
powerful signals that are sparsely distributed in space and time, as happens 
with action potentials and synapses.  7   This design leads to an apparent para-
dox. These concentrated electrical signals are costly and consume most of 
the brain ’ s energy, so they are part of the problem, but, given the need to 
send accurate signals far and fast, they are also part of the solution. 

 Although concentrated bursts promote temporal precision by increasing 
S/N and reducing the membrane time constant, their spatial and temporal 
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sparsity enforces low mean rates. For example, the power density of cortical 
gray matter limits the mean firing rate, averaged across all classes of cortical 
neuron, to less than 10 Hz (Attwell  &  Laughlin, 2001; Lennie, 2003; Sen-
gupta et al., 2010; Howarth et al., 2012). How the brain manages to process 
information effectively within this limit is a major theme in neural design. 

 Can arguments based on energy density be extended to establish an 
upper limit to a brain ’ s processing power — as bits per volume per second? 
Possibly, but this would only consider the expensive electrical signals. Over 
short distances and longer times, chemical processing is orders of magni-
tude cheaper, thus the principle  compute with chemistry . Chemical and elec-
trical circuits can process information with similar operators, but at scales 
and costs that differ by orders of magnitude. Therefore the design task for a 
neuron is to integrate across these scales to achieve the best result in space, 
time, and energy. This is the subject of chapter 7. 
 
 
 
 
 
 
 
 
 
 



 Chapter 6 explained that much of the brain ’ s computing occurs by chemis-
try at the scale of single protein molecules and protein circuits. Computing 
by chemistry offers good S/N at irreducibly low cost in space and energy. 
Moreover, where the reaction vessel shrinks, the principle of mass action 
can operate on high concentrations with small numbers of molecules. High 
concentrations allow low binding affinities to achieve useful signaling 
rates. Small volumes also shorten distances — over which diffusion is rapid. 
Also, because concentrations of diffusing molecules decay steeply in space 
and time, many computations can be accomplished wirelessly — simply by 
placing detectors at different distances from a source and letting Brownian 
motion do the math. 

 Computing with proteins allows a nearly infinite parts catalog — because 
a protein can be customized by changing a single amino acid — and that is 
effected simply by swapping a single base pair in the DNA. Thus, natural 
selection can shape every component precisely for a specific task — for 
example, to match a particular binding affinity and a particular cooperativ-
ity to a particular signal (figures 6.2 and 6.3). The ease of adjusting protein 
structure has generated immense diversity: overall, the mammalian brain 
transcribes 5,000 to 8,000 genes and uses alternative splicing to produce 
50,000 to 80,000 distinct proteins.  1    

 Chemical computing works brilliantly across a spatial scale of nanome-
ters to micrometers and a temporal scale of 100  μ s to seconds (e.g., rod 
phototransduction; chapter 8). Yet to serve behavior, computations must 
retain the same timescale but travel up to 1 millionfold farther. To achieve 
speed over distance requires recoding the chemical signals to electrical sig-
nals. Recoding begins with an allosteric trigger, such as ligand-binding or G 
protein activation, but allostery must eventually open an ion channel in 
the membrane to establish an electrical signal. This is one key task for a 
neuron: use allostery to send an electric signal somewhere fast. 

 7   Design of Neurons 
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  “ Somewhere fast ”  has two parts. First, a chemical signal released by a 
 presynaptic  neuron targets a  postsynaptic  neuron on a short branch ( dendrite ). 
The chemical transmitter binding to a protein receptor allosterically opens 
its ion channel. This initiates an electrical signal that spreads passively 
along the dendrite toward a central locus (cell body or specialized cable seg-
ment) for integration with signals from other dendrites. Second, the inte-
grated electrical signal recodes to an all-or-none pulse that spreads actively 
down a single cable ( axon ) toward presynaptic terminals that contact other 
neurons (figure 7.1).     

 Figure 7.1 
  Neurons and glial cells of cerebellar cortex.  Neuron types shown here (a, b, e, f, g) all 

express the standard polarized design: inputs to multiple dendrites converge to cell 

body and output to a single axon. Neuron types: a, Purkinje; b, basket; e, stellate; f, 

Golgi; g, granule. Input axons: h, mossy fiber; n, climbing fiber. Two types of glia (j, 

m) are shown at lower left. Each Bergman glial cell (j) wraps the dendritic arbor of a 

single Purkinje neuron (a). Drawing by S. Ram ó n y Cajal. Reprinted with permission 

from Sotelo (2003). 
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 Dendrites are 10 – 1,000 micrometers long, depending on neuron type, 
and over such distances  “ fast ”  means up to 50 micrometers per millisecond. 
Axons are 1 – 1,000 millimeters long, and over such distances,  “ fast ”  means 
at least 1 millimeter per millisecond. Thus, dendrites conduct passive elec-
trical signals about 50-fold faster than chemical diffusion, and axons con-
duct active electrical signals at least 20-fold faster than dendrites.  

 A neuron steps up from the nanometer scale of protein circuits to the 
micrometer scale of a synapse (1,000-fold), then to the millimeter scale of a 
dendritic tree (1,000-fold), and then to the meter scale of the longest mam-
malian axons (1,000-fold), ultimately integrating processes that span a 10 9  
range of spatial scale. This greatly increases the cost of space, materials, and 
energy. A protein molecule allosterically encoding 1 bit occupies about 50 
nm 3 ; whereas the smallest neuron cell body encoding 1 bit occupies 10 9  
greater volume; and the largest neuron cell body encoding 1 bit occupies 
10 12  greater volume and correspondingly more materials. The energy cost of 
encoding 1 bit rises from about 25  k B T  to about 10 9   k B T.   2   

 Such numbers explain why neurons need to be efficient. The microves-
sels that deliver oxygen and metabolic supplies distribute densely, forcing 
neurons to occupy their interstices (figure 7.2). Were neurons to be ener-
getically less efficient, they would need more mitochondria to produce 
more ATP — and that would require a denser capillary network at the 
expense of efficient neuron layout (chapter 13). The same constraint applies 
to space and materials. For example, the diameter of a cerebellar Purkinje 
cell body is 10-fold greater than that of a cerebellar granule neuron, but its 
volume is greater by 1,000-fold (figure 7.1). Therefore, we must explain 
how the design of each neural component: synapse, dendrite, cell body, 
and axon match each other and conserve space and energy.     

 Synapse  

 Synapses enable neurons to process information in neural circuits by trans-
ferring and transforming signals at specific connections. The simplest syn-
apses are electrical, made from proteins that form an array of channels that 
connect two neurons. Where it serves as a simple resistor, an electrical syn-
apse is as inexpensive and noiseless as a connection can be.  3   This is why 
electrical synapses are widely used to weakly couple neurons, for example, 
to compute the mean signal over a patch of retina to reduce redundancy 
(chapter 11), to synchronize rhythmical activity among the cortical inter-
neurons, and to synchronize motoneurons that drive the same muscle. But 
coupling with a resistor does not equip a circuit to compute much. More 
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transformations are required, and signals must be amplified to produce fast 
responses that are resistant to noise. These requirements are met by chemi-
cal synapses, so called because a presynaptic neuron transmits chemically 
by sending a pulse of neurotransmitter to receptors on a postsynaptic 
neuron.  

 Origin of graded chemical signal 
 A chemical pulse originates when a vesicle docked to a presynaptic  active 
zone  fuses with the plasma membrane and releases transmitter molecules 
through a  fusion pore  into the  synaptic cleft  (figure 7.3). The vesicle contains 
about 4,000 molecules of transmitter concentrated by a transporter protein 
in the vesicle membrane to roughly 100 mM. Discharge through the pore 
requires about 100  μ s, during which molecules are diffusing away; yet their 
concentration at the postsynaptic receptor proteins clustered 20 nm across 
the cleft rises briefly to about 10 mM (figure 7.3). This suffices for 

whitewhite
mattermatter
white
matter500500 μm500 μm

 Figure 7.2 
  Blood vessels distribute densely in gray matter with even mesh .   The 500- μ m scale 

bar corresponds roughly to the dimension of largest local circuits. Therefore, neu-

rons and glia must fit into the interstices of the capillary network. Were energy cost 

to rise, due either to lower neuronal efficiency or enhanced neuronal performance, 

vessel density would rise at the expense of efficient neuron layout. Cerebral cortex 

from superior temporal gyrus of monkey. Reprinted with permission from Weber et 

al. (2008). 
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 Figure 7.3 
  Fusion of one synaptic vesicle briefly raises the concentration of transmitter within 
the synaptic cleft to 10 mM .  Upper left : Synaptic vesicles, about 40 nm, from mouse 

cerebellar cortex docked to presynaptic membrane across the synaptic cleft from the 

postsynaptic density. This density houses a complex of proteins that support, among 

other functions, long-term potentiation (see chapter 14). Courtesy of K. H. Harris. 

 Upper right : Synaptic vesicles, about 30 nm, from  Drosophila  medulla. Note that cleft 

width and vesicle size are similar for mammal and fly. Fly vesicle contains similar 

number of transmitter molecules as mammal (Borycz et al., 2005). Courtesy of Zhi-

yuan Lu, Patricia Rivlin  &  Fly EM Team, Janelia, HHMI.  Lower left : Concentration 

decays steeply in space and time.  Lower right : Concentration at 20 nm from fusion 

site suffices to bind and open roughly half of the postsynaptic ion channels. Half-

saturation by one vesicle allows multivesicular release to enhance the response. De-

cay to lower concentration with time and distance can be exploited by other types of 

receptor molecules with higher binding affinities (figure 11.10).  P o ,  open probability 

of postsynaptic ion channels. Graphs are modified and reprinted with permission 

from Xu-Friedman  &  Regehr (2004). 
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transmitter to bind cooperatively to low affinity receptors, thereby opening 
their channels and initiating the electrical signal, a miniature postsynaptic 
current ( MPSC ).     

 This design requires matching closely the number of molecules and their 
concentration within a vesicle to its emptying time, diffusion distance, and 
receptor binding constant. Were the vesicle to contain fewer molecules or a 
lower initial concentration, the final concentration at the postsynaptic 
receptor would be too low for its binding affinity. The same would occur if 
the vesicle emptied more slowly or if the diffusion distance across the cleft 
were greater. Any of these factors could be compensated for by a higher 
affinity at the receptor, but that would sacrifice bandwidth (chapter 6). 
These factors could also be compensated by a narrower cleft, but that would 
increase cleft electrical resistance and reduce postsynaptic current. Thus, 
cleft width appears to optimally balance transmitter concentration at the 
postsynaptic receptors and electrical resistance (Savtchenko and Rusakov, 
2007; Graydon et al., 2014). So here is symmorphosis at the nanometer 
scale.  

 Molecular mechanism of vesicle fusion 
 For vesicle fusion ( exocytosis ) to work at all requires multiple allosteric pro-
cesses. And for it to transfer the information encoded chemically to an 
electrical signal, while preserving temporal precision and S/N, these alloste-
ric processes must couple efficiently as now explained.  

 To preserve temporal precision, vesicle fusion must occur promptly as a 
triggered event. This requires  docking  it in advance to a specialized  active 
 zone and then  priming  the vesicle with multiple  SNARE s, each a complex of 
four protein molecules. A SNARE, upon binding the vesicle tightly to the 
presynaptic membrane, adopts a high free energy conformation that is 
metastable (figure 5.4). Consequently, a small signal can push a SNARE over 
the hump on its energy landscape and trigger fusion.  

 The trigger is a surge of calcium ions reaching the docked vesicle through 
voltage-gated channels clustered at the active zone. When channels open 
in response to a presynaptic depolarizing electrical signal, several hundred 
calcium ions enter to raise the local concentration by 50-fold in less than 
500  μ s. Several calcium ions are bound by the protein  synaptotagmin  
attached to the vesicle, which then binds to the SNARE and pushes it over 
the energy hump (S ü dhof, 2013). As the SNARE plummets to a lower energy 
conformation, the freed energy causes violent tugs on the vesicle. The com-
bined force from three SNAREs suffices to fuse the vesicle to the presynaptic 
membrane and wrench open a pore with consequence already noted. The 
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entire process, from presynaptic electrical signal to postsynaptic receptor 
activation, occurs fast enough to preserve temporal precision and to be 
completed within 600  μ s.  

 Speed and temporal precision emerge from several design principles. The 
molecular components are irreducibly small and locate close together —
 within nanometers. This allows fast chemistry with irreducibly few mole-
cules to achieve the high concentrations needed to transmit fast signals 
(high bandwidth). Chemistry achieves speed and gain by storing energy 
and then releasing it with concatenated switches: (1) voltage switch opens 
a calcium channel, releasing energy stored in calcium ’ s electrochemical gra-
dient (figure 7.4); (2) synaptotagmin binds calcium at low affinity, releasing 
energy stored within the SNAREs; (3) SNAREs fuse a vesicle, releasing energy 
stored by concentrating transmitter.     

 Timing is sharpened by cooperativity that steepens the response curves 
(figure 6.3): several voltage-gated calcium channels cooperate to establish a 
sufficient calcium concentration, several calcium ions cooperate to cause 
synaptotagmin to bind a SNARE, and several SNAREs cooperate to fuse a 
vesicle. Thus, via switches directing stored energy, the chemical signal 
recodes to electrical with good S/N and temporal precision.  

 In order to transmit high frequencies, a steeply rising chemical signal 
must also fall steeply. Thus, each stage must terminate quickly: (1) calcium 
channels close instantaneously as the membrane repolarizes; (2) calcium 
concentration collapses locally within tens of microseconds as calcium is 
bound rapidly by low-affinity buffering proteins; (3) synaptotagmin 
switches off sharply because of its steep dependence on calcium; (4) trans-
mitter concentration decays within less than 1 ms by fast binding to trans-
porter proteins on synaptic and glial membranes and by diffusing from the 
cleft.  

 In short, rapid release and rapid termination produce a chemical signal 
in the cleft that peaks within about 0.6 ms and lasts less than 1.5 ms, 
thereby transmitting information with irreducible delay and a bandwidth 
of about 1 kHz. This suffices to transmit most frequencies coded by the 
neuron ’ s electrical signals because the membrane time constant is con-
strained by energy cost (chapter 6; Attwell  &  Gibb, 2005). Thus, the mecha-
nism of chemical signaling at the synapse matches the bandwidth of the 
presynaptic neuron. 

 Vesicle release is stochastic 
 An action potential reaching a presynaptic terminal may cause a single ves-
icle to be released, or it may fail. Release is stochastic with a probability that 
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can vary between 0.1 and 0.9. The uncertainty of release introduces noise, 
thereby reducing information, but it can have advantages (Harris et al., 
2012). For example, it reduces the likelihood that two vesicles will redun-
dantly carry the same signal. It also offers a mechanism to adjust the effec-
tiveness of a synapse — its  weight —  by tuning release probability. This 
provides mechanisms for homeostasis and plasticity (chapter 14). The costs 
and benefits of stochastic release are discussed further in later chapters. 

 Recovery and cost of presynaptic chemical signal 
 Vesicles fusing by exocytosis expand the presynaptic membrane, thus 
increasing its capacitance and time constant. To prevent this, the terminal 
retrieves each fused vesicle by  endocytosis , folding inward the added patch 
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of membrane and pinching it off. This sounds simple, but, of course, it 
requires allosteric action by several types of proteins — to reverse what was 
accomplished by the SNAREs. Obviously, a synaptic terminal must main-
tain a strict balance between exo- and endocytosis.  

 Although a synaptic vesicle appears morphologically simple, it is really a 
complex molecular machine comprising about 800 protein molecules of 
about 40 protein species (Fern á ndez-Chac ó n  &  S ü dhof, 1999). Beyond the 
structural membrane proteins and transporter proteins to fill it with trans-
mitter, there are specific proteins for other tasks: to link the vesicle to 
neighbors near the presynaptic membrane for rapid recruitment to docking 
sites (Hallermann  &  Silver, 2013; Hallermann et al., 2010), to provide two 
of the proteins in each SNARE plus the synaptotagmins to trigger them, and 
to mark the vesicle for endocytotic retrieval. By specifically retrieving vesi-
cle membrane, rather than nonvesicle membrane, the specific vesicle pro-
teins are retrieved together, allowing the vesicle to be refilled and readied 
for rerelease within a minute. 

 Using allostery of chemically coupled proteins, the vesicle release mech-
anism is efficient in space, materials, and energy: to extrude the modest 
numbers of calcium ions, ~12,000 ATP; to energize the SNAREs,  < 100 ATP; 
to retrieve the vesicle,  < 500 ATP; and to fill the vesicle, ~11,000 ATP (Attwell 
 &  Laughlin, 2001).  4   Therefore, the total cost of a presynaptic chemical 
quantum is ~23,000 ATP. The postsynaptic electrical response to this signal 
costs roughly 10-fold more, as we now explain.  

 Postsynaptic electrical response 
 The transmitter molecules reaching receptor proteins across the cleft bind 
stochastically, and when two or more molecules bind cooperatively to the 
same protein, it changes conformation to open a channel (figures 6.6 and 
6.7). The contents of one vesicle, a  quantum , open about half of the avail-
able channels (figure 7.3). Therefore, enlarging the quantum by increasing 
transmitter concentration within a vesicle, or releasing several quanta ( mul-
tivesicular release ) can produce a graded increase in the fraction of open 
channels (see below, figure 7.17). Thus, the information packet presented 
to a postsynaptic receptor cluster is graded, as is the opening of channels 
that capture the amplitude and timing of the upstream event. Still in chem-
ical mode, it is cheap.  5   

 But now ions flow through the open channel with a direction and ampli-
tude that depend on their electrochemical driving force (figure 7.4). When 
the transmitter is glutamate and the postsynaptic receptor is a ligand-gated 
cation channel (chapter 6), sodium ions, and in certain cases calcium ions,  6   
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are strongly driven inward to depolarize the membrane. The channel is also 
permeable to potassium, but its weaker driving force moves fewer ions out-
ward. The net ionic current converts the graded chemical signal to a graded 
electrical signal. The cost is 10-fold more energy, but this is essential to send 
over distance at acceptable time delays. Recall that, whereas a graded chem-
ical signal diffuses cheaply, about 1  μ m in a millisecond, a graded electrical 
signal needs batteries but travels 50-fold farther in the same time. 

 The greater energy cost demands measures to reduce noise. This follows 
the principle  send only what is needed , and that means sending the least pos-
sible noise. The noise sources include: stochastic release of vesicles, timing 
of vesicle fusion, size of a transmitter quantum,  7   times of receptor binding/
unbinding, and channels opening/closing (Ribrault et al., 2011). So the 
neuron takes various measures to mitigate them. 

 The number of molecules released in the quantal pulse from a vesicle 
varies across neuron types. The number depends strongly on vesicle diam-
eter, d, since volume goes as d 3 , and on the final intravesicle concentration, 
roughly 100 mM. Each neuron type selects a vesicle between 30 and 50 nm 
in diameter (figure 7.3). This allows a roughly fivefold range in number of 
molecules. Functional vesicles as small as 20 nm in diameter have been 
produced experimentally by genetic manipulation, but they contain fewer 
transmitter molecules than a 30-nm vesicle — insufficient to establish an 
effective postsynaptic concentration. Small vesicles with more transporter 
molecules might conceivably establish higher internal concentrations, but 
actually, overexpression of transporter proteins gives larger vesicles with 
similar mean concentration. Thus, the 30-nm vesicle seems to be a lower 
bound from fly to mammal (figure 7.3).  

 Increasing the number,  M , of postsynaptic receptors improves postsyn-
aptic S/N by  √  M  and reduces the time constant by charging the capacitance 
more briskly (chapter 6). A small synapse clusters about 20 receptors, 
improving S/N compared to one receptor by about 4.5-fold. A large synapse 
may expand the receptor cluster up to about 10-fold and thereby improve 
S/N by about 14-fold (figure 7.5).  8   But this threefold benefit comes with a 
10-fold greater cost, so it is reserved for special purposes, such as auditory 
synapses that transmit with high temporal precision (chapter 10). In any 
case, the graded electrical signal now serves the neuron ’ s next task: inte-
grate and send an output.     

 Different protein receptors process on different timescales 
 A neuron must register events on different timescales and does so using 
postsynaptic receptors with different kinetics. Consider as an example one 
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broad family of ligand-gated cation channels, the glutamate receptors 
(Attwell  &  Gibb, 2005). Two types, the NMDA receptor and the AMPA 
receptor,  9   bind glutamate with similar ON rates, but the NMDA receptor ’ s 
OFF rate is 400 times slower. This slower OFF gives the NMDA receptor a 
more sustained response that covers a longer timescale (figure 7.6); it also 
causes a 400-fold higher sensitivity to glutamate: whereas an AMPA recep-
tor requires glutamate concentrations of nearly 1 mM to cooperatively 
bind two glutamate molecules, an NMDA receptor is doubly bound at 
about 1  μ M.    
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  Postsynaptic receptor clusters from different synapse types span a 10-fold range of 
size . This reflects customized S/N for each type, according to needed benefit and cost. 

Area of postsynaptic density corresponds to size of the receptor cluster. CA3  →  CA1= 

hippocampus; MF  →  GC = cerebellar mossy fiber to granule cell; AVCN  →  MNTB = 

anteroventral cochlear nucleus to medial nucleus of trapezoid body; AN  →  AVCN = 

auditory nerve to anteroventral cochlear nucleus; 1a, 1b  →  Pyr = pyriform cortex; CF 

 →  PC = climbing fiber to Purkinje cell; PF  →  PC = parallel fiber to Purkinje cell; MF 

 →  CA3 = hippocampal mossy fiber to hippocampal pyramidal cell. Reprinted with 

modification and permission from Xu-Friedman and Regehr (2004). 
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 The AMPA receptor covers a neuron ’ s shortest timescale (figure 7.6). Its 
high rates for glutamate ON and OFF match fast rate constants for channel 
opening and closing, so an AMPA receptor completes its electrical response 
with a time constant of about 0.8 ms. This speed preserves the temporal 
information transmitted by fast vesicle release. It also matches the lower 
limit to a neuron ’ s membrane time constant imposed by the energy cost of 
a low membrane resistance (time constant = capacitance  ×  resistance) .  In 
other words, an AMPA receptor equips an excitatory synapse to transmit 
the full bandwidth of neuronal response.  

 For AMPA receptors to cover this fast timescale and wide bandwidth, 
glutamate at the postsynaptic receptor site must decline promptly. Gluta-
mate diffuses about 1  μ m per millisecond, so by restricting AMPA receptors 
to a small postsynaptic patch, less than 1  μ m in diameter, its concentration 
falls by e-fold within a millisecond (figure 7.3). Glutamate accumulation 
during successive releases is prevented by active uptake. Transporter pro-
teins on the surrounding neuron and glial membranes bind glutamate rap-
idly and move it into the cell, powered by the influx of three sodium ions. 
The transporter works slowly, requiring a full minute to retrieve the 4,000 
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  Neurons use different types of receptor to encode a range of temporal frequencies . 
Graph shows time course of activation for AMPA and NMDA receptors by a 0.3-ms 

pulse of 1 mM glutamate. To more finely optimize binding for a range of high fre-

quencies, different AMPA types are employed along with different regulatory mol-

ecules. Reprinted with permission from Attwell  &  Gibb (2005). 
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glutamate molecules released by one vesicle. Therefore, to mop them up on 
the required millisecond timescale requires transporters to be concentrated 
around the synapse: to bind 4,000 glutamate molecules within a millisec-
ond requires 10,000 transporters that bind with high affinity (Attwell  &  
Gibb, 2005). 

 To efficiently match components, AMPA receptors locate near the vesicle 
release site, within about 20 nm, where they see a fast, high peak and steep 
decay of glutamate concentration (figure 7.3). Thus, the receptor ’ s molecu-
lar structure is matched by vesicle content and distance from the release site 
(figure 7.3). NMDA receptors in certain cases locate farther from the release 
site where they see slower rise and fall of glutamate concentration, allowing 
them to integrate contributions from successive release events. Their sus-
tained responses can also be integrated with fast AMPA receptors (Clark  &  
Cull-Candy, 2002).  

 The NMDA receptor ’ s sustained response allows it a role in detecting 
 coincidence detection . This exploits the NMDA receptor ’ s voltage sensitivity. 
A receptor, binding glutamate when the membrane is at resting potential 
( – 65 mV), reacts weakly because its channel is partly blocked by a positively 
charged magnesium ion. When the membrane depolarizes — for example, 
due to AMPA-mediated currents from synapses on the same dendrite —
 magnesium is forced out, allowing sodium and calcium   to enter. Thus, an 
NMDA receptor detects the coincidence of a presynaptic input (glutamate) 
AND a postsynaptic response (depolarization) within a time window of 
about 100 ms set by the slow unbinding of glutamate. 

 The NMDA receptor ’ s ability to detect and signal coincidence equips a 
neuron for pattern recognition and learning (chapter 14). An active recep-
tor emphasizes the coincidence by amplifying and extending a synapse ’ s 
excitatory input; moreover, it marks the synapses whose signals coincide. 
Only synapses that recently delivered glutamate have NMDA receptors 
primed for action. When these receptors are unblocked by depolarization, 
they admit chemical messengers (calcium ions) that initiate structural 
change. Because an action potential also depolarizes synapses, the NMDA 
receptor enables a neuron to take a first step in learning; it can identify and 
modify those synapses whose inputs coincide with a definitive output.  

 The duration of an NMDA receptor ’ s time window is critical for learning. 
Shorter would increase false negatives — the receptor would miss correla-
tions between events that take longer to unfold. Longer would increase 
false positives — more unrelated events would occur in the same time win-
dow. The NMDA receptor ’ s OFF rate creates the 100-ms time window that 
seems about right for many of life ’ s more immediate events.  
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 However, this mechanism creates a problem (Attwell  &  Gibb, 2005). The 
slow OFF rate retains some glutamate bound until nearly every last mole-
cule has been removed from the synaptic cleft. This requires a transporter 
to harness the energy of  three  sodium ions: two sodiums can pull extracel-
lular glutamate down to 180 nM, but this leaves 13% of NMDA receptors 
still bound. Thus, for NMDA ’ s time window to close within 100 ms requires 
a transporter with appropriate stoichiometry — at a cost of 50% more energy. 

 Intervals still longer than the NMDA receptor ’ s time window are covered 
by a  metabotropic  glutamate receptor,  mGluR . This receptor belongs to the 
same molecular family as the  β -adrenergic receptor (chapter 5), and like 
that receptor, it activates a G protein to deliver an amplified signal. 
Responses driven by mGluR can be tuned to cover a range of time intervals, 
from about 0.1 s to tens of seconds. Moreover, mGluR ’ s second messengers 
can, like calcium from the NMDA receptor, institute longer lasting struc-
tural changes. 

 Processing multivesicular release 
 We have explained how receptors process on different timescales by vary-
ing their output to a singular input, a puff of glutamate. Receptors can also 
detect variations in input timescale, produced by different temporal pat-
terns of vesicle release, by varying the kinetics of receptor activation, deac-
tivation, and desensitization. For example an AMPA receptor desensitizes in 
response to prolonged glutamate, causing the response to a sustained burst 
of action potentials to decline over time. This fast desensitization favors 
signals that change on a short timescale, thereby tuning AMPA ’ s bandwidth 
to higher frequencies and eliminating redundancy. Conversely, an mGluR 
activates slowly and does not desensitize, thereby favoring inputs that 
change on longer timescales.  

 In summary, the glutamate receptor families enable a neuron to process 
on different timescales by producing synaptic responses of different dura-
tions. Receptors are constructed from different parts, that is, from different 
combinations of a receptor ’ s protein subunits, to provide the key differ-
ences in kinetics, sensitivity, and output: an AMPA receptor that unbinds 
glutamate at a high rate to create a narrow window and desensitizes to favor 
high frequencies; an NMDA receptor that is voltage sensitive and delivers 
calcium ions; and an mGluR that acts more slowly via second messengers. 
But simply engineering receptors is insufficient. A receptor ’ s kinetics and 
sensitivity must be matched by the stoichiometry and affinity of trans-
porter molecules, by their density around a synapse, and by the dimensions 
of the synapse itself (Attwell  &  Gibb, 2005). This conclusion, that to be 
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effective requires design in depth, is more amply illustrated by photorecep-
tors (chapter 8). 

 Efficiency from synaptic inhibition  
 Neurons employ various forms of synaptic inhibition. All increase effi-
ciency by improving timing precision (Sengupta et al., 2013) and reducing 
redundancy. These effects all help concentrate information, so that the 
space and energy used to send expensive electrical signals are well spent. 
Inhibition also serves to delete information unneeded by a downstream 
user. These effects are discussed with specific examples in chapters 9 through 
12. Here we explain the mechanisms and why they are cheap. 

 One type of synaptic inhibition is achieved when transmitter binding 
opens a membrane channel for chloride ions. The open chloride channel 
reduces the depolarization produced by an inward cationic current and 
hence reduces the probability of triggering an output — a vesicle release or 
spike. The inhibition is achieved in two ways. First, when E Cl  is negative to 
the membrane potential (figure 7.4), chloride enters and neutralizes the 
charge carried by entering cations. Second, irrespective of whether chloride 
flows in or out, the open chloride channel lowers membrane resistance, 
thus shunting the depolarization. This effect dominates when chloride   cur-
rents are small, which is generally so because E Cl  is generally near E M  (figure 
7.4). Small currents require less restorative ion pumping, which makes 
chloride ’ s  shunting inhibition  energy efficient. 

 Shunting inhibition is also achieved by opening a potassium channel. As 
for chloride, the potassium current is small because E K  is near E M  (figure 7.4). 
The inhibitory potassium channels are not gated by chemical transmitter 
but rather by G proteins, membrane voltage, or calcium. Thus, they add 
substantially to the parts list for energy efficient inhibition.  

 The transmitters for ligand-gated chloride channels are GABA, glycine, 
and histamine (figure 6.7). The GABA receptors ( GABA A  ) comprise a diverse 
family of molecules. The receptor assembles as a pentamer from several 
classes of subunit (alpha, beta, gamma, etc.), each of which has subtypes. 
This permits customized properties, such as different binding constants, 
different speeds of opening, and different rates of desensitization. The 
GABA A  receptor ’ s ligand binding is modulated allosterically at several sites 
on the molecule by brain chemicals, such as steroids and by various exog-
enous chemicals, such as alcohol, barbiturates, and benzodiazepine  “ tran-
quilizers. ”  This suggests, by analogy with endogenous modulators of other 
types of receptor (endogenous opiates and endocannabinoids), that there 
should be endobenzodiazepines. One such molecule has been reported, a 
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secreted protein,  diazepam binding inhibitor , that potentiates the GABA A  
receptor (Christian et al., 2013).  

 Dendrites expand a neuron ’ s information capacity  
 To gather more information, a neuron must supply more membrane for 
synaptic contacts while minimizing the length of wire devoted to connect-
ing (chapter 13). The design solution is to grow dendrites, which also offer 
compact compartments for electrical and chemical computing and for inte-
grating signals. A dendrite is structured like an electrical cable — with a con-
ducting core (cytoplasm) and outer insulation (the membrane ’ s lipid 
bilayer). Voltages decay exponentially on a cable (figure 7.7) with a length 
constant  10   that depends upon resistance per unit length of insulating mem-
brane,  r M  , and conducting core,  r cyt  : 

  length constant  =  √  ( r M /r cyt  ). (7.1) 

 A dendrite does not transmit far:  r M   is too low because potassium chan-
nels stay open to maintain resting potential, and  r cyt   is too high because 
hydrated ions in cytoplasm conduct poorly. Therefore, a dendrite ’ s length 
constant is generally less than 1 mm, and dendrites preserve signal ampli-
tude by staying shorter than their length constant.    

 A dendrite may increase its length constant by growing thicker, thus 
reducing  r cyt  , but the improvement goes only as the square root of diameter 
(Koch, 1999). With length constant increasing as  √  d  and volume increasing 
as  d 2    ×   length , the total cost of space and materials increases as ( length ) 5 . 
Such a steeply diminishing return requires designs that keep dendrites 
short (chapter 13). Temporal resolution (bandwidth) also requires short 
dendrites because longer ones increase capacitance. This delays signals and 
spreads them out, thus attenuating high frequencies (figure 9.9). In short, 
signals traveling passively on a dendrite longer than 1 mm would be too 
weak and too slow to carry much information. Yet these cable properties 
that limit dendritic length can be exploited to process information as it is 
gathered.  

 Dendrites process directly 
 Dendritic biophysics provides cheap and robust analogue processing (Koch, 
1999). For example, by placing input synapses that carry less information 
distally on the dendrite, they can be given less weight in the final output, 
whereas signals that carry more information can be given more weight by 
placing them nearer the cell body (figures 11.15 and 11.16). More generally, 
inward currents from excitatory synapses can be combined with outward 
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currents from inhibitory synapses and potassium channels. Thus, a den-
drite serves as an analogue electrical circuit that adds, subtracts, divides, 
multiplies, and takes logarithms (figure 6.2). 

 Such operations implemented directly by an RC circuit combine many 
synaptic inputs to produce an output within milliseconds. This rapid many-
to-one integration, which serves behavioral requirements for prompt deci-
sion, would be difficult to implement with a chemical circuit. The 
many-to-one ability is further exploited by joining several dendrites to 
the cell body or an integrating segment to form a final common output 
(figure 7.1). 

 To increase their processing abilities, dendrites  complicate their design  
(Branco  &  H ä usser, 2010). For one example, a dendritic twig at the distal tip 
of an elaborate dendritic tree makes a coincidence detector by strategically 
expressing voltage-sensitive sodium channels (Harnett et al., 2013). Gluta-
mate released at excitatory synapses binds AMPA and NMDA receptors, but 
only when AMPA currents from several synapses coincide does the den-
dritic twig depolarize sufficiently to unblock the NMDA receptors. Through 
them, calcium and sodium ions enter to amplify the coincidence, and 
voltage-gated sodium channels register it by producing a robust pulse, an 
action potential. 

 This pulse does not propagate far because the sodium channels are con-
fined to the twig. However, it generates sufficient current to drive a detect-
able signal into the larger dendritic tree. Here, strategically positioned 
potassium channels shunt responses from particular twigs and branches, 
thereby selectively blocking some inputs or controlling their gain. Thus, 
more complicated dendrites provide two layers of processing, local within 
a single dendrite and global within the larger dendritic tree. 

 A dendrite can add another layer of processing by receiving a synapse on 
the globular head of a dendritic spine, 0.5 – 1.5  μ m in diameter (figure 7.8; 
Yuste, 2013; Sala  &  Segal, 2014). Evoked current and chemical messengers 
pass from spine head to dendrite through a thin neck, 0.05 – 0.25  μ m in 
diameter and 0.5 – 2  μ m long. The neck resists the flow of intracellular cur-
rent and chemicals, thereby creating a computing compartment in the 
head that can be regulated by varying neck diameter and length. This 
design neatly resolves two conflicting demands.    

 A synapse must merge its current with many other currents in an 
extended RC network (dendrite and tree). In doing so, it loses individuality 
because the amplitude of its  EPSP   (excitatory postsynaptic potential)  depends 
largely on the state of the network, as determined by the multitude of syn-
aptic and voltage-gated conductances (Yuste, 2013). Yet, a synapse must 
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 Figure 7.8 
  Purkinje cell dendrites studded with spines of varied morphology . Reprinted from 

Ram ó n y Cajal (1909). 

also  adapt ,  match ,  learn ,  and forget . For this, it must retain individuality to 
monitor and adjust its own EPSP (chapter 14). A specific example is 
explained for the retina ’ s horizontal cell (chapter 11, figure 11.5). 

 The spine neck ’ s variable resistance allows it to adjust the amplitude of 
the EPSP in the spine head.  11   This robust private measure of output can 
then drive electrical and chemical circuits in the head that modify the out-
put to adapt, match, learn and forget (chapter 14). The head ’ s small volume 
allows chemical processing to be fast, reliable and efficient. A spine also 
increases wiring efficiency by extending a dendrite ’ s reach at minimum 
cost in space and materials (chapter 13, figure 13.3). 

 In short, dendrites collect and process analogue signals before final 
recoding to faster, regenerative pulses for transmission down the axon. But 
dendrites can also process in reverse. A dendritic tree may express voltage-
gated sodium and calcium channels that allow spikes triggered in the 
axon to propagate back into the tree. This sends information about the 
neuron ’ s output back to the dendrites where it serves various purposes, 
for example, to strengthen the synapses that generated the neuron ’ s 
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output — for learning (chapter 14). Now we consider the design to minimize 
information loss in converting dendritic analogue to a pulse code at the 
axon, for faster transmission over distance. 

 The axon converts to a pulse code  
 Having gathered and processed analogue signals from multiple dendrites, 
the neuron needs to send the information over long distance to its 
synaptic terminals via a single specialized cable (figure 7.1). Passive conduc-
tion of a graded signal is too slow, and its exponential decay would 
lose information to noise (figure 7.7). Consequently, for distances greater 
than one length constant (~1 mm), an axon recodes to all-or-none 
pulses — action potentials (figure 6.10). These travel faster and avoid decay 
by regenerating as they go. Information encoded as spikes travels far with 
little loss. 

 However, the step of recoding from analogue to pulses loses a lot of 
information — as much as 90% (Sengupta et al., 2014). Whereas an analogue 
signal tracks changes continuously by allowing several response levels (fig-
ure 5.3), pulses allow the membrane potential to change intermittently 
between just two levels (figure 3.5). Thus, a neuron using analogue can 
transmit more than 2,000 bits s  – 1 , whereas using spikes, it can manage fewer 
than 500 bits s  – 1 . Furthermore, a 100-mV spike costs far more energy (chap-
ter 6), so recoding to pulses massively reduces energy efficiency (bits 
per ATP).  

 A neuron tries to minimize these losses by converting to spikes at a spe-
cialized initiation site.  12   This  initial segment  locates at some distance from 
the cell body ’ s large capacitance to shorten the membrane time constant 
(see below, figure 7.11). The initial segment also packs membrane channels 
extra densely to further reduce the time constant and increase S/N. With 
higher S/N and shorter time constant, the site triggers spikes faster and 
more reliably, both of which increase bits per spike, thereby reducing loss 
of information and improving efficiency.  

 To increase bits per spike right at the initial segment is critical because 
transmission down the axon is expensive. A transmitted spike charges the 
entire axon ’ s membrane capacitance by about 100 mV by admitting sodium 
ions, and to pump them out costs 6.3  ×  10 3  ATP per square micrometer of 
membrane (chapter 6). A pyramidal neuron in cerebral cortex uses an irre-
ducibly thin axon (~0.3  μ m in diameter) to send spikes through its intracor-
tical circuit. Even so, the cost per spike is 6  ×  10 6  ATP per millimeter, and 
over its length of 4 cm, the cost is 2.4  ×  10 8  ATP (Attwell  &  Laughlin, 2001). 
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Considering the full population of pyramidal neurons, their spikes account 
for more than 20% of the energy used to process information in cortical 
circuits (Sengupta et al., 2010; Howarth et al., 2012). 

 In short, the conversion of synaptic and dendritic analogue signals to 
axonal spikes creates an expensive bottleneck. Bits are limited and costs 
increased, which makes it imperative to use each spike efficiently according 
to principles of neural design. In particular, an axon should  send only what 
is needed  by reducing redundancy and noise and by limiting transmission to 
what downstream neurons need to know (chapter 11). Thus, the carving 
out of essential features for transmission is a critical process in which the 
final step, the conversion of analogue to spikes by voltage-gated channels, 
plays a decisive role (Aguera y Arcas et al., 2003). 

 Supply and recycling 

 The neuron cell body must continually deliver fresh organelles, such as 
mitochondria, vesicles, and rafts of receptor proteins, outward to distant 
dendritic and axonal arbors. These nether regions must return recyclable 
materials and inform the cell nucleus of their needs.  13   Traffic in both direc-
tions needs to be faster than diffusion — at rates up to about 10 mm per 
hour. For efficiency ’ s sake, bidirectional traffic goes along the same track, a 
protein monorail.  

 The  microtubule , constructed from subunits as a cylindrical polymer, is 
irreducibly fine, about 30 nm in cross section. Two molecular motors,  kine-
sin  and  dynein , step along the tubule, ferrying cargo, in opposite directions. 
The motors operate with lever arms that, jutting orthogonally from the 
tubule, require clearance; therefore, microtubule spacing can be no closer 
than about 50 nm. Attach some cargo, and the circumferential zone about 
the tubule needs to be about 30 nm. These molecular structures set a lower 
bound to the caliber of a neuronal process. The finest axons at about 100 
nm are just thick enough to accommodate a single microtubule plus its 
molecular motors and cargo. Axons are encouraged to shrink because space 
and energy costs rise as d 2 , but eventually they hit this lower bound because 
of their irreducible need for fast transport.  

 Transport along the microtubule monorail is relatively cheap. Each 8-nm 
step of kinesin down the tubule costs 1 ATP, so to move a cargo 1 mm costs 
about 10 5  ATP. Although this might seem expensive, the molecular step-
ping motor is slow, so the cost per second is only about 100 ATP, far lower 
than the cost of electrical signaling by an ion channel (chapter 6).  
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 Variations on the standard design  

 The standard polarized design requires every synaptic input voltage to 
travel a fair distance along a dendrite (up to a millimeter) over a significant 
time (2 – 20 ms) and then still longer distances along an axon, costing addi-
tional time and energy. Computations that avoid this long, slow loop 
would save considerable resources. Thus, neural designs include various fea-
tures for computing locally, both at the synaptic and neuron levels. 

 Synapses designed for local computing  
 Certain designs allow direct computing between dendrites. A dendrite may 
form a chemical synapse onto a neighboring dendrite. The presynaptic 
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 Figure 7.9 
  Local computing by chemical axodendrodendritic synapses . Axon terminal contacts 

dendrite 1 that contacts adjacent dendrite 2 that feeds back to dendrite 1 .  Note the 

array of evenly spaced microtubules (mt) in cross section and glial wrappings (shad-

ed). Tiny dots are ribosomes (r) that support dendritic protein synthesis. Reprinted 

with permission from Famiglietti (1970). 
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dendrite releases transmitter onto the postsynaptic dendrite, which may 
reciprocate with a return chemical synapse to its neighbor (figure 7.9). Such 
 dendrodendritic  chemical synapses are employed by circuits in many brain 
regions, including spinal cord, thalamus, olfactory bulb, superior colliculus, 
retina, and cerebellar cortex (Shepherd, 2004). They are efficient because (1) 
computations remain in analogue mode, which is direct and cheap; (2) 
expensive long-distance electrical signaling is avoided; and (3) different 
branches of the same neuron can compute independently, thereby expand-
ing by up to 100-fold the computational possibilities of a single neuron 
(Grimes et al., 2010)    

 Dendrodendritic synapses can also be electrical, via a  gap junction .   This 
connection passes current directly between dendrites through a transcellu-
lar channel ( connexon ). It is fast — essentially instantaneous — because it dis-
penses with all the steps needed by a chemical synapse that take a 
millisecond or longer. Moreover, it does not amplify, so it is energetically 
cheap, and, as evident in figure 7.10, it requires no space at all. This type of 
synapse, illustrated here for cerebellar cortex, is ubiquitous. Specific compu-
tational functions will be treated in chapter 11.    
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 Figure 7.10 
  Local computing via electrical synapse between two basket cell dendrites . When 

chemical synapse from parallel fiber (pf) depolarizes b 1,  current flows across the elec-

trical synapse (arrow) to instantaneously and inexpensively depolarize b 2 . Rat. Re-

printed with permission from Sotelo  &  Llin á s (1972). ©  1972 Rockefeller University 

Press. 
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 Local computing is also accomplished by axoaxonic synapses. One 
design delivers a chemical synapse to an axon ’ s initial segment (figure 
7.11). This site, as noted, critically regulates spike frequency and timing, so 
a chemical synapse can act powerfully without consulting the neuron ’ s 
slower and costlier integrative apparatus. Another design uses a special 
form of electrical inhibition — fast and cheap. The cerebellar basket cell 
axon uses both designs, as now explained.     

 The basket cell axon, having richly enveloped the Purkinje cell body 
(figure 7.1), sends fine tendrils to surround the initial segment (see below, 
figure 7.15). The tendrils penetrate the glial wrapping and deliver a chemi-
cal synaptic contact that releases GABA (figure 7.11). Additionally, the ten-
drils join together using high resistance cross-bridges to form a capsule 
surrounding the glial fingers (figure 7.11). The capsule apparently elevates 
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 Figure 7.11 
  Two types of inhibitory synapse at the Purkinje cell axon initial segment. Left : Basket 

cell axon terminal (Bax) forms a chemical synapse (GABA) onto Purkinje cell initial 

segment. Glial fingers form a sheath around the axon. These fingers contain dense 

arrays of potassium transporters that rapidly bind potassium released during the ac-

tion potential. Rat. Reprinted with permission from Palay and Chan-Palay (1974). 

 Right : Basket cell axon tendrils form  septate-like junctions  with high resistance cross-

bridges. Their capsule surrounds the glial fingers and apparently elevates the extra-

cellular resistance. Basket cell spikes that synchronously invade the tendrils depolar-

ize the extracellular space, thus reducing the intracellular depolarization to modulate 

spike timing. Reprinted with permission from Sotelo  &  Llin á s (1972). 
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extracellular resistance so that basket cell spikes, locally synchronized by 
the dendrodendritic electrical synapses (figure 7.10), invade the fine ten-
drils and depolarize the extracellular space. This instantaneously reduces 
the initial segment ’ s intracellular depolarization and modulates spike tim-
ing (Korn  &  Axelrad, 1980). Polarizing the extracellular space to control a 
neuron ’ s output is direct, economical, and relatively noise free — so it is used 
elsewhere (chapters 9 and 11).  

 Other types of local computing use an axoaxonic synapse, directed not 
to the initial segment, but rather to another synaptic terminal. Matched to 
function, these can be either electrical or chemical, and sometimes both are 
combined at the same junction. Electrical junctions between synaptic ter-
minals of the same type improve S/N (chapter 11, figure 11.4). They also 
increase temporal precision because, as one synapse depolarizes, its coupled 
neighbor draws off some current, advancing its own depolarization and 
retarding the first (Pereda, 2014). This also increases synchrony between 
coupled terminals, a valuable property in many circuits achieved directly at 
negligible cost in space and energy.  

 A chemical axoaxonic synapse, depending on transmitter and receptor 
type, can be excitatory or inhibitory. For example, a retinal axon terminal 
releases glutamate onto AMPA receptors at an axon terminal of a 
thalamic interneuron (figure 12.4). Another synapse may release GABA 
onto a GABA A  receptor, which gates a chloride channel. This connection is 
usually inhibitory because a particular protein pump (KCC2) sets E Cl  near 
the resting membrane potential (figure 7.4). However, certain terminals 
express a different pump (NKCC1) that sets E Cl  positive to the resting 
potential. In this case a synapse matching GABA to  GABA A   will 
 depolarize  the postsynaptic terminal and be excitatory.   This allows a 
circuit to diametrically reverse its function, not by altering the anatomical 
structure, nor the transmitter, nor its receptor. Instead it simply swaps 
chloride pumps.  

 Neurons designed for local computation 
 Neurons differing from the standard polarized design are numerous, so here 
we note from retina two radical alternatives. One type radiates dendrites 
symmetrically from its cell body to collect chemical synaptic inputs. This 
 starburst  neuron lacks an axon but forms chemical outputs at the distal 
dendritic tips (figure 11.24). The design is such that a visual stimulus mov-
ing centripetally, from cell body toward the dendritic tips, releases GABA 
onto a ganglion cell and thereby blocks its spiking to that direction of 
motion (figure 11.24).  
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 This neuron breaks another rule: whereas most neurons release only one 
chemical transmitter, the starburst neuron releases  acetylcholine  in addition 
to GABA. These transmitters are packaged by different transporters into dif-
ferent vesicles that cluster at different presynaptic sites and contact differ-
ent dendrites. Thus, a starburst process, which computes locally and 
connects locally, can, by releasing different transmitters onto different neu-
rons, evoke opposite responses to the same stimulus. One computation pro-
duces two outcomes for the same price.  

 Another radical design radiates dendrites symmetrically about the cell 
body to collect local information; then, each dendrite radiates an axon 
from its distal tip to broadcast the information over millimeters (figure 
7.12). This  polyaxonal amacrine  neuron is polarized, but in reverse. The cell 
body, rather than converging information for a single axon, diverges via 
multiple axons in all directions (figure 7.12).    

 We conclude that the core rule for designing a neuron is to build it for a 
particular task. This achieves the needed performance for least cost (chap-
ters 9, 12, and 13).  
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 Figure 7.12 
  Polyaxonal amacrine neuron reverses the standard polarized design .  Left:  Instead 

of collecting input on dendrites and funneling to a single axon, it radiates multiple 

axons from distal dendritic tips. Gray boxes indicate regions shown at higher mag-

nification.  Upper right : Dendrites express spines for receiving inputs.  Lower right : 
Axons express varicosities for sending outputs. Reprinted with permission from Dav-

enport et al. (2007). 
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 Glial cells in design of neurons 

 Glial cells comprise a substantial fraction of the brain ’ s volume (Halassa  &  
Haydon, 2010). In white matter (tracts)  astrocyte  cell bodies and processes 
use more than 30% of the space. Myelin sheaths occupy an additional 25%, 
and  oligodendrocyte  cell bodies that provide the myelin wrapping use an 
additional 13%. Thus, in tracts the space allotted to glia comes to about 
65% (figure 13.21; Perge et al., 2009). In gray matter (circuits) the fraction 
for astrocyte processes varies locally by design, but overall is about 10%, 
plus some added allowance for cell bodies (Mischenko et al., 2010; Sch ü z 
 &  Palm, 1989). So on average, the total space for glia in gray matter is 
roughly 15%.  

 Glia expend considerable energy. For example, the mitochondrial vol-
ume fraction of astrocyte processes in white matter is more than 3%, more 
than twice that of the myelinated axons. In the optic nerve astrocytes con-
tain more than 70% of the mitochondria (see below, figure 7.21; Perge et 
al., 2009). In gray matter less than 5% of the mitochondria are in glia, but 
gray matter processes information in dense neural circuits, so its overall 
metabolic rate per volume is threefold higher (Attwell  &  Laughlin, 2001; 
Harris  &  Attwell, 2012). Given glia ’ s substantial costs in space and energy, 
what are the benefits to neural design? 

 White matter: Benefits of myelin and astrocytes 
 A naked axon conducts action potentials efficiently, but conduction veloc-
ity rises only as  √ d. Therefore, where speed is required, the naked axon must 
become inordinately thick. This cost is accepted for a command neuron 
that triggers the escape response of an invertebrate; most famously, the 
squid giant axon is about 1 mm in diameter. This works if there are only a 
few giant axons, but they could not be used routinely because they would 
take far too much brain space. Yet vertebrates move fast and need many fast 
axons.  

 When speed requires an axon thicker than about 0.5  μ m, the design 
solution is for an oligodendrocyte process to wrap a segment of the axon in 
a multilayered, jelly roll of plasma membranes. This is myelin. Its multiple 
layers effectively reduce the axon ’ s membrane capacitance and increase its 
resistance. This increases space constant and reduces time constant. These 
improvements allow the advancing foot of the action potential to spread 
further and faster. Thanks to myelin wrapping, action potential velocity 
increases in direct proportion to axon diameter at about 6,000 mm/s per 
micron diameter.  
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 The myelin-wrapped segment extends for about 0.5 – 1 mm, so as the 
voltage pulse flashes passively across this distance, it soon encounters a 
naked spot of neural membrane ( node of Ranvier ) which concentrates 
sodium channels. These are of a specific type, Nav1.6, that open rapidly 
and synchronously to regenerate the action potential — which then contin-
ues its passive course to the next node. The sodium channels pack so 
densely at the node (up to 2,000/ μ m 2 ) that the potassium channels needed 
to repolarize are displaced laterally.  

 Nodal spacing increases directly with axon diameter. This works because 
thicker axons produce larger nodal currents and increase the number of 
myelin wraps, further increasing the space constant. In systems where spike 
arrival time is critical, nodal spacing can be tweaked to compensate for dif-
ferent conduction distances (Cheng  &  Carr, 2007; Carr  &  Boudreau, 1993). 
One might imagine that concentrating sodium channels at a few sites rather 
than distributing them over the whole axon would save energy, and this 
proves to be so (figure 7.13). This saving, though substantial, does not begin 
to explain the threefold difference in energy cost of white matter compared 
to gray matter and, thus, its far sparser supply of blood vessels. That is 
explained by the absence of synaptic currents (Harris  &  Attwell, 2012).    
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  Myelination saves energy as well as conduction time. Left : In myelinated axons 

thicker than about 0.7  μ m mitochondria occupy a constant proportion of cytoplas-

mic volume, about 1.5%. In unmyelinated segments of the same axons mitochon-

dria occupy about 4% of cytoplasmic volume.  Right : Mitochondrial volume per unit 

axon length rises linearly with diameter for fine axons (d  <  0.7  μ m) and quadratically 

for thicker ones. This figure compares ganglion cell axons within the retina, where 

they are unmyelinated, to their continuations in the optic nerve where they are my-

elinated. Thus, both plots represent the same neuron types. Reprinted with permis-

sion from Perge et al. (2009). 
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 Astrocytes in white matter are critical to the design that generates an 
efficient action potential. Following a spike, the axon repolarizes by releas-
ing a pulse of potassium into the nodal extracellular space. Because neigh-
boring axons are all firing, the concentration gradient needed for the pulse 
to diffuse from the node is diminished. Therefore, potassium must be 
removed rapidly by sodium-potassium pumps (chapter 6). But where to 
place them?  

 Space at the nodal axon membrane is so fully occupied by sodium chan-
nels that the potassium channels are displaced laterally. Thus, the nodal 
membrane cannot accommodate large numbers of pump molecules. So the 
design places many fast-binding pumps on the astrocyte membranes and 
some slower ones along the axon (Ransom et al., 2000). Thus, astrocytes in 
white matter are key to rapid removal of extracellular potassium, and this 
may explain their large proportion of space and energy capacity. 

 Gray matter: astrocyte compartments for transmitter diffusion 
 Certain computations benefit when neighboring synapses operate indepen-
dently of each other. Other computations benefit when neighboring syn-
apses share their transmitter. The degree of independence versus sharing is 
set partly by the degree of astrocyte wrapping. Certain types of synapse are 
individually wrapped, allowing each pulse of transmitter to bind the post-
synaptic receptors and then to be removed by transporter proteins on the 
astrocyte membranes (see below, figure 7.17). Other types are poorly 
wrapped, allowing longer persistence and spread of transmitter to neigh-
boring synapses (see below, figure 7.16.  

 Still other types of synapse provide multiple synaptic contacts from 
closely spaced release sites that are all wrapped together by a glial capsule 
(figure 12.4). The glial membranes densely express transporter proteins for 
the particular transmitter released within the capsule (Josephson and Mor-
est, 2003). This allows pulses from one release site to spill over to neighbor-
ing receptor patches with consequences to be discussed below. Such 
 glomerular synapses  are used in various locations, including spinal cord, 
cochlear nucleus, thalamus (figure 12.4), and cerebellum (see below, 
figure 7.16).  

 Other tasks for glia  
 Astrocytes display myriad other properties. For example, they respond to 
neuronal activity and neurotransmitters via G-protein-coupled receptors. 
Moreover, they release gliotransmitters, such as glutamate, D-serine and 
ATP, which act on neurons. Astrocyte-derived ATP can modulate synaptic 
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transmission, either directly or through its metabolic product, adenosine 
(Schmitt et al., 2012). Astrocytes are also interposed between blood vessels 
and neurons and thus play important roles in regulating metabolic 
responses (Howarth, 2014). This does not exhaust the list of properties and 
contributions of glial cells to neural function. However, understanding 
remains too incomplete to fully grasp how the various features contribute 
to efficient design. 

 Each neuron ’ s design serves a larger circuit  

 Cerebellum illustrates the extent to which neurons and glia are adapted for 
specific functions within a larger circuit. A schematic diagram of cerebellar 
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  Wiring diagram of cerebellar cortex . Granule cell (GC) integrates excitatory contacts 

(from distant mossy fibers and local unipolar brush cells (UBC)) with inhibitory con-

tacts (from Golgi neurons (GO) with excitatory contacts from parallel fibers). Pur-

kinje cell (PC) integrates excitatory contacts from a single climbing fiber and 175,000 

parallel fibers (pf) with inhibitory contacts from stellate (S) and basket (B) cells that 

receive inhibitory input from the Lugaro cell (LC). Purkinje cell sends recurrent GA-

BAergic contacts to axon initial segment of neighbors. The basket cell extends fine 

processes to encapsulate the Purkinje axon initial segment, an arrangement associ-

ated with electrical inhibition. GLU, glutamate; Ach, acetylcholine; GLY, glycine; 

NA, noradrenaline; 5-HT, serotonin. Redrawn from Sotelo (2008). 
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cortex identifies the circuit ’ s four types of excitatory neuron, and four types 
of inhibitory neuron (figure 7.14). Although a complete account of their 
cooperative effort remains a goal, enough is already known to see how 
some features of their functional architecture serve efficient processing.     

 The cerebellar circuit performs two operations. First, it remaps informa-
tion coded at high mean rates by a modest number of mossy fibers to much 
lower mean rates carried by a much larger number of granule cells. This 
occurs in the inner synaptic layer. Second, it formulates an output by a 
quite small number of Purkinje cells in the outer layer. The granule cells 
project their individually sparse representation into the outer layer via a 
massive array of axons, running parallel to save wire (chapter 13). Each 
Purkinje neuron integrates single synaptic inputs from 175,000 parallel 
fibers to send an output pattern via its axon. To efficiently implement these 
two operations — remap and send an output — requires different functional 
architectures. 

 Functional architecture of inner synaptic layer 
 The inner synaptic layer densely packs astronomical numbers of granule 
cells in small clusters (figure 7.15). The cell bodies are irreducibly small, 6 – 7 
 μ m in diameter. The cell body is filled almost completely by the nucleus, 
leaving a mere crescent of cytoplasm essential for protein synthesis. The 
dendrites are limited to four short processes, about 12  μ m long, terminating 
in specialized claws that collect all the synaptic input (figures 7.1 and 7.14).     

 The granule cell transmits to Purkinje cells with an irreducibly thin 
axon. Its diameter can be less than 0.2  μ m, which allows just enough space 
for 1 – 2 microtubules plus their motors and cargo, and an internal resistance 
just low enough to prevent noise. Any narrower and the current entering 
through one sodium channel would see an internal resistance so high as to 
bring the membrane to threshold. This would allow a lone channel opened 
solely by thermal buffeting to generate a spontaneous spike, thereby intro-
ducing noise (Faisal et al., 2005). This design — thin axon — supports only a 
very low mean spike rate because, with a high surface area/volume ratio, it 
can contain relatively few mitochondria. 

 Granule cell design allows no input synapses, except at the four special-
ized claws. This provides high membrane resistance, which reduces the cost 
of maintaining resting potential. Even so, the bill for resting potential is 
considerable (see below, figure 7.21). As a neuron shrinks, the ratio of sur-
face area to volume increases as 1/diameter, so the ratio for a granule cell is 
nearly 10-fold greater than for a Purkinje cell. Such a relatively large mem-
brane area presents an expanse for leakage, and since the granule cell is the 
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brain ’ s most numerous neuron, this small cost grows large (see also 
chapter 13).  

 Much of the inner synaptic layer is occupied by the large axon terminals 
of mossy fibers (figures 7.1 and 7.16). A terminal interlaces with multiple 
(~15) dendritic claws, each from a different but neighboring granule cell, 
and forms a complex knot ( glomerulus ), nearly as large as a granule 
cell body (figures 7.1 and 7.16). The mossy fiber axon fires at an unusually 
high mean rate (up to 200 Hz) and is therefore among the brain ’ s thickest 
(figure 4.6).  

 To match the axon ’ s high rate, a terminal expresses 150 active zones, 10 
per postsynaptic granule cell (figure 7.16). These sites are capable of driving 
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  Largest cerebellar neuron occupies more than a 1,000-fold greater volume than 
smallest neuron.  Thin section (~1  μ m) through monkey cerebellar cortex. Purkinje 
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claws and space for Golgi cells (Go). Note rich network of capillaries (cap). Fine, scat-

tered dots are mitochondria. Courtesy of E. Mugnaini. 
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  A large terminal may contact many small dendrites without intervening glia . This 

design pools transmitter from many synapses. It densensitizes postsynaptic receptors 

to reduce spike rate while improving temporal precision.  Upper left : Central mossy 

fiber terminal contacts onto granule cell dendritic claws at release sites marked by 

*. Postsynaptic processes pack closely with no intervening glia. The whole structure 

(mft + grc claws) is partially encapsulated by glial membranes (above, shaded).  Up-
per right : Serial sections through one release site, showing docked vesicles.  Lower 
left : Three-dimensional reconstruction of mossy fiber terminal. Terminal provides 

hundreds of active zones. Each active zone has approximately seven neighbors closer 

than 1  μ m. Glia cover about 20% of outer surface.  Lower right : Granule cell strongly 

excited by first spike in mossy fiber but less strongly by next spike 10 ms later. Re-

printed with permission from Xu-Friedman  &  Reghr (2003). 
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a granule cell synchronously, with one vesicle per presynaptic spike, up to 
frequencies of 700 Hz (Saviane  &  Silver, 2006). This direct mapping of spike 
input to vesicle output preserves the bandwidth and dynamic range of the 
mossy fiber axon. However, to sustain signaling, the terminal must replen-
ish, dock, and prime vesicles at the axon ’ s mean rate. The enlarged terminal 
provides the volume to accommodate a releasable pool of about 5  ×  10 4  
vesicles, about 300 per active zone. Given that synchronous release main-
tains bandwidth and signal range, how is the terminal designed to main-
tain the other determinant of information rate, S/N?     

 To maintain S/N, the enlarged terminal contacts many small dendrites 
without intervening glia (figure 7.16). This design allows transmitter released 
at one site to diffuse to neighboring sites. Thus, a postsynaptic receptor clus-
ter on one granule cell dendrite receives a pulse of transmitter from its own 
release site, plus pulses from at least seven other sites less than 1  μ m distant. 
This  spillover  of transmitter from several sites reduces noise produced by 
probabilistic release, and being adjacent, diffusion affects only slightly 
response duration. To allow spillover, the synaptic complex is largely devoid 
of glia expressing transporters. Consequently, transmitter released across the 
terminal at high rates tends to persist, and this too is put to good use. 

 The persistent spillover densensitizes postsynaptic receptor clusters, 
which acts as a negative feedback to reduce the amplitude of the granule 
cell ’ s excitatory postsynaptic currents (EPSCs; figure 7.16). Thus, a granule 
cell can integrate numerous temporally correlated inputs to improve tem-
poral precision, yet since each input delivers a small postsynaptic current, 
the mean spike rate is drastically reduced. In other words, a glomerulus 
with large terminal, multiple postsynaptic clusters, and scant glia, is well 
designed to remap information from densely coding mossy fiber axons to 
sparsely coding granule cells.  

 The roughly 50-fold step down of mean spike rate from mossy fiber to 
granule cell is efficient partly because bits/spike increases for lower rates 
(figure 3.5). Efficiency is further increased by improving a spike ’ s temporal 
precision (chapters 5 and 6) to generate a  sparse code ,   in which each granule 
cell is mostly silent and only fires brief, well-timed bursts at frequencies 
greater than 100 Hz (Ruigrok et al., 2011). Timing precision and brevity of 
the burst are enhanced by another contributor to the glomerulus: the Golgi 
neuron, whose cell bodies distribute sparsely within the inner synaptic 
layer and contribute GABAergic inhibitory contacts to the glomerulus (fig-
ure 7.14). This contribution to sparsifying the signal is relatively cheap 
because the individual cell is of modest size, low rate, and modest numbers. 
Moreover, inhibition is far cheaper than excitation (see below, figure 7.20). 
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 Now consider the circuit ’ s second operation — integrate granule cell mes-
sages to form a Purkinje cell output. The granule cell axon ascends to the 
outer synaptic layer and branches as a T to run parallel with its neighbors 
and perpendicular to the fan-like Purkinje cell dendritic arbors (figures 7.1 
and 7.14). Extending for 2 mm, it contacts one dendritic spine on many 
neurons, including Purkinje cell, stellate, and basket cells. The presynaptic 
active zone docks substantial numbers of vesicles (figure 7.17) so that the 
release of one vesicle does not deplete the ready pool. This design allows a 
second spike to admit sufficient calcium to release several vesicles simulta-
neously and produce a larger postsynaptic response (figure 7.17). The gluta-
mate from single and multiple releases spills over to NMDA receptors just 
beyond the postsynaptic density, thereby extending the Purkinje neuron ’ s 
time window for coincidence detection (figure 7.5).  

 The parallel fiber contacts upon spines tend to be well wrapped by glia, 
which reduces spillover between neighboring synapses (figure 7.17). Thus, 

excitatory postsynaptic current

PurkinjePurkinje
spinespine

pfpf
synapsesynapse

Purkinje
spine

pf
synapseparallelparallel

fiberfiber
parallel

fiber

20 ms

glia

glia

0.0.2 μm0.2 μm

 Figure 7.17 
  Parallel fiber synapse to Purkinje cell spine is ensheathed by glia and is facilitated at 
high frequencies.   Upper:  Glial wrapping is nearly 70%, which greatly reduces spill-

over between neighboring active zones.  Lower : Excitatory postsynaptic response to 

brief burst of spikes at parallel fiber synapse (two spikes at 50 Hz). The second re-

sponse is larger, probably because two vesicles were released simultaneously. The 

enhanced pulse of transmitter diffuses further from the release site to reach extra-

synaptic NMDA receptors (Nahir  &  Jahr, 2013). Reprinted with permission from Xu-

Friedman  &  Reghr (2001). 
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a granule cell ’ s output synapse is structured to reliably deliver a precisely 
timed message — privately (Nahir  &  Jahr, 2013). All 150,000 parallel fiber 
synapses onto an individual Purkinje cell tend to be wrapped by the same 
glial cell ( Bergman glia ), whose form mimics that of the Purkinje cell ’ s exten-
sive dendritic tree (figure 7.1).    

 The different tasks of inner and outer cerebellar layers and their conse-
quent different designs illustrate why there can be no generic neuron. In 
the inner layer, high-rate synapses improve S/N by pooling excitatory 
responses and sharpen timing precision with feedback inhibition — to allow 
a burst of information-rich spikes (figure 7.16). In the second case, spikes 
deliver this information by a synaptic design that facilitates to a burst (fig-
ure 7.17). The first design reduces glial wrapping to enhance synaptic spill-
over; the second design does the opposite. Now we can ask: what are the 
costs of these two designs? 

 Costs of different neuron designs 

 Energy costs by cell type 
 When the various energy costs are totaled, the individual Purkinje cell 
proves to be the most expensive neuron, and granule cell proves to be the 
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  Energy costs by cell type. Left : Purkinje cell is the most expensive neuron, and gran-

ule cell is cheapest.  Right : Granule cell array is the most expensive, and Purkinje cell 

array is far cheaper. Glial cells are cheap individually and as arrays. Reprinted with 

permission from Howarth et al. (2012). 
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cheapest (figure 7.18). This should be no surprise since the Purkinje neuron 
is far larger, receives many more synapses, and fires at a greater than 10-fold 
higher mean rate. On the other hand, it seems mildly surprising that, the 
granule cell array is approximately fourfold more expensive than the Pur-
kinje cell array. This reflects the granule cells ’  outnumbering the Purkinje 
cells by 274 to 1.The local inhibitory neurons are cheap individually and as 
arrays, except for the Golgi neuron. The latter is costly as a single cell 
because it receives a high rate of excitation from mossy fibers and is consid-
erably larger than the granule cell (figure 7.14). Its major cost (75%) goes for 
postsynaptic receptor currents (Howarth et al., 2012). However, it is cheap 
overall because the array is sparse. Cerebellar glial cells are cheap individu-
ally and as arrays.    

 Energy costs by cellular function and computational stage 
 Each part of a neuron has its own cost, and the proportions vary according 
to the cell ’ s design (figure 7.19). Thus, the granule cell ’ s thin axon (which, 
ascending to the outer synaptic layer, branches as a T to become the irre-
ducibly fine parallel fiber) sends each action potential cheaply. And, because 
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  Energy costs by cell function : Granule cell versus Purkinje cell. rp, resting poten-

tial; ap, action potential; postsyn, postsynaptic receptor currents; recyc, transmitter 

recycling (ATP for uptake by glial transporters, metabolic processing, and vesicular 

transporters); presyn, presynaptic calcium entry and vesicle cycling. Reprinted with 

permission from Howarth et al. (2012). 
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of sparse coding, its mean spike rate is low. Therefore, less than 10% of a 
granule cell ’ s energy goes for spikes (Howarth et al., 2012). On the other 
hand, because the fine axon has a high surface area/volume, much energy 
is needed to maintain the resting potential against leaks. Postsynaptic cur-
rents at the input are costly, but synaptic release along the parallel fiber is 
cheap.    

 The Purkinje cell reverses the pattern. Its thick axon sends each spike at 
greater expense; moreover, the cell fires at high mean rates (figure 4.6). 
Therefore, the cell uses most energy for action potentials. The Purkinje cell ’ s 
second greatest cost is for postsynaptic excitatory currents due to its vast 
number ( > 10 5 ) of glutamatergic contacts from parallel fibers and the climb-
ing fiber. Its costs for recycling vesicles and transmitter are negligible 
because, except for a very few recurrent contacts, a Purkinje cell ’ s outputs 
are all outside the cerebellar cortex.  14    

 Note that for both neuron types there are presynaptic costs. These 
include extruding accumulated calcium from synaptic terminals via a 
sodium/calcium exchanger, retrieving vesicles by endocytosis, refilling ves-
icles via a transporter, and retrieving and resynthesizing transmitter. For 
both granule and Purkinje neurons these presynaptic costs are negligible 
(figure 7.19), and the same is true for all the inhibitory interneurons 
(Howarth et al., 2012). Some of these processes are cheap because they use 
chemistry (neural exo- and endocytosis, metabolic processing of transmit-
ters). Calcium extrusion is cheap because, although it uses energy for 
active transport, the calcium current to release a vesicle is miniscule 
compared to the current needed to open the calcium channel and 
compared to the postsynaptic current that the vesicle evokes. This reem-
phasizes the economy of chemical processes and the high cost of electrical 
amplification.  

 Cerebellar cortex contains more types of inhibitory neurons than excit-
atory ones (figure 7.14). However, the inhibitory neurons distribute sparsely 
and their synaptic currents are far cheaper. Therefore, excitation costs 
nearly four-fold more than inhibition (figure 7.20). Moreover, since the 
inhibitory processes serve to reduce redundancy and restrain expensive 
excitation, they seem a particularly good investment.     

 Cerebellar neurons parcel out their computations so neatly that the 
computational costs can be evaluated (figure 7.21). The inner synaptic layer 
is tasked to step down mossy fiber firing rates and concentrate information 
with a sparse code in granule cells. This costs slightly more than half of the 
total energy. The sparse code must then propagate to all the neurons in 
the outer synaptic layer, and this costs nearly one third of the total. Finally, 
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  Excitatory neurons in cerebellar cortex cost nearly fourfold more than inhibitory 
neurons . Reprinted from Howarth et al. (2012). 

Mf → Grc circuit
(establish sparse code)

53%

grc → Pcell
circuit (propagate

sparse code)
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Pcell output
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 Figure 7.21 
  Input layer to cerebellar cortex consumes most energy . Intermediate layer consumes 

less, and output is cheapest. Mf, mossy fiber; Grc, granule cell; Pcell, Purkinje cell. 

Relabeled from Howarth et al. (2012). 
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the result of the outer-layer computation must be sent as Purkinje cell out-
put which, due to the step down in neuron numbers, costs least (15%). 
These calculations correspond rather neatly to the distribution of  cyto-
chrome oxidase , which serves the final step of mitochondrial energy produc-
tion: dense patches within the inner synaptic layer, corresponding to the 
synaptic glomeruli versus broad but weak distribution in the outer synaptic 
layer and strong in the Purkinje neurons (figure 13.20).     

 Conclusion 

 This chapter has focused on a few of the many ways that a neuron inte-
grates information encoded at the input as chemical signals to transmit an 
output electrically at speed over distance. A core point is that  “ the neuron ”  
is a shape-shifter. It can assume any form within limits ultimately set by 
physics, chemistry, and cell biology in order to function according to the 
basic principles of economy in neural design. The chapter did not explain 
how a neuron matches its internal chemical signals to achieve high effi-
ciency, or how it couples them with equally high efficiency to its electrical 
outputs. That is the topic of chapter 8. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Chapter 5 set out fundamental reasons why the brain computes with intra-
cellular proteins. Protein circuits encode information with the least possible 
space and least possible energy; moreover, they optimally match their 
inputs and outputs, and they adapt quickly and cheaply as conditions 
change. Chapter 6 explained that protein circuits can be fast over short 
distance, but for speed over long distance they must couple to costly electri-
cal circuits. That chapter explained designs for various circuit components 
as read from a catalog of neural parts: a linear amplifier, a nonlinear gain 
control, and so on. Chapter 7 explained how a neuron ’ s various parts com-
municate with each other efficiently but not how they manage to accom-
plish something useful. It is the difference between explaining the principle 
of a flying buttress and a keystone arch — versus the cathedral at Chartres. 

 This chapter explains how a protein chemical circuit captures and chem-
ically amplifies a photon ’ s energy and then couples to a protein electrical 
circuit for transmission over distance. For this process of phototransduc-
tion, animals have evolved two types of chemical circuit (  figure 8.1 ; Yau  &  
Hardie, 2009). Both start with the same  chromophore , a small molecule ( 11-
cis retinal ) that couples to the same type of protein ( opsin ). Cis-retinal, 
absorbing a photon ’ s energy, unbends to  trans-retinal  ( photoisomerizes ), 
thereby donating its energy to the opsin ( R ) and changing its conforma-
tion. The activated opsin ( R* ) binds and activates a G protein ( G* ), as 
described for the  β -adrenergic receptor (figure 5.6). Beyond this point, the 
two circuits have strikingly different designs. One leads to closing a cation 
channel that is open in the dark, while the other opens a cation channel 
that is closed in the dark. The first type serves mammalian vision; the sec-
ond serves fly vision (  figure 8.1 ).    

 The mammalian design seems counterintuitive. Channels open in the 
dark cause a steady current that requires continual pumping to maintain an 
ionic gradient. Moreover, because the current is depolarizing, it opens a 
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  Mammalian rod and fly photoreceptor amplify the energy of a single photon us-
ing different protein circuits . In both transduction schemes a photon isomerizes an 

opsin to activate a G protein. Thereafter the schemes diverge: the rod closes cation 

channels to hyperpolarize sharply (~3 mV, peaking ~125 ms); the fly photorecep-

tor opens cation channels to depolarize sharply (~ 1 mV, peaking ~ 20 ms). Both 

responses can be resolved against background noise, but the fly response is faster. N, 

nucleus; G t *, activated G protein transducin; G q *, activated G q  protein; PDE*, acti-

vated enzyme phosphodiesterase; PLC*, activated enzyme, phospholipase C; [cGMP], 

concentration of the messenger molecule cyclic guanosine monophosphate; [IP 3 ], 

concentration of the messenger molecule inositol triphosphate; [H + ], concentration 

of protons. Rod recording is from mouse, reprinted from Cangiano et al. (2012); fly 

recording is from  Drosophila , adapted from Niven et al. (2007). 
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voltage-gated calcium channel in the synaptic terminal that causes con-
tinual release of synaptic vesicles at a substantial rate, about 100 vesicles per 
second (Rao-Mirotznik et al., 1998; van Rossum  &  Smith, 1998). Only when 
a photon capture closes channels does the current pause, hyperpolarizing 
the cell and thus interrupting vesicle release. This double expense (tonic 
current, tonic vesicle release) seems profligate, especially in the absence of 
any photons. Indeed, this design is often cited as an instance where the 
brain is highly inefficient. 

 The fly design seems more intuitive. There is substantial fixed cost to 
maintaining the resting potential in darkness, associated in part with tonic 
transmitter release. This fixed cost equals 20% of the signaling cost in day-
light, but beyond that, the design is pay-per-view: photon capture initiates 
a depolarizing current that increases transmitter release. This follows stan-
dard design and would seem to be cheaper. One might well wonder, did 
mammals somehow get stuck with an awkward, expensive system by some 
evolutionary accident? 

 We doubt this explanation for two reasons. First, the mammalian retina 
retains the insect-type system and uses it for certain key functions, for 
example, in retinal neurons that project to central neurons that entrain the 
circadian clock (chapter 4; Xue et al., 2011). Second, both rod and cone use 
less energy than a fly photoreceptor (Fain et al., 2010). To understand 
why, we consider first the mammalian rod under the simplest condition —
 dim light. 

 Phototransduction: Mammal 

 To capture an image in starlight 
 Starlight spreads photons so sparsely that a mammalian rod with a collect-
ing area of about 1  μ m 2  encounters a photon about once in 10 minutes, so 
a rod must capture and amplify single photons. But integrating single pho-
ton signals over minutes would not provide an animal with useful vision. 
To move fast, an animal must see fast, so the rod must integrate for briefer 
intervals, successive  “ snapshots ”  of about 200 ms. These catch one photon 
within a retinal patch of about 100  ×  100  μ m, that is, 10,000 rods. These 
limits to localizing photons in time and space allow only a sparse  “ pointil-
list ”  image (  figure 8.2 ).  1       

 Chances of two photons simultaneously striking the same opsin mole-
cule are infinitesimal even in daylight. A double-hit would require the light 
intensity of a powerful laser, such as used in the  “ two-photon ”  microscope. 
Because the image is intrinsically sparse, the chemical amplifier should try 
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to encode every photon but add the least possible noise. This requires pre-
cise tuning of opsin ’ s folding by the amino acid sequence. Were the opsin 
too stiff, it would dissipate the energy from a photon hit with a shudder but 
fail to change conformation (false negative). Were the opsin too flabby, it 
would change conformation to a Brownian blow and report a photon when 
there is none (false positive). The compromise is a protein soft enough to 
support photoisomerization with nearly 70% efficiency, yet stiff enough to 
resist thermal isomerization at body temperature less than once per 200 
years (Burns  &  Pugh, 2013). 

 This degree of thermal stability just barely suffices. To capture a rare 
photon in a patch of 10,000 rods requires an aggregate of 10 12  opsins. So, 

10–5R*/rod/integration time

 Figure 8.2 
  Baboon in starlight . A mammal needs to capture this photon-sparse image within 

200 ms. Because photons are captured according to a Poisson distribution, S/N of 

the image goes as square root of the number of photons. Therefore, if many photons 

were missed, the image would disappear in a dim haze; if photons were mimicked by 

random noise events, the haze would brighten, but again the image would disappear. 

These performance requirements — speed, reliability of photon capture, and S/N — set 

key design features of the rhodopsin molecule and the transduction cascade, also of 

rod structure, the rod array, and the neural circuit. Reprinted with permission from 

Sterling (2004a). Original image from Botswana; see Tkacik et al. (2011). 
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even though opsin stoutly resists thermal blows, one molecule among this 
astronomical number inevitably receives an extra-hard jolt to set it off. This 
triggers the whole transduction cascade, causing a rod to falsely report a 
photon. The thermal event rate per rod is about 0.0024R*/200 ms, so 
summed over all rods in the patch, it is about 24R*/200 ms. Objects in star-
light are about fivefold brighter than this. Consequently, an image such as 
that shown in   figure 8.2  emerges above a noisy haze — but just barely. In 
short, opsin ’ s thermal stability sets an absolute threshold for vision (Naar-
endorp et al., 2010). 

 To catch the rare photon, a rod packs opsins densely in quasi-crystalline, 
planar arrays on discs of intracellular membrane that orient perpendicular 
to the light path (  figure 8.3 ; Liang et al., 2003). Each disc is a double mem-
brane with opsins on both outer faces that provide about 80,000 opsins 
(Liang et al., 2003). These fill only about 50% of the surface, allowing 10% 
for other transduction proteins and free space for proteins to diffuse, col-
lide, and transfer information. To improve the chance of catching the pho-
ton, the rod uses many discs, stacking them closely, nearly 40 per 
micrometer, along the outer segment (  figure 8.3 ). The mouse rod with 
about 800 discs baits its trap with 6  ×  10 7  opsins. These raise its probability 
of photon capture to about 0.4, and given opsin ’ s probability of 0.67 for 
isomerization, the probability that a photon reaching a rod will cause an R* 
exceeds 0.25.    

 A rod could improve photon capture by adding more discs. Indeed rods 
of certain creatures of the deep sea, where photons are profoundly sparse, 
do so. But thermal events increase proportionally with the number of 
discs (n); whereas the number of captured photons increases according to 
the law of diminishing returns because each disc added to the bottom of 
the stack is shielded by the discs above. So in mammals the upper limit is 
about 900 discs. Indeed, across mammals differing greatly in eye size, mouse 
to cow, outer segment length (number of discs) is conserved to within 
a factor of about 2 (Leibovic and Moreno-Diaz, 1992;   reviewed in 
Sterling, 2004a). 

 The outer segment diameter, slightly more than 1  μ m, is also conserved, 
thus requiring 10,000 rods to tile a patch that receives one photon per 
200 ms. An amphibian rod, being fivefold thicker, tiles this territory 
with only 400 rods, so the mammalian design costs more than 25-fold 
more cell membrane and ion channels. The payoff is speed: reducing vol-
ume accelerates the mammalian rod ’ s single photon response by 25-fold 
(Lamb  &  Pugh, 2006; Reingruber et al., 2013) — for reasons that we now 
explain. 
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 Figure 8.3 
  How a mammalian rod captures a photon .  Left : Isolated mammalian rod (rabbit). 

Outer segment (OS) contains a stack of about 900 membrane discs bearing densely 

packed molecules of rhodopsin. Inner segment (IS) contains mitochondria that fuel 

the sodium-potassium pumps that maintain the dark current. Cell body (CB) con-

tains instructions and machinery for synthesizing proteins; axon terminal (T) trans-

mits the single photon signal to a second-order neuron.   Bracket indicates level of 

longitudinal section to the right.  Middle :   Discs (D), each presenting two membrane 

surfaces, stack densely to increase probability that a passing photon will be cap-

tured.  ⊗  indicates site of one photon capture. Space between the disc stack and the 

plasma membrane allows longitudinal diffusion of cyclic guanosine monophosphate 

(cGMP) from site of photoisomerization. Mitochondria (M) pack densely in the in-

ner segment.  Right :   Curve shows cGMP sink at peak current. cGMP decrement at the 

initiating disc is modest, down less than 15% from the dark concentration. cGMP 

deficit spreads longitudinally away from the initiating disc as cGMP flows toward the 

sink. This distributes channel closings along much of the outer segment, preventing 

local saturation and allowing the hydrolysis of cGMP molecules at one disc to am-

plify optimally. This curve (truncated) is reprinted with permission from Gross et al. 

(2012). Images are from Townes-Anderson et al. (1985, 1988), reprinted from Sterling 

 &  Demb (2004) with permission. 
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 How the transduction cascade optimizes the single photon response 
 To generate a fast hyperpolarizing current following photon capture, cation 
channels must close promptly. This requires the rod to rapidly reduce its 
intracellular concentration of the small molecule, cyclic guanosine mono-
phosphate (cGMP), that opens the channel. The enzyme for hydrolyzing 
cGMP,  phosphodiesterase  (PDE) is among the most efficient enzymes known, 
its catalytic rate being limited by the time for diffusion of substrate to the 
catalytic site (Liebman et al., 1987; Leskov et al., 2000; Reingruber et al., 
2013). Since the time to reduce cGMP concentration reaches this lower 
bound set by physics, natural selection cannot accelerate catalysis. Instead 
it shrinks the rod diameter (d), thus shrinking intracellular volume as 1/d 2 . 
This shrinks correspondingly the number of cGMP molecules that must be 
hydrolyzed to reduce the intracellular concentration (  figure 8.4 ).    

 Now enters another key feature of protein circuits: cooperativity. The 
membrane cation channel binds three cGMP molecules to open. There-
fore, as cGMP concentration falls, the channel closure rises more steeply 
(figure 8.4). Greater speed could be achieved by still higher cooperativ-
ity, but a steeper curve (figure 6.3) would reduce the dynamic range over 
which cGMP concentration could modulate channel current. Coopera-
tivity matches other design features that set the spatiotemporal concen-
tration of cGMP, including its diffusion coefficient, spontaneous rate of 
hydrolysis, and rate of resynthesis. Threefold cooperativity matches these 
parameters to optimally exploit the evoked fall in concentration (Gross 
et al., 2012). 

 The single photon current rises sharply to mark the instant of capture, 
and decays more slowly as cGMP rises and closes channels (figure 8.4). 
Since S/N goes as the square root of the number of open channels, a current 
produced by a few channels with large conductance (~2 pS) would fluctuate 
substantially. So the rod membrane expresses many channels (~10 6 ) with 
small unitary conductance (0.1 pS) and low binding affinity (K d  ~ 20  μ M). 
By using many channels of low affinity, most ( ≥ 95%) can remain closed at 
a low dark concentration of cGMP (~4  μ M). This reduces the steady synthe-
sis of cGMP and the still costlier dark current yet still leaves open about 10 4  
channels to respond to a photon-induced fall in cGMP. This number of 
channels, each open for a short time, supports an S/N at 36 ° C of 6.8  ±  2.8 
(figure 8.1; Cangiano et al., 2012). 

 The reaction compartment between two discs spans only 30 nm (figure 
8.3), and the band of plasma membrane encircling it bears at most 10 open 
channels. So, how could 100 channels close? This feat requires the zone of 
low cGMP to extend longitudinally to reach more open channels (  figure 
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8.3 ). Concentration decays exponentially in space and time, so were the 
zone generated as a submillisecond event, like transmitter release (figure 
7.3), it would reach few channels. But cGMP hydrolysis persists long enough 
for the zone of low concentration to move far enough (several microme-
ters) to close the requisite number of channels. The optimum time course 
for the zone of low cGMP to close the necessary channels with the fewest 
hydrolyzed cGMP has been calculated — and it matches the time course of 
the measured response (  figure 8.4 ). 

 The single photon response achieves its optimal shape via three well-
coordinated processes: activation, deactivation, and recovery. Following 
opsin ’ s fast isomerization (within milliseconds), R* collides with transducin 
(G), activating it to G* that, in turn, activates the phosphodiesterase (PDE) 
to G*-PDE* to initiate cGMP hydrolysis. R* persists long enough to activate 
about 20 G* (Lamb  &  Pugh, 2006) and is then thoroughly deactivated in 
two stages with an overall time constant of roughly 40 ms. Once this is 
accomplished, the response time course depends on the accumulation and 
persistence of G*-PDE* molecules. G*  →  PDE* is catalyzed by a protein com-
plex on the membrane that regulates G protein signaling ( RGS complex  ), so it 
is fast. 

 The G*-PDE* complex persists far longer than R*, so it accumulates. 
When the current peaks at about 125 ms, about 70% of all G*-PDE*s pro-
duced are active simultaneously. This deepens the cGMP sink (  figure 8.3 ), 
which otherwise would tend to dissipate as it formed. G*-PDE* molecules 
continue to hydrolyze cGMP as the response decays, and deactivates gradu-
ally with a time constant of approximately 200 ms. 

 R* deactivates by multiple phosphorylations from  rhodopsin kinase  and 
then by capping with the protein  arrestin  (chapter 5). The kinase is restrained 
in darkness by a calcium binding protein ( recoverin ), but as channels close, 
intracellular calcium falls, triggering conformational change in recoverin 
that disinhibits the kinase. Calcium decreases because its entry via the 
channels is blocked and the existing calcium is vigorously removed by a 
sodium/calcium exchanger. Thus, early channel closings trigger the first 
deactivation step, which is completed within 40 ms. G*-PDE* deactivates 
when a GTP bound to G* hydrolyzes — catalyzed by the RGS complex . Since this 
complex governs both activation and deactivation, it critically shapes the 
single photon response. 

 As cGMP hydrolysis declines over 200 ms, the zone of low concentration 
continues to spread longitudinally. An additional process is needed to 
replace the hydrolyzed cGMP and restore its initial dark concentration. 
cGMP is synthesized continuously in darkness by an enzyme,  guanylate 
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  As the cGMP concentration falls, channels close more sharply to cause a steeply ris-
ing current.   Upper : These curves were calculated omitting the deactivation reactions. 

Channel curve was calculated for threefold cooperativity.  Lower : Steep current marks 

the instant of photon capture. Modified and reprinted with permission from Lamb  &  

Pugh (2006) and Gross et al. (2012). 
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cyclase , to replace its continuous loss from low-level hydrolysis. This enzyme 
is controlled by a guanylate cyclase activating protein (GCAP). But recovery 
following the single photon response cannot wait for this leisurely process, 
so the disc bears a faster GCAP that activates when calcium falls sharply due 
to channel closure. This couples to a faster cyclase that creates a  source  of 
cGMP to spread longitudinally, canceling the sink and thus speeding 
recovery. 

 In summary, the energy of a single photon is captured and amplified 
chemically by a protein circuit in a highly structured physical context: two-
dimensional diffusion of proteins on a disc; longitudinal diffusion of the 
final product ’ s sink and source; optimal shaping of source and sink to reach 
channels on the plasma membrane whose properties are themselves opti-
mized for binding affinity, cooperativity, and density. These close match-
ings of structure and function at the scale of nanometers to micrometers 
enhance efficiency. The chemical signal, optimized in space and time to 
physical limits, is now transmitted electrically across scores of micrometers 
to reach and then cross a synapse. 

 How the rod transmits  0  or  1  
 The rod in starlight over successive integration times signals only one of 
two values. In darkness it produces a high steady cGMP concentration sig-
naling:   000  . . .    Eventually a photoisomerization causes cGMP concentra-
tion to plummet, signaling   1  . Then cGMP recovers, again signaling 
  000   . . .   This representation is further sharpened by the cyclic nucleotide 
gated channel ’ s threefold cooperativity, so that   1   is ultimately encoded allo-
sterically as the synchronous closure of about 100 cGMP channels. Now a 
chemical   1   recodes to an electrical   1   with a sharply hyperpolarizing current. 
The latter is filtered by the membrane ’ s RC circuit and voltage-sensitive ion 
channels at the inner segment, producing a 3-mV hyperpolarizing voltage 
pulse with S/N of about 7 (  figure 8.5 ; Cangiano, 2012). This pulse spreads 
rapidly down the axon to the synaptic terminal.    

 The rod synaptic terminal, tonically depolarized in darkness, represents 
  000   . . .   as a steady release of vesicles from a single active zone, averaging 
about 20 vesicles per 200-ms integration time (Rao-Mirotznik et al., 1998; 
van Rossum  &  Smith, 1998). These deliver pulses of glutamate sufficient to 
close most of the postsynaptic cation channels on the dendritic tip. The 
synapse represents   1   when its 3-mV hyperpolarization causes a brief pause 
in release that allows postsynaptic channels to open and depolarize the 
second-order neuron (  figure 8.5;  Taylor  &  Smith, 2004). This scheme works 
for the average single photon response that exceeds the continuous vesicle 
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  How a rod transmits  0  or  1.  Left : Early stages of rod circuit. n rods converge on a 

bipolar neuron, each contacting a dendritic twig. Upper traces show the rod voltage 

response. Absorbed photon ( hv ) causes a discrete hyperpolarizing response of mean 

amplitude ~3mV and S/N ~7. The single-photon response varies in amplitude and 

time course. Traces from two other rods exemplify the noise that will be summed 

postsynaptically from ~20 rods along with the signal at the bipolar cell . Upper:  Trace 

indicates release of synaptic vesicles from rod synaptic terminal. Dark rate is ~100 

vesicles/s — signaling 0000. Hyperpolarization evoked by a photon briefly suppresses 

vesicle release — signaling 1.  Lower:  Trace shows rod bipolar current response. Tonic 

release closes cation channels in the bipolar dendritic tip; the pause in release opens 

these channels, allowing an inward current that evokes a brief burst of vesicle release 

at the bipolar terminal. The two smaller single-photon responses are absent from the 

bipolar cell ’ s current response and its vesicle release. These responses would be in-

distinguishable from the noise of 20 rods summed at the bipolar cell. Therefore, the 

bipolar cell employs a nonlinear mechanism that amplifies the larger responses more 

than the smaller ones. Anatomical diagram from Rao et al. (1994); voltage traces 

from Cangiano et al. (2012), modified and reprinted with permission; current trace 

from Berntson et al. (2004), modified and reprinted with permission. 
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noise by sevenfold. But what happens to responses that are smaller and more 
ragged, that is, less easily distinguished from the continuous noise (  figure 
8.5 )? 

 To discard smaller photon events would render the starlight image still 
sparser, but to transmit small events that are actually noise would make 
the image still noisier. Moreover, when rod signals are pooled to build 
an image like that shown in   figure 8.2 , a linear synapse would pool their 
noise as well. For example, 20 rods converging on their bipolar neuron  2   
through a linear synapse would increase noise as  √ 20 and efface many 
photon events. To address these challenges the rod synapse selectively 
amplifies the larger events, thus creating a threshold that removes noise 
before pooling (van Rossum  &  Smith, 1998; Taylor  &  Smith, 2004; Field  &  
Rieke, 2002  3  ). The nonlinear synapse transmits a high proportion of 
true R* and a low proportion of the continuous dark noise. In short, the 
rod integrates a graded signal but thresholds it to remove noise; and in so 
doing, it satisfies the design principle  combine analogue and pulsatile 
processing.  

 Rod in brighter light transmits a graded signal 
 Intensities from starlight through moonlight span three log units that 
deliver no more than one R* per rod per integration time, and in that 
regime a rod signals only   0   or   1  . But dawn and twilight provide multiple R* 
per rod, thereby increasing its S/N. Moreover, higher R* rates allow a briefer 
 “ snapshot ”  that captures faster motion. Daylight provides still higher rates 
of R*, which a rod continues to encode by reducing its chemical gain. Oper-
ating well into daylight with a quantum efficiency nearly twice that of 
cones, and occupying about 90% of the receptor mosaic, rods capture 10- to 
20-fold more photons than cones.  4   The rod ’ s greater S/N and speed in bright 
light both increase its information rate (equation 5.7), but then comes a 
puzzle: how could a synapse designed for   0   or   1   transmit these richer 
signals? 

 The terminal ’ s dynamic range of release rates does not increase in 
brighter light. Quite the opposite: light tends to hyperpolarize the terminal, 
reducing its mean rate from a maximum of 20 vesicles per integration time. 
Also, the integration time shortens, from roughly 200 ms to 100 ms, further 
reducing mean vesicle rate per integration time. So, although the rod active 
zone can modulate stochastic release to transmit a graded signal, its mean 
rate  < 10 vesicles per integration time would transmit with an S/N  <  3, that 
is,  <  √ 10. This could suffice for dawn and twilight but not for the rod ’ s S/N 
in daylight. 
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 To escape this conundrum, the rod terminal couples to neighboring 
cone terminals via electrical synapses (figure 7.10). A cone terminal con-
tains about 20-fold more active zones than the rod and thus modulates a 
higher mean vesicle rate (figure 11.9). This allows the cone terminal to 
transmit a higher S/N and use cone bipolar circuits specialized for this pur-
pose (figure 11.12). Thus, the rod synapse triumphs by versatility: (1) a 
chemical mode operates at high gain as a nonlinear filter to transmit   0   or   1   
nearly optimally; (2) a chemical mode operates at lower gain to transmit a 
coarsely graded signal; and (3) an electrical mode operates without gain or 
noise to transmit a finely graded signal into the cone synapse. 

 When the rod finally saturates in bright daylight, a few minutes predicts 
many hours of the same. Therefore, the rod shuts down its transduction 
machinery. Key proteins move off the discs and diffuse in bulk down to the 
inner segment (Calvert et al., 2006) where they park at low cost while the 
cones take over. A cone costs somewhat more to operate than a rod (see 
below), but distributes sparsely, comprising only 5% of the photoreceptor 
array. This seems to be another payoff for using the  “ backwards design ”  
that depolarizes tonically and hyperpolarizes to send a signal. It allows the 
large array needed for dim light to saturate and reduce its major costs, so 
that a far smaller array of modestly greater unit cost can provide far better 
performance (Fain et al., 2010). 

 How cone design provides a finer, faster image 
 The briefest comparison of   figure 8.6  to   figure 8.2  emphasizes how fine an 
image can be captured in daylight. So it is natural to ask, what features of 
cone design allow this?    

 The cone opsin molecule, like the rod ’ s, transduces a single photon, but 
the response is fivefold faster: about 25 ms to peak for cone versus   about 
125 ms for rod (  figure 8.7 ). This allows the cone a briefer snapshot that 
captures temporal frequencies up to 100 Hz (Lamb, 2013). The single pho-
ton response is far smaller than the rod ’ s (  figure 8.7 ), and in brighter light 
it becomes still smaller. Consequently, a cone with dark current and maxi-
mum response like a rod ’ s can sum many more R* during its integration 
time and thereby achieve a more finely graded signal. For example, captur-
ing 10,000 photons per 100 ms allows S/N of about 100, that is,  √ 10,000 
(Rose, 1974). These properties require modifications to the opsin molecule 
and all the other proteins in the transduction circuit, including the cGMP-
gated channel.    

 Modification starts with opsin. Once the chromophore has isomerized 
to R* and reported a photon, the opsin must reset by releasing the trans 
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chromophore and binding a fresh  cis . The trans diffuses to a nearby cell in 
the pigment epithelium where it is reset metabolically to  cis  and then 
returned to the photoreceptor layer to bind an empty opsin. A rod fails in 
very bright light because its opsin binds the chromophore so tightly to 
resist thermal bumps that it cannot release fast enough to keep pace with 
high rates  5   of R*. 

 Cone opsin supports the high release rates in bright light by binding its 
chromophore weakly. This makes cone opsin more vulnerable to thermal 
bumps, which is why a cone ’ s rate of thermal events exceeds the rod ’ s by 
1,000-fold (Fu et al., 2008). Moreover, the cone ’ s faster transduction circuit 
gives more noise from spontaneous hydrolysis of cGMP. Also, the faster 
cGMP channel gives more noise due to state transitions in gating (Angueyra 
 &  Rieke, 2013). All sources together give the cone a dark noise equivalent to 

 Figure 8.6 
  Baboon in daylight . Photons arriving at far higher rates than starlight (  figure 8.2 ) 

allow far better S/N with finer localization in space and time. For example, 10,000 

photons/100 ms set an upper bound S/N ~100 by integrating over 1  μ m 2  for 100 ms. 

Because each cone in a dense array sends a private output, the brain can resolve spa-

tial images up to 60 cycles per degree and temporal differences up to 100 Hz (chapter 

11). These opportunities for high performance (S/N, acuity, and speed) are boosted 

by rods but best exploited by a different photoreceptor design: the cone. Reprinted 

with permission from Sterling (2004a). Original image from Botswana; see Tkacik 

et al. (2011). 
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600R*/cone integration time, about 250,000-fold greater than the rod ’ s 
thermal rate per rod integration time (Burns  &  Pugh, 2013; Angueyra  &  
Rieke, 2013). 

 Clearly the cone transduction cascade is ill-suited for intermediate light 
levels (dawn/dusk) because the low rate of photon capture is swamped by 
the high rate of dark noise. But the cone is surrounded by 50 rods with far 
lower dark noise, so their electrical synapses set the cone terminal ’ s S/N 
(Borghuis et al., 2009). In daylight the cone ’ s rate of photon capture exceeds 
its dark noise and allows the cone terminal to be driven by fast, finely 
graded signals from its own outer segment. Several features of the cone 
protein circuit and subcellular architecture support this. 

 The cone ’ s high speed and low gain arise from several interrelated fea-
tures. R* lifetime is brief (cone ~3 ms vs. rod ~40 ms). This is due to faster 
phosphorylation by a faster kinase. G*-PDE* lifetime is also briefer (10 ms 
vs. 200 ms). This is due to a faster RGS9 complex  and more of it. Calcium turn-
over is faster (3 ms vs. 50 ms), as is regeneration of cGMP due to a faster 
GCAP driving a faster cyclase. Thus, all stages of the cone protein circuit 
accelerate to produce a sharper sink and a sharper source for cGMP (Burns 
 &  Pugh, 2013). Finally, the cone uses a light-gated channel that is modified 
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  Cone single photon response is smaller than the rod ’ s but faster. Left : Cone responds 

to photons of lower energy (longer wavelength, ~570 nm), whereas rod responds to 

photons of higher energy (shorter wavelength, ~500 nm). Reprinted with modifica-

tion and permission from Lamb (2013).  Right : Cone outer segment lacks internal 

discs and contains more plasma membrane per volume. The cone [cGMP] sink is 

established at inner surface of plasma membrane, closing local membrane channels 

rapidly, but with poor access to more distant channels. This speeds the cone single 

photon response but makes it smaller. 
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to more rapidly run through its allosteric state transitions (Angueyra  &  
Rieke, 2013). In short, the cone achieves a faster response by selecting faster 
proteins from the parts list. 

 Structurally, the cone lacks floating discs and instead locates the trans-
duction proteins on the plasma membrane, which folds finely to increase 
surface area (  figure 8.7 ). This reduces the distances between PDE*, cGMP-
gated channels, and cyclase, thereby focusing the zone of cGMP depletion 
on a small number of channels. This tighter localization reduces diffusion 
delays at the expense of gain. 

 In short, because two neuron types, rod and cone, divide the full range 
of environmental light intensities, each can sculpt its cellular structure on 
the scale of microns to serve more efficiently. On the scale of nanometers, 
each can optimize key proteins for activation, deactivation, and recovery, 
to work at just the right speed and gain. They match ratios and lifetimes to 
provide just the right amount of product for best S/N, and couple to chan-
nels of just the right properties. Each optimized design, rod or cone, carries 
particular disadvantages, but these are mitigated by the larger scheme: a 
retina that uses two specialized designs to get the best of both. 

 Whereas the rod chemical synapse transmits only at low S/N, the cone 
synapse transmits at higher S/N. Whereas the cone outer segment has lower 
S/N, the rod outer segment has higher S/N. So cross-coupling allows them 
to match their advantages for each condition and avoid their disadvan-
tages. This duality carries forward on the scale of neural circuits that cross 
the retina to the ganglion cells which serve as a final common pathway for 
starlight and all brighter levels (see figure 11.20). Now we can ask, what are 
the costs of maintaining a dual system, rod and cone, especially since each 
is designed  “ backwards ”  to close channels in response to light. 

 Economics of mammalian phototransduction 

 There are two energy costs to transducing a photon. The first is powering 
the chemical amplifiers that rapidly hydrolyze and resynthesize cGMP. The 
second is powering the ionic currents that generate electrical signals and 
transmit them at synapses. 

 The chemical amplifiers are cheaper. Following photon capture in a rod, 
20 ATP are used to activate 20 G* and 3 ATP to inactivate R* via a kinase. 
Following its activation, PDE* hydrolyzes cGMP at a high rate, and that 
requires regeneration by guanylate cyclase, costing 2 ATP per cGMP. In 
darkness the chemical amplifier is driven steadily by noise, and the static 
guanylate cyclase consumes only 6  ×  10 5  ATP s  – 1 . However, in light, the 
dynamic guanylate cyclase consumes up to 10-fold more ATP s  – 1 . At its 
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  Chemical amplification in a mouse rod uses far less energy than electrical signaling. 
Upper : Outer segment chemical processes (activation, deactivation, and recovery) are 

cheap and increase with light level whereas restoring ions that pass through outer 

segment channels is expensive and decreases with light level, given as R* rod  – 1  s  – 1 . 

 Lower : The contribution of inner segment ion channels to total energy consump-

tion. The cost of presynaptic calcium current declines with increasing light level, 

but the cost of I h  current rises. Thus, the inner segment ’ s electrical circuits consume 

a significant proportion of the total rod ’ s total energy, particularly at higher light 

levels. Reprinted with permission from Okawa et al. (2008). 
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highest rate the cyclase costs at least 60-fold more ATP per R* than R* + G*, 
reflecting PDE* ’ s higher gain (  figure 8.8 ). Yet, compared to these chemical 
amplifiers, the electrical one costs far more (  figure 8.8 ).    

 Most energy is used by sodium pumps in the inner segment to maintain 
electrical currents in the outer segment (  figure 8.8 ). The pumps remove the 
sodium that enters via cGMP-gated channels. They also supply energy to 
remove the calcium that enters this way, by maintaining the sodium gradi-
ent that drives sodium/calcium exchangers. In the dark this all costs about 
6  ×  10 7  ATP s  – 1 , 100-fold more than the chemical amplifier. However, the 
electrical cost declines as light closes channels and reaches zero when all are 
closed and the rod is saturated. Nonetheless, over most of the intensity 
range electrical signaling costs greater than 10 times that of chemical (see 
  figure 8.8 ). This is vividly apparent from the dense distribution of mito-
chondria and cytochrome oxidase at the inner segments which house 
the rods ’  sodium-potassium pumps (figures 8.3, 13.19), and it well exempli-
fies the principle of neural design  compute with chemistry  (because 
it ’ s cheaper). 

 The steady current through presynaptic calcium channels elicits steady 
vesicle release and this adds to the cost (  figure 8.7 ). As the rod hyperpolar-
izes in light, the presynaptic calcium channels close, but most of this saving 
is negated by a negative feedback mechanism; I h  channels opened by hyper-
polarization, admitting sodium ions at the rod inner segment. Conse-
quently, the cost of electrical currents in the inner segment is relatively 
constant across all light levels (  figure 8.8 ). Recycling and refilling a synaptic 
vesicle is a mainly chemical process so it costs less (Attwell  &  Laughlin, 
2001), 10 6    ATP per second at the tonic release rate of 100 s  – 1 . 

 In darkness the rod array accounts for half of all the oxygen consumed 
by retina. However, as light reduces the outer segment current the rod ’ s 
share falls to 10%, freeing resources for the retina ’ s cone circuits to encode 
information at much higher rates (chapter 11). Thus, savings that accrue 
from rod saturation are immediately invested in better vision. 

 The individual cone costs somewhat more than a rod. First, whereas the 
rod ’ s circulating current shuts down daily for hours, the cone ’ s current cir-
culates ceaselessly. Second, the cone ’ s considerable dark noise involves 
tonic activity of all components of the transduction cascade (activation, 
deactivation, and recovery). Third, the cone ’ s greater speed means turning 
over all the transduction components at a higher rate. Finally, the cone 
signal encodes far more bits per second, so it needs a larger synaptic termi-
nal with 20-fold more active zones that release nearly 20-fold more vesicles 
(see chapter 11). The larger terminal needs a thicker axon with about 
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20-fold more microtubules that occupy an approximately 20-fold greater 
cross-sectional area (figure 11.9). Despite its greater unit costs, the cone 
array is small enough (10% of the rod array) that the overall cost is 
comparable.  6   

 In summary, the mammalian rod matches protein components and 
structure across many levels to improve efficiency. Here, we considered: (1) 
outer segment length and volume; (2) numbers of key transduction pro-
teins on a disc, their molecular ratios, and lifetimes; (3) functions of the 
disc; (4) number of cGMP-gated channels; (5) channel binding affinity, 
cooperativity, and conductance; and (6) space in the photoreceptor mosaic. 
These features all cooperate to set transduction efficiency, gain, S/N, and 
bandwidth for a particular environmental state (starlight). The design 
achieves most of the amplification and filtering by allosteric protein chem-
istry, which is locally fast and cheap, leaving the final stage for expensive 
electrical currents to transmit fast over distance. 

 The cone does the same for a different state (daylight) by drawing suit-
able proteins from the parts list and modifying the structures in which they 
are housed. Then, to cover the intermediate light levels (around dawn and 
dusk), the two cell types cooperate. 

 Thus, for rod and cone various biophysical factors jointly set the spatio-
temporal integration of photons that structures the information packet to 
be relayed forward. This, in turn, determines many features of the down-
stream neural circuits as will be discussed in chapters 11 and 12. Now we 
turn to fly phototransduction, where a different set of proteins are adapted 
to meet a fly ’ s need for speed. Although these circuits work  “ forwards ”  by 
opening channels on demand, they turn out to be less energy efficient than 
the  “ backwards ”  design of rods and cones. 

 Phototransduction: Fly 

 A fly photoreceptor encounters the same physical constraints as mammal. 
First, dim light provides sparse photons — which must be captured effi-
ciently by densely packing an opsin that resists thermal bumps. The fly 
photoreceptor contains about 3  ×  10 7  opsins, each binding its chromophore 
tightly for thermal stability. Although it has half as many opsins as a mouse 
rod, the fly eye superimposes the receptive fields of six photoreceptors (fig-
ure 9.1) so that each sampling point (image pixel) is covered by a similar 
number of opsins (~10 8 ), with similar rates of thermal events. 

 Second, because bright light provides photons at high rates, their cap-
ture requires opsin molecules that replace their spent chromophore 
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promptly. A fly opsin does not release its  trans  chromophore but clasps it 
tightly, holding it such that a second photon converts  trans  back to  cis . This 
 photoreisomerization  allows a fly opsin to clasp its chromophore tightly to 
resist thermal knocks in dim light (like a rod) and to regenerate it to  cis  at 
high rates in bright light (like a cone). Thus, a fly makes do with a single 
receptor type. 

 Third, a fly photoreceptor encounters the same range of contrasts in 
natural scenes over the same wide range of mean light levels ( > 10 6 ). In dim 
light a fly, like a mammal, uses single-photon sensitivity plus broad spatial 
and temporal integration to capture a coarse image (  figure 8.2 ) whereas in 
bright light it uses finer spatial and temporal integration to capture spatial 
detail and low contrasts (figure 8.6). 

 Fourth, image motion reduces the number of photons reaching a photo-
receptor from a particular feature in the field and, because a photoreceptor 
integrates over time, motion also blurs the image A blowfly moves fast, 
turning at thousands of degrees s  – 1 , and, although it partially stabilizes the 
image with rapid, compensatory head movements (van Hateren  &  Schils-
tra, 1999), motion across the receptor mosaic still reaches hundreds of 
degrees s  – 1 . Such fast moving images are severely blurred in mammals 
because of the slower mechanism for phototransduction. Consequently, 
when our brief saccadic eye movements impel our gaze across a scene at 
hundreds of degrees s  – 1 , our brain suppresses vision (Burr, 2004). 

 But for a fly, high image speeds are the norm, so a fly photoreceptor 
must use every opportunity to reduce its integration time. In dim light the 
fly ’ s single photon response is 5 times faster than a rod ’ s (  figure 8.1 ). In 
bright light a blowfly photoreceptor ’ s electrical response to a brief flash 
starts within 3 ms and completes within 12 ms. This exceptional speed 
enables a blowfly to resolve flicker up to 300 Hz whereas we stop at 60 Hz. 
So, how does a fly photoreceptor respond so quickly, and at what cost? 

  Speed is achieved with a radically different design  
 Let us recall why the rod single photon response is slow. The smallest reac-
tion compartment, the cytoplasmic space between two discs, is relatively 
large, about 2  ×  10  – 17  L. Therefore to significantly change the concentration 
of the second messenger cGMP requires hydrolysis of many molecules. 
Although the hydrolytic enzyme, PDE, is fast, concentration changes 
slowly. Moreover, the change spreads slowly within a still larger reaction 
compartment, the outer segment, to close more distant channels. Recovery 
is slow for the same reasons. The rod ’ s larger compartment allows recruit-
ment of many channels, thereby increasing S/N, but speed is sacrificed for 
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  A microvillus contains the complete transduction circuit and generates discrete re-
sponses to single photons .  Upper left : A fly photoreceptor forms its photoreceptive 

waveguide from microvilli. Cross section of the waveguide showing the microvilli 

densely packed in a regular array.  Upper right : Single photon responses produced by 

microvilli. Four recordings of photoreceptor membrane current, each showing the 

brief pulse of inward current produced when one of the photoreceptor ’ s 30,000 mi-

crovilli transduced a photon. Arrow indicates the 1-ms stimulus. Note the variations 

in response latency, amplitude, and duration.  Lower lef t: Organization of the trans-

duction circuit at the microvillus membrane. The circuit ’ s proteins R* (activated rho-

dopsin); G q  comprising  α ,  β , and  γ  subunits; phospholipase C (PLC); protein kinase C 

(PKC); and the TRP ion channel are held together by the microvillus membrane and 

the scaffolding protein INAD. Black dot indicates a molecule of PIP 2  (phosphatidyl 

inositol biphosphate) in the inner leaflet of the microvillus membrane.  Lower right : 
The transduction circuit ’ s mechanical response to a photon. Activated PLC cleaves 

PIP 2  into diacylglycerol (DAG) and inositol triphosphate (IP 3 ). DAG remains mem-

brane bound and IP 3  floats free. Neighboring phospholipids move to close the gap, 

so the membrane contracts. Photoreceptor drawing adapted from Hardie  &  Rhagu 

(2001) with permission. EM of fly microvilli and recordings of single photon re-

sponses courtesy of Roger Hardie. Diagrams of transduction circuit and its mechani-

cal response based on Hardie  &  Postma (2008) and Hardie  &  Franze (2012). 
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gain and reliability because diffusion over these distances is slow. A fly pho-
toreceptor is intrinsically faster because, to maximize concentrations and 
minimize diffusion delays, it shrinks its reaction compartment to the mini-
mum, a  microvillus  (  figure 8.9 ) that is just large enough to transduce a single 
photon.    

 Transduction in a microvillus is faster for several reasons (Hardie  &  
Postma, 2008). First, all of the molecules needed to produce an electrical 
response to an R* are kept in close proximity. Second, within a microvillus 
volume of about 2  ×  10  – 18  L, one extra molecule or ion raises concentration 
by 1  μ M. Consequently, small numbers of ions and molecules drive reac-
tions at high rates. Third, the concentration gradient driving the key ion, 
calcium, into the compartment is large. Fourth, the ion channel that gener-
ates the compartment ’ s electrical response is not opened chemically by 
ligand binding, but  mechanically  by membrane tension (Hardie  &  Franze, 
2012). Fifth, this channel drives a positive feedback that, once initiated, 
rapidly opens most of the compartment ’ s remaining ion channels. Sixth, a 
negative feedback terminates the electrical response promptly by inactivat-
ing these channels. 

 Now some explanation. Chemical amplification starts like a rod. A fly R* 
activates about 5 G proteins in 20 ms and is then inactivated by arrestin 
binding.  7   This is fewer than activated by a rod R* (about 20 G*), but the rod 
takes longer, meaning that the fly ’ s first stage in amplification sacrifices 
gain and S/N for speed. At the next stage of amplification, the fly ’ s G* acti-
vates one molecule of a hydrolytic enzyme that breaks down its substrate at 
a high rate — as in a rod. However, the fly ’ s enzyme,  phospholipase C  ( PLC ), 
does not attack small molecules diffusing in a cytoplasmic compartment; 
rather, it cuts a larger molecule confined to the inner leaflet of the microvil-
lus membrane, the phospholipid  PIP 2  . The cut releases a bulky component, 
 inositol triphosphate  ( IP 3  ), into the microvillus lumen along with protons. 
PLC* is held against the inner membrane leaflet by the cytoskeletal protein, 
 INAD  ( inactivation no afterpotential D ) so that it is near abundant substrate —
 PIP 2  forms 2% of the inner lipid leaflet. This allows a PLC* molecule to work 
quickly, releasing about 100 IP 3  molecules in 50 ms. 

 Now comes a more radical difference. The fly photoreceptor ’ s ion chan-
nel,  TRP  ( transient receptor potential ), is not opened chemically by binding a 
diffusible messenger, but mechanically by membrane tension (Hardie  &  
Franze, 2012). When PLC* releases IP 3 , the membrane shrinks and stretches; 
and because INAD binds both PLC and TRP, most shrinkage occurs around 
a channel (  figure 8.9 ). Were this all, nothing would happen because the 
TRP channel is insensitive to stretch. However, protons that were released 
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simultaneously with IP 3  rapidly sensitize TRP channels. At a critical mem-
brane tension the TRP channel snaps open, admitting sodium and calcium 
ions at 10 times the rate of a rod cGMP channel. 

 Driven by a high concentration gradient across the membrane (10 6 -
fold), calcium ions surge into the tiny microvillus, rapidly raising the inter-
nal concentration from about 0.15  μ M to above 1  μ M. This sudden increase 
in calcium further sensitizes TRP channels, so more open, which further 
increases calcium, and so on until about 15 of the microvillus ’ s 20 channels 
have been opened (Hardie  &  Postma, 2008). Thus, as with an action poten-
tial, runaway positive feedback initiates a rapid surge of inward current. 
Moreover, to produce a brief pulse, the current is quickly shut off by inacti-
vating channels. 

 As the current entering through TRP channels is peaking, calcium inside 
the microvillus is rising above 50  μ M, heading for 500  μ M. At these higher 
concentrations, calcium closes and inactivates TRP channels via a low-
affinity mechanism that depends on phosphorylation by  protein kinase C  
(PKC). Because each TRP channel also binds a PKC molecule via INAD, all 
open TRPs are closed within 15 ms. PKC also inactivates another 
near neighbor, PLC*, to prevent it from unnecessarily depleting the stock of 
PIP 2 . Closure of the microvillus ’ s last TRP channel completes the fly ’ s 
response to R*, a mini – action potential that rises clearly above the noise for 
about 20 ms to generate a single photon response which is one fifth the 
duration of a mouse rod ’ s. All that remains is to reset the microvillus to 
transduce another photon. To remove TRP inactivation, sodium/calcium 
exchanger molecules in the microvillus membrane return the lumen ’ s cal-
cium concentration to its original nanomolar level. This takes about 100 
ms, and during this  dead time  the microvillus is refractory: it cannot respond 
to R*. 

 The fly ’ s design achieves high speed and high gain by approaching phys-
ical limits. The microvillus is irreducibly small. Extending 1 – 2  μ m,  8   it can 
be no shorter because it forms the waveguide that traps photons. A shorter 
structure with the same refractive index would leak photons.  9   The microvil-
lus inner diameter, about 50 nm, suffices to house the cytoskeletal scaffold 
needed to support a cylindrical tent of membrane. To minimize noise and 
delays from diffusion, most interacting molecules are held adjacent by the 
scaffold molecule INAD. Protein molecules that must diffuse, G* and PIP 2 , 
are confined to the membrane so that they can save time by diffusing in 
two dimensions, rather than three. For speed and S/N, the output of the 
chemical amplifier couples to ion channels mechanically through changes 
in membrane volume. This volume change is an efficient integrator of 
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PLC ’ s chemical output because it responds instantaneously to the release of 
each IP 3 . With such mechanical integration, signal loss and temporal delay 
due to diffusion are negligible. 

 But the fly ’ s microvillar design has disadvantages. Positive feedback 
applied to a small compartment is risky. As in a very thin axon, stochastic 
opening of a single channel can exceed threshold and trigger a false posi-
tive (chapter 7). The microvillar design prevents this dark noise by incorpo-
rating an AND gate. The TRP channel does not open to a proton, nor does 
it open to tension — but only to their coincidence, a proton AND tension. 
Thus, when one TRP channel opens spontaneously in response to thermal 
blows, it cannot engage other channels for positive feedback because they 
are not primed by protons. In short, the inclusion of molecular logic allows 
positive feedback in a small compartment for speed and high gain while 
preventing one source of noise. However, the fly ’ s microvillar design intro-
duces other noise sources. 

 Noise in microvillar transduction 
 Although R* registers a photon with nanosecond precision, the microvil-
lus ’ s electrical response varies stochastically in latency, rise time, amplitude, 
and duration (  figure 8.9 ). Latency varies between 30 and 100 ms, depend-
ing on the time taken for about 5 G* to activate about 5 PLC*, and for these 
PLC* to cleave enough PIP 2  to open the first TRP channel. Amplitude varies 
due to fluctuations in the small numbers of G*, PLC*, and TRP used for 
amplification. Response duration varies due to fluctuations in the positive 
and negative feedbacks that shape the electrical response. A rod signal is 
less noisy because it is produced more slowly with many more molecules, 
and does not use positive feedback to boost gain. 

 Random variations in timing reduce the information carried by a single 
photon response. Even so, fly single photon responses are randomly dis-
persed over a time interval that is less than half the duration of a rod ’ s 
response, giving the fly better temporal resolution. At higher light levels, 
when photons are transduced at higher rates, currents from several micro-
villi coincide to produce a continuous analogue signal. Now random fluc-
tuations in both amplitude and timing reduce S/N, and the latency 
fluctuations reduce bandwidth by doubling the duration of the flash 
response. Consequently, the noise in a microvillus ’ s response to a photon 
continues to reduce information at higher light levels. 

 Fly and mammal use same coding strategies to encode a finer, faster image 
 As photons become abundant, the image ’ s S/N improves, making finer 
detail visible (  figure 8.6  vs. 8.2). Fine detail is susceptible to motion blur at 
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a slow  “ shutter speed, ”  so now a photoreceptor responds more briskly. The 
fly photoreceptor, like the cone, accelerates its response to optimally bal-
ance motion blur versus photon noise and thus maximize information 
uptake (figure 9.11; van Hateren, 1992b). The fly ’ s flash response reduces in 
duration threefold to produce the threefold increase in bandwidth that 
maximizes information rate in daylight (  figure 8.10 ).    

 Both fly and cone photoreceptors use an identical coding strategy: each 
adapts its gain to the local mean intensity,  I , to code  contrast.  Contrast is 
  Δ I/I , where   Δ I  is the difference between the intensity at the receptor and the 
local mean. Photoreceptors code contrast using the hyperbolic I/O function 
of protein and electrical circuits (figures 8.11, 6.3, and 6.9). In the func-
tion ’ s logarithmic midregion, changing the light intensity by a fixed pro-
portion produces a constant change in membrane potential,   Δ R.  Thus, a 
given contrast,   Δ I/I , is coded by a constant response,   Δ R , independent of the 
mean intensity  I . 

 Coding contrast simplifies visual processing in two ways. First, dividing 
by the mean reduces a 10 6  range of light intensities to proportions that are 
better accommodated within a neuron ’ s limited response range. Second, 
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  A faster response codes higher frequency signals. Left : Response to a bright flash 

delivered in daylight is completed 3 times faster than the response to a dim flash 

delivered in darkness. 1-ms flash delivered at time  t  = 0, response normalized to 

peak amplitude.  Righ t: Faster response in bright light enables photoreceptor to code 

higher temporal frequencies,  f , than slower response in dim light. Arrow shows the 

increase in bandwidth. Plots are of signal power versus frequency, obtained by squar-

ing the Fourier transforms of the flash responses and normalizing peak power to 1. 

Bandwidth is defined as frequency at which 1/ √ 2 of the input power is transmit-

ted (i.e., 0.5 amplitude transmission) but photoreceptor is still responding at  f  = 3 

 ×  bandwidth and transmitting approximately 10% of power. Plotted from data of 

Tatler et al. (2000). 
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coding contrast helps achieve one of vision ’ s goals, to identify the same 
object under different conditions of illumination. Because most natural 
objects generate an optical signal by reflecting and/or transmitting a par-
ticular fraction of the light that falls upon them, an object that is differently 
illuminated sends a different signal to the eye. Dividing by a measure that 
depends on local illumination, the local mean intensity, factors this out. 
The resulting contrast signal depends not on illumination, but on an 
object ’ s physical properties, its reflectance and transmittance.  

 Thus, contrast coding starts the process of  generalization , whereby the 
visual system assigns signals that differ because of viewing conditions 
(e.g., a face viewed in different light or from different angles) to the 
same object. 

 The logarithmic region for coding contrast spans about 2 log units of 
background intensity. It is the same for both fly and vertebrate and suits the 
intensity range that both encounter in an evenly illuminated natural scene 
(  figure 8.11 ; Normann  &  Werblin, 1974). But during the day the earth ’ s 
turning changes the background light level by 5 log units, far exceeding 
this fixed function ’ s range. In addition, merely stepping from shade into 
sunlight or flicking the eyes between bright highlights and shady recesses 
takes the signal out of range. Fly and mammal solve the problem with simi-
lar strategies, one for slow changes in background and another for 
faster ones. 

 As noted for rod, the fly photoreceptor adapts to slow increases in back-
ground by reducing the numbers of transduction proteins in the reaction 
compartment. 10  Over many minutes, G proteins and TRP channels leave 
the microvillus to reduce gain, and arrestin moves in to terminate responses 
more quickly (Hardie  &  Postma, 2008). The reduction in response duration 
increases bandwidth, thereby increasing information rate by 28% (Burton, 
2002). Cone and fly photoreceptors adapt to faster, briefer changes in back-
ground using the same gain control signal, a rapid change in calcium ion 
influx that tracks the activity of their channels.    

 The cone adapts by averaging the calcium signal in the outer segment, a 
significant volume, and feeding it back to several control points in the 
transduction circuit to accelerate deactivation and recovery (Burns  &  Pugh, 
2013). This reduces the amplitude and duration of changes in [cGMP] that 
modulate channels, so reducing gain and increasing bandwidth in bright 
light. Lowering the gain shifts the I/O function to a higher intensity range 
while retaining the same two log unit range for contrast coding. The fly 
photoreceptor shifts similarly also using calcium to control gain  11   
(  figure 8.11 ). 
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 Every time a microvillus transduces a photon, it admits a surge of cal-
cium ions, and it could use these to reduce its gain. However, a microvillus 
transduces photons stochastically, and, being just one of 30,000 microvilli, 
its rate and S/N are low. Consequently, a microvillus receives too little infor-
mation about the mean to control its own gain. Instead, a fraction of each 
inward calcium surge diffuses from a microvillus into the cell body. This 
larger reservoir maximizes S/N by averaging the calcium concentration 
across all microvilli, over an appropriate time window, and then updates 
the gain of every microvillus. 

 Calcium diffuses from the cell body into the microvillus lumen. Because 
the reservoir is vast and the microvillus is tiny and contains just a few 
sodium/calcium exchangers, the lumen ’ s calcium concentration cannot fall 
below that of the larger reservoir. As a result, the reservoir sets a baseline 
calcium concentration in the lumen that represents the combined photon 
rate of all microvilli. As this baseline rises with light intensity from about 
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  Cone and fly photoreceptors encode contrast using the same analogue primitive, 
the midregion of a hyperbolic input/output (I/O) function.  Voltage response is pro-

portional to log intensity. When flashes are presented in darkness (solid circles), 

sensitivity is high, and the logarithmic region (indicated by the straight line) covers 

the lowest intensity range. Adapting a photoreceptor to a steady background low-

ers sensitivity, and the I/O curves (open circles) shift to keep the response to the 

background (dashed line) in the logarithmic range. The brightest background shifts 

the curve by 3 – 4 log units, enough for full sunlight. Turtle cone, replotted from 

Normann  &  Perlman (1979). Blowfly photoreceptor, replotted from Mati ć   &  Laugh-

lin (1981), with permission. In fly the slope of the curve determined with dimmest 

flashes is depressed because a fully dark-adapted photoreceptor light-adapts during 

the rising phase of its response (Mati ć   &  Laughlin, 1981). 
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0.15  μ M in the dark to about 10  μ M in daylight, TRP channels are desensi-
tized. This form of desensitization is slow enough to allow the fast calcium 
rise triggered by an R* to engage positive feedback within the microvillus to 
produce a single photon response. But with some channels desensitized, 
fewer are opened, until in full daylight a photon opens just one or two 
channels for a 3-ms response. Compared to a photon in dim light opening 
about 15 trp channels for an approximately 30-ms response, the gain is 
about 100 times lower, which shifts the photoreceptor ’ s I/O function by 
two log units (  figure 8.11 ). 

 This adaptation mechanism provides another advantage. Increasing 
luminal calcium concentration moves a microvillus closer to threshold for 
its minispike. Averaged across many microvilli, this tighter clustering of 
briefer responses increases peak response amplitude and temporal preci-
sion, thereby increasing S/N, bandwidth and hence information rate (  figure 
8.12 ). With a bandwidth in excess of 100 Hz, a fly photoreceptor codes over 
1,000 bits s  – 1 , but information coded at these high rates is expensive.    

 Economics of fly phototransduction 

 Space 
 The fly design, which packs all transduction components into each micro-
villus and gathers all microvilli to form a waveguide, requires most of the 
supporting components to locate elsewhere. Consequently, the power sup-
ply (sodium – potassium pumps that charge the ionic batteries), the meta-
bolic furnace that produces ATP (mitochondria), and the regulators of the 
electrical gain and bandwidth (voltage-gated potassium channels) are all 
placed alongside the microvilli, in the cell body (  figure 8.1 ). The latter also 
contains machinery for protein synthesis and other housekeeping tasks. 

 To transmit its information-rich analogue signals, the fly photoreceptor 
requires synapses with many active zones (chapter 9). The challenge resem-
bles that of the cone terminal, but fly information rates are far higher, and 
this requires many more active zones and more space. Also, vesicle release 
by a fly photoreceptor terminal is triggered, as elsewhere, by calcium enter-
ing via voltage-gated channels (chapter 7). Consequently, the photorecep-
tor synapse should be isolated from the transduction apparatus where 
calcium ions are used for gain control. 

 To meet these needs, the synaptic terminal locates at the end of an axon, 
well away from the transducer/waveguide and cell body. Like mammalian 
photoreceptors, the fly photoreceptor is elongated, with the transducer/
waveguide alongside the cell body at one end, and the synaptic terminal at 
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 Figure 8.12 
  Bit rate, energy cost, and energy efficiency in fly photoreceptors . Photoreceptors of 

different species perform the same task but have different lengths.  Drosophila mela-

nogaster  ( D.m ),  Drosophila virilis  ( D.v ),  Calliphora vicina  ( C.v ),  Sarcophaga carnaria  ( S.c ) .  

 Upper left : Bit rates encoded as analogue signals increase with photon rate and are 

higher in longer photoreceptors.  Inset : photoreceptor lengths.  Upper right : Energy 

consumption rises with photon rate from a baseline in the dark, the fixed cost. Costs 

are higher in longer receptors, but the proportions of signaling to fixed costs are simi-

lar for all receptors (vertical arrows).  Lower left : Energy cost per bit falls with bit rate 

as the fixed cost per bit falls and gain control increases bandwidth and reduces en-

ergy cost per photon. Thus, efficiency rises.  Lower right : Shorter receptors with lower 

information capacities are more efficient. Replotted from data of Niven et al. (2007). 
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the other end (  figure 8.1 ). Although its microvilli are irreducibly compact, 
there must be many of them to achieve the necessary S/N. They require a 
long photoreceptor. As a result, a blowfly ’ s photoreceptors make up 4% of 
its body mass. 

 Energy 
 In darkness, individual photoreceptors in mammal and fly consume similar 
amounts of energy (figure 8.12; Fain et al., 2010; about 1  ×  10 8  ATP s  – 1 ). The 
early chemical stages require ATP to regenerate the molecules destroyed by 
hydrolysis, and PIP 2  costs somewhat more than cGMP. But the greater cost 
is electrical: powering the ion pumps that maintain the concentration gra-
dients that drive ions through channels. Inward fluxes of sodium and cal-
cium are high for mammal and fly because both types keep channels open 
in darkness. Their current depolarizes the membrane potential to voltages 
where synapses transmit single photon signals with high gain (  figure 8.12 ). 

 In light, the costs for fly and mammal move in opposite directions, the 
fly opening channels and mammal closing them. Thus, at a photon rate of 
500 s  – 1  the fly photoreceptor consumes 1.5  ×  10 8  ATP s  – 1 , nearly 5 times 
more than a rod (  figure 8.12 ,  D. melanogaster , cf.   figure 8.8 ). At 10 5  photons 
s  – 1 , near the top of a cone ’ s range, the fly photoreceptor consumes 3  ×  10 8  
ATP s  – 1 , 10 times more than the cone. The latter, because it has a similar 
bandwidth and photon rate, should code information at a rate similar to 
the fly, about 200 bits s  – 1 .  12   Thus the mammal photoreceptor ’ s  “ backwards ”  
design is 10 times more energy efficient. However, its biggest advantage is 
that with two classes of photoreceptor, the majority are rods that shut down 
in bright light (Fain et al., 2010). 

 A fly photoreceptor has every reason to be energy efficient. A blowfly 
resting in sunlight uses 8% of its energy to power electrical currents in pho-
toreceptors. A fly saves some energy by regenerating its chromophore with 
a photon. The photon comes for free, whereas the mammal regenerating 
biochemically requires several ATP (Okawa et al., 2008). Photoregeneration, 
being direct and quick, keeps pace with photoisomerization. Even in bright 
sunlight, half of a fly ’ s chromophores are  cis  and poised to transduce, 
whereas in a cone only 1% are  cis , and in a rod, practically none. More sig-
nificantly, by controlling gain and bandwidth to match  photon rate  (the rate 
at which a photoreceptor transduces photons), a fly photoreceptor seam-
lessly converts from rod-like to cone-like function. This  “ neatening up ”  
halves the number of photoreceptors a fly needs in its compound eye, so 
saving space, materials and energy. However, these advantages are offset by 
the inefficiencies introduced by the fly design. 
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 Three factors reduce a fly photoreceptor ’ s efficiency. First, transduction 
has intrinsically low quantum efficiency, because cylindrical microvilli 
pack rhodopsin less efficiently than the rod ’ s flat discs and the cone ’ s folded 
membranes. Second, signals amplified by positive feedback are noisier. 
Therefore, to achieve a given sensitivity and S/N, a fly photoreceptor must 
be larger. A larger neuron draws more current, and this increases energy 
cost. Third, and most significant, the fly ’ s one-type-fits-all design is inher-
ently inefficient. 

 Whereas a rod synapse can transmit in dim light with a single active 
zone, a fly photoreceptor cannot. In bright light, it must transmit at high 
rates like a cone, and that requires many active zones. Indeed, the fly pho-
toreceptor uses 45 active zones, twice that of a foveal cone (chapter 11). Yet, 
like a rod, the fly ’ s large synaptic terminal must be tonically active in the 
dark to transmit a single photon signal with high gain. As stated, this 
requirement is met by an inward current that depolarizes the photoreceptor 
by 10 – 15 mV, and this greatly elevates the dark cost. Thus, as engineers 
know (chapter 1), a component given two tasks seldom does both with 
optimal efficiency. 

 Unable to eliminate the inefficiency that comes with a one-fits-all 
design, the fly does the next best thing: it attempts to maximize the effi-
ciency with which it performs its allotted task. A photoreceptor ’ s function 
is to code and transmit the information it extracts from photons. Conse-
quently, structure and mechanism are adapted to reduce the cost of coding 
information at the rates needed for adequate vision. 

 Analogue information rate and efficiency 
 To code efficiently, a photoreceptor avoids the expense and inefficiency of 
spikes by coding directly in analogue (  figure 8.13 ). A fly photoreceptor ’ s 
information rate rises with light level according to equation 5.7, as S/N 
increases as square-root photon rate and calcium ’ s gain control widens the 
bandwidth (figure 8.13). Information rate reaches its maximum, a photore-
ceptor ’ s  information capacity , in full sunlight. Capacity varies among species 
and is highest in the longer photoreceptors of larger, faster flies (  figure 
8.12 ). The higher capacities are needed to code the faster moving images 
experienced by larger flies and, at 1,000 bits s  – 1 , are twice that of spikes (de 
Ruyter van Steveninck  &  Laughlin, 1996).    

 Irrespective of its ultimate capacity, a photoreceptor ’ s efficiency increases 
with rate (  figure 8.12 ). At low photon rates, and hence low bit rates, the 
signaling cost is small compared with the fixed cost of maintaining the rest-
ing potential in the dark (  figure 8.12 ). In this regime the efficiency rises 
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  Fly photoreceptor increases information capacity by increasing bandwidth and S/N . 

 Upper left : Response of fruit fly  Drosophila  photoreceptor to rapidly changing con-

trast of bright light is slower than that of fleshfly  Sarcophaga  photoreceptor.  Dro-

sophila,  therefore,   fails to signal at higher frequencies, as shown below.  Lower : A 

measure of S/N, log 2 (1 + S/N), plotted against frequency for both photoreceptors. 

 Drosphila  ’ s inability to respond to rapid changes restricts its signal to frequencies 

below 100 Hz.  Sarcophaga  ’ s quicker response generates signal out to 300 Hz; i.e., it 

has three times  Drosophila  ’ s bandwidth.  Sarcophaga  ’ s longer photoreceptor provides 

higher S/N at most frequencies. Plotting log 2 (1 + S/N) gives bits per Hz. Thus graph 

shows how with an increased bandwidth (more Hz) and a better S/N (more bits per 

Hz)  Sarcophaga  has capacity to code more information (figure 8.12). Adapted from 

Niven et al. (2007) with permission. 
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with rate as the dominant fixed cost is divided by increasing numbers 
of bits. Parallel arrays of proteins and synapses show this same behavior 
(figure 6.5). 

 At higher rates, signaling cost dominates (  figure 8.12 ). Nonetheless, effi-
ciency continues to rise as the photoreceptor adapts to higher photon rates. 
Calcium feedback increases the information per photon, by reducing 
latency dispersion and increasing bandwidth, and it also decreases the cost 
per photon, by reducing response amplitude and duration.  13   Thus, gain 
control makes a photoreceptor most efficient where efficiency is most valu-
able, at its highest bit rate (figure 8.12). Why then are the photoreceptors 
that achieve higher maximum rates, that is, have higher information 
capacities, less efficient than those that achieve lower maximum rates? 

 Capacity and efficiency 
 To increase the information capacity of its analogue signal, a neuron must 
increase its bandwidth and/or S/N (equation 5.7). A fly photoreceptor 
increases both (  figure 8.13 ). In doing so it loses efficiency. The fixed energy 
cost rises as (capacity) 1.5  and the total energy cost of operating at full capac-
ity rises as (capacity) 1.7  (Niven et al., 2007), These increases are unavoidable; 
they are dictated by biophysical and biochemical constraints on bandwidth 
and S/N.   

 Once the bandwidth of light-gated current has been increased by reduc-
ing the duration and latency of single photon responses, the next obstacle 
to achieving a higher information rate is the membrane time constant. A 
photoreceptor reduces membrane time constant by increasing the density 
of open potassium channels (equation 6.10). Membrane bandwidth 
increases in proportion to open channel density, as does information rate 
(equation 5.7). The energy cost also increases in proportion to open chan-
nels; consequently, when bandwidth is increased by reducing membrane 
time constant, efficiency is little changed. It follows that energy efficiency 
is lost primarily by increasing S/N. 

 To increase S/N, a photoreceptor must increase its photon rate. When 
operating at full capacity, in sunlight, there is no shortage of photons enter-
ing the photoreceptor, so to increase rate a photoreceptor ’ s microvilli must 
transduce more of the available photons. Because dead time limits a micro-
villus ’ s photon rate to about 50 s  – 1 , this can only be done by adding more 
microvilli (Howard et al., 1987; Anderson  &  Laughlin, 2000; Song et al., 
2012). These constraints explain why the high S/N  Sarcophoga  photorecep-
tor is 4 times longer than the low S/N  Drosophila  photoreceptor (  figures 
8.12, 8.13 ). A longer photoreceptor with more microvilli has a greater 



228 Chapter 8

membrane area, which increases fixed cost and signaling cost. These costs 
rise in proportion to maximum photon rate and hence  √ (S/N). However, 
information increases as log 2 (1 + S/N) (equation 5.7), so efficiency falls. A 
higher rate photoreceptor also needs more synapses in a larger terminal 
(chapters 9, 10, and 11), and their higher fixed and signaling costs decrease 
efficiency still further. 

 In summary, increasing S/N requires a larger photoreceptor with more 
microvilli and synapses. Costs increase as the square of S/N but information 
increases as the log(S/N). Thus, increasing a fly photoreceptor ’ s information 
capacity inevitably reduces efficiency. This fact has a profound influence on 
neural design. 

 An increase in cost with capacity punishes excess capacity 
 With fixed and signaling costs rising out of proportion to capacity, a bit of 
information costs more in a high-capacity cell. Fixed cost elevates cost per 
bit at low rates, and signaling cost elevates cost per bit at high rates (  figure 
8.12 ). It follows that an efficient design reduces the cost of all transmitted 
bits by eliminating excess capacity. Thus the capacity of an efficient photo-
receptor is matched to the information supplied by the eye ’ s optics. 

 Matching a photoreceptor ’ s information capacity to optical supply 
 The information presented to a photoreceptor depends on the optical qual-
ity of the retinal image and the speed of image movement. An image 
sharply focused by high-quality optics delivers more information than an 
image blurred by low-quality optics. Increasing image speed increases the 
rate at which a photoreceptor receives this information by presenting more 
parts of the image per second. 

 Differences in image quality and speed explain why a  Drosophila  photo-
receptor has fivefold lower information capacity than a blowfly photore-
ceptor, 200 bits s  – 1  compared with 1,000 bits s  – 1  (  figure 8.14 ).  Drosophila  ’ s 
small, low-quality eye has 5 times less spatial resolving power than a blow-
fly ’ s, and the poorly focused image moves more slowly because  Drosophila  
is less agile in flight. Consequently, a  Drosophila  photoreceptor receives 
information at a lower rate. By lowering capacity to match  Drosophila  
increases efficiency by sixfold (  figure 8.14 ). The saving is large because S/N 
is reduced (figure 8.13). But, given the large savings made by reducing S/N, 
why does a larger fly increase capacity by increasing S/N? Capacity increases 
in proportion to bandwidth at constant S/N, with no loss of efficiency. 

 S/N codes parts of a moving image that bandwidth cannot. As an image 
moves over a photoreceptor, each spatial frequency in the image is 
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converted into a temporal frequency at the photoreceptor according to a 
simple formula:  temporal frequency   = spatial frequency   ×   image speed . The sig-
nal delivered to a photoreceptor decays sharply with increasing temporal 
frequency for two reasons. The spatial frequency spectrum of a natural 
scene goes as 1/f 2 , and the roll-off is steepened by optical blur. Conse-
quently, when a photoreceptor extends temporal bandwidth to code faster 
moving images, it soon reaches a temporal frequency where the signal dips 
below the noise (  figure 8.14 ). Higher temporal frequencies are lost in noise 
and so, therefore, are the higher spatial frequencies they represent (van 
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 Figure 8.14 
  A photoreceptor must increase both bandwidth and S/N to retrieve spatial informa-
tion from a faster moving image. Left : The spectra of signal and noise in a photo-

receptor coding a slowly moving image .  Signal amplitude per Hz of temporal fre-

quency,  S ( f ) is plotted against temporal frequency,  f . This temporal spectrum,  S ( f ), is 

generated by the image of a natural scene moving across the photoreceptor. Accord-

ing to natural image statistics signal falls off steeply with increasing spatial frequen-

cy. Consequently  S ( f ) falls likewise, according to the scaling relationship  temporal 

frequency   = spatial frequency   ×   image speed . Photoreceptor signal  S ( f ) falls below photon 

noise (flat spectrum) at a temporal frequency  f max   = 50 Hz. Thus the photoreceptor re-

trieves spatial information up to a spatial frequency limit of  f max   /  image speed.   Right : 
Image speed is increased fivefold. To code the same spatial information the temporal 

bandwidth increases fivefold to 250 Hz. However faster movement reduces signal at 

each temporal frequency,  S ( f ), by spreading the spatial signal power over a fivefold 

wider range of temporal frequencies. Consequently noise is reduced to retrieve signal 

as indicated, and this requires an increase in S/N. 



230 Chapter 8

Hateren, 1992a,b). If the fly is to recover these finer spatial details, its pho-
toreceptors must increase their S/N and pay with a loss in efficiency.    

 The necessity of increasing S/N to code finer spatial detail explains why 
the longest photoreceptors in a fly retina are in the zone where spatial acu-
ity is highest. With more microvilli, these longer photoreceptors have 
higher photon rates and better S/N. They also have the wider bandwidth 
needed to code the higher temporal frequencies generated by the move-
ment of higher spatial frequencies. These necessary improvements in S/N 
and bandwidth translate into higher information rates (Burton et al., 2001). 
Such fine-tuning of photoreceptors across a single retina speaks to the 
advantages of matching capacity to supply, according to the principle of 
symmorphosis. 

 Photoreceptor bandwidth is also matched to behavioral needs. Compar-
ing photoreceptors in a wide variety of insects, those that are flightless or 
fly slowly have  slow eyes , with photoreceptor bandwidths of less than 30 
Hz, while faster flying insects have  fast eyes , with bandwidths from 30 Hz to 
120 Hz.  14   Because a significant cost of bandwidth is opening more potas-
sium channels to reduce the membrane time constant, the photoreceptors 
of slow and fast eyes use different types of potassium channels (Laughlin  &  
Weckstr ö m, 1993). These potassium channels have been selected from the 
parts list to code signals more efficiently. 

 How potassium channels increase efficiency 
 A fast photoreceptor uses noninactivating potassium channels whose volt-
age sensitivity and dynamics match the gain and bandwidth of the mem-
brane to the signals being coded (Weckstr ö m et al., 1991). Voltage sensitivity 
is adjusted so that the membrane resistance decreases progressively with 
light-level, as the photoreceptor depolarizes from  – 65 mV in the dark to 
about  – 30 mV in full daylight. Membrane resistance determines mem-
brane ’ s gain, in millivolts per nanoampere, so resistance and gain are high-
est in the dark, to produce large single photon responses with least current 
and energy, and lowest in the daylight, to save energy and prevent satura-
tion. Reducing resistance also reduces the membrane time constant (  τ  M   = 
 RC ). Consequently the membrane ’ s bandwidth increases in step with the 
increasing bandwidth of the light-induced current, thus protecting higher 
frequency signals from attenuation. 

 To further protect high-frequency signals, a fast cell ’ s voltage-gated 
potassium channels activate and deactivate relatively slowly (  figure 8.15 ). 
This slow response spares high frequencies because the channels cannot 
keep pace with rapid changes in voltage. It also confines attenuation to low 
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frequencies, thereby reducing redundancy (chapter 9). By not inactivating, 
the channels maintain the membrane resistance at the same value during 
steady depolarization, thereby holding the membrane ’ s gain and band-
width at the values appropriate for the intensity that produced that 
depolarization.    

 These noninactivating potassium channels are expensive to operate —
 channels that are continually open constantly consume energy. Nonethe-
less, the channels are used efficiently. They are largely closed in the dark, 
and this reduces fixed cost. The channels then open progressively with 
increasing light level, allocating energy to lowering gain and widening 
bandwidth according to need. 

 A slow photoreceptor uses a different type of potassium channel. This 
opens quickly in response to a sudden depolarization, to damp excessive 
responses, but then closes by inactivating (  figure 8.15 ). Closure brings three 
benefits. The membrane has a longer time constant, and this improves S/N 
by removing higher frequency photon noise. Indeed, some slow photore-
ceptors tune their membrane to be a  matched filter  that optimizes S/N by 
having the same frequency response as the light-induced current signal 
(Laughlin, 1996). Second, contrast signals are transmitted with a higher gain 
(Niven et al., 2003b). Third, energy is saved (Laughlin  &  Weckstr ö m, 1993). 

 The savings made by using the right type of channel are substantial. 
 Drosophila  ’ s slow photoreceptor uses inactivating potassium channels, and 
when these are disabled by mutation, the photoreceptor compensates by 
inserting noninactivating potassium channels in its membrane. The substi-
tution of an inappropriate channel halves the photoreceptor ’ s information 
rate and doubles the energy cost per bit (Niven et al., 2003a,b). Some insect 
photoreceptors substitute channels purposefully. A locust switches from 
noninactivating channels during the day, when vision is faster, to inactivat-
ing at night, when vision is slower, using the neuromodulator serotonin 
(figure 8.15; Cuttle et al., 1995). 

 The fine-tuning of potassium channels continues a familiar theme. 
Almost every component of a fly photoreceptor is adapted to code informa-
tion efficiently. But information is a general measure of representational 
capacity (chapter 5). When an eye is specialized for a particular task, such 
as detect a mate, photoreceptors select voltage-gated channels that adapt 
them to this task. 

 Photoreceptor as mate detector 
 A drone bee ’ s one purpose in life is to mate with a queen. A queen flies 
across the sky, and drones take off and race to be the first to intercept her. 
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 Figure 8.15  
  Insect photoreceptors select voltage-gated channels from parts list to increase ef-
ficiency and improve specific behaviors .  Upper left : Cranefly photoreceptor. Po-

tassium currents  i K  , (upper traces) rises quickly as stepwise increases in membrane 

potential,  E M   (lower traces) opens voltage-gated potassium channels. Current then 

decays as channels are inactivated by sustained depolarization. Channel activation 

and inactivation increase with depolarization.  Middle left : Blowfly photoreceptor, 

type R1 – R6. Potassium channels have different properties; channels activate more 

slowly with almost no inactivation. Blowfly is more aerobatic than cranefly, and 

must resolve faster moving images. Blowfly channels sustain potassium conduc-

tance to increase membrane bandwidth; cranefly channels inactivate to save energy. 

 Upper right : Locust photoreceptor in night state, vision is slow, so channels behave 

like slow cranefly.  Middle right : Locust photoreceptor in day state, vision faster, 
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For this task a drone has evolved a pair of exceptionally large eyes. To 
improve S/N, the eye has wide lenses and long photoreceptors. The opsin is 
tuned to short wavelengths to enhance the contrast of a dark target, a 
queen, against the blue sky.  15   A drone photoreceptor also amplifies signals 
using the voltage-gated sodium channel that other neurons use to generate 
spikes, but its membrane is designed to prevent spikes; these would inter-
rupt the flow of analogue information. Sodium channels and potassium 
channels balance to allow sufficient positive feedback to accelerate and 
amplify the signal, but too little for a spike. 

 The sodium channels amplify both depolarizing and hyperpolarizing 
signals (  figure 8.15 ), in the latter case by closing to reduce inward current. 
This  subthreshold amplification  by sodium channels doubles the amplitude 
of small blips in membrane potential caused by a queen crossing a photore-
ceptor ’ s field of view (  figure 8.15 ), so that she is more easily detected by 
neurons in the drone ’ s brain. The subthreshold amplifier ’ s limited dynamic 
range matches the levels of depolarization generated by bright skylight. 
Under dimmer conditions, when photoreceptors are less depolarized, 
drones fail to take off in pursuit of the queen (Vallet  &  Coles, 1993). This 
design, where sodium channels amplify small voltage signals of either 
polarity, is also used by neurons in mammalian cerebral cortex to accentu-
ate their synaptic inputs. 

 Summary and conclusions 

 This chapter asked initially: (1) how are chemical and electrical circuits 
designed to accomplish something useful; (2) what are the dominant costs 
for such hybrid circuits; and (3) why do mammalian receptors work  “ back-
ward ” ? These questions seem now to be answered. 

channels behave like fast blowfly.  Lower right : Locust in day state but photoreceptor 

treated with serotonin, a neuromodulator that mediates circadian changes in visual 

system. Currents are night state.  Lower left : Drone bee photoreceptor uses voltage-

gated sodium channels to amplify response produced by queen bee flying overhead. 

Queen produces small decrements in light intensity (as at arrow, upper trace). Photo-

receptor responds by hyperpolarizing (middle trace). Blocking sodium channels with 

tetrodotoxin (TTX, lower trace) reduces amplification, thereby reducing responses to 

decrements and increments, and noise level. Range bars in plots of potassium cur-

rents;  i K   2 nA;  E M   20 mV; time base 50 ms. Cranefly and blowfly data replotted from 

Laughlin  &  Weckstr ö m (1993). Locust data replotted from Cuttle et al. (1995). Drone 

bee adapted from Vallet et al. (1992).  
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 Photoreceptor efficiency improves measurably by following the broad 
principles of neural design. For economy, they  process by chemistry , using 
molecules, complexes and compartments that are  irreducibly small  and 
 adapted  to their task. For example, by selecting different versions of signal-
ing proteins from the parts list, a rod achieves low dark noise, high gain, 
and slow response whereas a cone achieves low gain and rapid response. 
For efficiency photoreceptors  match structures and components  at many 
different levels. This includes matching numbers, molecular ratios, and 
affinities of the key transduction proteins on a rod disc and matching the 
sensitivity of voltage-gated potassium channels to bandwidth in a fly 
photoreceptor. 

 Photoreceptors  process in analogue , both to  compute directly with analogue 
primitives  (e.g., the log transform used for contrast coding) and to achieve 
the high bit rates needed to code images that are rich in detail. However, 
they must process and transmit signals electrically for speed over distance, 
and this is the dominant cost. With high gain in dim light and transmis-
sion at high information rates in bright light, high costs create intense pres-
sure to be efficient. This leads photoreceptors to  adapt, match, and send at 
lowest acceptable rates.  

 Most broadly, one may conclude that mammals were not trapped with 
an inefficient design. Quite to the contrary, the fly design is less efficient, 
first because it has not  specialized , either for transmitting low S/N signals 
with high gain (like rods in dim light) or for transmitting high S/N signals 
with low gain (like cones in bright light). Second, because the fly design 
boosts speed and gain via positive feedback in a small compartment, which 
increases noise. 

 The good news for flies is that their design achieves the speed and band-
width that the fly requires but that the mammalian design did not deliver. 
Now the fly photoreceptor ’ s task is to maintain the speed and bandwidth of 
synaptic transmission at least cost. For this, it uses a specialized synaptic 
interface, the  lamina , as discussed next (chapter 9). 
  
      
 
 
  
  
 



 The first layer of the blowfly ’ s visual system, the lamina, is a large and costly 
structure, occupying 10% of the brain ’ s volume, using 20% of the brain ’ s 
neurons, and consuming 2% of the blowfly ’ s resting energy production. Yet 
the lamina is just an interface that receives signals from the compound 
eye ’ s photoreceptors, processes them a little, and transmits them onwards 
in the brain. Why invest so much in such a seemingly simple task? The 
answer lies in the economics of one of a blowfly ’ s life essentials, visual 
information. 

 The aerobatic blowfly depends on visual information because without a 
clear view from its cockpit window it will surely crash. The fly moves and 
turns fast, so to adequately resolve its surroundings, its compound eyes 
must provide for sensitive, high-speed vision. For contrast sensitivity, each 
of the eyes ’  6,000 image pixels is coded by eight photoreceptors. For high-
speed vision the eye ’ s photoreceptors code frequencies out to about 300 Hz 
to achieve information rates of 1,000 bits s  – 1  — 3 times faster than a human 
cone (chapter 8). High performance costs energy, materials, and space 
(chapters 6 and 8). Consequently, the compound eyes ’  photoreceptors 
account for 8% of the blowfly ’ s resting energy consumption and constitute 
4% of body weight. A sensitive, high-speed image acquisition system does 
not come cheap. 

 To profit from its expensive eye, the blowfly must translate the informa-
tion captured by photoreceptors into useful behavior, and for this it invests 
1% of its body mass, 50% of its brain ’ s volume, and 80% of its brain ’ s neu-
rons  1   in visual circuits (figure 4.12). However, when these circuits fail to 
receive some photoreceptor information, vision deteriorates. The view from 
the cockpit window is hazier, the fly must throttle back, and, proceeding 
more cautiously, it could lose its race with a mate or a rival or a predator. 
Thus, for the fly to profit from its investment in vision by detecting the 

 9   The Fly Lamina: An Efficient Interface for High-Speed 

Vision 



236 Chapter 9

features that guide behavior, the information coded by photoreceptors 
must be transmitted to circuits in the brain. 

 This is the lamina ’ s task, to transmit information from photoreceptors to 
circuits in the medulla, for feature extraction (chapter 4). For this, the lam-
ina uses neurons specialized to transmit at high bit rates, the large monopo-
lar cells (LMCs). But to transmit at high rates, the lamina ’ s synapses and 
circuits must solve a serious practical problem. Photoreceptors code infor-
mation in a fragile format. Natural scenes are low contrast, the average is 
0.4 (Laughlin, 1981), and a photoreceptor has a low contrast gain, 3 – 4 mV 
per unit contrast (Anderson  &  Laughlin, 2000). Consequently, most of the 
information is in analogue signals of less than 3 mV and is, therefore, vul-
nerable to noise and attenuation during transmission. 

 To preserve the information coded by photoreceptors ’  weak signals, the 
lamina obeys information theory (equations 5.6 and 5.7) — it maintains 
bandwidth and S/N. It maintains spatial bandwidth by mapping the photo-
receptor array retinotopically onto an equivalent array of output neurons; 
it maintains temporal bandwidth by transmitting analogue signals across 
fast synapses and keeping wires short; and it maintains S/N with large num-
bers of high-gain synapses that amplify the signal and average out noise. 
But biophysics and cell biology make bandwidth and S/N expensive com-
modities, which explains why the lamina is large and costly to operate. 
Costly processes should be sparingly applied and efficiently implemented, 
which explains why the lamina preserves and transmits information effi-
ciently, according to principles of neural design. 

 Wiring preserves information and increases efficiency 

 Precise connections preserve spatial information 
 The regular array of image pixels formed by the compound eye is mapped 
1:1 onto a corresponding array of neural modules,  lamina cartridges  (  figure 
9.1 ). A cartridge takes its inputs from the eight photoreceptors that code the 
same pixel and sends its outputs to the corresponding module at the next 
level of processing, the  medulla cartridge . This precise  retinotopic projection  
from pixel to cartridge preserves spatial information in two ways. First, giv-
ing each pixel its own set of neurons maintains spatial resolution, as hap-
pens in our fovea where each cone projects to its own pair of midget 
ganglion cells via its own pair of midget bipolar cells. Second, a retinotopic 
projection maintains the spatial continuity of objects in the world and this 
simplifies spatial processing. It also minimizes wire by reducing the length 
and complexity of the neural connections that are used to compute the 
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 Figure 9.1 
  Layout and wiring of fly lamina .  Upper : Section through head of housefly  Musca , 

showing extensive lamina close to retina and rest of optic lobe, medulla then lobula. 

 Lower left : Retinotopic projection to lamina cartridges and then to medulla cartridg-

es.  Lower right : Neural superposition wiring pattern showing 3 of the 7 co-aligned 

photoreceptor axons projecting to a single lamina cartridge. Lamina cartridge sends 

output to medulla cartridge with large monopolar cells; 2 shown, L1 and L2. Upper 

redrawn from Strausfeld (1976). 

spatial and temporal relationships that define objects. For these reasons, 
many visual systems project information retinotopically (e.g., chapters 4, 
11, and 12).    

 Using a wiring pattern to gather more information 
 An ingenious combination of optics and wiring, the  neural superposition  eye, 
enables a blowfly to see better by gathering more photons per pixel (  figure 
9.1 ). Many other insects, such as bees, crickets, and dragonflies, use the 
simpler  apposition  eye in which each of the eye ’ s many facets is a lens that 
focuses light onto a single waveguide, approximately 2  μ m in diameter. The 
waveguide is constructed by a column of eight photoreceptors and because 
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they all share the waveguide ’ s light, all have the same field of view. Thus 
they all code one image pixel. This optical arrangement simplifies the reti-
notopic projection of image pixels to lamina cartridges; the eight photore-
ceptors ’  axons form a bundle that projects to one cartridge. 

 The optics and wiring of the fly ’ s neural superposition eye is compli-
cated, to gather more light (  figure 9.1 ). As in an apposition eye, there are 
eight photoreceptors under each lens, but to gather more photons, they 
make separate waveguides. The photoreceptors R1 – R6 make one waveguide 
each, and R7 sits on top of R8 to make a single waveguide. With seven 
waveguides, the photoreceptors beneath a lens receive about 7 times more 
photons,  2   and this increases S/N by about  √ 7 = 2.65, without having larger 
lenses. However, there is a downside to this optical efficiency saving. The 
waveguides under one lens are  “ looking ”  in seven different directions. Con-
sequently, were the fly eye to follow the apposition wiring rule and send 
these axons to the same lamina cartridge, spatial resolution would drop by 
two thirds. 

 The neural superposition eye restores spatial resolution by adjusting 
both optics and wiring (Kirschfeld, 1967). The visual angle between the 
waveguides under a lens is made equal to the visual angle between lenses 
(  figure 9.1 ). Now seven waveguides under seven different lenses are 
co-aligned. Wiring combines these independent samples of the same signal 
by directing the axons of the co-aligned photoreceptors to the same lamina 
cartridge. This  “ neural superposition ”  of signals involves axons crossing 
over to form complicated  “ minichiasms ”  between the retina and lamina, 
but is worth the effort. The wiring pattern restores spatial acuity and, by 
increasing the S/N by about  √ 7 gains more information without enlarging 
the eye — a useful improvement in efficiency. 

 Neural superposition depends on the accurate wiring of 6,000 minichi-
asms between retina and lamina. Any mistake will destroy spatial informa-
tion by superimposing signals from different points in space. To avoid this 
loss, the developmental growth rules that direct axons across minichiasms 
are at least 99.8% accurate (Horridge  &  Meinertzhagen, 1970). Their preci-
sion makes an important general point — neural circuits are not obliged to 
cope with inaccurate wiring. When valuable information is at stake, devel-
opmental mechanisms deliver. This suggests that where the brain does wire 
imprecisely, it is a matter of efficiency in that greater precision is not worth 
the cost (Lightner, 2011).    

 Information is represented more efficiently by minimizing wire 
 Just as the accurate projections via minichiasms are faithfully replicated 
across the eye, so are their target structures, the lamina cartridges 
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(  figure 9.2 ). Every cartridge contains 16 neural components, the axon ter-
minals of photoreceptors R1 – R6 and 10 interneurons, all encapsulated by 3 
types of glial cell. Each neuron and glial cell has a characteristic shape and 
sits in a characteristic position. This replication of cartridges is worthwhile 
because a cartridge ’ s structure is optimized to save wire (Rivera-Alba 
et al., 2011).    

 Efficient wiring places the neurons that make the largest numbers of 
synapses closest together (chapters 2 and 13). The cartridge ’ s wiring dia-
gram (connectome) shows that R1 – R6 photoreceptors provide most of the 
cartridge ’ s synapses (about 70%;   figure 9.3;  Rivera-Alba et al., 2011  ) . Of 
these, by far the most numerous (60% of all synapses) are output tetrads 
(  figure 9.3 ) at which a presynaptic site on a photoreceptor terminal drives 
four postsynaptic elements — one each from the principal output neurons, 
L1 and L2, one from an amacrine cell, and one from either the output neu-
ron L3 (in the distal cartridge) or a glial cell (in the proximal cartridge). To 
make these most numerous connections as short as possible, the 
R1 – R6 photoreceptor terminals form a cylindrical palisade around L1 and 
L2 (  figures 9.2 and 9.3 ).  

 The amacrine cell dendrites form a distribution hub that participates in 
over 90% of the cartridge ’ s synapses, so they are placed midway between 
the cartridge ’ s central axis and its outer margin. The dendrites climb up the 
outside of the palisade next to the terminals of R1 – R6, close to both their 
most frequent inputs, the photoreceptor tetrads, and their most frequent 
outputs, the three epithelial glial cells that sheath the cartridge (  figure 9.3 ). 
The next most frequent amacrine output is to the basket cell, T1, which 
climbs the palisade alongside the amacrine. 

 Neurons that form fewer synapses are placed outside the palisade. The 
LMC, L3, which forms 40% fewer tetradic contacts with photoreceptors 
than L1 and L2, is placed outside the photoreceptor palisade so as not to 
obstruct the more numerous dendrites of L1 and L2, but remain close to 
R1 – R6. So intense is the pressure to reduce wire that even the neurons that 
make fewer than 20 synaptic connections are near their optimal positions. 
Thus replicating cartridges in minute detail upholds a principle of neural 
design,  minimize wire . 

 The intricacy and crystalline regularity of the lamina ’ s cartridges (  figure 
9.2 ), and of the medulla ’ s too, greatly impressed Cajal. He likened the insect 
visual system to a small and exquisitely crafted precision instrument, a 
hunting case watch and the vertebrate retina to a rude wall clock (Ram ó n y 
Cajal, 1917).  3   Chapter 11 will show that Cajal ’ s comparison was superficial. 
The mammalian retina appears less orderly because, for efficiency, every 
point on the retinal image is sampled by more than 20 neurons, and their 
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overlapping dendritic arbors obscure their intricate connectivity patterns 
that also save wire.    

 Providing the capacity to transmit photoreceptor information 

 To preserve information, a photoreceptor ’ s output synapses must transmit 
over 1,000 bits s  – 1 , so they transmit analogue signals (  figure 9.4 ) with a wide 
bandwidth and a high S/N. For analogue synaptic transmission vesicles 
release histamine molecules that bind and open postsynaptic chloride 
channels (figure 6.7). Vesicles are released continuously, even in darkness, 
at a rate that is modulated by the photoreceptor signal. Release rate increases 
when a photoreceptor depolarizes in response to brightening and decreases 
when it hyperpolarizes to dimming. Consequently, synapses transmit an 
inverted version of the photoreceptor input (  figure 9.4 ). Negative contrasts, 
0.0 to  – 1.0, are coded as graded depolarizations, and positive contrasts, 0.0 –
 2.0, as graded hyperpolarizations (  figure 9.4 ). This dynamic range covers 
over 95% of natural contrast signals.    

 To maintain the temporal bandwidth of the photoreceptor input, a syn-
apse responds 5 times faster than the photoreceptor (  figure 9.5 ). To main-
tain S/N in the face of synaptic noise, each photoreceptor transmits with 
220 parallel synapses, which means that with six photoreceptors R1 – R6, a 
pixel ’ s contrast is conveyed by an array of 1,320 parallel synapses. As with 
a parallel array of  M  noisy signaling molecules (figure 6.5), the S/N for trans-
mission is improved by  √  M , which for  √ 1,320  ≈  36. 

 The S/N of the parallel synaptic array meets the fly ’ s specifications for 
resolution and rate. With a combined mean vesicle release rate of 250,000 
s  – 1 , the synaptic noise level is equivalent to a photoreceptor input signal of 
70  μ V and an image contrast of 1.2%. Because this contrast approximately 
equals the behavioral threshold for contrast detection, the cartridge fulfills 

 Figure 9.2 
  The neurons that comprise a lamina cartridge. Upper:  Each shown in a different car-

tridge, then projecting across chiasm to medulla.  Lower : Positions of neurons within 

cartridges. Note regularity of cartridge array. Each contains same set of neurons, 

identically positioned to save wire. Cartridges cut away to reveal internal structure. 

Note cartridge built around cylindrical palisade of six photoreceptor axon termi-

nals and LMCs L1 and L2 within palisade with numerous dendrites. These receive 

synapses from terminals. Further details in text. Upper,  Drosophila  lamina neurons 

from Fischbach  &  Dittrich (1989) with permission. Lower, housefly cartridges from 

Strausfeld (1971) with permission. 
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 Figure 9.3 
  Lamina neurons, synapses and circuits. Upper left: A cross section through house-
fly  cartridge. Note palisade of six photoreceptors terminals, R, surrounding pair of 

monopolar cells, L1  &  L2, and dense glial sheath enveloping whole cartridge.  Lower 
left : Photoreceptor terminal, R, showing two tetradic output synapses (*) each with 

synaptic vesicles and release site with presynaptic density. Density faces four post-

synaptic dendrites, only two seen in this section, L1 and L2. Note proximity of glia, 

g.  Right : Wiring diagram of circuits in lamina cartridge of fly  Drosophila . Numbers in-

dicate numbers of synapses. For clarity strongest connections (10 or more) are shown 

and correlated inputs from six photoreceptor terminals, R1 – R6 are lumped together. 

Single feedback connection onto photoreceptor terminals also shown to emphasize 

its weakness. Note that text gives numbers of synapses in blowfly lamina. In smaller 

 Drosophila  lamina numbers are about one quarter blowfly ’ s. Upper and lower left, 

electron micrographs courtesy of Ian Meinertzhagen. Right, from Laughlin (2010); 

synaptic numbers updated from improved wiring diagram (River-Alba et al., 2011).  
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  Analogue responses to light stimulus are transformed as they pass from photore-
ceptors R1 – R6 to LMC via an array of parallel synapses.  Response to background is 

discounted. Response to increments and decrements about background, as produced 

by objects, is enhanced.  Left : Schematic showing flow of signal from stimulus to 

LMC.  Right : Responses of photoreceptor, type R1 – R6, and responses of postsynaptic 

LMC (type L1, L2, or L3) to identical set of stimuli (top traces). Photoreceptor main-

tains steady response to bright background, about 20 mV above dark resting po-

tential (drp). LMC response cuts back as predictive coding removes best estimate of 

background. Removal of background component permits amplification of responses 

to increments and decrements (compare amplitudes of photoreceptor and LMC re-

sponses). Amplified responses cut back during 100 ms increments and decrements, 

as predictive coder updates estimate of background. From Laughlin (2010) with 

permission. 
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  Photoreceptor output synapses process analogue signals as they are transferred to 
a large monopolar cell, L1, L2, or L3 .  Left : Schematic showing flow of signal from 

stimulus to LMC.  Middle : Responses to brief flash delivered when photoreceptor 

dark adapted, flash (DA), and when light adapted by steady background, flash + back-

ground (LA). Light adaptation decreases duration of photoreceptor flash response. 

LMC flash response decreases in duration and changes waveform. Impulse response 

for synaptic transfer, deduced from pre- and postsynaptic flash responses shows that 

speed of LMC response is set by photoreceptor, change in waveform is produced dur-

ing synaptic transfer.  Right : Moving image of varied contrast generates continuous 

modulation of light intensity as it passes across pixel coded by LMC (top panel). In-

creasing illumination 10-fold, 40 units to 400, increases background and modulation 

10-fold. Photoreceptor response (middle panel) generates contrast signal, modula-

tions normalized to same amplitude, superimposed on different responses to back-

ground. During synaptic transfer to LMC, background signal is removed and contrast 

signal amplified to fill LMC response range. From Laughlin (2010) with permission.  
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the blowfly ’ s requirement for high-definition vision. Combining S/N and 
bandwidth (equation 5.6 and 5.7), the array ’ s information capacity is 
2,100 bits s  – 1  (de Ruyter van Steveninck  &  Laughlin, 1996). This suffices 
to transmit over 80% of the information coded by the R1 – R6 photorecep-
tors. The obvious question:  “ Why not transmit the remaining 20%? ”  we 
address next. 

 We close this section by noting that the equivalent neurons of the verte-
brate retina, bipolar cells (chapter 11), also receive signals at high-vesicle-
rate photoreceptor synapses and transmit them onwards in analogue. 
However, they divide the photoreceptor input into two parallel streams; 
ON bipolar cells that depolarize in response to positive contrasts and OFF 
bipolar cells that depolarize in response to negative contrasts. Chapter 11 
will explain how this division is made and why. 

 The high cost of a high-capacity synaptic array 

 The information rates of parallel arrays are subject to the law of diminish-
ing returns (figure 6.5), and this inflates the cost of information transmitted 
by photoreceptor output synapses (  figure 9.6 ). A single output synapse 
transfers 55 bits s  – 1 , with an efficiency of 0.25 bits per vesicle, at an energy 
cost of 5  ×  10 4  ATPs per bit, but 1,320 parallel synapses transmit only 40 
times more bits, 2,100 bits s  – 1 , at 50 times the cost per bit, 2  ×  10 6  ATP (  fig-
ure 9.6 ). Increasing the capacity by another 400 bits s  – 1  to transmit the 
remaining 20% would require 50% more synapses. These would take 50% 
more space (see below) and add 1% to the blowfly ’ s resting energy con-
sumption. Perhaps this is why 20% of the photoreceptor information is 
discarded — it is simply too expensive to transmit.    

 As in other synapses (chapter 7), energy consumption is dominated by 
the ion pumps that, by recharging ionic batteries, sustain postsynaptic cur-
rents (Laughlin et al., 1998). The presynaptic energy costs are significant 
but difficult to estimate. Approximately 10% of the ATP is used to recycle 
vesicles and neurotransmitter, and at least 10% goes to sustain the presyn-
aptic calcium fluxes that control vesicle release. 

 Now to the materials that synapses use, and the space they occupy. The 
cartridge ’ s largest structure, the 40- μ m-long, 2- μ m diameter photoreceptor 
axon terminal, houses the machinery needed to release and recycle about 
5  ×  10 4  vesicles s  – 1  — namely, a pool of synaptic vesicles, vesicle release sites, 
recycling machinery, pumps, and mitochondria (chapter 7). The terminal 
cannot be much smaller — it is refilling vesicles equal to its own volume 
every 10 minutes. The postsynaptic neurons, L1 and L2, house the 
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histamine-gated chloride channels and the pumps and mitochondria 
needed to power their currents (chapter 6).  

 L1, L2, and the six photoreceptor terminals occupy two thirds of the 
cartridge ’ s volume and make two thirds of the cartridge ’  synapses, suggest-
ing that, as found elsewhere (chapter 7), neurons are sized to match the 
number and activity of their synapses. Indeed, tetradic output synapses are 
equally spaced over the surfaces of photoreceptor terminals, at one per 1.6 
 μ m 2 , irrespective of individual differences in terminal size (Meinertzhagen, 
1993), suggesting that this is just enough surface area to support the needs 
of the high-release-rate synapse. L1 and L2 also receive tetradic inputs with 
equal density. In short, synapses are packed as densely as possible. 
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  Energy cost per bit rises with bit rate in analogue neurons, and in parallel arrays of 
analogue synapses .  Left : Cost per bit versus bit rate for a photoreceptor, an LMC, and 

a single synapse connecting photoreceptor to LMC, operating alone.  Upper right : 
Information rate rises with number of such synapses in array. Note law of diminish-

ing returns, as seen in parallel array of signaling molecules (figure 6. 5).  Lower right : 
Because of diminishing returns, array ’ s energy cost per bit rises with bit rate on a 

steepening upward curve. Plotted from results of Laughlin et al. (1998). 
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Consequently, any increase in numbers of synapses increases a neuron ’ s 
surface area and hence its use of space, materials, and energy. This con-
straint helps explains why synapses are densely packed and why numbers 
are reduced by using synapses efficiently. 

 Synaptic structure increases synaptic efficiency 

 The efficiency of a photoreceptor output synapse is quadrupled by directing 
a vesicle ’ s neurotransmitter to four output elements at a tetrad (  figure 9.3 ). 
With this arrangement, one tetrad releasing 200 vesicles s  – 1  is equivalent in 
S/N and postsynaptic drive to four conventional monadic synapses, releas-
ing a total of 800 vesicles s  – 1 . With 4 times fewer output synapses the termi-
nals are 4 times shorter and, because terminals run the full length of a 
cartridge, the lamina ’ s volume shrinks accordingly (  figure 9.2 ). Although 
tetrads reduce the need for space and materials fourfold, they have little 
impact on energy efficiency because consumption is predominantly post-
synaptic. A rod or cone ’ s active zone also drives two or more postsynaptic 
neurons for the same reason, to economize on synaptic space and materials 
(chapter 11). 

 Why use an inefficient parallel array? 

 This perplexing question is raised by information theory. A single photore-
ceptor output synapse has a capacity of 55 bits s  – 1  (figure 9.6) so according 
to Shannon (chapter 5) a coding scheme that uses just 39 synapses can 
achieve the output terminals ’  capacity of 2,100 bits s  – 1 . However, 1,320 syn-
apses are used. Why not implement the optimum coding and improve effi-
ciency  × 34? 

 Achieving the theoretical optimum makes heavy demands on neural cir-
cuit design. There can be no redundancy (chapter 5); every one of the 39 
synapses must transmit a unique signal that does not correlate with the 
other synapses ’ . To achieve this the cartridge ’ s circuitry must sum analogue 
signals from R1 – R6 and then split the result into 39 independent compo-
nents, each driving just one synapse. Such a split would require some com-
plicated signal processing,  4   and for high-speed, high-resolution vision the 
processors must maintain the system ’ s bandwidth and S/N. To complicate 
matters, local processing within a terminal is not an option because chemi-
cal and electrical signals from nearby synapses would interfere. A set of fast 
and accurate neural circuits would be needed, and these would likely cost 
more than the parallel array. 
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 Here is an important lesson in neural design: what is most efficient in 
theory is not always most efficient in practice because neural implementa-
tion stands in the way. Interestingly the vertebrate retina does improve its 
coding efficiency by splitting photoreceptor signals into two independent 
components, ON and OFF (Von der Twer  &  MacLeod, 2001), but does so 
 postsynaptically  with bipolar cell glutamate receptors (chapter 11). Given 
that practical considerations force the lamina cartridge to use the noise 
reduction method of last resort, a parallel array of many synapses, an array 
should be used as efficiently as possible (chapter 6). 

 Matching synaptic capacity improves efficiency 

 In theory, an array ’ s efficiency is improved by matching the number of 
synapses to the S/N and information content of the signals being transmit-
ted (figure 6.5). Flies of different sizes demonstrate this match. A blowfly ’ s 
photoreceptor codes information at 5 times the rate of  Drosophila  ’ s (1,000 
bits s  – 1 ; cf. 200 bits s  – 1 ), and makes 5.5 times as many tetradic synapses 
(blowfly 220;  Drosophila  40; Nicol  &  Meinertzhagen, 1982; Rivera-Alba et 
al., 2011). The S/N of a blowfly photoreceptor is 2.3 times that of  Drosoph-
ila , and so is the S/N of its synaptic output array ( √ 5.5 = 2.3; Laughlin, 
1994). In mammalian retina, cone photoreceptors adjust the numbers of 
their output synapses to make a similar match for the same economic rea-
son; to use space, materials, and energy more efficiently (figure 11.9). 

 Sending only what is needed improves efficiency 

 The information capacity of a synapse or neuron is limited by its band-
width and S/N, and, for efficiency, these resources must not be wasted on 
noise and redundancy;  send only what is needed . Noise is reduced before 
synaptic transmission by electrically coupling photoreceptor axons as they 
enter the cartridge. Chapter 11 will consider primate foveal cones and 
explain how this presynaptic coupling works and why it is efficient. Reduc-
ing redundancy is more complicated but more profitable, and a cartridge 
uses efficient methods. 

 Removing redundancy with predictive coding 
 Predictive coding removes a large source of redundancy in natural images. 
Signals in nearby pixels, and hence signals in nearby lamina cartridges, are 
correlated because they are quite possibly representing the same object, 
similarly illuminated. Furthermore, the optical point spread function 
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increases local correlation by distributing light from a single point to sev-
eral pixels. Because there are spatial correlations, the signal expected at one 
pixel can be predicted from the signals in surrounding pixels, and this pre-
diction is, by definition, redundant (chapter 5). A predictive coder makes 
this prediction and then removes it from the incoming signal. As a result, 
signal amplitude is reduced by ~ 3/4 without loss of information. Because 
smaller signals can be transmitted at lower cost the need for space, materi-
als, and energy drops accordingly. 

 Predictive coding is easily implemented in a retinotopic array of lamina 
cartridges (Srinivasan et al., 1982;   figure 9.7 ). To code a single pixel, a car-
tridge takes the signal from the six photoreceptors sampling its pixel. It also 
forms a prediction of the signal it expects to receive from its pixel by taking 
a weighted sum of signals from surrounding pixels. These surround signals 
are readily obtained from neighboring cartridges in the retinotopic array 
and weighted and summed to form the prediction. This is subtracted from 
the signal delivered by the six photoreceptors and the difference, signal 
minus redundancy, is transmitted onwards to the medulla by an LMC.    

 Predictive coding uses a concentric receptive field, in which the sur-
round, the predictor, produces a response of opposite polarity to the center, 
the signal from the coded pixel (  figure 9.7 ). Many visual neurons use this 
form of lateral inhibition to code more efficiently by reducing redundancy 
(chapters 11 and 12).  5   Thus, predictive coding, an image compression algo-
rithm invented by engineers almost 60 years ago to code TV signals effi-
ciently, is implemented in animals by a basic sensory interaction, lateral 
inhibition, that has been used for at least 400,000,000 years.  6   We will return 
to the lamina cartridge ’ s predictive coding mechanisms after describing 
how it removes temporal correlations, and deals with the different 
patterns of correlation found in natural images — forest, sky, savannah, 
and so on. 

 How predictive coding removes temporal correlation 
 The output of a single pixel changes over time as the eye moves across a 
scene and objects move within a scene. These temporal signals are also cor-
related. Movement converts spatial correlation into temporal correlation 
and, analogous to the optical point spread function, the photoreceptor flash 
response spreads signals over time, leaving traces of the past in the 
present. 

 A lamina cartridge removes these temporal correlations by temporal pre-
dictive coding (Srinivasan et al., 1982;   figure 9.7 ). The cartridge uses the 
signal being received now, at time  t , to predict how it will influence the 
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  Spatial and temporal predictive coding by a large monopolar cell (LMC) .  Upper : 
scheme for spatial predictive coding. Encoder subtracts weighted sum of signals from 

surrounding receptors (the prediction) and subtracts from the signal at central re-

ceptor. This is lateral inhibition. Information now concentrated in smaller signal, 

which is amplified with higher gain to fill response range, giving more protection 

from intrinsic noise.  Middle left : Predictive surround contracts, weights increase at 

higher S/N. Weights plotted along central row of pixels in square array.  Middle right : 
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Temporal predictive encoder subtracts weighted sum of earlier signals from present 

signal using flash response with off transient of opposite polarity.  Left column : The-

ory. Off response duration decreases, weights increase at higher S/N.  Right column : 

Theory versus experiment. LMC flash responses (solid traces) at different light levels 

and measured signal:noise follow theory (dashed traces). Pulse on central trace shows 

duration of flash.  Lower : LMC rapidly adapts receptive field to light level to imple-

ment predictive coding. c, responses to flashes in receptive field center; s, responses 

to bright annulus in receptive field surround; b indicates presence of bright widefield 

background. Schematic on right shows extent of stimuli delivered to centre, sur-

round and background. In darkness (no background), c and s same polarity; s is gen-

erated by light reaching center. Background activates subtraction of surround from 

center for predictive coding; s now has opposite polarity. Note surround subtraction 

activates within 100 ms of onset of background. Lower from Laughlin and Osorio 

(1989) with permission. Remainder from Srinivasan et al. (1982) with permission. 

signals that follow, at  t  +   Δ t 1  ,   Δ t 2   ,  . . .   etc., and then subtracts this prediction 
away at  t  +   Δ t 1  ,   Δ t 2   ,  . . .   etc., as the new signals arrive. 

 This procedure sounds complicated, but it is easily implemented by the 
time course of a neuron ’ s response to an instantaneous input, its  impulse or 
flash response  (  figure 9.7 ). The flash response of neurons L1, L2, or L3 has 
two phases (  figure 9.7 ). The fast initial response codes the signal received 
here and now, at time  t . The smaller, more slowly decaying response is the 
prediction of what  should  follow and, because it is of opposite polarity, this 
prediction subtracts from the signals that  do  follow. This temporal predic-
tive coding is also performed by bipolar cells of the vertebrate retina (chap-
ter 11), for they too work more efficiently when redundancy is reduced. 
Note that the cartridge ’ s predictive coder, the biphasic impulse response, 
eliminates the most obvious form of redundancy, a photoreceptor ’ s steady 
response to the background signal ( cut back  in   figure 9.4) . 

 Matching predictive coding to image statistics 
 Consider a blowfly pursuing a delicious scent on a bright summer ’ s day. 
Dashing through a wood, through a hedge, and out into a pasture dotted 
with cows, the blowfly encounters three visual scenes in rapid succession, 
each with a different pattern of spatial correlations. Fortunately, predictive 
coding does not have to adapt its predictors to scene changes because, 
when photoreceptor signals are reliable (i.e., on bright summer days), the 
nearest neighbors provide the best estimate (  figure 9.7 ). Thus, one spatial 
predictor and one temporal predictor fit most natural scenes (Srinivasan et 
al., 1982). 



252 Chapter 9

 However, there is an image statistic that must be adapted to, photon 
noise which reduces correlations by randomizing input signals. The effects 
of photon noise increase as the light level falls so, to avoid the S/N disaster 
of subtracting an unreliable estimate from a noisy signal, predictive coding 
adapts to the changing noise level. Like an election pollster faced with a 
population of swinging voters, coding ’ s predictors increase the reliability of 
their estimates by taking more samples. The spatial predictor widens to 
include more pixels in the surround, and the temporal predictor prolongs 
the inverted phase of the flash response (  figure 9.7 ). Weightings are reduced 
so that when faced with a totally predictable image, a large area of uniform 
brightness, the prediction equals the incoming signal. Mechanisms in the 
lamina cartridge make these adjustments precisely, within tens of millisec-
onds (  figure 9.7 ), to make good predictions over a 10 6 -range of background 
(i.e., mean) light levels. Many other visual systems, our own included, 
adapt rapidly to the lowering of intensity by extending receptive fields and 
impulse response for the same reason, to continue to remove redundancy 
and  send only what is needed , information. 

 How the cartridge implements predictive coding 

 The basic plan for a predictive coder is straightforward — build spatial and 
temporal predictors and subtract their outputs from incoming photorecep-
tor signals (  figure 9.7 ). However, the costs of predicting and subtracting 
depend on the mechanisms used and where they applied. By applying eco-
nomical mechanisms at strategic locations, the lamina cartridge increases 
its  overall  efficiency more than sixfold. Mechanisms are economical because 
they avoid using noisy and expensive chemical synapses, and they are 
applied presynaptically to reduce expenditure on vesicle release and post-
synaptic current.  

 The advantage of subtracting presynaptically 
 A presynaptic mechanism is advantageous because, by acting on vesicle 
release, it eliminates redundancy from the vesicle stream. Redundancy con-
stitutes 75% of the input, so its removal reduces the number of vesicles 
required for transmission by 75%.  7   The number of tetrad synapses needed 
to transmit information is reduced by the same factor, thereby cutting the 
costs of materials, space, and energy by 75%. No information is lost by sub-
tracting redundancy, so efficiency increases fourfold. 

 Presynaptic subtraction saves yet more space, materials, and energy by 
avoiding the wasteful alternative — postsynaptic subtraction. To subtract 
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postsynaptically, the synaptic chloride current that drives LMCs must be 
opposed by a current flowing in the opposite direction, and this current 
would double energy consumption by doubling ion flux. Indeed, opposing 
one current with another is similar to slowing a car by putting the  left  foot 
on the brake pedal while keeping the right foot on the gas. By acting pre-
synaptically, subtraction regulates the gas without stepping on the brakes. 

 Synapses would be needed to deliver the opposing current to LMCs, 
these would consume extra space and materials, and to maintain a high 
S/N, many would be used. The photoreceptors use 1,320 tetrads to main-
tain a high S/N in LMCs, but the subtracted signal (the prediction) is usu-
ally smaller, so 700 synapses might suffice. To receive these extra synapses, 
the neurons L1 and L2 would have to be 50% longer, increasing the car-
tridge ’ s volume by the same percentage. Totaling up the extra costs of sub-
tracting postsynaptically, space and materials increase sixfold and energy 
increases twofold. This makes subtracting presynaptically 6 times more 
efficient in space and materials and twice as energy efficient. Olfactory 
receptor neurons and mechanoreceptors use presynaptic mechanisms to 
regulate their vesicle release to make similar efficiency savings (Nawroth 
et al., 2007). 

 Why nonsynaptic mechanisms are used for presynaptic subtraction 
 The wiring diagram for lamina circuits (figure 9.3) indicates that nonsynap-
tic mechanisms play the primary role in subtracting redundancy from the 
presynaptic terminal. Only 10% of the terminal ’ s synapses are inputs, and 
only input synapses can subtract, so their contribution is either too slow or 
too noisy. The prediction is mainly subtracted by two nonsynaptic 
mechanisms — a molecular feedback circuit within the terminal membrane 
and a slower electrical circuit that changes the potential of extracellular 
space. These mechanisms have three advantages: they avoid adding synap-
tic vesicle noise; they make efficient use of existing resources; and they not 
only subtract the prediction; they formulate the prediction. In other words, 
they neaten up. 

 The feedback circuit within the photoreceptor terminal 
 Feedback within the photoreceptor terminal generates the biphasic impulse 
response used for temporal predictive coding (  figure 9.5 ). Feedback is fast; 
it acts within 1.5 ms (  figure 9.5 ), so electrical circuits are being used, but the 
ion channels have not been identified.  8   Speed is essential because the pre-
diction must keep up with the high information rates of photoreceptors in 
bright light. However, when light levels fall, information rates decrease, 
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noise increases, and the feedback mechanism adapts by slowing down and 
progressively weakening its effect (  figure 9.5 ). This adaptation to input 
matches the predictor to decreasing S/N (  figure 9.7 ).  9   

 Changing the potential of extracellular space 
 When light depolarizes the photoreceptor terminal, the cartridge ’ s extracel-
lular space depolarizes more slowly, by a lesser amount (  figure 9.8 ; Laugh-
lin, 1974; Shaw, 1975). Conversely, when light dims and the photoreceptor 
hyperpolarizes, the extracellular response does likewise. These extracellular 
responses subtract directly from the intracellular signal at the photorecep-
tor terminal because the voltage-gated channels that regulate vesicle release 
experience the difference between the intracellular and extracellular electri-
cal potentials. And, because the extracellular potential changes more slowly 
than the intracellular signal, the extracellular potential is subtracting a part 
of the temporal prediction. Indeed, it eliminates a large proportion of stand-
ing background signal (figure 9.8; Weckstr ö m  &  Laughlin, 2010).    

 The extracellular potential is set up by glial cells, which envelop the car-
tridge (  figure 9.8 ) and interlock with tight junctions to block the extracel-
lular flow of ions (and hence current) into and out of the cartridge. The 
currents that enter or leave the cartridge in neurons (e.g., receptor terminals 
and LMCs) must complete their circuits by returning to their origins in 
extracellular space, and in doing so they set up an extracellular potential as 
they cross the glial resistance barrier. 

 Consider the current that enters photoreceptors by light-gated channels, 
flows down to the axon terminal, and depolarizes the terminal membrane 
as it flows out into the cartridge ’ s extracellular space (  figure 9.8, lower ). To 
complete its circuit, this current must return to its point of origin, the pho-
toreceptor layer ’ s extracellular space, and on this return leg it crosses the 
glial resistance barrier and depolarizes the extracellular space. The currents 
that drive electrical signals along the axons of the output neurons L1, L2, 
and L3 to the medulla also return to their point of origin, the extracellular 
space adjacent to postsynaptic chloride channels, and as these return cur-
rents cross the glial resistance barrier, they increase the extracellular depo-
larization produced by photoreceptor current. 

 An extracellular mechanism that depends on return current is both eco-
nomical and noise free because it directs the flow of existing currents across 
a passive resistance without directly engaging chemical synapses. The 
mechanism is also effective; it removes much of the standing background 
signal (  figure 9.8 ). However, we still do not know how the changes in extra-
cellular potential are slowed down for temporal predictive coding, by what 
is effectively a capacitor in parallel with the resistance barrier. 



The Fly Lamina 255

 The extracellular mechanism also performs spatial predictive coding. 
The glial cells that separate cartridges (  figure 9.8 ) allow some current to 
flow laterally between cartridges. Consequently, a part of the extracellular 
signal in one cartridge is the sum of extracellular signals from neighboring 
cartridges, weighted by the resistances of the glia that separate cartridges. 
These weighting resistors adapt to light level, as required for predictive cod-
ing. Resistance increases in bright light, both to strengthen the temporal 
prediction by increasing the extracellular potential produced by current 
injected into the cartridge, and to narrow and deepen the spatial prediction 
by restricting spatial spread of current. The large numbers of synapses made 
by photoreceptors and amacrines onto glia (  figure 9.3 ) are well placed to 
makes these adjustments by changing glial membrane resistance.  10   

 Circuits that compute by changing the potential of extracellular space 
are found elsewhere. Mammal retina apparently uses an extracellular field 
potential to implement spatial predictive coding (chapter 11). Vertebrate 
hair cells and invertebrate mechanoreceptors actively polarize the extracel-
lular space by using pumps to drive transducer currents. Certain axons can 
generate extracellular current that, when enclosed by a glial capsule cause 
rapid electrical inhibition at the initial segment of a projection neuron 
(figure 7.11).  

 Transmitting information to the medulla 

 Once synapses have transferred information from photoreceptors to the 
LMCs L1, L2, and L3, the information must be transmitted to output syn-
apses in the medulla, 0.5 – 1.0 mm away. To maintain high bit rates, L1 and 
L2 transmit analogue signals along axons that are passive cables, designed 
to conserve information by preserving S/N and bandwidth (van Hateren  &  
Laughlin, 1990).    

 The S/N at an axon ’ s output synapses depends on three factors, the 
amplitudes of the signal and noise transmitted to the output synapses, and 
the amplitude of the noise added by output synapses. To preserve S/N, the 
axon is designed to reduce the attenuation of transmitted signal and 
increase the attenuation of transmitted noise. The axon membrane has an 
unusually high specific resistance, 5  ×  10 4   Ω  cm 2 , which is equivalent to one 
open potassium channel per 6  μ m of axon. According to cable theory 
(chapter 7) this reduces signal attenuation by reducing leakage during 
transmission. With this well-insulating membrane, the 3- μ m diameter axon 
transmits low frequencies virtually without loss (  figure 9.9 ). 

 Higher frequencies are attenuated by the membrane ’ s capacitance (chap-
ter 7), and to reduce this effect, that is, to conserve bandwidth, the signal is 
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 Figure 9.8 
  Extracellular field potential in lamina cartridge subtracts from presynaptic signal 
at photoreceptor axon terminal .  Upper : Field potential (FP) responds to light like 

axon but slower and by lesser amount. DA, light pulse delivered in darkness; LA, 

increment and decrement about constant background.  Middle:  Subtraction of FP 

from axon response gives membrane potential at axon ’ s synapses (*). Response is 

transient and resembles larger postsynaptic response of LMC.  Lower center:  Dia-

grammatic cross section of lamina cartridge showing tight sheath made by three 

epithelial glial cells (egc).  Lower right : Barriers, compartments, and potentials. Glia 

separate cartridge ’ s extracellular space from lamina ’ s extracellular space, which be-

ing directly connected to body cavity is ground. Glia in basement membrane isolate 

retinal extracellular space from lamina extracellular space and from ground. Poten-

tials relative to ground, V retina  = retinal extracellular space, V ex , cartridge extracellular 

space; V M(Vm) , membrane potential of LMC cell body; V LMC , membrane potential at 

LMC synaptic zone.  Lower left : Circuit that generates FP. Pulse of light-gated current 

entering photoreceptor in retina depolarizes axon terminal membrane, crosses into 

lamina extracellular space and returns to retina, most across glial resistance barrier 

at basement membrane, but small amount through photoreceptor in same cartridge 

if not so depolarized. Return current depolarizes cartridge ’ s extracellular space. From 

Weckstr ö m  &  Laughlin (2010) with permission. 
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  LMC axon is a matched filter that selectively attenuates noise as it transmits passive-
ly from lamina to medulla . Analogue signal amplitude at medulla terminal, normal-

ized to lamina input, is plotted against signal frequency to give frequency response 

for passive transmission (LMC transmission). Transmission curve matches amplitude 

spectrum of input signal, and filters out high frequency input noise. A perfect match 

between frequency response and signal spectrum optimizes output S/N in the pres-

ence of broad band noise but LMC ’ s passive axon cannot meet this specification, a 

cable ’ s frequency response is too shallow. Nonetheless it attempts to match. From 

Van Hateren  &  Laughlin (1990) with permission. 
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forced down the axon by the array of 1,320 photoreceptor output synapses. 
Their high synaptic conductance rapidly charges and discharges the axon ’ s 
capacitance, so that signals up to 100 Hz are attenuated by less than 25%, 
and transmission extends to 400 Hz (figure 9.9). 

 To selectively attenuate noise before it arrives at an axon ’ s output syn-
apse, the frequency response for transmission follows the input signal spec-
trum. Thus, by acting as a  matched filter , the axon strikes the optimum 
balance between attenuating signal and eliminating high-frequency synap-
tic noise (  figure 9.9 ). 

 Although LMC axons are designed to be efficient cables, signals are inev-
itably attenuated by passive transmission, so some information will be lost 
to intrinsic noise. To minimize this loss the axon ’ s input signal must be as 
large as possible. Amplification is required, and to be most efficient, it too 
is optimized. 

 Optimizing amplification 

 With redundancy removed by presynaptic predictive coding, the photore-
ceptor synapses amplify signals to fill the LMC response range. Amplifica-
tion is matched to input statistics to maximize the information that can be 
coded within the confines of the response range. This is done by maximiz-
ing signal entropy and this optimum is achieved when all analogue signal 
levels are used with equal frequency (figure 5.2).    

 The frequency with which signal levels occur depends on two factors: 
first, the frequency of occurrence of the inputs that the signal levels repre-
sent, and, second, the coding function that relates inputs to signal levels. 
One particular coding function equalizes the frequency with which signal 
levels occur, the cumulative probability distribution of inputs (figure 9.10). 
The cumulative distribution converts any given distribution of input ampli-
tudes into equally frequent signal levels because it maps input amplitude 
(its x-axis) onto a linear probability scale (its y-axis). The cartridge ’ s output 
neurons, LMCs, are coding pixel contrast, so the function to be matched 
relates contrast to response amplitude. This function is optimized: it fol-
lows the cumulative probability distribution of the contrasts that are 
encountered when coding natural scenes (  figure 9.10 ). Retinal bipolar cells 
use the same strategy (  figure 9.10 ). 

 In the fly lamina cartridge, the optimum coding function depends on 
the gain of the photoreceptor synapses that drive LMCs. The synapses take 
small photoreceptor signals that code contrast linearly with a low slope 
and amplify them nonlinearly to produce robust signals that code contrast 
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 Figure 9.10 
  Using an input ’ s cumulative probability distribution to code an output optimizes 
coding efficiency . In theory coding is optimized when all output states are used with 

equal probability (figure 5.2).  Left : Given an input probability distribution (e.g., up-

per curve) coding according to the cumulative probability (lower curve) achieves this 

optimum by converting equal areas under the input probability distribution into 

equal increments of response. Noise divides response into discriminable response 

states, all used equally often. Thus coding is optimized by matching an input sta-

tistic.  Upper right : Blowfly LMC codes optimally. Amplitudes of responses to given 

contrasts (triangles) follow cumulative probability in natural scenes (dashed curve). 

 Lower right : Bipolar cell in vertebrate retina (tiger salamander) codes likewise. Left, 

from Laughlin (1981) with permission. Upper right, from Laughlin et al. (1987) with 

permission. Lower right, replotted from data of Burkhardt et al. (2006), after convert-

ing their measure of log contrast to contrast. 
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optimally, according to the cumulative distribution. To capture the distri-
bution ’ s sigmoidal shape, a commonplace analogue primitive, a chemical 
synapse ’ s sigmoidal I/O function, is stretched to encompass the full output 
range and adjusted in slope to follow the cumulative distribution. 

 The synaptic sigmoid is the product of two mechanisms. First, vesicle 
release rate, which increases exponentially with presynaptic depolarization, 
increases slope at the base of the sigmoid. Second, self-shunting by postsyn-
aptic channels (chapter 6) reduces slope at the top of the sigmoid. These 
effects provide two ways of matching the synaptic sigmoid to the cumula-
tive probability. One is to use sensitive presynaptic calcium channels to 
couple small changes in presynaptic voltage to large changes in vesicle 
release. The other is to adjust the cooperativity of histamine binding to 
postsynaptic chloride channels to change the sigmoid ’ s slope (figure 6.7). 
Indeed, different species of fly use histamine-gated chloride channels with 
different cooperativities, presumably to match their coding functions to 
their individual requirements (Skingsley et al., 1995). In short, the opti-
mum coding function is constructed and fine-tuned by combining and 
adjusting analogue primitives that reside in synapses.  

 In summary, the judicious application of analogue primitives optimizes 
the relationship between contrast and response by matching it to natural 
image statistics. Like the removal of redundancy, this is a necessary step in 
optimizing an LMCs efficiency. To complete the optimization, another step 
is necessary. The dynamics of the LMC response, as described by the wave-
form of its flash response, must be tuned to the statistics of signal and noise.  

 Tuning response dynamics to optimize efficiency 

 The dynamics of vision varies with illumination to improve resolution. At 
low light levels photon noise dominates and must be reduced by averaging 
over a slow response. At high light levels photon noise is less severe, brief 
changes can be resolved, and these are captured by a fast response (chapter 
8). In other words, S/N (slow response) is traded for bandwidth (fast 
response). This explains why an LMC ’ s response changes with illumination, 
longer in starlight, shorter in daylight (figure 9.11), but it does not explain 
how precisely how slow or fast these responses must be if they are to opti-
mize efficiency.  

 LMCs provide the answer; their flash response waveforms are optimized 
within constraints imposed by signal, noise, and limited response range 
(van Hateren, 1992b). Two adjustments are made (figure 9.11). Response 
speed is adjusted to optimize the trade-off between bandwidth and S/N 
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and, as noted with predictive coding, response waveform adapts to reduce 
redundancy, thereby optimizing the use of response range (figure 9.7). The 
completed response waveform maximizes the transmission of information. 
To understand how, we start with response speed.    

 The optimum response speed depends on the power spectra of signal 
and noise (figure 9.11). An LMC codes moving images — note that the 
response to stationary stimulus is transient (figure 9.4). Movement changes 
contrast within its receptive field, and the LMC responds by changing 
membrane potential (figure 9.5, right). The power spectrum of this time 
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 Figure 9.11 
  LMC response dynamics adapt to input statistics to maximize transmitted infor-
mation .  Left : Relationship between temporal spectra of natural signals and photon 

noise. Ratio between signal and noise is lower in starlight than daylight so frequency 

at which signal equals noise,  f E  , is lower. Frequencies above  f E     are inefficient, noise  >  

signal.  Right : Flash responses of receptor R1 – R6 and LMC in starlight and daylight. 

Middle trace is LMC response at intermediate light level. In starlight LMC responds 

slowly to suppress transmission of frequencies above low  f E  . In daylight LMC re-

sponds quickly to suppress above high  f E  .   Receptor does likewise, showing it regulates 

LMC response speed. In daylight LMC responds with off transient that implements 

predictive coding. Bars on LMC waveforms are means and standard deviations of 

responses recorded from several LMCs at given time intervals, mean is center of bar. 

Continuous curves are theoretical predictions of waveforms that maximize informa-

tion transmitted at given light level, within constraints imposed by natural image 

statistics, including photon noise, intrinsic noise introduced during transmission 

and LMC ’ s limited response range. LMC optimum waveforms and data from Van 

Hateren (1992c), with permission. Receptor recordings, Laughlin (unpublished). 
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varying signal declines steeply with increasing temporal frequency (figure 
9.11), as follows. A natural scene ’ s power spectrum falls as 1/(spatial fre-
quency) 2 ; the eye ’ s optics steepens this decline as it forms an image, and 
image movement converts spatial frequencies into temporal frequencies. 
Signal is inevitably accompanied by photon noise which, being random, 
has a flat power spectrum. The key observation is that a declining signal 
spectrum intersects a flat noise spectrum at the frequency at which signal 
equals noise,  f E   (figure 9.11). This frequency sets the response speed that 
maximizes information. To understand why, consider how increasing an 
LMC ’ s bandwidth changes S/N and information.  

 Because the signal spectrum falls rapidly with frequency and noise is flat, 
S/N is highest at low frequencies. Consequently an LMC ’ s   S/N is high when 
bandwidth is low. However, an LMC with low bandwidth and high S/N 
transmits little information because  information  =  bandwidth  log 2 ( S / N ). This 
equation favors increasing bandwidth at the expense of S/N — but only up 
to point. Beyond  f E  , the point at which signal equals noise, frequencies are 
inefficient because they carry more noise than signal. So for efficiency the 
frequencies beyond  f E   must be suppressed, and bandwidth is adjusted 
accordingly. 

 This matching of bandwidth to the power spectra of signal and noise 
explains LMC response speed. Response speed determines bandwidth (fig-
ure 8.10) and bandwidth is adjusted the frequency at which signal equals 
noise,  f E  , to maximize transmitted information. Thus an LMC ’ s optimum 
response is slow in starlight when a low S/N places  f E   at a low frequency and 
fast in daylight when a high S/N places  f E   at a high frequency (figure 9.11), 
and to maintain optimality response speed adapts to all light levels in 
between (van Hateren, 1992b). 

 The second change in LMC response dynamic, a change in waveform 
(figure 9.11), has been noted. An OFF response of opposite polarity grows in 
amplitude and narrows in duration with increasing illumination, to reduce 
redundancy by predictive coding (figure 9.7). The removal of redundancy 
from an LMC ’ s limited response range allows the informative parts of sig-
nals to be transmitted with higher gain, thereby reducing the loss of infor-
mation to intrinsic noise added during transmission. Note that the 
matching of bandwidth to  f E   has a similar effect. With less noise from unin-
formative frequencies above  f E  , the informative frequencies below  f E   can be 
amplified with higher gain.  

 The mechanisms that optimize transmission by changing LMC response 
speed and waveform have also been noted. Photoreceptors determine LMC 
response speed and they adapt to illumination to optimize bandwidth, 
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responding slowly at low at light levels and quickly at high (figure 8.10). 
Two presynaptic mechanisms act on photoreceptor output synapses to 
change response waveform. Feedback within the presynaptic terminal and 
changes in extracellular potential (figure 9.8) generate and adapt the OFF 
response. All of these mechanisms act in concert to produce an optimal 
response, and for this the adaptation of each must be matched to the oth-
ers ’ . The mechanisms reside in different cells and different parts of cells, in 
a photoreceptor ’ s microvilli, in the membrane of its axon terminal, and in 
resistance barriers constructed and regulated by glia. Coordinating them to 
precisely optimize an LMC ’ s responses is not a trivial task.  

 In summary, to transmit optimally an LMC continuously adapts its 
response waveform, converting from a slow integrator that sums over time 
to reduce impact of photon noise in starlight to a brisk differentiator that 
emphasizes rapid changes in daylight (figure 9.11). To optimize the trans-
mission of information, the response adapts to match the bandwidth of 
transmitted signal to the statistics of signal and noise in a natural image, 
and eliminates redundancy. Thus an LMC follows one principle,  adapt and  
 match ̧   to satisfy another,  send only what is needed.   

 Summary 

 The lamina accepts high-rate photoreceptor signals and processes them to 
transmit most of the information to the medulla for further processing for 
high speed vision. The lamina is efficient. Part of its efficiency comes from 
not transmitting 20% of photoreceptors ’  information. The remaining 80% 
can then be sent at a lower rate, reducing cost per bit. The remaining 
increases in efficiency are made without loss of information, by adhering to 
principles of neural design. 

 High bit rates are maintained economically by processing and transmit-
ting in analogue. Information capacity is matched to input rates ( symmor-
phosis ) to minimize the use of resources, especially synapses. Coding is 
matched to input statistics to use resources to their full capacity, and 
matches are made efficiently by fine tuning analogue primitives. Circuits 
minimize noise and redundancy to  send only what is needed,  using an advan-
tageous motif, removing redundancy presynaptically by mechanisms that 
do not depend on noisy vesicle release. Another motif, tetradic synapses at 
which one active zone drives the postsynaptic dendrites of four cells, cuts 
the need for space and materials by 75%. 

 No part is left idle. Extracellular space is electrically polarized to remove 
redundancy at presynaptic terminals, using resistance barriers set up and 
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controlled by glia. The axonal cables that transmit analogue signals to the 
medulla are tuned as matched filters that maximize the transmission of 
signal and minimize the transmission of noise. Last, almost every neuron 
and synapse is positioned to fill space efficiently and  minimize wire . 

 The rigorous design of so many components, mechanisms and processes 
makes substantial savings. A lamina that failed to implement the measures 
listed above would be a much less efficient interface. It would be 6 times 
larger and consume at least 4 times more energy to achieve the same bit 
rates. These extra costs would make a fly ’ s brain 50% larger, and increase a 
resting fly ’ s energy consumption by 10%. 

 Although an efficient interface, the lamina ’ s design is not a universal. Its 
efficiency depends on analogue signals travelling the short distances within 
a fly ’ s head. When signals have to travel longer distances in larger struc-
tures, efficient transmission requires different designs. These are considered 
in the next chapter. 
 
 
 
 
 
 
 
 
 
 
 



 Chapters 8 and 9 explained that a sensory neuron collects information via 
a specialized transducer that modulates ion channels. Small currents 
through these channels sum to produce an analogue membrane voltage 
that encodes information efficiently and with a potential for high capacity —
 hundreds of bits per second. Moreover, these signals can transfer across a 
synapse at comparably high information rates. However, analogue voltages, 
spreading passively, decay, and to relay rapidly changing signals beyond 
about 1 mm requires recoding to regenerative pulses — action potentials — in 
pulsatile mode. 

 Mammalian sensors, being substantially further than a millimeter from 
the brain, all require action potentials to relay their information. Therefore, 
they must all recode from analogue to pulsatile (A to P), and to minimize 
irretrievable loss, they must maximize the ratio: bits out/bits in. They 
should also use resources efficiently (bits/ATP and bits/neural volume). All 
sensors must accomplish this by A-to-P recoding, but they differ in where 
and how. Certain sensors recode directly to action potentials whereas oth-
ers require prior synaptic processing (figure 10.1).    

 Olfactory and many skin sensors recode directly to spikes. Sensors of 
sound and head motion both use one synaptic stage, recoding to synaptic 
vesicles and thence to spikes in a second-order neuron. Photosensors use 
two synaptic stages: first, they recode to synaptic vesicles that modulate a 
graded voltage in a second-order neuron, staying largely in analogue mode; 
then they recode to spikes in a third-order neuron. These connectivity dif-
ferences have been known for a century (Ramón y Cajal, 1909) and thus lie 
at the base of Data Mountain. The reasons for these diverse arrangements 
are set out for the first time in this chapter. 

 10   Design of Neural Circuits: Recoding Analogue Signals 

to Pulsatile 
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 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-

sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 

photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 

broad rule, see Baden et al. (2013). 
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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 

optic

vestibular

olfactory

auditory

number of axons axon diameter

104

5×104

106

107

 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 

by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 

varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 

for human (Perge et al., 2012). 
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 The olfactory sensor neuron transmits its low information rate (few bits 
per second) with a low spike rate (  figure 10.3 ), and this allows it to recode 
directly from A to P. The low rate allows the olfactory axons to be thin, 
which is good because they are numerous (figure 4.2). 

 Mechanosensory neurons in skin also narrow their stimulus space to 
restrict the information rate. Each neuron expresses stretch-sensitive chan-
nels in its axon terminal membrane — which embeds a specialized capsule 
at a particular depth in the skin. Skin + capsule together create a mechani-
cal filter that passes only certain amplitudes and frequencies of deforma-
tion. For example, the onionskin capsule of  Pacini ’ s corpuscle , located 
beneath the epidermis, transmits rapid indentations (up to about 300 Hz) 
from the skin surface to the stretch-sensitive channels — mechanical stimuli 
that we sense as textures and vibration (Loewenstein  &  Mendelson, 1965; 
Werner  &  Mountcastle, 1965;   figure 10.3 ). Channels close in the absence of 
stretch and therefore produce only the occasional, brief depolarization —
 which can directly recode to spikes.  2      

 In short, both olfactory and rapidly adapting cutaneous systems restrict 
their information rates by rigorously narrowing the stimulus space. The 
mammalian nose and insect antenna do this by molecular filtering; 
the mammalian skin and insect cuticle do it by mechanical filtering.  3   Low 
information rates at the input allow the output mechanism to recode 
directly to spikes (  figure 10.3 ). How much information is lost at the final 
transition from A to P is unknown for these sensors. Yet, once recoded to 
spikes, information transfers across many levels of central synapses to 
where it finally guides behavior with no further loss (Werner  &  Mountcas-
tle, 1965). The means to manage lossless transfer will be discussed 
(chapter 12). 

 High-rate sensors need a synapse 

 Auditory sensors ( hair cells ) also detect changes in pressure; however, com-
pared to skin sensors, the amplitudes are more than 1,000-fold weaker, and 
the frequencies are up to 100-fold higher. Consequently, a hair cell needs to 
enormously amplify the miniscule, rapid variations in air pressure to modu-
late its cation channels and thus its membrane voltage (Dallos, 2008; Hud-
speth, 2005; Jia et al., 2007; Ashmore, 2008). The amplifiers, both 
mechanical and electromechanical, are also filters that restrict a cell ’ s input 
bandwidth so that the array of hair cells can code sound frequency. Never-
theless, a hair cell encodes a significant range of frequencies (Taberner  &  
Liberman, 2005) and responds with a time constant of less than 0.5 ms. 
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 Figure 10.3 
  Olfactory and skin mechanosensors restrict their information rates, thus allowing 
them to recode directly to spikes. Upper : Olfactory sensor uses a single species of 

molecular filter distributed sparsely on the cilia. The neuron responds slowly, fires at 

low rates, and adapts. Shown here are the cilia of a sensor neuron in the intact olfac-

tory epithelium. Recording shows response to an odor pulse (1  μ M octanoic acid for 

1 s). Arrow marks stimulus onset. Mouse courtesy of Minghong Ma (unpublished). 

 Lower : Each mechanosensor uses a specific type of mechanical filter. Shown here 

is Pacini ’ s corpuscle which responds to a punctate stimulus (2-mm diameter probe) 

to the palmar surface of the hand. Sensor is silent without stimulation, but shallow 

deformations of the skin (19  μ m) at high frequency (150 Hz) evoke a spike to nearly 

every cycle. The I/O curve is steep, indicating sharp tuning to intensity. Drawing 

is reprinted from Ramón y Cajal (1909); recording and graph are modified and re-

printed with permission from Talbot et al. (1968). 
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This enables a hair cell to encode information at rates that exceed the cod-
ing capacity of a spike train, so neural processing is required at the synapse  4   
(  figure 10.4 ).    

 This synapse accomplishes three tasks: (1) recodes the rapidly fluctuat-
ing analogue voltage to a precisely timed pattern of vesicle release, (2) 
carves away considerable redundancy from the release pattern, and (3) 
recodes each vesicle to a spike (Rutherford et al., 2012). Note that the carv-
ing of redundancy from the vesicle pattern also carves it from the spike 
pattern. The key is to match specific molecular and cellular components in 
a unified functional architecture (  figure 10.4 ). 

 The hair cell ’ s calcium sensor is highly cooperative: to trigger fusion, it 
must bind five calcium ions. This requires calcium to rise steeply near a 
docked vesicle, either from one adjacent calcium channel or from several 
channels opening simultaneously within tens of nanometers. Near the hair 
cell ’ s resting potential, about  – 70 mV, its Cav1.3 channels have a low prob-
ability of opening (Zampini et al., 2010), yet they are present in sufficient 
numbers and proximity to docked vesicles that spontaneous channel open-
ings in the absence of sound cause single vesicles to fuse at a substantial 
rate, about 20 – 40 s  – 1  (Graydon et al., 2011; Kim et al., 2013). This requires a 
special organelle (synaptic ribbon) to concentrate vesicles from the cyto-
plasm, and to prime and dock them to be ready for the next calcium surge 
(Matthews  &  Fuchs, 2010). 

 The hair cell ’ s synaptic vesicles are relatively large (~45 nm in diameter) 
and dock along a ring at the base of the spherical ribbon. Facing the ribbon 
across the synaptic cleft, glutamate receptors distribute in a gradient — low 
at the center and high along the outer ring where the vesicles fuse. Thus, 
each fusion delivers a relatively large puff of glutamate to a dense concen-
tration of receptors. This matches a high spatiotemporal concentration of 
glutamate to the low binding affinity of a particular receptor isoform 
(GluR2 – 3) to give good S/N, and a fast OFF rate that allows the postsynaptic 
response to follow high frequencies (  figure 10.4 ). Thus, the pre- and post-
synaptic structures serve to concentrate the information to be sent by each 
expensive spike. 

 The postsynaptic knob is small (~1  μ m) for low capacitance (rapid charg-
ing) and high input resistance (sharp depolarization to small current). The 
knob couples directly to an axon whose fast sodium channels (Nav1.6) are 
suited for high firing rates. Thus, the overall design allows nearly every 
release event to trigger a spike. This avoids spatiotemporal integration, 
which would add delay and jitter. But the cost is substantial: continual spik-
ing at high rates — noise in the absence of sound. 
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 Figure 10.4 
  Auditory hair cell, transducing high frequencies, captures too much information to 
recode directly to spikes . Instead, it recodes to vesicles.  Upper left : Each active zone 

drives one dedicated spiking axon (four of about 20 are shown).  Middle left : Tempo-

ral precision is preserved by concatenating two cooperative mechanisms for vesicle 

fusion. This also reduces redundant spiking. Calcium concentration rises at the peak 

of each stimulus cycle (1 kHz), but only the middle cycle opens sufficient calcium 

channels for the concentration to reach threshold for binding five calcium ions to 

the vesicle ’ s calcium sensor.  Lower left : Spike responses in postsynaptic axon to pure 

tone (676 Hz) to which it is selectively tuned (chick). Spikes all align with the peak 

of every cycle, but many trials fail. Reading across 25 cycles of one trial (~35 ms), 

one has little uncertainty about the correlation of spike to stimulus timing, so add-

ing more spikes where there are failures would be redundant.  Upper right : Synaptic 

ribbon tethers to the presynaptic membrane (x) and itself tethers relatively large 

vesicles (45-nm diameter), bringing them into contact with the membrane along a 

ring. Postsynaptic glutamate receptors with low affinity (fast) cluster postsynaptically 

as a gradient that peaks at the ring and declines toward the center. Thus, the recep-

tors are distributed to catch the fast peaks in glutamate concentration.  Lower right : 
Number of active zones peaks near middle of cochlea at middle of frequency range 

and peak of sensitivity. Recording is modified and reprinted with permission from 

Moser et al. (2006); distribution of glutamate receptors, vesicle size, and distribution 

of active zones are modified and reprinted with permission from Meyer et al. (2009). 
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 Spikes that follow single, thermally evoked vesicle fusions show consid-
erable delay and temporal jitter (300 – 1,500  μ s). However, when a sound 
drives membrane voltage to the steep region of Cav1.3 ’ s current/voltage 
curve, simultaneous channel openings occur more often. The larger cal-
cium surges tend to fuse several vesicles simultaneously, causing larger glu-
tamate puffs and thus larger postsynaptic currents. These reduce delay and 
jitter (500  ±  50  μ s) and efficiently recode sound to spikes. Three simultane-
ous quanta suffice to reliably recode a fusion event to a spike event (Grant 
et al., 2010). 

 In summary, one or a few neighboring calcium channels open to cause a 
fusion event. A fusion event with one vesicle reliably causes one postsynap-
tic spike, but that spike jitters and therefore correlates weakly with the cal-
cium channel opening(s). Multiquantal fusion also causes one spike, but its 
greater postsynaptic strength reduces spike jitter and so correlates strongly 
with the channel opening(s) that caused it. Precise timing of fusion involves 
two levels of cooperativity: (1) at the nanometer scale, high cooperativity at 
the vesicle ’ s calcium sensor to release a vesicle; (2) at the 100-nm scale, 
cooperativity between calcium channels to release multiple vesicles. This 
second level appears to be key to reducing spike redundancy — as we now 
explain (  figure 10.4 ). 

 The cooperative opening of calcium channels that locks vesicle fusion to 
the voltage peak also makes spiking unreliable because the chances of suc-
cess depend on the likelihood of the channels opening jointly. This is the 
product of their individual probabilities, so if four channels were needed, 
each with P open  = 0.15, the chance of joint opening would be about 5  ×  10  – 4  
(Zampini et al., 2010). Consequently, a voltage repeating over many cycles 
at, say, 3 kHz would sometimes cause fusion, but usually not. When a spike 
does occur, it is precisely timed; however, many cycles are skipped. Skip-
ping cycles reduces redundancy and improves coding efficiency (  figure 
10.4 ). One problem solved. 

 But another problem remains. As described so far, a hair cell ’ s recoding 
from vesicles to spikes is 1:1 — one large fusion event triggers one spike in 
one postsynaptic axon. Yet, the cell ’ s analogue signal contains far more 
information than one axon can send by spikes. To send more, the hair cell 
employs multiple active zones, up to about 20 – 30, that each contact a sepa-
rate axon. The active zones differ, both in numbers of docked vesicles and 
calcium channels. This allows channel cooperativity to create a particular 
release pattern for each active zone and thus a particular firing pattern for 
each postsynaptic axon. Thus, a hair cell ’ s full analogue message is custom 
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filtered and converted to pulses by about 20 – 30 axons whose total rate is 
approximately 800 – 1200 Hz.  5   

 These are  expensive  axons since their high mean rates require thick cali-
ber and high energy (  figures 10.2  and 4.6). This illustrates that a neuron can 
encode so much information in analogue mode that sending it by pulses 
requires a veritable cable of thick, power-hungry axons. Auditory systems 
hold down the total cost by restricting the number of axons (about 30,000 
in human). But the overall high cost is unavoidable for transmitting infor-
mation sensed at high frequencies beyond a millimeter. 

 The middle region of the cochlea is more sensitive than either end. This 
region in mouse serves frequencies near16 kHz — the frequency emitted by 
squirming pups. Sensitivity peaks in human near 3.2 kHz —  the frequency 
of a baby ’ s cry. These hair cells express the most active zones and thus send 
the most axons to the brain (Meyer et al., 2009). Thus, the auditory hair cell 
recodes its rich analogue signal to multiple pulses that carry different 
amounts of information to the brain. There they contact different subsets 
of neurons using different types of synapse. The advantages of such a paral-
lel design will be explained in chapter 11. 

 When high-rate sensors do not rectify 

 The auditory hair cell rectifies its input. Each pressure cycle bends a stereo-
cilium that tensions a protein that yanks channels open like a trapdoor. 
Unbending releases the tension, so the channels snap shut. Current flows 
only once per cycle rather than at each half cycle. This is efficient because 
the two half cycles are perfectly correlated, so to code both would be 
redundant. 

 The vestibular hair cell does  not  rectify. Instead it linearly encodes both 
increases and decreases in pressure. This design works for sensing position 
and velocity of the head — a large inertial mass that changes slowly (0 – 20 
Hz). These frequencies are 3 – 4 orders of magnitude lower than sound fre-
quencies, so there are no redundant cycles to be skipped. Moreover, the 
change to be sensed may occupy far less than one cycle — the head may turn 
slightly and pause indefinitely before resuming its initial position. So both 
directions are independently informative, and neither should be deleted by 
rectification. 

 The vestibular hair cell at rest is partially depolarized by a few open 
channels. Head motion in one direction opens more channels, and motion 
in the other direction closes them (  figure 10.5 ). The postsynaptic axon does 
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not fire to a single or compound fusion. Rather, it integrates many release 
events from multiple active zones in one hair cell and even converges 
release events from several adjacent hair cells (Goldberg et al., 2011). Thus, 
the vestibular axon is not about encoding single, well-timed events over 
many cycles but rather about encoding a good S/N over less than one cycle. 
Whereas an auditory hair cell must  diverge  its message, directing one active 
zone to each of 20 high-rate axons, a vestibular hair cell must  converge  mul-
tiple active zones onto one axon (  figure 10.5 ).  6      

 This design, which encodes low temporal frequencies by modulating a 
high tonic spike rate, has advantages for the vestibular system ’ s mecha-
nisms for fast central processing. One certainly expects a payoff because the 
design is so costly per unit. Yet, the system is affordable because vestibular 
axons are few (  figure 10.2 ). But what if a high-rate sensor without rectifica-
tion also needs to be numerous? Suppose that a sensor ’ s usefulness involves 
an extended, dense array? The vestibular design would fail due to soaring 
costs. This is the challenge for cone photoreceptors in the retina. 

 Why does a cone photoreceptor need  two  synaptic stages? 

 An olfactory neuron captures individual particles, amplifying each capture 
via a G protein cascade (chapter 8). From the air ’ s universe of molecules the 
olfactory sensor selects a small subset with a discrete molecular shape/
charge that bind to its single type of odorant receptor expressed from the 
DNA catalog of 1,000 types. Thus, an olfactory sensor uses stringent molec-
ular filters to select which particles to bind. A cone also captures individual 
particles, but its protein detector ( cone opsin ) is broadly tuned. True, cones 
can choose between two or three receptor proteins with somewhat different 
spectral tuning. However, while these differences are critical for discrimi-
nating color, they do not significantly narrow a cone ’ s rate of particle 
capture. 

 Odorant particles travel slowly and spread out as they go. Therefore, an 
olfactory source is blurry in space and time. An olfactory sensor, having 
identified an odorant roughly in time and intensity, based on relatively few 
corroborative particle captures, would gain little by capturing more. That 
would violate the rule match sensor to signal quality (chapter 8). Light par-
ticles travel directly at, well, the speed of light and go directly from object 
to cone — via the optics that match image quality to quality of the sensor 
array (chapter 8). Thus, the more photons that a cone captures during a 
brief interval, the more finely it localizes a point in space and time (Sterling 
et al., 1992). 
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 Figure 10.5 
  Vestibular hair cells, transducing low frequencies, can sum their analogue signals be-
fore recoding to spikes. Upper : Head rotates slowly (1 Hz). Spikes from second-order 

vestibular axon are modulated linearly through the full cycle around 50 spikes per 

second.  Lower:  Adjacent hair cells each converge multiple active zones onto single 

afferent fiber. Modified from Eatock et al. (2008). 
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 In short, because photons are numerous and well localized in space and 
time, there is an opportunity for fine imaging. A cone exploits this by 
investing heavily in detector molecules, packing them densely at far greater 
numbers than an olfactory neuron. This design transduces particles at tre-
mendous rates to build a finely graded photovoltage that imbues the cone 
with too much information for direct recoding to spikes. It is even too 
much to be accomplished by a single synaptic stage. Lacking chemical and 
mechanical filters to reduce the information stream (  figures 10.3 and 10.4 ), 
the cone is forced to filter its analogue photovoltage  neurally  before finally 
recoding. This is what the retina is  “ for. ”  

 The first stage is quite general, removing noise and redundant informa-
tion that no downstream element will need. This involves discarding infor-
mation about mean intensity and transmitting only signals greater or less 
than the mean — that is,  contrast  (chapter 9). The second neural filter sharply 
reduces the event rate — throttling down to a  “ sparse code. ”  To implement 
a sparse code, the retina can no longer signal objects brighter and dimmer 
than the mean by modulating a high tonic rate (like vestibular neurons). 
Therefore, it rectifies — creates separate channels to send signals greater or 
less than the mean (ON and OFF). The second stage also performs  “ custom ”  
filtering — selecting special aspects of the captured information for routing 
to particular downstream targets at rates sufficient for their particular needs. 

 Why two synaptic stages? Imagine that each of the cone ’ s 20 active 
zones were to directly excite an axon in the manner of an auditory hair cell. 
These axons could send messages edited for noise and mean intensity but 
would relay the full image, unrectified, leaving further editing to central 
mechanisms. That would require all optic axons to fire at high rates and be 
thick (  figure 10.2 ). Auditory hair cells number approximately 10 3 , but cones 
number approximately 10 6 . To send a fine spatial image where each pixel 
needs 20 thick axons could not work. 

 Regarding the structure and function of the retina ’ s two-stage  “ neural 
editing, ”  a great deal is known — sufficient, we feel, to justify a separate 
chapter. The possible appeal, for readers blind to its intrinsic fascination, is 
that these neural circuits exemplify design principles applicable to the rest 
of the brain. For a fuller explanation of why photoreceptors need two syn-
aptic stages, proceed to chapter 11. 
 
 
 
 
 



 The eye in daylight is like the camera on a planetary rover. Both capture 
rich images, and both are constrained to send them via a channel of low 
information capacity.  1   The rover solves this by transmitting slowly, using 
minutes per image, and storing them at base for leisurely assembly and 
analysis. But the eye ’ s stream of raw data cannot be stored — there is far too 
much. Moreover, an animal needs the images to guide action in real time. 
The eye functions under a time constraint: it must capture, process, and 
send an image within about 100 ms.  2   Consequently, ganglion cell and 
behavioral performance both improve with temporal summation up to 
about 100 ms but not beyond (Geisler, 1989).  3   

 For an image processor this presents a significant computational chal-
lenge. The good news is that on the chemical/electrical scale 100 ms is a 
decent amount of time. Although an auditory hair cell ’ s temporal precision 
cannot tolerate any neural integration beyond a millisecond (figure 10.4), 
the retina can integrate for 100-fold longer. The brain exploits this oppor-
tunity by establishing complex neural circuits within the eye. When these 
have processed images in situ, the output channel can transmit at the speci-
fied rate at an acceptable cost — thus, a retina. 

 Given that the retina lies on the optical path, it must stay thin; there-
fore, processing should minimize the volume of neurons and wires. Pro-
cessing must also minimize energy because to supply fuel and oxygen 
requires blood vessels. Although photoreceptors are themselves energeti-
cally demanding, they are supplied by vessels outside the optical path. But 
the neural circuits require blood vessels within the optical path — which 
scatter and absorb light heading for the receptors (  figure 11.1 ). For these 
reasons the thickest synaptic layer in mammalian retina never exceeds 
about 30  μ m.  4      

 The retina ’ s architecture has been thoroughly mapped. Most of its 
roughly 80 neuron types and their array structures are known on a scale of 

 11   Principles of Retinal Design 
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millimeters. Many synaptic circuits are known on a scale of micrometers, 
and many receptor proteins, vesicle distributions, and ion channels are 
known on a scale of nanometers. The maps span a scale of 1 millionfold —
 the United States down to a house lot. The retina has accumulated its own 
Data Mountain, yet it is no scree of unconnected facts. We know the funda-
mental plan (Masland, 2012; W ä ssle, 2004; Sterling, 2004a; Light et al., 
2012; W ä ssle et al., 2009), the key mechanisms, and the overall efficiency 
(Borghuis, et al., 2009; et al., 2006; Ala-Laurila et al., 2011). By now inte-
grating this knowledge with the constraints (time, space, energy), the goal 
of reverse engineering can be approached. One might then explain  why  the 
retina is designed just so. 
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macaquemacaquemacaque

outer synaptic layer

photoreceptor cell bodies
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 Figure 11.1 
  Vertical slice through monkey retina . The arrow indicates the optical path. The neu-

ral retina contains three cell layers and two synaptic layers. By staying thin, it pre-

serves good optics. Light micrograph courtesy of Noga Vardi. 
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 The recoding challenge 

 A cone in daylight captures about 10,000 quanta   s  – 1  to encode a finely 
graded voltage (chapter 8). To recode directly would require 10,000 spikes 
s  – 1  — exceeding the brain ’ s highest mean spike rate by 100-fold. Obviously 
the retina must recode to a lower rate. But  how  low? And what is the gov-
erning computational scheme? Also, how does the retina ’ s implementation 
follow principles of neural design?  5   

 Consider this example (  figure 11.2 ). A spot of daylight 1% brighter than 
the background delivers about 10 9  photons to a patch of 4,000 cones in 100 
ms. The photons (spot + background) isomerize about 10 7  cone opsin mol-
ecules, thus reducing quanta by 100-fold. The cone synaptic terminals 
release about 10 5  vesicles, reducing quanta by another 100-fold. The bipolar 
cell terminals then achieve a radical transformation: they collapse tonic 
release nearly to zero; however, to the spot ’ s onset they release quanta in 
small bursts. About 10 vesicle quanta suffice to reliably trigger one ganglion 
cell spike (Freed, 2005). In short, a pattern reaching the photoreceptors as 
10 7  events is compressed by retinal circuits for the most sensitive ganglion 
cell to a  single  event — one spike. 

 This suffices for the spot to be perceived (Borghuis et al., 2009). For 
example, based on that single spike, a monkey can report the appearance of 
a spot and thereby earn a sip of juice. This implies that at perceptual thresh-
old, a single spike can impart meaning. In this respect the eye is like the 
skin, where perceptual threshold is also set by a single pulse sent by a single 
axon (Werner  &  Mountcastle, 1965; Barlow, 1972; chapter 10).    

 Across the stages from cone input to ganglion cell output considerable 
information is discarded, and this reduces sensitivity. As the quantal rate 
steps down by 100-fold at the cones, sensitivity falls by 10-fold (  figure 11.2 ). 
This is the square-root law, which determines signal-to-noise ratio when it 
is based on random processes, such as photon arrival (chapter 8). Vesicle 
release is also random, yet the 100-fold decrease in rate at the cone terminal 
reduces sensitivity by only about fourfold, and the more than 
100-fold decrease in rate bipolar cell terminal reduces sensitivity by only 
about 2.5-fold. Since successive losses are multiplicative, overall neural 
loss across the retina is about 10-fold (Borghuis et al., 2009; Ala-Laurila 
et al., 2011). 

 How can neural stages outperform the square-root law? By discarding 
what is uninformative, thus reserving signaling capacity for what is most 
informative. The cone terminal begins this process by removing noise and 
redundancy. The synaptic architecture for these two filtering operations is 
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evident in a slice through a cone terminal (  figure 11.3 ). The filtering strate-
gies and implementation are explained in the next section.    

 Reducing noise 
 The strategy for reducing noise is simple. Light intensities at adjacent points 
in an image tend to be correlated. For example, when you view a dark patch 
on a bird ’ s wing, all the receptors collecting from that patch receive similar 
intensities and thus register similar photovoltages. But they are never iden-
tical because photons arrive stochastically. Their fluctuations (photon 
noise) occur independently in each receptor, so membrane photovoltages 
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 Figure 11.2 
  Quantal rates step down from photon input to ganglion cell output . The initial stage 

loses sensitivity by 10-fold, following the square-root law; later stages preserve sensi-

tivity because of neural processing. Electrode recordings from single horizontal and 

ganglion cells read out the cone and bipolar quanta. Guinea pig. Modified and re-

printed with permission from Borghuis et al. (2009). 
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 Figure 11.3 
  Section through cone synaptic terminal from monkey fovea . Gap junction electri-

cally couples this terminal to neighbor. Arrow indicates site of vesicle release at base 

of synaptic ribbon onto horizontal cell processes and cone bipolar dendrites (*). Gap 

junctions reduce cone noise; horizontal cell negative feedback to calcium channels 

at release site reduces redundant signals; bipolar dendrites near cone release sites en-

code fast signals, whereas dendrites far from the release sites encode slower ones (see 

figure 11.10).    Glial membranes, bearing high concentrations of glutamate transport-

ers, separate the cones and reduce spillover between them (Szmajda  &  DeVries, 2011; 

Burris et al., 2002). Electron micrograph courtesy of Yoshihiko Tsukamoto. Modified 

and reprinted with permission from Sterling (2004a). 

contain both a correlated component (signal) and an uncorrelated compo-
nent (noise). Both components flow between neighboring receptors across 
the gap junctions (  figure 11.3 ). The correlated signals shared by cones add 
linearly, but the uncorrelated noise adds as the square root. Consequently, 
when n receptors pool noisy signals, S/N improves as  √ n (  figure 11.4 ).    

 Another effect of gap junction coupling is to attenuate high spatial fre-
quencies (fine spatial detail) and pass low ones. This is accomplished 
directly in analogue by resistively coupling the photoreceptor terminals 
and integrating voltages through their membrane capacitance (  figure 11.4 ). 
Thus, the retina ’ s first neural circuit follows the principle  compute directly 
with analogue primitives . This filtering operation is implemented identically 
in an electronic circuit — by passing a current through a resistor and a 
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  Cone electrical coupling reduces noise from phototransduction. Upper left : Foveal 

cones pack triangularly and couple their synaptic terminals via gap junctions.  Lower 
left:  Schematic circuit for electrical coupling between two neighbors. Photon flux at 

the cone outer segment (OS) controls light-modulated conductance (variable resistors) 

which, in series with voltage source (V) and membrane conductance (2  ×  10 9  S), gener-

ates the voltage response in the terminal.  Upper right : Current spread to neighbors blurs 

the cone image, but the blur due to measured coupling (320 pS) is narrower than the 

blur due to optical factors in bright light.  Lower right : Sinusoidal grating with con-

trast decreasing from center. This grating flashed on the cone array produces noisy 

fluctuations that obscure responses at low contrast; but coupling reduces this noise, 

allowing the terminals to send more signal. Modified and reprinted with permission 

from DeVries et al. (2002). 
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capacitor. In the retina, however, the circuit operates at the molecular level, 
so the currents and capacitances can be far smaller (chapter 6). 

 Coupling at the photoreceptor level has several advantages. First, dis-
carding noise saves resources. In particular, it allows the signal to be sent 
with fewer vesicles, thus holding to the steep limb of the square-root law. 
This in turn reserves postsynaptic currents for encoding signal. Second, sur-
rounding rods also couple to cones and contribute  their  photovoltages, fur-
ther improving the cone ’ s presynaptic S/N (Sterling et al., 1988; Borghuis et 
al., 2009). Third, downstream stages introduce nonlinearities, such as the 
two stages of cooperativity for vesicle release described in chapter 10, and 
rectification, which differently affect signals above and below the mean. So 
coupling cones obeys another important rule of circuit design:  reduce noise 
before it becomes distorted by nonlinear processing . This rule is followed by all 
photoreceptor arrays, both insect and vertebrate (chapter 9). 

 This noise filter operates efficiently. The gap junction is essentially two-
dimensional — simply a patch of close apposition between two cell 
membranes — so it requires zero extra space (  figure 11.3 ). Also, its coupling 
via  transcellular  channels keeps the ion flows within cytoplasm, therefore 
electrical coupling requires little extra energy. Finally, the gap junction, 
while attenuating noise  within  a neuron, adds very little noise of its own. In 
short, this filtering mechanism costs no space and little energy or noise. It 
is even tunable to stay optimal as S/N changes with light intensity 
(Li et al., 2013). 

 A Ponzi scheme? 
 At this point a reader might worry that this mechanism sounds too good. 
Would not pooling signals across the photoreceptor mosaic reduce its abil-
ity to represent fine spatial detail? Only if spatial acuity were set by the 
photoreceptor lattice, but in general it is not. The main reason for a fine 
receptor mosaic is not spatial acuity but rather to reduce receptor volume in 
order to improve transduction speed (chapter 8). Spatial acuity is generally 
set at the retina ’ s  output  layer, that is, at the ganglion cell arrays. Since a 
ganglion cell typically pools signals from about 10 2  – 10 3  cones, local pool-
ing at the cone terminal will not affect spatial acuity at a ganglion 
cell mosaic. 

  “ Midget ”  ganglion cells in the primate fovea are exceptions to this gen-
eral rule. They do collect from single cones, so strong coupling between 
foveal cones would indeed reduce acuity. However, the average coupling 
conductance between foveal cones is small enough that the resulting  “ neu-
ral blur ”  is narrower than the eye ’ s optical blur. Thus the neural blur little 
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affects spatial acuity; yet it suffices to improve S/N by nearly 80% (  figure 
11.4 ; DeVries et al., 2002). 

 Would not coupling cones of different spectral tuning blur their spectral 
differences, which are key to color vision? Yes, but this effect is reduced by 
clustering cones of like spectral type. The uncorrelated noises are attenu-
ated, but the correlated spectral responses are not. The strategy works espe-
cially well for cones sensitive to middle (M) and long (L) wavelengths 
because their random distribution creates many patches of like type. The 
strategy fails for cones sensitive to short (S) wavelengths, which, being rare 
(5 – 10%), tend to be surrounded by M and L cones. If S cones coupled 
strongly to M and L, spectral differences would indeed be severely attenu-
ated. The circuit avoids this by not coupling the S cones (Hsu et al., 2000; 
Hornstein et al., 2004; Li  &  DeVries, 2004). 

 In summary, gap junctions perform no magic — they offer neither per-
petual profit nor an inconceivably large return for the investment. They 
simply allow linear trade-offs — a small spatial or spectral blur is traded for 
better S/N. The exact degree of coupling appears to maximize total informa-
tion from the array (Garrigan et al., 2010). This  “ truth-in-lending state-
ment ”  should reassure readers that photoreceptor coupling is no Ponzi 
scheme but simply an intelligent design. 

 Compress files by subtracting the mean 
 The other component to be discarded from the photosignal is the  mean . 
This might also seem to be a trick — like Garrison Keillor ’ s mythical town 
 “ where all the children are above average. ”  It is no trick, but simply the 
predictive coding scheme already described for the fly photoreceptors 
(chapter 9). A cone sees a scene as a succession of changes between bright 
and dark, each a deviation from the mean intensity. These brief dimmings 
and brightenings are informative whereas the steady mean is not, so they 
are what the retina should transmit. 

 The strategy is simple: measure the mean precisely by summing raw 
intensity responses across a broad patch of cones. This predicts the inten-
sity at the patch ’ s center. Deviations from this prediction — in either 
direction — represent the  contrast  signal — the component most worthy of 
transmission. The contrast signal is then isolated by subtracting the predic-
tion from the actual center signal (figure 9.7). To measure the mean special-
ized neurons ( horizontal cells ) spread thick processes as a planar arbor just 
beneath the layer of cone terminals (  figure 11.5 ).     

 Adjacent horizontal cell processes overlap extensively and couple electri-
cally by gap junctions to form a low-resistance network — good for 
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  Functional architecture for filter that removes low spatial and temporal frequencies 
from cone signal .  Upper : Horizontal cells form a planar meshwork of thick branches 

beneath the layer of cone terminals (  figure 11.1 ) and connect to every cone. This 

connection uses irreducibly fine wires (~0.1  μ m) that invaginate the cone terminal 

and expand parallel to each ribbon. Every cone ribbon is flanked by two expansions 

that lie within 20 nm of every docked vesicle (  figure 11.3 ). Note that this type of 

horizontal cell connects exclusively to cone terminals, entirely avoiding rod termi-

nals.  Lower : Final connection to cone terminal uses short, thin wire that reserves 

space for other essential connections. Shown are type A cells from rabbit. Reprinted 

with permission from Pan  &  Massey (2007). 
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averaging noisy inputs as described for the cone terminals. These thick 
trunks send irreducibly fine processes ( ∼  0.1  μ m) to invaginate every overly-
ing cone terminal. Within the invagination, the process expands along the 
base of a ribbon so as to detect and process the glutamate pulse from every 
vesicle that fuses (  figure 11.3 ). The expansion lies within 20 nm of the 
release sites and expresses a low-affinity, AMPA-type isoform of the gluta-
mate receptor (Haverkamp et al., 2001b; DeVries, 2014). 

 This expansion of the horizontal cell within the cone terminal is clearly 
designed to capture rapidly changing signals. First, it locates near the release 
site to reduce diffusion distance and give it a fast pulse of glutamate at high 
concentration (  figure 11.3 ). Second, it expresses fast glutamate receptors. 
Third, it uses small membrane area to reduce capacitance for rapid charg-
ing. Fourth, it connects to the horizontal cell with a short process to avoid 
attenuating fast changes. All these properties — short diffusion distance, fast 
glutamate receptors, low capacitance, and short connection — together rep-
resent a design to average the cone signal ’ s rapidly changing components. 
The connection, being irreducibly fine (0.1  μ m) attenuates the voltage 
delivered to the low-impedance horizontal cell network, giving each cone a 
small weight and thus allowing broad summation. 

 Horizontal cells also have processes deeper in the synaptic layer that see 
slowly changing signal components and detect them with slower isoforms 
of the glutamate receptor (  figure 11.3;  Haverkamp et al., 2001b). Thus, the 
horizontal cell captures the full bandwidth carried by every vesicle from 
every cone and averages across thousands of cones. 

 During the 100 ms allowed for summation, the low-resistance horizontal 
cell network sees about 10 5  glutamate pulses, sensing both rapidly changing 
and slowly changing signal components. Their summation improves S/N 
across the full bandwidth by more than 300-fold.  6   So the horizontal cell 
membrane voltage with high S/N ratio accurately predicts local intensity 
(Borghuis et al., 2009). It then subtracts this prediction from 
the cone terminal. Ideally, this computation should cost minimal extra 
space, energy, or noise. This seems to preclude a standard chemical synapse 
to shunt cone photovoltage. Instead, the horizontal cell network provides a 
current source to feed electrical signals back over the same fine wires 
to the expansions located within 20 nm of the cone ’ s voltage-gated 
calcium channels. Feedback implements this subtraction by changing the 
response of these channels, either electrically, as demonstrated in the fly 
(chapter 9), or via protons that modulate the channel (Klaassen et al., 2012; 
Hirasawa  &  Kaneko, 2003; Thoreson  &  Mangel, 2012; Davenport 
et al., 2008). Either way or both, the circuit uses the same wires for input 
and output. 
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 One problem remains: how to weight the averages for the filters that 
remove noise and redundancy. S/N improvement by pooling partially cor-
related signals from the patch of cones near the center declines with the 
strength of correlation. Correlations for a given cone are strongest with its 
nearest neighbors and decay exponentially in space and time. Thus, averag-
ing for both center (by cone coupling) and surround (by horizontal cells) 
should be weighted for the decay in correlation strength. The optimal 
weightings for both center and surround filters are roughly Gaussian, so 
when summed at the cone terminal, the overall optimal weighting is a two-
dimensional difference-of-Gaussians. For a digital computer it is a some-
what formidable expression: 
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 But the retina computes this filter directly in analogue — by convolving the 
eye ’ s optical spread function with the output of the cone/horizontal cell 
circuit (  figure 11.6 ). To optimize the weightings for both center and sur-
round requires subtle matching of the optics to the coupling strength 
between cones and between two types of horizontal cell, one narrow-field 
(H B ) and the other wide-field (H A ) (  figure 11.6 ).  7   The optimal weighting 
shifts with background intensity, as noted for fly (chapter 9), so this circuit 
adapts by changing coupling strengths and feedback gains. For example, 
coupling strength can be altered by phosphorylating connexin 36 via a 
kinase activated by retinal dopamine neurons that track changing intensity 
and circadian time (Li et al., 2013).    

 Having introduced the first set of retinal interneurons, we should note 
that they exemplify an important design rule:  minimize wire caliber . Hori-
zontal cells use coarse neurites to conduct passively over longish distances 
(H A ) and fine ones to reach cone terminals over short distances (H B ). Both 
types are only as thick as they need to be for their particular task. The cells 
also obey the rule  minimize wire length  — by arborizing strictly in two dimen-
sions beneath the cone array and connecting to it via the shortest possible 
wires (  figure 11.5 ). This means placing the neurons as close to their targets 
as possible, given the other claims on the space. Indeed, horizontal cell 
bodies are as close as they can be to the layer of cone terminals and not 
interfere with the connecting wires (  figure 11.1 ). 

 Quantizing the cone ’ s analogue signal 

 The problem for the cone terminal is how to represent the filtered analogue 
membrane voltage as a varying stream of pulses (transmitter quanta). 
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  A local circuit computes the cone terminal ’ s difference-of-Gaussians receptive field  

(Smith, 1995).  Upper left : A bright point at the cornea blurs on the optical path to 

stimulate about 10 cones ( point spread function ). The transduced signal spreads fur-

ther via cone coupling to create a receptive field center for one cone (*) that includes 

about 50 neighbors. Horizontal cells sum cone signals more broadly and feed back 

negatively to create a receptive field surround that includes about 1,200 cones.  Upper 
right : The neural circuit. Arrows between the terminals denote coupling; the sur-

round is shaped by inhibitory feedback (inset).  Lower left : Sensitivity profile across 

the cone receptive field (between arrows above). Optimal weighting for the center re-

quires combining both optical blur with cone – cone coupling. Optimal weighting for 

the surround requires combining a narrow, deep contribution from the narrow-field 

H B  cell with a broad, shallow contribution from the wide-field H A  cell.  Lower right : 
Horizontal cell response increases with spot size, consistent with its broad collecting 

area, but negative feedback from horizontal cells causes the reverse in a cone: large 

response to spot filling the receptive field center and small response to spot filling 

the surround. Modified and reprinted with permission from Sterling (2004a); based 

on studies by Smith (1995), Leeper  &  Charlton (1985). 



Principles of Retinal Design 289

Several requirements must be satisfied. Dark and bright should modulate 
quanta oppositely but equally. This is evident in the horizontal cell ’ s 
response to increments and decrements of the cone vesicle stream (  figure 
11.7 , left). Second, linearity should extend over a significant dynamic range 
(  figure 11.7 , right).    

 To meet these requirements, the cone terminal sets its mean voltage 
around  – 50 mV by balancing the photocurrent in background light against 
horizontal cell antagonism. This voltage half-activates the calcium chan-
nels (Cav1.4; Mercer et al., 2011), so a depolarizing dark stimulus sharply 
increases the rate of channel openings, and a hyperpolarizing bright stimu-
lus sharply decreases the rate. The balance is actually somewhat 
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  Horizontal cell responds to dark and bright equally and linearly at low contrasts . 
 Left : Horizontal cell responses to flashes dimmer than the mean (dark trace) and 

brighter than the mean level (pale trace). Responses are of opposite polarity, but 

equal up to 20% contrast. Higher contrasts saturate the response to bright whereas 

responses to dark continue increasing. Each trace averages about 140 trials. Modified 

and reprinted with permission from Borghuis et al. (2009).  Right : Horizontal cell re-

sponse to dark is linear across wide range of contrasts because cooperativity of cone 

vesicle release is low (Hill coefficient ~2). If cooperativity were high (Hill coefficient 

~5), as for the auditory hair cell (  figure 11.8 ), the response would saturate at lower 

contrasts. Graph courtesy of Bart Borghuis (2014). 
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asymmetrical, such that responses to dark continue to rise linearly with 
contrast whereas responses to bright saturate (  figure 11.7 , left). The mecha-
nistic explanation is that larger bright contrasts drive vesicle release toward 
zero, so that is the floor. But larger dark contrasts drive vesicle release to 
higher rates, limited only by the calcium current that continues to rise with 
stronger depolarization. 

 The mechanism raises a deeper question: why not adjust the balance to 
maintain symmetrical responses to dark and bright across the full dynamic 
range? Natural scenes are known to contain more dark contrasts than bright 
ones, so efficient design should allot more resources to transmitting dark. 
This asymmetry, arising at the cone output, carries through later stages of 
retinal circuitry and will be revisited later (see below,   figure 11.19 ). 

 In summary, a visual scene is first quantized at the cone terminal as a 
flickering pattern of calcium channels, then as a flickering pattern of enter-
ing calcium pulses, and finally as a flickering pattern of vesicle release. Sen-
sitivity, linearity, and the optimal balance for dark and bright are promoted 
by several molecular features governing vesicle release and by the architec-
ture of the active zone (  figure 11.8 ).    

 First, the cone vesicle ’ s calcium sensor exhibits weak cooperativity, 
requiring only two calcium ions to bind for release. Second, it binds cal-
cium with high affinity, so a low concentration suffices. Third, it  un binds 
slowly, thus allowing temporal integration of the calcium influx. Conse-
quently, the calcium concentration effective for release is 10-fold lower 
than for any other known synapse (Duncan et al., 2010). These properties 
render the release rate sensitive to small voltage changes,  8   exactly what is 
needed to finely quantize the cone ’ s analogue voltage and to match the 
terminal ’ s output range to the distribution of natural contrasts (chapter 9). 

 Fourth, each active zone uses small vesicles and docks them along a line. 
Both features promote independence between the glutamate pulses, thus 
optimal S/N improvement by their linear temporal summation across a 
wide dynamic range. Here is the reasoning. Small vesicles release small glu-
tamate pulses which decay steeply in space and time. Thus, two vesicles 
released simultaneously will not sum much unless they are neighbors. 
Given tonic release of approximately five vesicles per ribbon per 100-ms 
interval, neighbors will rarely release simultaneously (  figure 11.8 ). 

 Vesicle release, because it is initiated by the stochastic opening of one 
calcium channel, is itself stochastic (chapter 10). Therefore, the tonic rate 
of about five vesicles per 100 ms per active zone, if suppressed to zero by a 
bright stimulus, could yield a S/N ratio of about 2.2. This could discriminate 
three levels, dark versus grey versus white. The cone terminal improves this 
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ratio by using multiple ribbons of identical structure, spacing them out to 
avoid major cross talk (  figure 11.9 ). Typically a cone terminal uses 20 rib-
bons, yielding S/N of about 10.  9   Cones in peripheral retina expand their 
capacity to collect information (larger outer segments); correspondingly, 
they expand their capacity to distribute information (more active zones) 
and also their capacity to resupply the terminal (more axonal microtubules) 
(  figure 11.9 ). This solidly illustrates the design principle  match capacity to 
information .    

 In summary, contrasts encoded linearly in the cone ’ s analogue signal are 
quantized linearly in the flickering pattern of voltage-gated calcium chan-
nels, then in the flickering pattern of inward calcium pulses, and finally in 
the flickering pattern of vesicle release. The mechanism requires meticulous 
design at the molecular and nanoscales to properly match (1) the calcium 
channel ’ s current/voltage function to the cone ’ s membrane voltage and 
bandwidth; (2) calcium channel proximity to vesicle docking sites; (3) 
binding affinity, OFF-rate, and cooperativity of the vesicle ’ s calcium sensor; 
(4) vesicle volume and docking architecture; and (5) number and spacing of 
active zones within the terminal. These presynaptic features demand 
equally meticulous matching of postsynaptic features, as we now explain. 

 Discrete-to-analogue recoding at cone synapse creates parallel channels 
of different capacity 

 Each cone vesicle delivers glutamate into the synaptic cleft as a discrete (all-
or-none) pulse. Upon reaching a bipolar dendrite, glutamate molecules 
bind to about 10 ligand-gated ion channels and cause a depolarizing cur-
rent of about 5 pA. Such quantal currents from all sites across the dendritic 
tree sum to cause a graded voltage. Thus, the cone ’ s analogue voltage that 
was first discretized by vesicles now reverts at the bipolar cell to an ana-
logue voltage. This provides a critical opportunity to divide the cone ’ s 
information packet and send smaller packets at lower bit rates. These paral-
lel channels continue in various formats across much of the visual brain, so 
it seems worth identifying their humble origins in nanoscale chemistry and 
synaptic architecture. 

 Diffusional filtering 
 Bipolar cells implement  diffusional filtering  (Rao-Mirotznik et al., 1998). Cer-
tain types place their glutamate receptors near to vesicle release sites (20 –
 400 nm). These receptors see a fast-rising, concentrated glutamate pulse. 
Other types locate their glutamate receptors far (400 – 1,800 nm) from 
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 Figure 11.8 
  Active zone architectures match functions .  Inner hair cell:  Synaptic vesicle is large 

with high calcium cooperativity. Consequently, it can be released only by a sharp, 

fast depolarization that causes a large calcium current. Release in turn gives a large 

pulse of glutamate. Docked vesicles are arranged on a spheroid or ellipsoid, so several 

vesicles released simultaneously allow large glutamate pulses to sum across a single 

postsynaptic disk served by fast glutamate receptors. This design promotes high S/N 
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release sites (Calkins et al., 1996). Those receptors see a slower-rising, more 
diluted glutamate pulse that has been spread out by diffusion (  figures 11.8 
and 11.10 ). The  “ near ”  receptors are fast isoforms — which desensitize 
quickly and recover quickly. The  “ far ”  receptors are slow isoforms — which 
desensitize like the fast isoforms but recover more slowly. These slow iso-
forms are thus well matched to encode the diffusionally blurred glutamate 
pulse (DeVries et al., 2006).    

 One might have imagined that distant receptors would express higher 
binding affinities to match the lower concentrations. But molecular proper-
ties, such as binding affinity and desensitization rate, are identical, the near 
and far glutamate receptors differing only in recovery time (DeVries et al., 
2006). This property, combined with diffusional filtering, suffices for each 
postsynaptic site to select a particular bandwidth and S/N, which together 
define its information rate.  10   Thus, a key computation with huge conse-
quences arises from a small structural difference between two protein iso-
forms (slow vs. fast recovering) and nanoscale differences in their locations. 

 It seems remarkable that  each  vesicle from a cone manages to distribute 
its information to 12 types of neuron (2 horizontal + 10 bipolar). Equally 
remarkable, each vesicle contributes a specific amount of information to 
each type. The vesicle ’ s custom tailoring employs about 2,000 glutamate 
molecules (Rao-Mirotznik et al., 1998; DeVries et al., 2006). Were the num-
ber much smaller, say 500, diffusional filtering would fail because it would 
need higher receptor affinities with slower off-rates (like hormone recep-
tors); furthermore, such sparse ligand would be too noisy. Were the number 
much larger, say 8,000, diffusional filtering would also fail because of 

and high temporal reliability that delivers enough information to justify a postsyn-

aptic spike.  Cone:  Synaptic vesicle is small with low calcium cooperativity. Con-

sequently, it can be released by a small depolarization that causes a small calcium 

current. Release gives a small pulse of glutamate. Docked vesicles are arranged along 

a line and have low release probability (~0.1 per 100 ms) and thus a low probability 

that two neighbors will release simultaneously. This arrangement promotes inde-

pendence of postsynaptic events — which, while individually noisy, sum postsynapti-

cally in space and time to increase S/N and temporal precision, thus concentrating 

information. Diffusion perpendicular to the ribbon spreads the transmitter in space 

and time. It is detected first by horizontal cell expansions that parallel the elongated 

ribbon to catch every pulse. Being nearest to release sites, the horizontal cell expan-

sion sees high, fast pulses and detects them with fast receptors. Bipolar cell dendrites 

are next, the near dendrites using fast receptors, and the far dendrites using slower 

receptors. All structures are shown to scale, vesicle diameter being 30 nm; 2,000 nm 

indicates spacing of active zones. 
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 Figure 11.9 
  Cones match resources to information capacity .  Upper:  Peripheral cones (left, mid-

dle) with thick inner segments, thick axons and large synaptic terminals compared 

to a foveal cone (right).  Middle : Outer segment diameter and number of active zones 

increase roughly in parallel.  Lower left : Cross section through cone and rod axons 

near fovea. Rod terminal signals single photon events (0 or 1) with a single active 

zone and thus a thin axon. Cone terminal signals finely graded voltage — requiring 

many active zones and thus a thick axon.  Lower right:  Higher magnifications show 

axon cross section filled with evenly spaced microtubules that serve as monorails 

for molecular motors. Cone drawings are from von Greefe (1899), reprinted with 

permission from Sterling (2004a). Graph: active zones modified from Haverkamp et 

al. (2001a); outer segments modified from Packer et al. (1989). 
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 Figure 11.10 
  Diffusional filtering at the cone synapse .  Upper:  Horizontal cell processes invaginate 

the terminal to locate within 20 nm of vesicle release sites at base of ribbon (1). 

These processes extend parallel to the ribbon (perpendicular to this section) in order 

to catch every quantum; they express fast AMPA receptors. Horizontal cell processes 

also locate deeper in the synaptic layer (5) to read out slower modulations of gluta-

mate using slower glutamate receptors (Haverkamp et al., 2001a). Thus, by monitor-

ing cone glutamate release at different diffusion distances with different receptor 

types, the horizontal cell encodes the cone ’ s full bandwidth. Bipolar dendrites also 

locate at different distances from the release sites (2 – 4) and use different glutamate 

receptors to segment the cone bandwidth.  Lower : Electrical responses show fast and 

slow components of horizontal cell (HC) response and fast versus slow responses 

of two bipolar types (b 2  and b 3 ) to the same quantum. Micrograph reprinted with 

permission from Sterling 2013, contrast of postsynaptic receptor sites enhanced; re-

sponses modified and reprinted with permission from DeVries et al. (2006). 
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receptor saturation and the impossibility of removing so much glutamate 
because transporters are already packed at maximum density (DeVries, 
2011). Thus, the number of glutamate molecules in a cone vesicle matches 
what is needed by the circuit ’ s layout and its diverse molecular properties. 
This explains why cone ’ s vesicle diameter should be 30 nm and not the hair 
cell ’ s 45 nm (  figure 11.8 ). 

 Duplicate the image and invert it 
 To increase its information capacity, a bipolar cell ’ s dendrites sum currents 
from the active zones of four to eight cones. The dendrites of a given type 
all express a particular receptor isoform at a particular number of sites and 
a particular diffusion distance. This creates bipolar types with distinctive 
information rates: some types with many, high-rate contacts and other 
types with fewer, low-rate contacts (Ratliff  &  DeVries, 2011).  11   The mem-
brane voltage achieved by integrating about 500 quanta/100 ms is finely 
graded. The bipolar cell ’ s input message, concentrated presynaptically by 
reducing transduction noise and redundancy, is about 10 – 30 bits   per 100 
ms (Ratliff  &  DeVries, 2011). This rate, 300 bits s  – 1 , would be expensive to 
transmit via spikes because it requires thick axons (figure 4.6). It would be 
acceptable for a few axons, but not for the optic nerve ’ s one million axons. 
Consequently, there is no alternative but to further subdivide into smaller 
packets of information for transmission to ganglion cells. 

 A bipolar cell transmits only half of its input signal, dark contrasts or 
bright ones. Certain types depolarize to dark and hyperpolarize to bright 
( OFF cells ) whereas other types invert the signal, depolarizing to bright and 
hyperpolarizing to dark ( ON cells ) (  figure 11.11 ). Simply inverting the input 

OFF-bipolar cells ON-bipolar cells

 Figure 11.11 
  The cone subdivides its large information packet among multiple bipolar types . Cells 

shown here are from mouse, but all vertebrate retinas follow this pattern. Latest 

count, probably complete, finds five OFF and six ON types. Reproduced with permis-

sion from W ä ssle et al. (2009). 
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signal in this manner does not reduce the packet size because the dendritic 
voltages linearly encode the full range. So at the outer synaptic layer the 
ON cells and OFF cells encode identical information and are redundant. But 
signal inversion is a key step — because it prepares both classes for the inner 
synaptic layer which introduces a profound nonlinearity with numerous 
profound advantages.    

 To execute this design at the outer synaptic layer requires no extra wire, 
but only oppositely modulated cation channels. Dark contrasts excite via 
ligand-gated receptors that  open  a cation channel (OFF cells) whereas bright 
contrasts excite via a metabotropic receptor that  closes  a cation channel 
(ON cells) (Xu et al., 2012; Morgans et al., 2010). OFF cells are of four types, 
each diffusionally filtered to carry a particular-sized information packet. 
ON cells are of five types, also carrying particular-sized information packets 
as evidenced by their different axon calibers and different numbers of out-
put active zones (  figure 11.12 ). Ganglion cell dendritic arbors costratify 
with particular types of bipolar terminal and thus assume their basic prop-
erties, slow ON, fast ON, and so on (  figure 11.12 ).    

b3

b4 b2 b1

release
sites 

OFF  

ON 

47 67 
80 105 

ganglion cells select 
different information rates

Information:
lower rate     fewer outputs, thinner axons, upper strata
higher rate      more outputs, thicker axons, lower strata   

10 μm

 Figure 11.12 
  Bipolar types with higher information rates use more active zones   and stratify to 
connect with least wire .  Left : ON bipolar cell types with different information capac-

ities use different axon calibers and different numbers of active zones.  Right : Strati-

fied bipolar axons connect to different ganglion cell types with minimal wire. Left 

from Cohen  &  Sterling (1990); right from Ram ó n y Cajal (1917). Both are modified 

and reprinted with permission. 



298 Chapter 11

 Forward through retina: A new code 

 The steady rain of cone quanta onto bipolar cell dendrites holds them near 
 – 45 mV. At this voltage, calcium channels in the bipolar cell axon terminals 
are mostly closed and the calcium current (I Ca ) is near zero. Consequently, 
bipolar cell vesicle release is also near zero. Now, a dark contrast further 
depolarizes the OFF terminals, turning on the calcium current and releasing 
a burst of glutamate quanta (Freed  &  Liang, 2010). A bright contrast does 
the same for the ON bipolar terminals (  figure 11.13 ).    

cone voltage and vesicle 
rate both track contrast

Ica and tonic release ~0
release occurs as sparse burst

negative and positive contrasts

two types of bipolar cell:
voltages mutually inverted

ganglion cells fire sparsely  

–45 mV
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–
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+

–
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pattern contrast 0

spikes
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 Figure 11.13 
  Bipolar cell outputs simultaneously sparsify and rectify . Dark and bright contrasts 

activate calcium currents (I Ca ) reciprocally in OFF and ON bipolar terminals (dark and 

bright, respectively). This reciprocally evokes brief bursts of glutamate quanta that 

reciprocally excite spikes in OFF and ON ganglion cells. Modified and reprinted with 

permission from Ratliff et al. (2010). 
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 This design — inversion followed by rectification — simultaneously solves 
two problems. First, the image that was encoded by a high quantal rate is 
now encoded by far fewer quanta, a sparser code (Berry et al., 1997). With 
lower rate and sharper timing, each event carries more information. Sec-
ond, the image that was simply duplicated at the outer synaptic layer has 
been rectified. Now each bipolar cell transmits only half the contrasts, dark 
or bright. Rectification, though doubling the number of transmission lines, 
halves the information per line, which reduces transmission costs by more 
than fourfold (chapters 3 and 9). Sparsification and rectification both arise 
at the bipolar terminal ’ s voltage-gated calcium channel and then propagate 
across subsequent stages. 

 The circuit is tuned by familiar fine-scale features. For example, the ves-
icle ’ s calcium sensor uses high cooperativity (about 4; Heidelberger  &  
Thoreson, 2005; Matthews  &  Fuchs, 2010); this steepens the input/output 
curve compared to the cone and sharpens timing. Timing is also sharpened 
by negative feedback. The glutamate pulse that excites a ganglion cell 
simultaneously excites a reciprocal synapse that feeds GABA back onto the 
bipolar terminal, shunting it and curtailing release (  figure 11.14 ). The spe-
cific isoform ( GABA C  ) is slower by 10-fold than the standard receptor 
(GABA A ), probably to optimize timing (Freed et al., 2003; Lukasiewicz  &  
Shields, 1998).    

 Timing is further sharpened by multivesicular release at the bipolar cell ’ s 
active zone   (figure 11.14) . The latter can be small because the mean release 
rate is low. This compact ribbon, like that of the auditory hair cell, can 
simultaneously fuse several vesicles to deliver a double or triple pulse of 
glutamate (Matthews  &  Sterling, 2008; Singer et al., 2004). Because the 
active zone docks only about 10 vesicles, multivesicular release significantly 
depletes it. This instantly reduces sensitivity, providing a lagless gain con-
trol that comes for free with the synaptic architecture (Oesch and Diamond, 
2011). The various mechanisms establish a timing precision of about 14 ms, 
far short of the hair cell, but optimized to encode the cone ’ s bandwidth 
(Freed, 2005). 

 Sparsification and rectification together reduce the input rate from about 
500 quanta   per 100 ms at the bipolar dendrites to an output rate of about 
0.01 quanta per 100 ms at each active zone (Freed, 2005). This allows a 
bipolar terminal with 100 active zones (  figure 11.12 ) to release one quan-
tum per 100 ms which, measured postsynaptically, conveys about 0.2 bits 
(Freed, 2005). Therefore, the information rate for this bipolar cell axon is 
about 0.2 bits per 100 ms. Should this single quantum trigger a spike? Cer-
tainly not. A spike costs 100-fold more than the glutamate quantum, so to 
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be cost-effective, a spike should convey a much larger packet of 
information. 

 This observation identifies the ganglion cell ’ s core computational task: 
concentrate information from about 0.2 bits per bipolar quantum to about 
2 bits per spike. Two bits suffice for one spike to reliably report a weak flash 
on the receptive field (  figure 11.2 ). To concentrate information by 10-fold 
requires several stages: (1) quantal currents caused by individual glutamate 
pulses convert to an analogue voltage: ganglion cell membrane potential; 
(2) the analogue signal then converts to a pulsatile output: spikes. Consider 
now some of the key design features that concentrate information by 
improving S/N and timing precision. 

 Ganglion cells optimally sum correlated bipolar cell inputs 
 To improve S/N from synapses that are individually unreliable, a ganglion 
cell collects from many whose responses are partially correlated in space 

GABA receptorsGABA receptors

glutamateglutamate
receptorsreceptors
glutamate
receptors

GABA receptors

amacrine cellamacrine cellamacrine cell

ganglion cellganglion cell

bipolar cellbipolar cell

ganglion cell

bipolar cell

101000 nm nm 100 nm 

ribbonribbonribbonribbonribbonribbon

 Figure 11.14 
  Feedback enhances timing precision at the bipolar terminal.  Bipolar cell active zone 

with ribbon excites a ganglion cell dendrite and an amacrine process that feeds back 

onto slow GABA receptors at the bipolar terminal. This small ribbon has the capac-

ity to release several vesicles simultaneously to a strong stimulus but, docking only 

about 10 vesicles, it can be depleted by strong stimuli. Thus ribbon structure   directly 

implements contrast gain control. Electron micrograph courtesy of David Calkins. 
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and time. Synapse density is constant on the membrane, so the numbers 
increase with dendritic length (  figure 11.15 ). Because quanta are sparse, 
they occur widely across the arbor, allowing their currents to sum linearly 
(Freed, 2000, 2005; Liang  &  Freed, 2010).    

 To sum optimally, as noted for cone coupling, quanta should be weighted 
according to their strengths of correlation across the receptive field. These 
correlations arise from correlations in the structure of natural scenes. Thus, 
a ganglion cell optimally summing its input quanta optimally improves its 
S/N. For natural scenes optimal weighting across the receptive field is 
roughly Gaussian (  figure 11.6 ). Thus, a ganglion cell should weight strongly 
the quanta near its receptive field center and weight less strongly quanta 
near the edge (Tsukamoto et al., 1990). 

 This optimal weighting arises as an analogue primitive computation. 
The ganglion cell distributes its membrane as a two-dimensional Gaussian 
by branching densely near the center and more sparsely near the edge. 
Bipolar axons distribute their active zones evenly across a thin stratum 
(~2  μ m) of the inner synaptic layer, so ganglion cell arbors that costratify 
with these synapses receive them at constant density (~40 contacts/100 
 μ m 2  of dendritic membrane). The Gaussian weighting is computed for free 

20μm

local-
edge
cell

 Figure 11.15 
  How a ganglion cell creates a Gaussian weighting . Bipolar active zones distribute 

evenly across a thin stratum of the inner synaptic layer (figure 11.12), and gangli-

on cell dendrites collect them evenly, as shown here for a local-edge cell. Gaussian 

weighting arises from the denser branching near the soma that becomes sparser to-

ward the periphery. Redrawn from Xu et al. (2008). 
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by the ganglion cell ’ s branching pattern, as shown in   figure 11.16  (Kier et 
al., 1995; Xu et al., 2008).    

 Could a cell then continue to improve its S/N by extending its dendrites 
ever farther to collect more synapses? No. Spatial correlations decline expo-
nentially across natural scenes whereas S/N improves only as the square 
root of added synapses. Thus, the strategy of extending dendrites soon pro-
duces diminishing returns. The broadest ganglion cell arbors are typically 
about 0.5 mm in diameter and collect about 5,000 bipolar cell contacts. 
This number is conserved across mammalian species of vastly different eye 
size.  12   This suggests that the size of ganglion cell dendritic arbors reflects 
the structure of natural scenes — which is similar for all terrestrial species. 

 Ganglion cells optimally sum excitatory and inhibitory inputs 
 Among a ganglion cell ’ s synaptic inputs, 30% to 80% (depending on type) 
are inhibitory — from amacrine cells (Freed  &  Sterling, 1988; Cohen  &  

100μm

5 contacts/
μm2 retina

brisk-transient local-edge brisk-sustained

 Figure 11.16 
  Ganglion cells directly compute a two-dimensional Gaussian filter.  This filter weights 

bipolar inputs to optimally improve S/N. Each of these cell types distributes its den-

dritic membrane in two dimensions across a thin stratum of the inner synaptic lay-

er, where it costratifies with synaptic terminals of a particular bipolar type (  figure 

11.12 ). The bipolar terminals distribute evenly across the stratum, but the dendritic 

membrane distributes as a Gaussian. Brisk-transient dendrites distribute as a broad, 

shallow Gaussian, whereas local-edge and brisk-sustained dendrites distribute as a 

narrow, steep Gaussian. A spot covering their receptive field centers activates all syn-

apses which are far more numerous for brisk cells, about 6,000, than for local-edge 

cells, about 1,400. Modified and reprinted with permission from Xu et al. (2008). 
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Sterling, 1992). For a ganglion cell to code efficiently, the inhibitory cur-
rents must balance the excitatory currents. Moreover, since the cell ’ s spatio-
temporal filter adjusts with adaptation state (figures 9.7 and 9.11), the 
balance of inhibitory and excitatory currents should shift correspondingly 
to maintain optimality across conditions. Indeed, S/N in the brisk-transient 
ganglion cell is optimized by the balance that exists at normal resting 
potential. And, when challenged with a different contrast or stimulus size, 
the circuit dynamically adjusts both the inhibitory and excitatory conduc-
tances such that the amplitudes of the inhibitory and excitatory currents 
continue to maximize S/N (Homann  &  Freed, 2012). 

 Overlap in ganglion cell arrays: S/N versus redundancy 
 To capture spatial images requires an array — like pixels in a digital camera. 
The array ’ s acuity is set by the neuron spacing because of Nyquist ’ s rule 
(chapter 4). Therefore, each type of ganglion cell has a characteristic spac-
ing to serve the acuity required for its particular function. As ganglion cells 
with fixed spacing extend their dendrites to improve S/N, nearest neighbors 
soon overlap (  figure 11.17 ).    

 The overlap causes some of a ganglion cell ’ s information to be redun-
dant with respect to its neighbors. Thus, the scheme to concentrate infor-
mation for each spike by improving a cell ’ s S/N inevitably adds redundancy 
to their array. This is not all bad because redundancy in the presence of 
noise can improve signal detection (chapter 6). But ganglion cells must not 
squander their limited dynamic range on highly redundant signals. So how 
far should the dendrites extend? Since this question applies to most brain 
regions, an answer for retina may have general significance. 

 Optimal design should maximize the information sent by the  array . This 
requires balancing the S/N improvement of individual neurons against the 
redundancy due to their overlap. An array is calculated to be most informa-
tive for natural images when receptive field centers are spaced at two stan-
dard deviations (  σ  ) of their Gaussian sensitivity functions. That causes 
receptive field centers to overlap by about sixfold, but because a dendritic 
field is narrower than the receptive field center, dendrites need to overlap 
only by about threefold. This calculated optimal array corresponds pre-
cisely to what is observed (  figure 11.18 ; DeVries  &  Baylor, 1996; Borghuis et 
al., 2008).    

 There are exceptions to this default design, but they are consistent with 
the basic rule. For example, dendritic fields of midget ganglion cells outside 
the fovea tile neatly without overlap (Calkins  &  Sterling, 1999; Dacey, 
2004). Nevertheless, their receptive fields overlap to the same degree as for 
the larger parasol ganglion cells and obey the standard two-  σ   separation 
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(Gauthier et al., 2009). In this case optical blur convolves with cone cou-
pling to enlarge the bipolar cell receptive fields, allowing the ganglion cell 
receptive fields to overlap even though their dendritic fields simply tile. 
Thus, although the dendritic fields of midget ganglion cell contradict the 
rule of overlap, the receptive fields achieve optimal overlap. 

 Nonlinear mechanisms help concentrate information 
 Beyond linear summation, various nonlinear mechanisms further concen-
trate information in the ganglion cell ’ s analogue signal. For example, 
voltage-gated sodium channels in the dendrites selectively amplify larger, 
faster excitatory postsynaptic potentials (Dhingra et al., 2005). These 

200 μm

 Figure 11.17 
  Neighboring ganglion cells in an array overlap their dendrites, achieving threefold 
coverage of all points in the field . Illustrated here are OFF brisk-transient cells, but 

the rule holds for brisk-sustained, local-edge, and so forth. Although exceptions ex-

ist, this is the default design. Reproduced with modifications and permission from 

Liu, Whitaker,  &  Massey (unpublished). 
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  Receptive field overlap maximizes information from the array.   Upper:  Overlap of 

ganglion cell dendritic fields causes sixfold overlap of the receptive field centers (RF). 

 Lower:  Adjacent regions in natural images are correlated, so a larger field integrating 

more correlated inputs improves S/N (figure 11.16). But this causes overlap and thus 

redundancy. Total information from the array peaks for natural scenes when recep-

tive fields are spaced at two standard deviations ( σ ) of their Gaussian centers. Adja-

cent regions in white noise lack correlations, so the optimal array simply  tiles  with-

out overlap. Modified and reproduced with permission from Borghuis et al. (2008). 
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outweigh the smaller, noisy signals and improve timing precision. OFF cell 
dendrites additionally use voltage-gated calcium channels (Euler, 2010). 
When the multiquantal analogue signal has been thus sharpened, it is 
finally thresholded (another nonlinear step) to be requantized as a spike. 
Clearly the retinal output obeys the principle  combine analogue and pulsatile 
processing . 

 By linearly summing tens of quanta, by filtering nonlinearly, and by 
thresholding, the ganglion cell can finally send a spike worth about 2 bits 
(figure 3.6). Compared to one quantum at the input that conveys about 0.2 
bits, the ganglion cell output has concentrated information by 10-fold. Of 
course, some of its 2-bit spike is partially redundant with the 2-bit spikes of 
its neighbors. This seems puzzling, given that designs generally try to 
decrease redundancy. Yet, the next stage collects the redundant signals and 
uses a specialized synapse to further concentrate the message. So this redun-
dancy at the ganglion cell output is accepted as a temporary measure. 
Chapter 12 will explain (figure 12.3). 

 Although one spike encodes about 10-fold more bits than one quantum, 
the spike costs 100-fold more to generate in the ganglion cell and many 
times more to transmit centrally via the optic nerve. This creates pressure to 
reduce total spikes per cell and also mean rates. One strategy is to match 
ganglion cell arrays to the distribution of information in natural scenes. 

 How OFF and ON arrays save spikes 
 Where Genesis states,  “ And God divided the light from the darkness, ”  the 
division is assumed to be equal. The Taoist circle also segments light and 
dark equally, and our visual sensations do not contradict this impression. 
But it is not so. Natural scenes actually contain more dark regions than 
bright ones (Laughlin, 1981; Richards, 1982). And since there are more dark 
regions, they must also be smaller (  figure 11.19 ). 

 Correspondingly, OFF arrays are denser than ON arrays and use narrower 
dendritic fields. In other words, OFF cells cover the same territory as ON 
cells but with a finer grain (Ratliff et al., 2010; Chichilnisky  &  Kalmar, 2002; 
Dacey  &  Petersen, 1992). Moreover, OFF dendritic arbors branch more than 
the ON arbors so, despite having smaller dendritic fields, their total den-
dritic lengths are similar. Because synaptic contacts follow dendritic length, 
individual OFF and ON arbors collect equal numbers of synapses — and thus 
equal amounts of information (Ratliff et al., 2010).    

 An ON ganglion cell, collecting the same amount of information as an 
OFF ganglion cell, sends similar numbers of spikes. However, the array of 
ON cells, with its twofold coarser grain, sends half as many spikes. Thus, 
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 Figure 11.19 
  Ganglion cell dendritic arbors match the natural distribution of contrasts .  Upper : 
OFF dendritic arbors are smaller than ON arbors of same cell class (brisk-transient) 

but branch more densely to achieve equal dendritic length and thus equal numbers 

of synapses.  Lower : OFF array is finer than ON array because dark contrasts distribute 

more finely than bright ones; array information is maximized (*) when OFF cells 

(filters) are twice as numerous. Modified and reprinted with permission from Ratliff 

et al. (2010). 
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rectification into ON and OFF channels, beyond halving the information 
per channel to allow lower rates (  figure 11.13 ), also allows each channel to 
better match the natural distribution of its inputs, and this conserves spikes. 
Moreover, there is a further benefit whose explication requires a step back 
to the bipolar neurons. 

 When an OFF bipolar cell has filled its information capacity, the ON 
bipolar cell, collecting from the same cones, still has capacity to spare. To 
fill it, the ON bipolar cell remains partially unrectified — maintaining some 
degree of tonic vesicle release. Consequently, a depolarizing bright contrast 
can sharply increase its release, and a dark contrast can decrease it. There-
fore, the ON ganglion cell ’ s spike train conveys some information regarding 
dark contrasts. Moreover, the ON bipolar cell cleverly injects its modulation 
by dark contrasts into the OFF circuit (  figure 11.20 ).    

 The ON bipolar synaptic terminal couples electrically to the  AII amacrine 
cell  that, in turn, provides inhibitory (glycinergic) synapses onto OFF 

cone terminal rod terminal

ON rod bipolar cellcone bipolar cell

ganglion cells

AII cell AII

ON

ON OFF

OFF

ON OFF

AII

 Figure 11.20 
  AII amacrine cell serves a cone circuit in daylight and a rod circuit in starlight .  Left : 
The ON cone bipolar axon terminal, depolarized by a bright contrast, couples electri-

cally to the narrow-field AII cell, depolarizing it as well and thereby inhibiting, via 

chemical synapses, the OFF bipolar terminal and OFF ganglion cell dendrite. This cir-

cuit enhances rectification of the OFF ganglion cell and, via  “ push – pull ”  amplifica-

tion (excitation + disinhibition), extends the linear range for coding dark contrasts. 

The rod terminal couples to this circuit via gap junctions (not shown).  Right:  The rod 

bipolar cell amplifying single photon responses in starlight, depolarizes the AII cell, 

which conveys the rod signal to the axon terminals of ON and OFF cone bipolar cells. 

Thus, excitatory cone bipolar synapses upon ganglion cells serve as a final common 

pathway for both cone and rod signals. 
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bipolar terminals and OFF ganglion cell dendrites. Consequently, bright 
contrasts depolarize the AII cell and thereby inhibit the OFF cells. This rein-
forces their rectification, further protecting them from encoding any bright 
information and preserving their full dynamic range for dark information. 
When dark contrasts hyperpolarize the ON bipolar cell, the AII cell hyper-
polarizes, thereby disinhibiting the OFF bipolar synapses and the OFF gan-
glion cell dendrites. The result is  “ push – pull ”  amplification: excitation by 
opening the glutamate-driven cation channel, plus disinhibition by closing 
the glycine-driven anion channel. Combining the excitatory driving force 
(E rev  ~ 0 mV) and the inhibitory driving force (E rev  ~  – 70 mV) extends the 
steep, linear range for encoding dark contrasts. 

 This modulated  crossover inhibition  from the ON to OFF channel improves 
efficiency at the output. The OFF ganglion cell is slightly hyperpolarized 
(roughly  – 5 mV), moving it farther from spike threshold and reducing 
spontaneous spikes. This reduces noise in the spike output, and thus mean 
spike rate, thereby increasing bits per spike (chapter 3). ON and OFF gan-
glion cell classes better match their signaling capacities to the natural distri-
bution of contrasts. The benefits: fewer spikes, lower mean rate, and more 
bits per spike justify the cost of doubling the cell types (Renteria et al., 2006; 
Molnar et al., 2009; Liang  &  Freed, 2010; Manookin et al., 2008; Demb  &  
Singer, 2012). 

 Neatening up 
 The AII cell, in mediating crossover inhibition from ON cone bipolar cells 
to OFF cone bipolar cells, uses a narrow dendritic arbor. In this respect, it 
resembles a narrow-field ganglion cell. This is no coincidence: crossover 
inhibition needs to be cospatial with direct excitation, so the collecting 
arbors for both the inhibitory and excitatory mechanisms should match 
(  figure 11.20 ). Of course, a narrow arbor requires a dense array. Indeed, 20% 
of all amacrine layer neurons are AII cells. So it is expensive; yet the retina 
has found a way to squeeze out more profit. 

 The AII array, in addition to serving the cone bipolar circuits in daylight, 
serves a rod bipolar circuit in starlight (chapter 8). Rods depolarize a dedi-
cated bipolar type that, via glutamatergic chemical synapses, depolarizes 
the AII cell. Now current passes via electrical synapses from the AII cell into 
the ON cone bipolar terminal, thereby releasing its glutamate onto the ON 
ganglion cell. The electrical AII  →  ON bipolar synapse is the same one that 
in daylight passed current in the opposite direction (  figure 11.20 ). This abil-
ity to conduct in either direction allows the AII cell to serve either cone or 
rod circuit, depending on time of day. 



310 Chapter 11

 The bidirectionality of this connection between AII and ON cone bipolar 
allows the rod and cone circuits to use the same set of synapses to excite the 
ganglion cells (  figure 11.20 ). This avoids the cost of maintaining two sets 
and using each only half the time. And it effectively doubles the number of 
contacts that each circuit (cone or rod) can deliver to the available dendritic 
membrane (  figure 11.15 ). 

 This design offers several efficiencies. First, the costly AII array can work 
two shifts — day and night. Second, the day circuit that sums narrowly can 
enlarge at night to sum broadly with little extra cost. This is accomplished 
by coupling AII neurons to each other via gap junctions that uncouple dur-
ing the day to restrict signal spread and recouple at night to promote it. 
Third, excitatory synapses on the ganglion cell membrane can serve as a 
final common pathway for both shifts. This exemplifies the engineer ’ s 
injunction to  “ neaten up ”  the design by using an expensive resource to its 
utmost without sacrificing performance (chapter 1). 

  More types saves more spikes  
 Since doubling ganglion cell types (ON and OFF) justifies the cost (Von der 
Twer  &  MacLeod, 2002), one can imagine that adding more types could do 
the same.  13   This seems straightforward because bipolar types have already 
segmented the bandwidth in the outer synaptic layer to reduce the amount 
of information that they must transmit (  figure 11.10 ). Bipolar types deliver 
slowly changing signals to the inner synaptic layer via finer axons with 
fewer, slower synapses and deliver rapidly changing signals via thicker 
axons with more, faster synapses (Freed  &  Liang, 2010). Each bipolar type 
costratifies with a particular ganglion cell to transfer its portion of band-
width (  figure 11.12 ). 

 This establishes a functional ganglion cell type — which requires a struc-
ture to match. A type that encodes high temporal frequencies cannot sum 
temporally to improve its S/N; therefore, it must sum spatially, and this 
requires a wide dendritic field. Conversely, a type that encodes low frequen-
cies  can  sum temporally, so it can use a narrow dendritic field. 

 In this design, bandwidth sets field size; field size sets cell spacing (2-  σ   
rule); and spacing sets array structure — sparser for cells coding high tempo-
ral frequencies and denser for cells coding low temporal frequencies.  14   Fur-
thermore, segmenting the bandwidth with more cell types reduces mean 
spike rates. Since cost per bit increases with spike rate and higher band-
widths entail higher rates (Koch et al., 2006), the reasons to segment band-
width are the same as those to segment contrast: resources are used more 
efficiently and better matched to information.  15   
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 For example, a broad-bandwidth, wide-field ganglion cell (brisk-
transient) receives more than fourfold more contacts from fast bipolar cells 
than a low-bandwidth, narrow-field cell (local-edge) receives from slow 
bipolar cells. When these ganglion cell types view a nature video, fast fea-
tures trigger bursts of quanta from fast bipolar cells and cause the brisk-
transient cell to spike. Fast features trigger no quanta from slow bipolar 
cells, so the local-edge cell is silent. Yet a slow feature (an edge slowly going 
dim-then-bright) triggers a burst of quanta from slow bipolar cells onto the 
small ganglion cell, and this evokes a few spikes (  figure 11.21 ).    

 If a narrow-field ganglion cell were to encode high temporal frequencies 
by collecting from fast bipolar cells, its limited spatial summation would 
reduce S/N and cause a noisier spike train. Expensive signaling capacity 
would be squandered. Conversely, if a broad-field ganglion cell were to 
encode low temporal frequencies, its spatial pooling (needed for high fre-
quencies) would reduce certainty regarding the location and trajectory of 
the local edge; moreover, the spatially pooled slow signals would be redun-
dant. Thus, efficiency improves by matching types to their frequency 
bands. But if that were the whole story, 10 ganglion cell types would suffice 
to transmit all the information delivered by the 10 bipolar types. Yet gan-
glion cell types are roughly twice as numerous. 

 What sets the  types  of types? 

 The exact number of ganglion cell types is unknown for any species, but in 
all mammalian retinas that have been studied carefully, it is at least 20. 
Although types are differently named across species, their receptive field 
properties, dendritic branching, and stratification are all rather well con-
served. As noted, even field diameters are conserved: differences are less 
than twofold across eyes that differ in diameter up to 10-fold.  16   Cell types 
are conserved across different terrestrial habitats and across different modes 
of existence, such as predator and prey. For example, cat and mouse both 
have brisk-transient and local-edge cells, as do human, monkey, rabbit, and 
guinea pig (Crook et al., 2013). 

 But why are 20 types better than 10? And, since that is so, why not 40? 
Moreover, why are types so strongly conserved? If they were truly  “ feature 
detectors, ”  would not species with different lifestyles need different types? 
Wouldn ’ t mice need  “ hawk-detectors ”  and hawks need  “ mouse detectors ” ? 
In short, why don ’ t the  types  of types vary more according to habitat and 
lifestyle? These questions are not philosophical; rather, they belong to the 
realm of reverse engineering — and thus are potentially answerable. 
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 Figure 11.21 
  Ganglion cell types transmit different bandwidths with different firing rates . Brisk-

transient ganglion cell collects many high-rate bipolar contacts (about 5,000); where-

as local-edge ganglion cell collects fewer low-rate bipolar contacts (500). When a 

natural scene video was presented repeatedly, a high-frequency feature (downward 

arrow) evoked bursts of synaptic quanta to the brisk-transient cell but not the local-

edge cell. A low-frequency feature, an edge going dark then bright (upward arrow), 

evoked a burst of quanta to the local-edge cell. EPSC, excitatory postsynaptic current. 

Anatomical diagram modified and reprinted with permission from Rockhill et al. 

(2002); electrical recordings (guinea pig) are from Koch, Freed,  &  Sterling, unpub-

lished. 
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 Why types are conserved 
 One reason why ganglion cell types are conserved types across habitat and 
lifestyle is that physical properties, such as photon noise, vesicle noise, dif-
fusion speed, synapse size, and so on are invariant. Therefore, a mouse eye 
can shrink the number of neurons compared to a cow eye, but it cannot 
greatly shrink either the neurons themselves or their synapses.  

 Another reason is that the statistical structure of natural scenes is invari-
ant. All scenes contain mostly low temporal and low spatial frequencies in 
the same relative amounts; moreover, they are scale invariant and thus 
unchanging as a pattern moves closer or farther away, or as a pattern is 
magnified on the retina of a larger eye. The same is true for various motions 
that sweep, jump, track, or jiggle patterns across the retina: their distribu-
tions of temporal and spatial frequencies are all the same (  figure 11.22 ).    

 Considering that retinal circuits are selected to encode optimally, once 
they reach the point of optimality — where costs just balance benefits —
 there is no pressure for change but instead pressure to preserve what works. 
Therefore, ganglion cell types are conserved. The many types of interneu-
ron are also conserved because they help create ganglion cell types. Just as 
brisk-transient and local-edge ganglion cells are easily recognized across 
species, so are interneurons, such as the AII and  starburst amacrine cells  
(MacNeil et al., 1999; Vaney, 1990). 

 Dendritic field sizes are conserved across species due to the invariance of 
various physical factors upon which the neurons rely. Scene statistics, pho-
ton noise, diffusion distances and speeds, synapse size, receptor binding 
properties, and channel properties are the same for mouse and human. 
Consequently, a local-edge cell, to fill its coding capacity, must spread its 
dendrites sufficiently for its overlying patch of cones to capture sufficient 
photons. And it must branch the dendrites sufficiently for the membrane 
to capture sufficient synapses. Similarly, the AII amacrine cell, which serves 
crossover inhibition between OFF and ON ganglion cells, must restrict its 
dendritic spread in order to compute the local differences between dark and 
bright contrasts  17   which, belonging to the scene statistics, are the same for 
all eyes. 

 For conservation of ganglion cell types, consider this example: the image 
cast on a mouse ’ s retina by a distant hawk is small and slow-moving; so is 
the image cast by the mouse on the hawk ’ s retina. The hawk has greater 
acuity because of optical factors and higher density of photoreceptors, but 
the mouse casts a smaller image. Thus, as the two species track each other, 
they will both use the local-edge type of ganglion cell. Species may have 
opposite goals, but when the images are similar, they use the same cell type. 
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 Why some types should be less selective 
 A frog ’ s auditory axon encodes frequencies characteristic of the species mat-
ing call with extremely high efficiency, filling about 90% of its information 
capacity. This requires a stringently tuned nonlinear filter to selectively 
amplify the signal (Rieke et al., 1995). This design serves brilliantly because 
the signal can be anticipated. But it could not serve ganglion cells ’  coding 
of natural scenes because they vary unpredictably. 

 A stringent filter applied to a natural scene would reject most informa-
tion, so a ganglion cell would be mostly silent. Its channel would be filled 
by redundancy (  0 0 0  . . .   ) and would encode too few bits to pay its 
maintenance cost. Moreover, because one type would capture so little 
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  Natural scenes contain similar distributions of spatial and temporal frequencies 
across four types of motion . Both spatial and temporal frequencies decline with 

similar slopes. Spectra have been separated (shifted up) for clarity. Reprinted with 

modifications and permission from Koch et al. (2006). 
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information, many types would be needed, and none would pay their 
maintenance cost. Thus, the uniformity of natural scene statistics restrains 
the specificity of ganglion cell tuning and thereby reduces the number of 
types. This leads to a dual design: some nonstringent filters to capture the 
broad distribution of spatial and temporal frequencies in natural scenes, 
and some quasi-stringent filters to match stereotyped aspects present in 
most scenes that are needed by various downstream users. 

 The nonstringent filter fills only about 30% of a ganglion cell ’ s informa-
tion capacity, threefold less than the frog auditory axon. The remaining 
70% of capacity is occupied by noise and redundancy. Small ganglion cells 
have more noise, and large ganglion cells have more redundancy (Koch et 
al., 2006). The quasi-stringent types fill capacity to the same extent as the 
nonstringent types. Thus, they are no more efficient than the nonstringent 
types, as would be expected because they share the same noisy inputs. How-
ever, the quasi-stringent types do manage to delete certain signals that their 
specific downstream targets will not need. 

 Since all scenes contain similar distributions of spatial and temporal fre-
quencies, each type responds similarly to all scenes (  figure 11.23 ). This is 
true equally for both nonstringent and quasi-stringent types. Initially this 
seems surprising since the traditional experiment searches for particular 
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  Each type of ganglion cell responds stereotypically to all scenes and all types of mo-
tion. Upper row : Video jumped across a natural scene to mimic saccades. Brisk cells 

fire at high mean rates; direction-selective (DS) and local-edge cells fire at low mean 

rates.  Lower row : Video panned smoothly across a natural scene to mimic optic 

flow. Response patterns resemble those to saccadic motion. Reprinted with mod-

ifications and permission from Balasubramanian  &  Sterling (2009); data are from 

Koch et al. (2006). 
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stimuli that a cell  “ likes best, ”  leading to the idea of ganglion cells as  “ fea-
ture detectors. ”  That idea is not wrong; it is just that the features are present 
in all scenes, so neurons wired to encode them must always  “ see ”  roughly 
the same thing!    

 Why some types are more selective 
 The nonstringent strategy employs five types to parcel the natural distribu-
tion of achromatic spatial and temporal frequencies, plus one more to par-
cel the spectral frequencies. The six types are: ON and OFF brisk-transient, 
ON and OFF brisk-sustained, local-edge, and blue – yellow.  18   The number of 
types employed by the complementary strategy, quasi-stringent filters, is 
uncertain, but it could easily exceed 15, as will be evident from the follow-
ing examples. 

 Among the low-level users of retinal information are central pattern gen-
erators that coordinate motion of the eyes and head. All pattern generators 
require feedback that, as chapter 4 noted, is obtained most efficiently from 
sensors that send only what is needed to correct the output. To supply sev-
eral of these low-level mechanisms, the retina constructs directional-
selective ganglion cells — and not just one type, but  three  types that together 
cover the retina with  10  separate arrays. 

 First, consider eye movement controllers that maintain eye position as 
the head rotates, so that the image remains stationary on the retina. When 
the head rotates, signals from the vestibular semicircular canals command 
the eyes to smoothly counter-rotate and thus stabilize the retinal image. 
When eye motion lags head motion, the eye movement controllers need to 
know the slippage. The detector is the ON directionally selective (DS) gan-
glion cell. It signals slow global motion, and its axons target a low-level 
neuron cluster that uses the slippage signal to reduce the error (Simpson, 
1984; Vaney et al., 2012). 

 The ON DS type responds exclusively to slow motion. That suffices 
because, even when the head moves fast, slippage is slow. It responds exclu-
sively to ON. That suffices because global motion moves bright and dark 
regions together, so to measure slippage requires tracking only one. ON suf-
fices and is cheaper because bright regions, containing less information per 
retinal area, trigger fewer spikes. The type responds to motion only in the 
direction of slippage, and that suffices because that is all the motor circuit 
needs to know. 

 Responses to irrelevant directions are carved away. To send them would 
waste retinal resources and incur additional costs downstream. The slippage 
detector should report only directions needed to correct for one pair of 
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semicircular canals. But there are three pairs of semicircular canals, and 
thus three arrays of ON DS cells. Finally, the mechanism requires both tran-
sient and sustained information, which is cheaper to send on separate lines. 
So the downstream users that stabilize the image during head rotation 
are supplied most efficiently by six arrays of ON DS cell, as indicated in 
  figure 11.24 .    

 Inverse to the problem of stabilizing the whole retinal image when the 
head moves slowly is the problem of tracking a fast object with the head 
still. The eyes track smoothly until slippage triggers a fast jump for recap-
ture. Slippage can be faster than in global motion, so the detector must 
sense faster motion. The object ’ s leading edge can be bright or dark, so 
the detector must sense both. And it should detect slippage in each of 
the four directions of eye movement. This task falls to the ON-OFF DS 
ganglion cell. 

 This type responds to faster motion than the ON DS. And it responds to 
both bright and dark by spreading one dendritic arbor in the ON stratum 
and another in the OFF stratum (Vaney, 1994). Both arbors tile, but predict-
ably, the ON arbor is coarse and the OFF arbor is fine. Thus, the ON arbor 
covers the same territory as the OFF arbor but with fewer synapses. ON-OFF 
DS cells send spikes in response to motion along only one of the four criti-
cal axes, so there are four separate arrays. Selectivity for four orthogonal 
directions is established by cofasiculating the ganglion cells with an array 
of specialized interneurons ( starburst amacrine ) that release GABA to motion 
centrifugal to its dendritic field. The ganglion cell connects asymmetrically 
and so receives inhibition from the sector opposite to the preferred direc-
tion (  figure 11.24 ; Vaney et al., 2012). 

 The point of these selective filters is to transmit only the particular infor-
mation needed by each downstream user. By discarding the rest, the gan-
glion cell can send fewer spikes at lower rates. Thus, a major task for 
amacrine circuits is to carve away all that is unneeded — in the sense of 
Michelangelo who famously may have said,  I saw the angel in the marble and 
carved to set him free . Such carving for each of 20 ganglion cell types proba-
bly explains much of the amacrine cells ’  diversity (Vaney, 1990; MacNeil et 
al., 1999). 

 New types can be added 
 The nonstringent types relay information toward the cortex for further pro-
cessing to reduce high-level uncertainties — for example, to identify a face 
(chapter 12). These types should represent all aspects of all scenes without 
judging what might be important — thus their low stringency. Types could 
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be fewer if stringency were relaxed still further, but that would increase 
spike rates. Spike rates could be lowered by tightening stringency, but that 
would require more types. So the number of types that relay to higher levels 
is probably a compromise. 

 The quasi-stringent types that relay information to specific low-level 
users are engendered by the design rule  compute at the lowest possible level  
(chapter 4). Therefore, the number of quasi-stringent types depends on the 
number of low-level users. The needs for both classes, nonstringent and 
quasi-stringent, are similar across terrestrial species because they see the 
same image statistics and share the same brain organization (chapter 4). So 
the  types  of types are conserved. There are roughly 20 types because that 
suffices: 10 are too few, and 40 are too many. 

 The reasoning resembles Darwin ’ s, who claimed that the different beak 
structures of Galapagos finch species suffice to exploit the observed distri-
butions of seed size and hardness. Biologists need this logic to make sense 
of their mountains of observation, yet they remain suspicious of its circular-
ity. The strongest test is prospective: change the distributions of seed size/
hardness and observe in real time whether beak structure follows. This 
experiment, conducted over decades on that very archipelago, confirmed 
the hypothesis (Weiner, 1994). 

 The test for retina is retrospective: new skills acquired by Old World 
primates needed greater visual acuity; and for that the retina added 
two additional arrays of bipolar cells and ganglion cells. Thus primates, 
including humans, have the same 20 or more types as other mammals, 
plus ON and OFF midget bipolar cells and midget ganglion cells that con-
nect each cone to the brain by two private lines. These support a spatial 
resolution of about 60 cycles per degree, which is  ≥ 10-fold that of most 
mammals. This fine acuity facilitates many human activities, such as 
threading a bone needle, reading nuances of facial expression, and nuances 
orthography. 

 These same private lines also preserve the cone ’ s spectral tuning to short, 
middle, or long wavelengths; and this provides a simple mechanism for 
trichromatic color vision (Jacobs, 2009; Crook et al., 2011). Thus, the pri-
mate brain by investing in a double array of midget bipolar and midget 
ganglion cells, obtained in return the essential building blocks for both 
fine spatial vision and for trichromatic color vision. To exploit these 
basics has required the primate brain to invest half of the cerebral cortex 
(chapters 12 and 14), but this is the deal upon which we have built our civi-
lizations. In short, when new neuron types offer great advantages, animals 
add them.  
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 How ganglion cell types spend the information budget 
 Total spikes divide about equally between nonstringent and quasi-stringent 
types (  figure 11.25 ). Brisk-transient cells send about one tenth of the total 
spikes — at the highest mean rate and thus lowest efficiency. Local-edge cells 
send nearly twice as many spikes as brisk-transient cells — at the lowest 
mean rate and thus higher efficiency. To send a fixed number of bits, local-
edge cells send about 10% more bits/spike and about 20% fewer spikes. To 
send the same number of bits, a hypothetical ultrahigh-rate type (resem-
bling a mammalian auditory axon) would halve the bits/spike and nearly 
double the number of spikes.    

 Optic nerve: The last information bottleneck 

 The Mars camera, sending rich images under the constraints of space and 
energy, transmits every bit at low rates to a receiver on Earth that can pro-
cess over indefinitely long times. The retina, sending comparable images 
under those same constraints, is further constrained by time. Most informa-
tion from the retina has an early expiration date — 100 ms. This forces the 
retina to set different bit rates to match the specific need of each down-
stream user (figure 11.26). Too low a rate would compromise function; too 
high would squander resources.    

 Resource usage depends critically on firing rate because that sets axon 
diameter — lower rates allow thinner axons (chapter 3). Consequently, the 
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  How ganglion cell types apportion information . Total spikes are about equally divid-

ed between nonstringent types (pale) and quasi-stringent types. The brisk-transient 

cells send only about one tenth of the total whereas the local-edge cells send almost 

twice as many spikes at half the rate. Hypothetical ultrahigh-rate type, compared to 

local-edge, would halve bits/spike and nearly double the number of spikes to send 

fixed number of bits. DS, directionally selective. Modified and reproduced with per-

mission from Koch et al. (2006). 
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distribution of firing rates sets the distribution of axon diameters, and this 
determines the structure of the optic nerve (  figure 11.25 ). Recalling that 
space and energy costs rise as rate squared, one can appreciate the strong 
pressure to reduce firing rates that skews the distribution toward finer 
axons. Using this design, the human optic nerve compresses 10 6  optic 
axons into a nerve less than 2 mm in diameter. However, if the mean rate 
doubled, matching that of the high rate types, the optic nerve cross section 
would quadruple. 

 What allows these rates to be as low as they are? All the mechanisms 
discussed in this chapter. This includes reducing noise and redundancy 
at the cone synapse, temporally filtering by diffusion of glutamate 
quanta, dividing the contrast range and the temporal frequencies, carv-
ing away unneeded information, and (finally) matching rates to down-
stream needs. These mechanisms are integrated so as to ensure that every 
spike, whose costs are evident in the very structure of the optic nerve, 
encodes as many bits as possible and that the fewest possible spikes 
are sent. 

 Conclusion 

 This chapter opened by asking how the eye, unlike the Mars camera, man-
ages to send all its information in 100 ms. The basic answer, given in   figure 

1μm

0.16

0.12

0.08

0.04

0.00
0.0 0.5 1.0 1.5 2.0 3.02.5

0.0 0.5 1.0 1.5 2.0 3.0 3.52.5

rate

p
ro

b
ab

ili
ty

diameter
brisk-brisk-

transienttransient
brisk-

transient

local-local-
edgeedge
local-
edge

 Figure 11.26 
  Low mean firing rates allow thin axons that quadratically reduce space and energy . 

 Left : Distribution of mean firing rates matches distribution of axon diameters.  Right : 
Optic nerve in cross section. Modified and reproduced with permission from Perge 

et al. (2009). 
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11.25 , is that the eye uses multiple, parallel pathways, relying on each to 
send a subset of the total information at low rates. 

 This neural design involves many computational mechanisms: filtering, 
inversion, sparsification, rectification, and carving. To create the skewed 
distributions of firing rate and axon diameter at the output (  figure 11.26 ), 
the retina uses three cycles of analogue-to-discrete and discrete-to-analogue 
recodings.  19   This obeys several more principles of neural design:  compute 
with chemistry  because it is cheaper;  compute directly with analogue primitives , 
also cheaper, but finally threshold to remove noise. These cheap stages 
reduce the rates and total spikes so that the retina and optic nerve can 
afford the cost of long-distance transmission. 

 The stringent ganglion cells report their modest but critical messages to 
lower centers for direct coupling to behavior but also to central clusters the 
relay to cerebral cortex. The nonstringent ganglion cells report richer ver-
sions of the scene to central clusters that relay to cerebral cortex for further 
analysis. These latter types segment the spatiotemporal bandwidth to trans-
mit economically, and this raises a question: how does the cortex reassem-
ble the segmented information to recognize objects and motion in real 
time? This topic is addressed in chapter 12. 
  
  
    
      
 
 
 
 
 
 
 
 
 
 
 
 



 Leaving retina, there are at least 20 distinct representations of the scene. 
But where and how do these representations finally serve behavior? Are 
they ultimately reintegrated, and if so, where? Most critically for our theme, 
how do these representations beyond the retina maintain efficiency in 
space, time, and energy?  

 That efficiency is preserved beyond the retina is known. Our behavioral 
threshold for discriminating a brief, low-contrast spot approaches that of a 
noiseless discriminator (Crowell et al., 1988; Savage  &  Banks, 1992). 
Although we are roughly 10-fold less sensitive, the difference is accounted 
for by noise at the retinal output (figure 11.2). Two points follow: (1) the 
many noise sources along the central visual pathways are so effectively 
managed that they do not degrade the S/N carried by a single spike from 
the retina; (2) perceptual decisions must be nearly noiseless since they 
match the efficiency of a noiseless discriminator. Moreover, discriminations 
based on integrating across modalities combine the relative reliabilities of 
the sources (Burge et al., 2008; Burge et al., 2010). 

 Principles for connecting the optic nerve 

 The optic nerve distributes to central neuron clusters mostly at low levels. 
These are sites in brainstem that govern functions that need little process-
ing beyond what was achieved in retina (  figure 12.1 ; Dacey, 2004). This 
follows the principle that sensing should guide behavior at the lowest pos-
sible level, allowing the brain to engage only the circuits needed for a par-
ticular task. For example, ganglion cell types designed to sense slow changes 
in light intensity terminate directly at the SCN to govern the central circa-
dian clock (figure 4.1). This pathway uses less than 1% of all ganglion cells 
and retinal spikes. 

 12   Beyond the Retina: Pathways to Perception and Action 
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 Other examples include a ganglion cell type that senses brief intensity 
changes and couples directly to central clusters that regulate pupil diameter 
for optimal visual performance. Pupil constriction at high light intensities 
improves vision by holding intensity on the photoreceptors near their opti-
mum capacity (Borghuis et al., 2009; Laughlin, 1992). The narrower pupil 
also improves the eye ’ s optics to deliver the best image at the optimal inten-
sity. These advantages are so straightforward that one cannot imagine a 
circumstance where higher brain levels would need to comment on this 
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  Retina sends different versions of the scene to 20 distinct central clusters . This 

diagram shows primate pathways to neuron clusters in hypothalamus, dorsal and 

ventral thalamus, and midbrain. The lateral geniculate nucleus (LGN) comprises 12 

clusters that collect from ganglion cell with high, medium, and low information 

rates (M, P, and K, respectively). Reprinted with modification and permission from 

Dacey (2004). 
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matching process. This exemplifies an important behavior (coordinated 
muscle contractions that continuously optimize vision) that is accom-
plished at the lowest central level. Examples that employ directionally selec-
tive ganglion cells to guide low level behaviors were discussed in chapter 11.    

 One target in the midbrain, the superior colliculus, undertakes consider-
able further processing of optic signals. It integrates visual, auditory, and 
somatosensory signals to produce various outputs: (1) an ascending path-
way toward cerebral cortex that decides  “ where to look ” ; (2) a descending 
pathway to brain-stem motor mechanisms that move the eyes, ears, and 
head toward that site; and (3) another ascending pathway to correct for 
these self-initiated movements (chapter 4). To oversimplify: the superior 
colliculus helps a baseball player orient his head and eyes toward the 
pitcher. However, to discriminate a fastball from a curve and guide the bat 
requires much more detail — which is encoded by ganglion cell types with 
nonstringent filters and higher information rates. 

 The nonstringent ganglion cells supply a dozen neuron clusters within 
the thalamus, and these relay to primary visual cortex ( V1 ). The latter initi-
ates processing for visual perception and behavior, diverging signals widely 
across the cortex and downward to many subcortical structures. This chap-
ter follows the pathways initiated by the nonstringent types through thala-
mus up to cortex and across it. We indicate how design principles identified 
at the scale of synapses and synaptic circuits play out at larger scales: neu-
ron clusters, layers, columns, patches, and stripes. The same principles act 
on a still larger scale: clusters of cortical areas and the hierarchical arrange-
ment of areas from back to front. 

 Design of a thalamic  “ relay ”  

 The nonstringent ganglion cell types terminate in a complex of neuron 
clusters, termed collectively the  lateral   geniculate   nucleus  (LGN). Each type 
of optic axon supplies a particular cluster; consequently, parallel pathways 
arising in retina (brisk-transient, brisk-sustained, local-edge, blue-yellow, 
etc.) remain parallel within the LGN and exit without converging. The tha-
lamic relay cells continue to reflect the informational properties of their 
retinal inputs: types with higher information rates use higher energy rates 
and, therefore, higher levels of cytochrome oxidase. This mitochondrial 
enzyme reflects local mean energy consumption and correlates with capil-
lary density (  figure 12.2;  Weber et al., 2008).    

 In retina the order of cytochrome oxidase expression goes: brisk-transient 
 →  brisk-sustained  →  local-edge. This order continues through the LGN and 
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also through V1 where expression is strongest at the input layer for non-
stringent inputs (layer 4) and in patches of layers 2 and 3 that carry higher 
information rates (  figure 12.2 ; Kageyama and Wong-Riley, 1984, 1985). 
These cytochrome-oxidase patches project to cytochrome-oxidase  thin 
stripes  in the second visual area ( V2 ; Sincich  &  Horton, 2005; Federer et al., 
2009; Federer et al. 2013). The broad point is that neurons from various 
distinct aggregations in V1 project separately to V2. Consequently, the 
energy savings achieved in retina by splitting into low-rate and high-rate 
channels continues as processing proceeds in parallel streams. 

 One could imagine a less orderly design — where various relay types, 
rather than segregating, would intermingle. However, that would force var-
ious types of optic axons to crisscross in order to find their target neurons. 
Thus, by segregating into parallel streams, optic axons avoid mutual inter-
ference and connect with less wire. Segregating also allows neurons within 
a type to share inputs without mutual interference and save additional wire 
(  figure 12.3 ). For example, in human retina ganglion cells of a given type 
distribute across more than 1,000 mm 2 , but in a central cluster their relay 
neurons gather compactly while still preserving their nearest neighbor rela-
tionships. Since the signals carried by neighboring ganglion cells are par-
tially correlated, processing circuits can be shared economically. Therefore, 
their proximity in a central cluster serves efficient processing. In short,  neu-
rons that fire together should locate together.  
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 Figure 12.2 
  Ganglion cell types that intermingle in retina segregate centrally into compact clus-
ters but maintain their nearest neighbor relationships . This preserves the retina ’ s 

two-dimensional map within each central cluster and in the subsequent relay to 

cortex. Types sending at high information rates (H) with thick axons relay to middle 

layers of cortex; types sending at low information rates (L) with thin axons relay to 

upper layers. High-rate types at all three stages express more cytochrome oxidase 

than the corresponding low-rate types. Medium rate types are omitted for simplicity. 

These rules hold also for auditory and somatic systems (Jones, 2001). 
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 Thalamic relay neurons preserve these nearest neighbor relationships in 
their output axons (  figure 12.2 ). Consequently, as their output tract heads 
toward cortex, the map of visual space can be compressed, twisted, crum-
pled, or flattened — whatever is locally efficient. Then, upon reaching cortex 
it can re-expand with nearest neighbor relationships intact to connect with 
least wire. All these advantages apply equally to both eyes: until the stage 
where their messages are finally integrated (V1), separate processing is most 
efficient. So their thalamic relay clusters locate in alternate LGN layers 
(  figure 12.1 ). 

 Why and how thalamic relays  “ repackage ”  their input signals 
 Most sensory modalities use nonstringent cell types to transmit high infor-
mation rates to cortex (Jones, 2001). These types all use thalamic processing 
to enhance their efficiency — more bits per spike. So this design warrants 
some explanation. We now explain the mechanism for vision,  1   but a similar 
story could be told for somatosensory and auditory systems. The stringent 
ganglion cell types, such as local-edge and directionally selective cells, do 
project to thalamic clusters and continue in parallel up to cortex, but their 
thalamic and cortical processing remain murky. 

 Spatial acuity for each visual function is set by the spatial grain of a par-
ticular ganglion cell array (chapter 11). To preserve this acuity going for-
ward requires providing each ganglion cell a private line to one relay cell 
(Weyand, 2007; Rathbun et al., 2010). This imbues the relay cell with the 
properties of its input type; for example the brisk-transient relay cell has 
higher spike rates and higher information rates (  figure 12.2 ). Recall, how-
ever, that each retinal point is covered by the receptive field centers of six 
ganglion cells of the same type and that this redundancy is unavoidable 
because ganglion cells of fixed spacing extend their dendrites to collect 
more contacts and improve their S/N (figure 11.18). 

 The main reason, it seems, for a thalamic relay neuron to repackage reti-
nal inputs is to reduce the redundancies caused by the sixfold overlap of 
centers. Repackaging allows information to reach cortex at the same bit rate 
but half the spike rate (Sincich et al., 2009). This saves space and energy by 
fourfold; moreover, these savings, by allowing postsynaptic neurons to 
operate at lower rates, earn interest going forward. This appears to be the 
LGN ’ s main computational task, and that for other thalamic relays as well. 
Given such a substantial improvement by thalamic repackaging, we should 
explain how it works. 

 Redundancy in retina arises from the broad correlations of intensity 
across natural scenes, so it is reduced by summing signals broadly across 
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receptive field  surrounds  and then subtracting the mean from the forward 
pathway (figure 11.6). But redundancy at the thalamus arises from the over-
lap of retinal receptive field  centers , so it is spatially narrow — tightly local-
ized to nearest and next-nearest neighbors. To reduce this highly local 
redundancy, the thalamus employs an entirely different design: the  “ quasi-
secure ”  synapse (  figure 12.3 ).    

 The private line to a relay cell provides many active zones, so its input 
spike frequently evokes an output spike (p ~ 0.5). Observers, initially 
impressed with the strength of this connection, termed it a  “ secure ”  syn-
apse. However, the key to its integrative function actually lies in its partial 
 in security — its frequent failures. When a spike on the private line evokes 
too small an EPSC to cause a postsynaptic spike, the EPSC can sum with a 
second one if the two arrive within about 30 ms of each other. This  “ supple-
mentary ”  EPSC is driven by a spike from one of the overlapping neighbors 
through a weaker synaptic connection (  figure 12.3) . So the quasi-secure 
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  The quasi-secure thalamic synapse concentrates information for relay to cortex.  A 

ganglion cell receptive field (RF) center (shaded) is overlapped by five neighbors for 

sixfold coverage. Its axon in lateral geniculate nucleus (LGN) connects strongly as a 

private line, providing multiple contacts that cluster on proximal dendrites of the 

relay cell (arrows) where they are ensheathed by glial membranes as a glomerulus 

(figure 12.4). Neighboring axons connect weakly (fewer contacts, no glomerulus) to 

that relay cell. Thus, a stimulus that evokes redundant spikes causes the shaded cell 

to fire more reliably and thus to send more bits per spike. Connections to neighbor-

ing relay cells are omitted for clarity. Inhibitory surrounds, omitted for clarity from 

the receptive field cartoons, are evident in the sensitivity plots. 
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connection harnesses information delivered by the redundant spike to 
improve S/N of each private line, thus sending more bits per spike and 
fewer spikes. 

 What causes the supplementary spike is, of course, a pattern that over-
laps both receptive field centers. Each neighbor ’ s connection is roughly 
fivefold weaker than the quasi-secure input, so it cannot alone fire the relay 
cell. However, when it sums with the larger EPSC from the private line, it 
helps trigger a spike (Carandini et al., 2007). This design allows the relay 
cell to recapture redundant information from the overlapping neighbors 
without loss of spatial acuity. 

 A broad stimulus covering the receptive field centers of all the six gan-
glion cells that connect to the relay cell would be less effective than a nar-
row stimulus covering only the main ganglion cell input. Despite stimulating 
all six receptive field centers that contribute to the relay cell, the stimulus 
would reduce the number of spikes sent through the strongest connection 
(via lateral inhibition within the retina). Moreover, the surrounds of the 
overlapping neighbors, being broader than their centers, overlap more, so a 
broader stimulus would affect the surrounds more, thereby also reducing 
spikes from the overlapping neighbors. 

 In short, the quasi-secure synapse, while preserving the original infor-
mation, uses the redundant input spikes to send the same message with 
half the output spikes. Spike reduction in an awake animal freely viewing a 
natural movie can be still greater, up to fourfold (Dastjerdi et al., 2003, 
2007, 2011; Dong et al., 2005), implying a 16-fold reduction in space and 
energy (Perge et al. 2009). 

 This circuit, whereby the relay cell integrates a strong private input with 
redundant weaker ones, deepens the antagonism nearest to the center, giv-
ing the receptive field the appearance of a real sombrero (  figure 12.3 ). This 
deepening of the near surround occurs via lateral inhibition onto the relay 
cell and also via excitation as the LGN relay neuron convolves multiple, 
overlapping ganglion cell surrounds. This is the same process that deepens 
the surround of ganglion cells as they convolve the broadly overlapping 
receptive fields of bipolar cells (Freed  &  Sterling, 1988; Smith  &  Sterling, 
1990). 

 Implementation of the quasi-secure synapse 
 The local circuit for the quasi-secure synapse of a brisk-sustained relay cell 
involves a  synaptic glomerulus  — a knot of intertwined pre- and postsynaptic 
processes encapsulated by glial processes (  figure 12.4 ; Sherman  &  Guillery, 
2002; Sherman, 2004). The capsule surrounds the cluster of terminals 
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provided by the private retinal axon and thus establishes an extracellular 
compartment for glutamate spillover, something like that described for the 
cone synapse (figure 11.3) and for the mossy fiber synapse (figure 7.16). The 
relay cell dendrite expresses mainly a fast AMPA receptor, plus some slower 
NMDA receptors (Ziburkus et al., 2000) that pass larger currents as the den-
drite is depolarized. Together the two receptor types capture the full tempo-
ral bandwidth of the input and extend the range of linearity (chapter 7; 
Attwell  &  Gibb, 2005). The combination works as follows: fast initial depo-
larization progressively decreases the driving force on the entering cations. 
However, as the AMPA current declines with dendritic depolarization, the 
NMDA current rises to compensate. 

 The retinal terminals also contact presynaptic terminals that release 
GABA onto the relay cell dendrite (  figure 12.4 ). This feedforward inhibition 
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  Synaptic glomerulus integrates quanta from multiple active zones of the private 
retinal axon . The glial sheath excludes glutamate transporters, thus prolonging glu-

tamate spillover, so this glial architecture serves the design. Outside the sheath, glial 

membranes densely express glutamate transporters to mop up (Josephson  &  Morest, 

2003). The relay cell expresses multiple glomeruli for its private line, and outside the 

glomeruli it collects additional contacts from adjacent retinal axons (  figure 12.3 ). 

The retinal terminal also contacts GABA-ergic processes (stippled) that feed inhibi-

tion forward from retinal input to relay cell dendrite. This inhibitory circuit sharpens 

timing precision at the relay cell output. After Sherman  &  Guillery (2002). 
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helps sharpen timing precision at the relay cell output. Thus, better S/N via 
multiple synapses and better timing precision via feedforward inhibition 
both increase information (bits per spike) at the output to cortex.    

 The primary retinal axon distributes about half of its active zones to its 
private line target and divides the rest among the five neighbors. Conse-
quently, each relay cell collects about half of its retinal synapses from the 
private line and the rest from the five overlapping retinal neighbors. When 
the main retinal axon releases insufficient vesicles to trigger a spike from its 
main target, a temporally correlated spike from one of the overlapping 
neighbors can increment the main EPSC by about 20%. 

 Retinal axons reserve some of their outputs for a second type of relay 
neuron, smaller but with the identical receptive field. This type also uses a 
glomerular synapse but with essentially the reverse pharmacology: mainly 
slow glutamate receptors, including NMDA, plus a fast GABA receptor 
driven by an interneuron excited by the same retinal input. Their arrange-
ment establishes a delay line: the retinal spike that delivers brief, fast excita-
tion to the standard relay neuron also delivers slow, sustained excitation + 
fast, brief inhibition to the small relay neuron (Vigeland et al., 2013). So it 
fires but with a defined lag. The cortex sees an early spike from the standard 
relay cell, then a delayed spike from the  “ lagged ”  cell. This delay line appar-
ently exists for all types of LGN relay neurons, and thus represents another 
of the LGN ’ s important functions (Saul, 2008). 

 The quasi-secure synapse (many contacts from a private line arranged to 
fire the postsynaptic neuron with p ~ 0.5) is a common motif of neural 
circuit design. Many thalamic relay clusters, perhaps all, use this mecha-
nism, as do other regions, including mossy-to-granule-cell synapses in cer-
ebellar cortex and auditory synapses to various brainstem neurons (Grande 
 &  Wang, 2011). Cerebellar Purkinje neurons converge on deep cerebellar 
neurons with similar benefits (Heck et al., 2013). These are: high-rate inputs 
are throttled down (with help from inhibition), and partially redundant 
inputs (a design issue in all neuron arrays) are integrated to improve S/N 
and concentrate information. Wherever a neuron can reduce its mean rate, 
it can use a thinner axon (Deleuze et al., 2012), and the benefit goes as 1/
(diameter) 2 . 

 We wish to acknowledge that the issues of thalamic circuitry are com-
plex, involving diverse inputs, including cortical feedback, brainstem regu-
lators of attention, rich pharmacology, and  “ channel-ology. ”  For example, 
all thalamic relay neurons express a type T calcium channel that switches 
the neuron from tonic firing in wakefulness to burst mode in sleep. Recent 
evidence suggests a role for these channels in tonic firing as well. We omit 
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these important topics to simply trace the excitatory pathway from retina 
to cortex, interpreting the functional architecture in terms of efficient 
signaling. 

 How synaptic resources are invested from retina to cortex 
 We have noted that an analogue voltage recoding to synaptic quanta in 
doubling its information rate more than quadruples the number of syn-
apses. For example, a high-rate retinal ganglion cell (brisk-sustained) encod-
ing twofold more bits per second than a low-rate ganglion cell collects 
10-fold more bipolar cell contacts (6,000 vs. 600; figure 11.16). But what 
happens when the voltage signal is much larger and faster — an action 
potential traveling down the ganglion cell axon to its central arbor? How 
many synapses are then required to transfer the message, and what are the 
governing rules? 

 A ganglion cell axon reaching the LGN reduces the number of active 
zones used to transfer its message by 6- to 10-fold (  figure 12.5 ). The high-
rate ganglion cell that received 6,000 bipolar cell contacts transfers its pri-
mary message using 600 active zones; 300 to the private line relay cell + 300 
apportioned among the five overlapping neighbors (Wilson et al., 1984; Sur 
et al., 1987; Roe et al., 1989; Raczkowski et al. 1988).  2   And the low-rate gan-
glion cell that received 600 bipolar cell contacts transfers its primary mes-
sage using only 100 active zones (Raczkowski et al., 1988). How can 6- to 
10-fold fewer synapses relay the same amount of information?    

 First, the information to be transferred is actually less. Recall that the 
ganglion cell ’ s A-to-P converter, in thresholding the graded signal, discards 
nearly half the information (chapter 11; Borghuis et al., 2009; Dhingra  &  
Smith, 2004). Second, synaptic transmission can be more reliable. Consider 
that a full sized spike (~100 mV) reaching an active zone at the retinoge-
niculate terminal evokes a larger, faster surge of calcium than generally 
occurs at the bipolar terminal; therefore, retinogeniculate release is more 
reliable and more sharply timed. In short, a pulse-driven active zone trans-
mits more information than the analogue version, thus reducing the num-
ber of active zones required at the main relay. 

 The entire retinogeniculate terminal expresses 1,600 active zones, many 
more than the 600 used by the main relay. The extra 1,000 active zones are 
apportioned among the lagged relay neurons and assorted inhibitory inter-
neurons. These types need to establish signal quality comparable to that of 
the main relay: inhibitory neurons should be no noisier or less reliable than 
the neurons that they modulate. Nor should lagged relay neurons send 
lower quality signals than standard relay cells — given that the signals 
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 Figure 12.5 
  Synaptic investment from retina to cortex . High-rate bipolar cells contribute 6,000 

contacts to a high-rate ganglion cell (brisk-sustained) whereas low-rate bipolar cells 

contribute only 600 contacts to a low-rate ganglion cell (local-edge). This 10-fold 

difference matches a twofold difference in information rate. High-rate ganglion cells 

contribute only 600 contacts to a relay cell, a 10-fold step-down. Low-rate ganglion 

cells contribute only 100 contacts to a relay cell, a sixfold step-down. These step-

downs match a twofold step-down in information rate at the ganglion cell output 

caused by spike thresholding. The high-rate relay cell expands its output synapses 

at cortex by fivefold (600 in vs. 3,000 out). This corresponds to a twofold increase 

in information per spike at the relay cell output caused by the quasi-secure synapse 

(  figure 12.3 ) and by the large divergence to many simple cells. One simple cell col-

lects about 180 contacts from about 20 relay cells, thus approximately nine contacts 

from one geniculocortical terminal (da Costa and Martin, 2011). Compared to the 

private retinogeniculate connection, the connection from a single relay cell is highly 

insecure (see figure 12.7). 
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recombine in cortex. Thus, one can see a point to reserving more than 60% 
of the total synapses for targets besides standard relay cells (  figure 12.5 ). 

 Reaching cortex, relay cell axons greatly expand their numbers of output 
contacts. A standard relay cell delivers about 3,000 contacts, fivefold more 
than it received and twofold more than are used by the retinogeniculate 
terminal (  figure 12.5 ). Again, there are two issues. First, the geniculocortical 
axon carries twofold more bits per spike than the retinogeniculate axon 
(  figure 12.3 ), so to transmit that with active zones of comparable speed and 
reliability would require greater numbers. Second, the geniculocortical 
axon diverges to more than 200 cortical neurons, delivering to each approx-
imately six contacts, which are driven by a large, sharp spike. Of course, a 
connection served by six separate contacts, compared to a connection 
served by 300 contacts sequestered in thalamic glomeruli, will be quite 
insecure — and that we shall explain is key to the design. 

 Six reasons for a thalamic  “ relay ”  to primary visual cortex 
 We can now summarize various reasons to gather optic signals at the thala-
mus before projecting them to V1. First, the thalamic station provides a 
control point where the rate of signaling can be gated according to level 
of brain and behavioral arousal. The gating mechanisms involve several 
brainstem nuclei that are, in turn, gated by the circadian clock — which 
are all nearby. Gating at the relay level allows fewer spikes to cortex, 
reducing energy and wire volume used by that pathway and other 
downstream circuits. 

 Second, each retinal neuron, to improve its S/N, overlaps its neighbors 
and thus carries substantial redundancy (chapter 11). By connecting 
strongly to its main retinal input and weakly to the overlapping neighbors, 
each relay cell uses the spatial redundancy to improve spike timing and 
thus increase bits per spike at the relay cell output. Thus, all the informa-
tion arriving from retina to the LGN is relayed to cortex by half as 
many spikes. 

 Third, the thalamic relay expands certain cell types, creating  “ copies ”  to 
be used in different cortical areas for distinct computational purposes. For 
example, a brisk-transient pathway relays to V1 for  “ linear ”  processing and 
separately to V2 for  “ nonlinear ”  processing, in all expanding its numbers 
by about 10-fold (Yeh et al., 2003).  3   This expansion makes it even more 
important for the relay cell to concentrate information and thus halve the 
spike rate. 

 Fourth, the main relay types are all accompanied by secondary types 
with the opposite temporal phase relation to the initial signal ( “ lagged ”  vs. 
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standard). These lagged signals are sent at lower spike rates over finer axons 
and need fewer synapses at the cortical output. A possible reason to estab-
lish the lagged types at the LGN rather than at V1 is that they also use a 
glomerular synapse and presumably also benefit from the doubling of bits/
spike. Moreover, it may be efficient to prepare all the essential subunits for 
 “ direct assembly ”  at the cortex. 

 Fifth, the LGN nuclear complex, by gathering all members of each type 
into a single cluster, can project each type as a bundle and so avoid the need 
to disentangle them at the cortex — again, saving wire. This also explains 
the separate layers for ON and OFF relay cells and the separate layers for 
each eye: all types are sorted and ready for direct assembly as subunits of 
cortical receptive fields. 

 Finally, various neurons in cortical layer 6 project down to the LGN and 
provide numerous excitatory synapses to the distal regions of relay cell den-
drites. These cortical output neurons, diverse in dendritic morphology and 
axon caliber, constitute different types (Katz et al., 1984). Each type proba-
bly targets a specific type of relay neuron, cortical output neurons with 
thinner and thicker axons serving, respectively, low-rate and high-rate relay 
types. This provides the cortex with distinct circuits to gate its input from 
each type of relay cell. The clustering of different relay types in LGN prob-
ably improves their efficiency in collecting specific descending inputs from 
V1. The functions of this rich, highly specific, gating pathway have been 
the subject of much speculation and experiment — but remain uncertain. 

 All six reasons for a thalamic relay apply equally to other senses, for 
example, tactile and auditory systems, and also to relays for the motor sys-
tem. All of these systems also express the quasi-secure synapse, and all 
sharply reduce their spike rates before projecting to their primary 
cortical areas. 

 How images are processed in V1 

 The purpose of cortical image processing is to identify patterns that predict 
and guide useful behavior. It involves combining signals from different 
regions of the retina and from the two eyes. Processing for patterns begins 
in V1. 

 V1 is the largest cortical area. It occupies in macaque monkey about 13% 
of the total cortex and about one quarter of cortex devoted to vision (Van 
Essen, 2004; Dougherty et al., 2003). V1 is constrained to restrict each cat-
egory of pattern coding (space, motion, color, depth) to a single serial 
mechanism — there are no parallel pathways for  “ backup. ”  The brain devotes 
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neither space nor energy to rarely used safety nets. Consequently, whatever 
integrations are effected in V1, they must rigorously preserve each distinct 
aspect of a scene that was relayed — or irretrievably lose it.  4   

 The separate lines initiated in retina and continued in thalamus remain 
separate in V1, their terminals segregating in different strata (  figure 12.6 ).  5   
High-rate neurons for temporal processing terminate in upper layer 4, 
medium-rate neurons for fine, achromatic spatial processing terminate in 
lower layer 4, and low-rate neurons  6   terminate superficially, in layers 1 – 3. 
The inputs to cortex typically fire at higher rates than the outputs, so these 
strata expend more energy and express correspondingly higher levels of 
cytochrome oxidase. Patches in layers 2 and 3 also express more cyto-
chrome oxidase (  figure 12.6 ). These patches receive input from medium-
rate relay neurons that encode red – green chromatic contrast, as now 
explained.  7, 8   

 These red – green inputs are axonal branches from a subset of the medium-
rate relay neurons whose full array terminates in deep layer 4. In the full 
array each neuron is excited by a single cone, so the array resolves spatial 

low rate

V1 LGN input

medium rate chromatic

high rate (temporal)

medium rate 

(fine spatial)

1

2–3

4

5

6
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1mm

 Figure 12.6 
  Energy capacities of input layers to V1 matches information rates. Left : Vertical sec-

tion through cortex indicating cytochrome oxidase expression: strongest in upper 

layer 4 which receives high-rate relay cell input; medium in lower layer 4, which 

receives medium-rate relay cell input for fine spatial processing; and weakest in 

layers1 – 3, which receive low-rate relay cell input, including blue-yellow color con-

trast. Layers 2 – 3 express cytochrome oxidase in patches whose relay cell inputs code 

both red – green color contrast and achromatic contrast (double duty; Crook et al., 

2011; Stockman and Brainard, 2009).  Right : Tangential section through layers 2 – 3 

showing dark patches activated by red – green isoluminant flicker. These functionally 

imaged patches correspond precisely to patches of elevated cytochrome oxidase (not 

shown). Reprinted with permission from Valverde Salzmann et al. (2012). 
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patterns down to the Nyquist limit, about 60 cycles/degree in humans. The 
receptive field centers, driven by either a red or green cone, are spectrally 
tuned. The center cone is antagonized by horizontal cells which collect 
unselectively from red and green cones (Crook et al., 2011). Consequently, 
some surrounds will comprise equal numbers of red and green cones, but 
others will comprise more red than green, or vice versa, and will either rein-
force or antagonize the center ’ s spectral response. The subset of neurons 
with center/surround spectral antagonism encode red – green chromatic 
contrast (Crook et al., 2013). This array resolves only about 40 cycles/degree 
and segregates in the layer 2 – 3 cytochrome oxidase patches.    

 We now follow the relay pathway for brisk-sustained signals. Since this 
pathway serves spatial acuity, it needs to preserve in cortex the acuity estab-
lished in retina and preserved by LGN relay cells. Consequently, the initial 
pooling in V1 must be restricted to one dimension. 

 Indeed, the first-stage cortical neuron integrates inputs from a single row 
of relay cells with overlapping receptive fields. Thus, it can resolve a linear 
pattern of the same spatial frequency as the original sampling array (Green, 
1970). But how far should this line extend — across tens of relay cells or 
thousands? Also, what about integration in the orthogonal dimension? 
And what about dark and bright contrasts that segregated in retina onto 
different relay lines — how are they finally reintegrated? Given that the ear-
lier stages approach theoretical optimality, should we also expect the corti-
cal neuron to resemble its four predecessors as an optimal encoder? What 
do theories of image processing suggest? 

 Theory of optimal coding predicts early V1 circuits 
 The theory starts with an observed property of natural scenes, namely that 
their spatial and temporal correlations produce power spectra that tend to 
decay as 1/(frequency) 2  (chapter 8). This means, for example, that trees (up 
close) and forest (at a distance) show the same shaped distribution of cor-
relations. Given this statistical property, there exists an optimal way to rep-
resent any  particular  scene — by concentrating the activity that specifies that 
scene in the fewest units — a boon for any designer! 

 The optimal unit, actually a weighting function termed  Gabor filter , opti-
mally represents spatial position and spatial frequency. These two variables 
are reciprocal, so an element that is larger in space is narrower in spatial 
frequency, and vice versa. The linear filter that occupies the smallest possi-
ble volume in both domains is the Gabor (Daugman, 1985; Marcelja, 1980). 
Put another way, the Gabor filter strikes the optimal balance between two 
conflicting demands: integrating across space to establish the polarity and 
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scale of intensity changes, and pinpointing within space to establish 
location. 

 Gabor filters tested on natural images prove most efficient with a length-
to-width ratio of about 2 and a spatial frequency bandwidth of about 1 – 1.5 
octaves (Field, 1987). Moreover, roughly 200 Gabor-like filters with differ-
ent orientations, sizes, and offsets can represent the small patch of natural 
scene coded by a 12  ×  12 array of cone photoreceptors (Olshausen, 2004). 
This seems like an excessive number of filters, but there are roughly 40 cor-
tical neurons at the first stage for every cone photoreceptor, and this 
explains why: overrepresentation, as will be further explained, constitutes 
an efficient code. Thus, theory predicts: (1) an efficient type of receptive 
field for the first integration in V1; (2) its optimal dimensions; (3) the opti-
mal number and proportion of filter types. These predictions match aston-
ishingly well the actual properties of neurons that integrate the relay cell 
input (Jones  &  Palmer, 1987). So how are they wired? 

 Integrating via  in secure synapses 
 The cortical neuron that integrates inputs from a line of thalamic relay cells 
is the famous  “ simple cell ”  (Hubel  &  Wiesel, 1962). Its dendrites branch 
within the stratum of brisk-sustained thalamic input and collect from about 
30 relay cells with overlapping, linearly aligned receptive fields (Kara  &  
Reid, 2003). This degree of convergence produces the optimal length-to-
width ratio (2:1). And, as theory requires, pooling occurs only along 
one dimension. Orthogonal to that dimension spatial grain is preserved 
(  figure 12.7 ).    

 Crucially, the simple cell must not respond to isolated firing of a single 
relay cell. Rather, it should fire only when the line of relay cells that form 
its input fire together, and thereby report a linear feature in the scene (Wang 
et al., 2010). This requires the connection from single relay cells to be weak. 
Consequently, each relay spike causes only about 3% of the simple cell ’ s 
spikes. Thus, compared to the thalamus, where the main retinal input 
causes more than 50% of the output spikes (Weyand, 2007), the relay cell 
input to a simple cell reduces  “ synaptic security ”  by about 20-fold. In short, 
the synaptic design changes from quasi-secure at the thalamus to insecure 
at the cortex. 

 Each relay cell contributes approximately six contacts to a simple cell, so 
the linear band of 30 relay cells, provides about 180 contacts (Costa  &  Mar-
tin, 2011). To reliably fire one spike the simple cell requires synchronous 
release, amounting to approximately 100 vesicles within about 10 ms (Frick 
et al., 2010). Therefore, each synapse needs to release one vesicle with p ~ 
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0.5. Retinal spikes occurring within 5 – 10 ms of each other are fourfold 
more likely to excite a simple cell than spikes separated by longer intervals 
(Kara  &  Reid, 2003). This design, where 30 quasi-synchronous input spikes 
trigger one output spike,  “ sparsifies ”  the response by 30-fold and signifies 
an edge. 

 To encode the predicted range of spatial frequencies, simple cells inte-
grate parallel bands of relay cells that share the same orientation but are 
wired alternately for bright or dark contrasts. This expands integration in 
the dimension orthogonal to the orientation bands, while preserving spa-
tial resolution (  figure 12.7 ). Alternating bands are arranged side by side. 
Simple cells express up to four bright domains arranged variously with 
similar numbers of dark domains to produce over 30 different patterns —
 and more, considering a rarer class of  “ periodic ”  cells with up to six 
bright and seven dark domains (Mullikin et al., 1984; Palmer  &  Davis, 
1981). Thus, it is easy to imagine that several hundred types would 
be needed. 

 The relay cell axon terminal needs to provide sufficient active zones to 
allow an insecure connection with all the many simple cells that are needed 
for optimal tiling of natural scenes. This works out: the terminal expresses 
about 3,000 active zones (  figure 12.5 ) and contributes about six contacts 
per simple cell; therefore, it can supply about 500 neurons. Some contacts 
are reserved for inhibitory neurons, which constitute about 10% of cells in 
this stratum, but this leaves sufficient contacts for several hundred simple 
cells of different orientations and bandwidths. This is roughly the number 
of neurons predicted to be optimal; thus the synaptic numbers and cell 
numbers are consistent with each other and also with predictions from 
image-processing theory. 

 Circuit for the Gabor filter 
 Recall that the two-dimensional Gabor function optimally encodes space 
and spatial frequency, extracting the maximum mutual information given 
the statistical properties of natural images (Field, 1987; Okajima, 
1998a, 1998b). 

 The function, defined as a plane wave localized by a Gaussian envelope, 
is represented by a formidable equation. However, like the difference-of-
Gaussians function of retinal ganglion cells, it is computed as a  primitive , 
that is, directly, via clever balancing of excitatory and inhibitory weights. A 
key difference between the relay cell ’ s difference-of-Gaussians profile and 
the simple cell ’ s Gabor profile is the depth of the surround. Whereas the 
difference-of-Gaussians is  “ sombrero-like, ”  the Gabor has a far deeper 
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  Relay cell inputs to cortical simple cell directly establish its Gabor weighting func-
tion.   Upper : This particular Gabor filter has two spatial bands. One is excited (E) by a 

bright bar and inhibited (I) by a dark bar. The adjacent band is excited by a dark bar 

and inhibited by a bright bar. This produces a receptive field (weighting function) 

that closely resembles a Gabor filter that efficiently encodes inputs from 30 thalamic 

neurons, further reducing the mean spike rate and increasing bits per spike (Kumb-

hani et al, 2009).  Lower:  Circuit for one band of the Gabor. Dark bar initiates spikes 

in a row of OFF thalamic relay cells that project together, minutely preserving their 

nearest neighbor relationships, to deep layer 4. These OFF neurons with circular, 

difference-of-Gaussian receptive fields converge with excitatory contacts onto the 

cortical neuron. Each relay cell contributes only a few contacts to the cortical neu-

ron, so its functional connection is quite insecure. One spike from the relay cell has 
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 “ brim ”  that could not be achieved simply by summing difference-of-Gauss-
ians relay cell receptive fields. 

 For a simple cell to exhibit a Gabor function it recombines the comple-
mentary halves of the original cone response (ON and OFF) that were seg-
regated for efficient transmission. Now a bright contrast excites the simple 
cell via a band of ON relay cells that release glutamate; simultaneously, it 
 disinhibits  the simple cell by suppressing a cospatial band of OFF relay cells 
that (via interneurons) release GABA onto the simple cell (  figure12.7 ; Fer-
ster, 1988).  9   This  “ push – pull ”  design, recombining both halves of the cone 
signal, restores the full dynamic range of responses to contrast (Hirsch, 
2003). Moreover, by exploiting both excitatory and inhibitory reversal 
potentials, the circuit extends the linear response range for contrast and 
rejects noise. These advantages are well-known and thoroughly exploited 
by designers of electronic circuits. 

 Why postpone this recombining of information that was divided by rec-
tifying in the retina (figure 11.13)? Because here at last the coding is sparse 
enough for both halves of the original signal to be processed efficiently by 
the same cell.  

 In emphasizing how V1 ’ s main computation utilizes Gabor filters, we 
have slighted numerous complexities — including nonlinear mechanisms at 
the cellular level and various aspects of local cortical circuitry (Douglas  &  
Martin, 2009). In fact, half a century after Hubel and Wiesel proposed the 
model for orientation specificity, the questions of  exactly  how it occurs, and 
 exactly  what makes it so robust to variations in luminance and contrast, are 
still studied (Priebe  &  Ferster, 2012). Final answers await a detailed under-
standing of cortical connectivity (Bock et al., 2011). Meanwhile, we con-
sider some implications of this design. 

 Advantages of sparse coding 
 The linear Gabor filter, by optimally representing space and spatial fre-
quency, substantially sparsifies the input. Moreover, as the eye flicks about, 

very low probability of firing the simple cell. However, a bar that synchronously fires 

the  row  of OFF relay cells reliably fires the simple cell. A cospatial row of ON relay 

neurons excites cortical interneurons that inhibit the simple cell. Therefore, as the 

dark bar excites the simple cell ( “ push ” ), it also disinhibits ( “ pull ” ). This push – pull 

circuit recombines information that was divided by rectification at the bipolar cell 

output (figure 11.13). At this stage both components of the signal can be efficiently 

encoded by the same cell because the coding is now sufficiently sparse. LGN, lateral 

geniculate nucleus. Upper image, reprinted with permission from Palmer et al (1991). 
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regions beyond the immediate simple cell receptive field are stimulated by 
complex image structures that activate various nonlinear circuits within V1 
to further sparsify the simple cell ’ s response (Vinje  &  Gallant, 2002; Gal-
lant, 2004; Herikstad et al., 2011). Thus, a simple cell is largely silent, and 
the response, being usually zero, is highly redundant. Furthermore, since 
many simple cells are required for each patch of visual space, and most are 
silent — the degree of redundancy begins to seem possibly worrisome —
 because, after all, how much idle capacity should be tolerated? 

 It might seem puzzling that, following the considerable investment at 
early stages to reduce redundancy, the fifth-stage neuron expands it so tre-
mendously. Yet this is unavoidable with sparse coding: it conserves expen-
sive action potentials but expands unused capacity. However, under the law 
of diminishing returns (figure 3.6), it is more energy efficient to represent 
information in many neurons that fire at very low mean rates than in a few 
neurons firing at high mean rates. Indeed, there is an optimum sparseness 
that maximizes energy efficiency, and this depends on the ratio between 
the fixed cost of installing and maintaining a neuron and the additional 
signaling cost of firing a spike (Levy  &  Baxter, 1996). 

 The rule goes: when neurons are expensive and spikes are cheap, spike 
frequently to increase information per neuron. However, when neurons are 
cheap and spikes are expensive, spike  in frequently to increase information 
per spike. For the average cortical neuron, spikes are relatively expensive —
 two spikes per second equals the resting cost (Howarth et al., 2012). This 
ratio favors low rates, and indeed cortical neurons operate close to the opti-
mum efficiency. 

 Thus, on the path toward perception, the expansion of redundancy rep-
resents progress. Indeed, sparsifying serves several purposes besides increas-
ing energy efficiency (Olshausen  &  Field, 2004). A sparse representation 
facilitates feature extraction because against lower background activity, the 
response to a feature stands out. It is also easier to establish and learn cor-
relations via coincidence detection because fewer spikes produce fewer spu-
rious coincidences. 

 To summarize, the second-order statistics of natural scenes can be repre-
sented optimally by a single family of Gabor filters with specific dimen-
sions. They are instantiated in layer 4 by simple cells, which integrate 
thalamic input with an  “ insecure ”  design. The deep lobes of the Gabor fil-
ter ’ s sensitivity profile are achieved by a push – pull design that integrates 
the cospatial ON and OFF components of the original cone signal. The sim-
ple cell response is further sparsified by nonlinear mechanisms. Sparsifying 
reduces the metabolic cost of signaling — but at the expense of space 
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(100-fold more cortical neurons than retinal ganglion cells) and cell main-
tenance costs. This is why V1 is so large: because of the redundancy caused 
by sparse coding. Given the large number of simple cells, small gains in 
efficiency could produce big savings. 

 Simple cells adapt to improve efficiency 
 V1 simple cells are not static filters. Rather, they adapt continuously to 
match their coding to context and this improves their efficiency. A fast-
acting control of contrast gain matches sensitivity to the prevailing range 
of contrast without changing the receptive field ’ s Gabor shape (figure 3.4). 
Gain is controlled by complex mechanisms in the retina and LGN (Atallah 
et al., 2012), but more simply in cortex by inhibitory interneurons (Caran-
dini et al., 1997). 

 The interneurons encode a weighted mean of the activity of the local 
population of simple cells and make inhibitory synapses on the simple 
cell ’ s soma, sufficiently distant from the excitatory synaptic inputs on den-
drites so as not to disturb the receptive field. Driven by a signal representing 
the local mean, the inhibitory synapses reduce the simple cell ’ s input resis-
tance and shunt its response by a constant proportion. Thus, the gain con-
trol performs a  divisive normalization  that scales the simple cell ’ s output 
signal with respect to the local mean. This adaptive mechanism combines 
with the adjustments of the receptive field mentioned earlier, whereby 
details beyond the Gabor receptive field sharpen simple cell responses and 
suppress background activity. 

 These forms of adaptation increase efficiency by familiar means. By 
matching coding to the input distribution (figure 9.10), the contrast gain 
control ensures that a simple cell ’ s signaling range is used efficiently; by 
throttling high rates, it maintains sparsity, thus increasing the information 
per spike. By tuning a cell to the wider scene beyond the receptive field, it 
further reduces correlations between spikes, thus enhancing spike efficiency 
and increasing sparsity. But adaptation goes beyond simply concentrating 
information in spikes; it processes information. 

 By implementing divisive normalization, the contrast gain control 
advances pattern recognition (Carandini  &  Heeger, 2012). During pattern 
recognition, measures of the stimulus that coded information at lower lev-
els (e.g., photon rates in photoreceptors) are discarded at higher levels, as 
circuits now establish the relationships that define objects (e.g., the edge 
segment extracted by a simple cell). Divisive normalization discards abso-
lute values and establishes relative values. In retina, divisive normalization 
discarded light level in favor of encoding contrast — an invariant property 
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of reflecting surfaces (chapter 8). In simple cells, divisive normalization 
replaces contrast with  relative  contrast, and this helps the visual system to 
generalize. A low-contrast shark in turbid water is just as dangerous as a 
high-contrast shark in clear water. Indeed, divisive normalization is so 
advantageous that it is applied in peripheral and central sensory systems 
across all phyla. 

 There is another gain control to consider. The higher order mechanisms 
that direct visual attention to one particular region of the visual field 
increase the gain of V1 neurons in that region. This executive control 
ensures that the resources used to enhance signals are only employed when 
and where they are needed. 

 Binocular convergence 
 Just as pathways for negative and positive contrasts rejoin at the simple cell, 
so do pathways from the two eyes. Each point on an object is captured by 
two sets of ganglion cells, one in each eye, but from slightly different angles. 
Because the angle depends on viewing distance, their responses can recom-
bine at a simple cell so that it responds selectively to an object a particular 
depth in the visual field. This serves stereoscopic depth perception, which 
helps to rapidly segment figure from ground. 

 Processing for  stereopsis  begins in layer 4 of V1 where inputs from each 
eye segregate into distinct, alternating patches. These  ocular dominance 
patches  exchange wires so that their neurons respond to either eye. The 
circuit further arranges for neurons to respond especially well to both eyes 
when an object is at just the right depth. V1 combines inputs from the two 
eyes efficiently, that is, with least wire, because the corresponding relay 
neurons were aligned at the thalamic level and projected together (  figures 
12.1 and 12.2 ). On the other hand, this strategy for using single neurons to 
sensitively encode depth requires many neurons, another reason why V1 is 
large. 

 Motion 
 Just as stereopsis rapidly segments a scene into objects and surfaces, so does 
local motion. Local motion, that is, a scene ’ s second-order spatiotemporal 
statistics, is encoded at the same stage as stereopsis (simple cell) by using 
 orientation-selective Gabor filters that encode the second-order spatial sta-
tistics. Moreover, the mechanisms are similar. To understand the spatiotem-
poral Gabor filter, note that an image component moving at constant 
velocity describes a trajectory in space – time. If the spatial axis is defined as 
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perpendicular to the orientation axis of the receptive field (in space – space), 
and if the individual bright and dark bands are oriented in space – time, a 
cell can report the speed and direction of motion of an image component. 
A good match between that motion and the Gabor filter ’ s orientation in 
space – time gives a good response. Simple cell receptive fields in cat V1 
and V2 are oriented like this, and the slope of their bands in space – time 
predicts their tuning to direction and speed of image components (McLean 
et al., 1994). 

 Cortical receptive fields become oriented in space – time apparently via 
the convergence of lagged and nonlagged relay cells. This could be done 
efficiently with pairs of relay cells whose receptive fields are displaced by 
1/2 center diameter (spatial quadrature) if one is lagged and the other non-
lagged (temporal quadrature). Thus, a receptive field oriented in space – time 
can be assembled from receptive fields that are not oriented in space – time —
 just as a receptive field oriented in space – space is assembled from nonori-
ented receptive fields. A simple cell can actually possess both properties 
(orientation in space – space and in space – time.  10   

 How V1 generalizes the Gabor representation 
 After initially segmenting a scene at the input layer with simple cells, V1 
then generalizes the computations across broader regions. It must also gen-
eralize across dark and bright contrasts in order to represent disparity and 
direction of motion independently of whether the image component is 
bright or dark. To accomplish this, simple cells with receptive fields selec-
tive for the same orientation, spatial frequency, and motion — but offset 
spatially — converge onto another class of cortical neuron — now six neuro-
nal stages beyond the photoreceptors. Hubel and Wiesel recognized this 
class and called it a  “ complex ”  cell (Hubel  &  Wiesel, 1962). The complex 
cells, as  “ generalizers, ”  should provide V1 ’ s outputs to other areas — and 
along with simple cells they do (  figure 12.8 ; Karklin  &  Lewicki, 2009).  11   
Complex cells locate in layers above and below the main layer for wiring up 
simple cells, thus keeping the simple  →  complex wires short while arrang-
ing the circuitry so that the simple and complex wirings do not mutually 
interfere (  figure 12.9 ). This reason to stratify circuits is the same as in retina 
(figure 11.12).       

 Distributing V1 outputs 
 How many types of output should there be, and how should they be orga-
nized? The governing principle again seems to be  send only what is needed . 
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 Figure 12.8 
  Cortical neurons use diverse dendritic patterns to collect particular inputs. Left : 
Neuron cell bodies distribute densely in distinct layers.  Right : Thick relay axons (a, 

b) branch densely in layer 4; thin relay axons (c, d) branch sparsely in layers 1 – 3. 

 Middle : Neuron types are distinguished by their dendritic patterns. For example, all 

cells labeled  1  restrict their dendrites to layers 1 and 2; all neurons labeled  4  send api-

cal dendrites up through layers 1 – 3; cells labeled  7 ,  8 , and  9  send an apical dendrite 

through all the overlying layers to branch profusely in layer 1. Thus, each type can 

select just what it needs from specific layers. All 17 neuron types direct their axons 

to the underlying white matter. The axons are omitted here for clarity but are shown 

in   figure 12.9 . Cells were drawn from consecutive slices of mouse somatosensory 

cortex. Primary visual cortex (V1) shows a similar pattern. Drawing by R. Lorente de 

N ó  (1938) and reprinted with permission. 
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 Figure 12.9 
  Cortical neurons use diverse axonal patterns to distribute particular outputs . Same 

neurons as shown in   figure 12.8 . Layer 4 neurons (4, 5) send axon branches to the 

upper layers (1 – 3) and to deeper layers (5 – 6). In V1 this separates the circuits for Ga-

bor filters (simple cells) from the circuits that generalize them (complex cells). Cell 

8 sends its descending axon into the deeper white matter heading for subcortical 

structures. From V1, these would be superior colliculus and pontine clusters (Wang 

and McCormick, 1993). Cells 4, 7, and 10 send their descending axons into the up-

per stratum of white matter, heading for other cortical areas, such as V2. Even this 

rich pattern is oversimplified. For example, the projection from V1 to V2 comes from 

layer 2, 3, 4A, 4B, 5, and 6. Only layers 1 and layer 4C seem not to provide output 

to V2. Further explanation of wiring efficiency is given in chapter 13. Drawing by 

R. Lorente de Nó (1938); reprinted with permission. 
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To do this, V1 employs a superficial output stratum (layers 2 – 3), and a deep 
output stratum (layers 5 – 6). The deep neurons collect exactly what they 
need by projecting dendrites toward the cortical surface to select inputs 
from any/all layers (  figure 12.8 ).  12   Diverse neuron types can be efficiently 
wired to summarize whatever it is that V1 needs to tell a particular lower 
brain structure. The targets include (1) superior colliculus, (2) LGN, (3)  pon-
tine  cluster that informs the cerebellum via high-rate mossy fibers, and (4) 
 inferior olive  cluster that informs the cerebellum via low-rate climbing fibers. 

 These downstream targets are functionally diverse, so each needs some-
what different information. For example, the superior colliculus, tasked 
with selecting targets for  “ capture ”  by a rapid eye movement (chapter 4), 
needs to know the direction of target motion. Correspondingly, layer 5 out-
put neurons to superior colliculus are directionally selective, as are those to 
the pontine cluster serving cerebellar areas for visually guided movement 
(Palmer  &  Rosenquist, 1974; Wang  &  McCormick, 1993). The dendritic 
arbors of these layer 5 corticocollicular and corticopontine neurons are 
essentially indistinguishable in their sampling of other layers. On the other 
hand, neuron clusters within the LGN are concerned with an entirely dif-
ferent set of issues, and correspondingly they collect from different neuron 
types in a different output layer (layer 6). These neurons are not direction-
ally selective; they are diverse, collecting from various layers in different 
combinations and transmitting over axons of different caliber, each 
probably targeting a different cluster within the LGN (Katz, 1987; 
  figure 12.10 ). 

 Thus, the principle  send only what is needed  is served here via customized 
cell types that constitute V1 ’ s deep-layer outputs. By selecting a subset of 
the data available in V1, each type of deep-layer output can transmit at a 
modest spike rate. Lower rates allow thinner axons, so these output mes-
sages can reach their targets economically.  13   The selection process recalls 
that used by diverse ganglion cells to reduce their spikes (figure 11.12). The 
distribution of fiber diameters for V1 deep-layer outputs is unknown. How-
ever, the distribution for sensorimotor cortex closely resembles that of the 
optic nerve (figure 4.2). Thus, as for retina, the diversity of deep-layer out-
put neurons is efficient in space and energy.    

 The upper-layer output neurons collect most of their input via ascending 
axons from the middle layers — the simple cells — plus direct contacts from 
low-rate relay cells and  “ comments ”  from ascending (recurrent) axonal 
branches of the deep-layer output neurons. The upper-layer outputs project 
 forward  to other cortical regions and across to the opposite hemisphere. 
Upper-layer types are also diverse and, like the deep-layer types, they send 
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only what is needed by the next areas (Sato  &  Svoboda, 2010). These out-
puts should be considered as unfinished computations — a continuing con-
versation with the rest of the cortex — and these are the pathways that we 
now follow (Felleman  &  Van Essen, 1991).  14   

 Beyond V1 

 The previous sections concerning the LGN and V1 are based strongly on 
data from cat. Many points are similar for monkey, though there are certain 
differences in terminology of V1 layers and possibly in the organization of 
the LGN, and certainly with respect to color since cat is dichromatic; 
whereas monkey is trichromatic. Now moving forward to higher levels of 
processing, most of the work has focused on primate (monkey and human), 
especially for correlations with behavior. 
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 Figure 12.10 
  V1 ’ s deep-layer outputs follow the principle  send only what is needed  . Three types of 

neuron in layer 6 project axons to different subcortical clusters. Their apical dendrites 

sample different subsets of layers, and within a given layer they sample different 

volumes with different densities of dendritic membrane. Each type sends recurrent 

axon branches (dotted lines) to inform different subsets of layers. Only two types of 

LGN-projecting (LGN, lateral geniculate nucleus) neuron are shown, but there are 

many more, probably one type for each LGN cluster. Reprinted with modifications 

and permission from Katz (1987). 
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 Functional architecture of area V2 
 V1 directs most of its upper-layer output to adjacent cortical areas, mainly 
V2 (  figure 12.11 ).  15   Adjacency saves wire, as does the layout. Thus, V2 ’ s map 
of the visual field is arranged to be mirror-symmetrical with V1. This allows 
V1 to deliver its dense representation of the fovea over many short wires 
and its sparser representation of the periphery by fewer long wires.  16   The 
reverse layout would be unimaginably wasteful.    

 V2 is nearly as large as V1 (77%). Its shrinkage compared to V1 seems 
mostly due to V2 ’ s pruning of the far periphery — regions whose essential 
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  Layout of higher visual areas. Upper left : Monkey brain with eye to scale. Visual 

areas occupy all of the occipital and much of the temporal lobes.  Right : Cortex flat-

tened to show relationships of visual and other areas. Note: (1) early stage areas (V1, 

V2) are larger than later specialized stages; (2) areas that interconnect strongly (e.g., 

V1/V2) are near each other; and (3) just as related neuron clusters group together 

(  figure 12.1 ), so do related cortical areas. Reprinted with modifications and permis-

sion from Van Essen (2004). 
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information has been tapped off at earlier stages and requires no further 
analysis. For example, information from the full field has been transmitted 
from V1 to superior colliculus, LGN, pontine nuclei, and so on. So, per 
square degree of visual space, V2 invests similarly to V1. The reason seems 
clear: V2 remains a  “ full service ”  area, performing the next stages of pattern 
analysis for all the core pathways, including spatial pattern, color, motion, 
and stereopsis. 

 V2 apparently uses all these properties to further segment the image. 
Moreover, it seems to do so by integrating them and thus needs to reorga-
nize data from V1 into a layout efficient for that purpose. V1 segregated 
various properties: layers for color, space, and motion; patches for color and 
luminance; and larger patches for the two eyes. V2 then regroups them into 
bands ( stripes ) tangential to the cortical surface. For example, maps of 
motion direction converge as  thick stripes  (Lu et al., 2010). Patches of color 
and bands of luminance converge as  thin stripes . This spatially intimate pro-
cessing of hue and luminance in thin stripes suggests a role for thin stripes 
in segmenting objects by their surface properties (Wang et al., 2007). 

 V2 stripes were originally recognized by their denser staining for cyto-
chrome oxidase, and again this reflects higher mean firing rates. V2 thick 
stripes (motion) collect from high-rate strata in V1 served by the brisk-
transient types for motion. V2 thin stripes collect from high-rate patches in 
V1 served by cells that carry both chromatic and achromatic signals, thus 
doing  “ double duty ”  (Nassi  &  Callaway, 2009; Lim et al., 2009; Federer 
et al., 2009). 

 In short, these patterns of connectivity maintain parallelism established 
at the cone output: slow to slow, fast to fast, and color to color. Moreover, 
this pattern holds across various sensory modalities — because it is 
efficient. 

 How V2 relates to theories of image segmentation 
 The hallmark of V1 neurons is their sensitivity to a local edge, especially 
when it moves. Their push – pull wiring and Gabor weighting makes them 
efficient at this core task. But to interpret an image, local-edge elements 
need to be linked as global contours. Humans do this well; indeed when 
two observers independently assign all the edges in a rich image to particu-
lar contours, their agreement is 98% (Geisler et al., 2001).  17   The neural 
mechanisms for such grouping should match the statistical properties of 
contours in natural images. Correspondingly, human detection of contours 
in a complex background is predicted quantitatively by a local grouping 
rule derived directly from the statistics of  “ edge co-occurrence. ”  This 
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grouping rule, combined with a simple integration rule (if A goes with B 
and B goes with C, then A goes with C), links locally grouped contour ele-
ments into longer contours. 

 The rule binds two edge elements if they are more likely to arise from the 
same physical contour than from different ones. Edge elements are most 
likely to belong to the same physical contour if they are cocircular, that is, 
if they are consistent with a smooth, continuous contour. This is the Gestalt 
principle of  good continuation . Contour grouping should also recognize the 
high degree of parallel structure of natural images. 

 V2 neurons respond as though they are optimized to match these higher 
order grouping statistics. These neurons are driven by small sets of excit-
atory neurons with similar Gabor receptive fields but are suppressed by 
larger sets of neurons with a wide range of different Gabor receptive fields 
(Willmore et al., 2010). Consequently, a V2 neuron only responds when 
some of the features that drive the excitatory set of Gabors are present AND 
most of the features that drive the suppressive set are absent. In this respect 
V2 provides a key advance toward image segmentation — identifying sets of 
edges. V2 receptive fields are several times larger in diameter than those in 
V1, yielding roughly 10-fold larger areas, and like V1 complex cells that 
provide their input, the V2 responses generalize across the field. 

 V2 neurons also detect contours that separate a  “ figure ”  from the back-
ground. This requires a contour enclosing the figure to  “ capture ”  the area 
within. Perceptually, this can be accomplished by integrating contours ste-
reoscopically. It can also be accomplished by hue and surface luminance 
since both tend to be more similar within a figure than across the bound-
ary. This suggests a role for thin stripes. 

 Perceptual capture of an area bounded by a contour also occurs rapidly 
and powerfully with motion. A static object patterned to match the 
background — leopard in sun-dappled foliage — is damnably difficult to seg-
ment. But when the cat moves, the coherent motion of its markings on a 
static background are rapidly extracted. This suggests a role for thick stripes. 

 In short, V2 seems to use various streams from V1 to segregate figures 
from ground. The segmentations are based on spatial, chromatic, stereo-
scopic, and motion cues. V2 needs all these streams, and they apparently 
interact. For example, both blob and interblob neurons contribute to V2 
thin stripes (Xiao et al., 2003). So this seems like a good reason to keep all 
the pathways close together in this one large area. 

 Is V2 ’ s coding optimal? One cannot say for sure. It has been proven that 
the weighting functions of retinal and thalamic neurons are optimal for 
representing first-order image statistics. And it has been proven that the 
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weighting functions in V1 are optimal for second-order statistics. But higher 
order image statistics that might allow prediction of optimal encoding have 
not been measured. One indicator of third-order statistics — textures —
 shows that those images with higher information content are more visually 
salient than those with less information (Tkacik et al., 2010). This hints that 
cortical mechanisms try to find the richest patterns. 

 We have reached the edge of the known world for image processing at 
the millimeter scale. We will continue tracking the visual pathways forward 
on a coarser scale toward final stages of perception and action because there 
are surprises. However, before leaving early cortical processes, we consider 
their generality. 

 How general are the circuits for early cortical processing? 

 The structural differences between cortical areas are sufficiently subtle that 
to recognize the boundaries requires an expert. Moreover, when viewing a 
cortical slice with individual neurons rendered to stand out from the rest 
(  figures 12.8 and 12.9 ), even an expert is hard put to identify the area. Thus, 
the impression is strong that across the expanse of cerebral cortex the 
same basic circuits repeat and  . . .  repeat. This certainly suggests similar 
processing. 

 Indeed the primary auditory cortex responds sparsely across a variety of 
stimulus ensembles, including natural sounds. The distribution of firing 
rates is log normal — resembling the optic nerve distribution — but the mean 
rates are lower (Hrom á dka et al., 2008). The auditory system also uses spa-
tially compact, oriented Gabor-like filters. These filters are constructed at a 
lower level, the central cluster of the inferior colliculus which relays via a 
thalamic cluster ( medial geniculate nucleus ) to primary auditory cortex ( A1 ; 
  figure 12.11 ). Temporal tuning in the inferior colliculus is about 10-fold 
faster than V1, but the spectrotemporal Gabor waveforms are nearly identi-
cal (Rodr í guez et al., 2010; Qiu et al., 2003). Millisecond timing precision 
established at lower levels is preserved by cortical neurons, allowing them 
on average 4.3 bits per spike (Kayser et al., 2010). In short, sparse coding —
 with log-normal distribution of spike rates and mean rates of a few spikes 
per second seems to be a general property of cerebral cortex (Margrie et al., 
2002; Brecht et al., 2004). These low firing rates allow the wires to be fine 
caliber — which contributes to the structural similarities. 

 We suggest that sensory cortex is structured similarly across modalities 
because it performs similar computations: (1) finds correlations in the natu-
ral environment, (2) segments the bandwidth to send at lowest acceptable 
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information rates, (3) encodes with optimal weighting functions (e.g., 
Gabor filters in V1), and (4) regroups for segmentation according to 
Gestalt rules. 

 Beyond V2 

 A new theme for neural investment 
 The dominant theme for investment has been: match neural resources to 
the physical distribution of information. For example, because nature con-
tains more negative contrasts than positive, the photoreceptor synapse and 
all later stages invest more in OFF responses than ON. Also, because nature 
is structured such that second-order correlations generate 1/f 2  power spec-
tra, V1 invests in a family of Gabor filters that optimally encode images 
with that statistical property. And following the statistical distributions of 
edges, color, and motion in natural scenes, V2 invests in efficient mecha-
nisms to segment figure from ground. The V2 operations are not rigorously 
proven to be optimal, but at least they follow Gestalt principles that may 
eventually be proven to be optimal. Thus, V2 appears to complete the pro-
cess of coding a whole scene efficiently in one area. Indeed, it is the last 
visual area before the various streams contained within it segregate into 
separate areas. It is the last area where a lesion causes blindness (Horton  &  
Hoyt, 1991). 

 But now the theme for neural investment shifts. The new slogan might 
be  “ Ask not what the brain can do for natural scenes — ask what the brain 
can do for the animal. ”  Beyond V2 the brain ’ s task is to  find what matters 
most  — and  do it quickly . Accordingly, cortical areas beyond V2 should 
invest in circuits that rapidly identify what matters for survival and 
reproduction. 

 Many things matter. We need to understand a scene ’ s structure, both for 
changes in viewpoint, novelty, and navigability. We need to identify objects 
that are useful or dangerous. We need to locate them spatially and perceive 
their orientation so that the hand in grasping can match its configuration 
to the object. We need to gauge the speed of moving objects. We need to 
recognize faces and their emotional expression. As cortical design addresses 
these needs, what are the governing principles? 

 Again the engineer ’ s rule applies: specialize. Each need requires a partic-
ular computation. Each can be done most cheaply and rapidly by a dedi-
cated circuit — which saves wire by not mingling with the others. Moreover, 
certain needs require higher temporal frequencies, which being dispropor-
tionately expensive, should be served by separate circuits. Some needs may 
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be satisfied cheaply by approximation. For example, in visually guided 
grasping, the hand can be roughly matched to an object, and then adjusted 
precisely by feedback from touch receptors (Santello et al., 2013). But other 
needs demand exquisite precision. For example, particular faces must be 
met with particular behaviors. 

 We match a given face, viewed from any angle and lighting, to one of 
many stored images. This retrieval includes the associated biosketch. Face 
history must be integrated with the current facial expression to predict an 
appropriate response. To mistake one face for another could be fatal, as 
could misreading an expression — the  “ smooth forehead betokens a hard 
heart. ”   18   So we notice every wrinkle, shade, color, and motion — down to 
the slightest flush and twitch. To read a face at the minimum interpersonal 
distance requires full acuity — as any myope knows. So, it seems that the 
idea of a single neuron that only responds to your grandmother was stimu-
lating, but reading her face requires a much greater investment. 

 How higher cortical areas invest 
 Visual areas beyond V2 occupy more than half of the territory allotted to 
vision — more than one quarter of all neocortex. This is an awesome invest-
ment; thus to learn how it is structured is key to understanding cortical 
design. Since V1 and V2 fill most of the occipital lobe, higher visual areas 
shift forward into parietal and temporal lobes (  figure 12.11 ). Each higher 
visual area interacts with a distinct set of other cortical areas and, to save 
wire, tries to locate near them. This determines which lobes contain 
which areas. 

 Each area might conceivably reproduce the whole scene using all the 
components encoded in V2. Yet if nothing were discarded, each area 
would need the same amount of space as V2, and this would limit the 
number of stages for processing. But actually, V2 is the last area that 
contains all information from V1, and thereafter much  is  discarded. This 
works out because each individual area concerned with a particular high-
level task retains all that it needs for that task and rigorously discards 
the rest. Consequently, behavior can retain the degree of sensitivity set 
in retina. 

 The scheme can be imagined as a large-scale version of what occurs in 
retina. Each of roughly 20 ganglion cell types discards all but a subset of 
data from the full scene and relays its subset to specific central clusters that 
need it (  figure 12.1 ). The cortical visual system accomplishes the analogous 
task: each of roughly 30 areas discards all but a subset of what is contained 
in V2 and relays its subset to higher areas that need it. This occurs 
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efficiently because V2 has reorganized the full representation especially for 
this purpose — so particular subsets can be selected to serve particular 
behaviors. 

 Three small areas  19   adjacent to V2 select elements of the full  scene  (ignor-
ing particular objects, faces, and scrambled scenes). Each  “ scene area ”  has a 
different purpose; for example, one registers changes in viewpoint and 
scene novelty, and another serves navigation (Nasr et al., 2011). These 
scene-selective areas, being small, cannot represent the scene at full resolu-
tion, but for many purposes this is unneeded. 

 Certain areas select from V2 thin stripes and interconnect within the 
inferior temporal lobe to form the  ventral stream . Neurons in these areas 
respond selectively to features such as color, shape, and texture, which are 
good for  identifying  objects. And as the analysis proceeds anteriorly along 
the ventral stream, neurons respond to particular objects independently of 
their orientation and location in the visual field. This step of shedding the 
object ’ s spatial context and concentrating  what  the object is achieves a tre-
mendous economy. Other areas select from V2 thick stripes and intercon-
nect within the superior temporal lobe to form the  dorsal stream . Neurons 
in these areas respond selectively to features such as depth, direction, and 
speed of motion that are good for localizing  where  objects are (Ungerleider 
 &  Pasternak, 2004). Shedding the static aspects of  “ what ”  in this stream 
offers further economy.  20   

 The discarding/selecting process continues along these streams for 
 “ what ”  and  “ where ”  until various small areas contain highly specific infor-
mation that is both compact in space and energy and also behaviorally 
useful without further processing. Each area can then be placed near the 
ones that need it. For example, grasping requires knowing an object ’ s loca-
tion and its orientation. This subset of visual information is extracted by a 
particular  grasp area  (one of several) that locates right where it is needed — in 
the posterior parietal lobe — to connect via short wires with somatosensory 
areas that guide grasping (Fattori et al., 2012). The organization of the 
 “ what ”  stream for vision is exemplified by the cortical representation of 
faces. 

 Faces 
 We need to identify a face from any viewpoint in any light. Moreover, we 
need its expression — the different meanings conveyed by a wrinkled brow, 
curled lip, or averted eyes. Acute tilt carries meaning, but an upside-down 
face is hard to recognize, and the cues to its emotional expression are more 
difficult still (Thompson, 1980). These tasks we manage at a glance — less 
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than 200 ms. So it should be no surprise that the ventral stream would con-
tain an area that responds preferentially to faces. 

 But it certainly was a surprise to learn that the ventral stream contains 
not one, but six  face areas  (Freiwald  &  Tsao, 2010; Tsao  &  Livingstone, 
2008). Within these areas  face cells  vastly predominate ( > 90%), with a few 
neurons responding to other round objects such as a clock face and fruit. 
Early along the ventral stream, the face areas respond to faces viewed from 
particular angles, but they converge on a far anterior area ( AM ), the last and 
largest, where neurons respond to a face in any view. AM contains a small 
subset of cells that respond to only a few particular faces invariant to view, 
and a region in medial temporal lobe, one stage higher than AM, contains 
cells that are still more specific. So possibly, the end point of this processing 
system is indeed a small number of grandmother-like cells (Quiroga et al., 
2005; Viskontas et al., 2009). 

 Thus, to recognize a face requires multiple areas, interconnecting mil-
lions of neurons that rapidly refine the representation and carve away all 
else. As at earlier stages along the visual pathway, sparseness can be used to 
concentrate information. By summing across many, sparse-coding cortical 
neurons, behavioral sensitivity can be enhanced by up to threefold com-
pared to single neuron sensitivity (Cohen  &  Newsome, 2009). The summa-
tion probably enhances speed as well (Price  &  Born, 2010). 

 The largest face area in the macaque monkey occupies 16 mm 2 . This 
amounts to one tenth the area of V1, and the six face areas together prob-
ably amount to one fifth, which is 2.5% of the monkey cortex. Humans use 
facial expression to express mood and intention, but also to dissemble and 
mislead, which monkeys cannot manage, so it seems a safe bet that the 
human cortex would invest even more in face analysis. The design is afford-
able because all else is discarded, but still the investment is huge. This 
emphasizes the change in outlook: early stages, gathering what will be 
needed by all central processors, must operate economically by matching 
lower order natural statistics. But later stages, finding high-order correla-
tions that represent the nuanced expression of a particular face at speeds 
that promote survival (Cheney  &  Seyfarth, 2007), require investment in a 
dedicated system. 

 The most anterior face area is purely visual. The information it contains 
can be used to assess attitude and mood. However, this requires a connec-
tion to a neural complex, the  amygdala , which compares the visual image 
to a template — like a mug shot — that identifies its probable significance. In 
effect, the amygdala imbues the image with emotional content.  21   The most 
anterior cortical face area and amygdala colocate near the hippocampus, 
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which calls forth the stored template image along with its biographical 
sketch. Each area is critical, and together they must work fast. Indeed the 
amygdala responds to high-level facial information even before that infor-
mation is consciously perceived (Freeman et al., 2014). Thus, the proximity 
of these areas certainly reflects efficient design. Moreover, each reactivation 
of the stored  “ file ”  provides an opportunity to update the face and the bio-
sketch (chapter 14). 

 The dorsal and ventral streams that arise in the posterior temporal lobe 
eventually reach prefrontal cortex, where they terminate in adjacent areas. 
These areas serve  working memory  — holding separately in mind both a face 
 and  its location after it disappears from view. The dorsal and ventral streams 
finally converge on individual prefrontal neurons that encode both iden-
tity and location. The temporal sequence has been established: by 170 ms, 
emotional content has been processed in the amygdala; by 190 ms, gaze 
direction with pointing has been processed in parietal and supplementary 
motor areas. By 200 ms, the final integration of emotion, gaze, and gesture 
has occurred in premotor cortex, and you are prepared to respond adap-
tively to another person ’ s intention (Conty et al., 2012). Any design that 
colocalizes mechanisms for emotional identification, working memory, 
and long-term storage must save wire. 

 Disconnection syndromes 
 The design that generates highly specialized processing leads, when an area 
is damaged or disconnected, to families of bizarre syndromes. For the ven-
tral stream these include specific impairments of knowledge ( agnosias ). One 
can lose the ability to recognize faces ( prosopagnosia ) while still recognizing 
objects — and vice versa. One can lose the ability to recognize color ( achro-
matopsia)  so that scenes are perceived but only in black and white. One may 
retain the ability to recognize faces but lose the ability to read their emo-
tional expression or their emotional history — leading to the unshakable 
conviction that a long-term, intimate companion is an impostor ( Capgras 
syndrome ). 

 One can also lose the ability to recognize words ( alexia ), leading to the 
peculiar condition of being able to write a sentence but then being unable 
to read it. This suggests a visual area specialized to recognize words 
(Wandell et al., 2012; Wandell, 2011). But does that imply a cortical area 
that remained blank until the invention of written language (Carreiras et 
al., 2009)? This  visual word form area  will be discussed further in chapter 14. 

 For the dorsal stream there are impairments of action ( apraxias ), such as 
misreaching or the inability to draw a picture. One can lose the ability to 
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recognize motion ( akinetopsia ), making it dangerous to step down from a 
curb. If an object area (ventral stream) becomes disconnected from lan-
guage areas, one loses the ability to name the object while retaining knowl-
edge of its utility (food, tool). Moreover, dorsal stream areas can still direct 
its proper use. Because high-level cortical areas connect strongly to brain 
regions for error correction, such as striatum and cerebellum (chapter 4), 
damage to the corresponding parts of those regions can cause their own 
peculiar disconnection syndromes (Schmahmann  &  Pandya, 2008). 

 These syndromes seem bizarre because they contradict our quotidian 
experience of perceptual unity. Yet, they are the inevitable consequence of 
the design principle  complicate . Our coherent experience of a scene resem-
bles a silk-screen print or a color photograph assembled for the final image 
from successive layers. Its unity remains mysterious. We can only say that 
all the necessary information reaches the frontal lobe rapidly and as cheaply 
in space and energy as is consistent with that speed. Although we have 
focused on primate cortex for its extreme specialization, mouse cortex 
already shows connectional nodes corresponding to dorsal and ventral 
streams (Wang et al., 2012). 

 Parallels in auditory design 
 The auditory system also invests heavily in extracting higher order features. 
Indeed, beyond early auditory areas that establish sparse coding, there are 
ventral and dorsal streams for  “ what ”  and  “ where, ”  including multiple 
areas for comprehending language and music (Rauschecker, 2012). These 
two forms of communication share similar distributions of low-order cor-
relations but differ so greatly at higher orders that computations on the 
original vibratory patterns are accomplished most efficiently in different 
hemispheres, left for language and right for music (Purves et al., 2012). 

 Early auditory areas, like those for vision, supply compactly coded sound 
patterns to various smaller areas downstream that specialize to recognize 
words and streams of words as language. Eventually, they register both sur-
face meaning and the emotional content. As for vision, sounds critical for 
survival, such as animal alarm calls, voices, and rushing water, are identi-
fied rapidly. 

 Given the importance of voices to primates, one might expect dedicated 
cortical areas for  …  grandmother ’ s voice. Indeed, two areas have been iden-
tified in humans by fMRI (Belin et al., 2000), and recordings in monkey 
confirm clusters of single neurons that respond selectively to conspecific 
voices (Perrodin et al., 2011). These areas are located anteriorly in the tem-
poral lobe — fairly near to the highest level faces areas. The face and voice 
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areas, if not directly interconnected, probably converge on another area, so 
their proximity saves wire. 

 Language areas, like the face areas, converge toward the amygdala 
(LeDoux, 2000), frontal lobe, and hippocampus — for the same reasons. The 
language areas generally locate in one hemisphere — which reduces wire 
and conduction time. The corresponding cortical areas in the opposite 
hemisphere are then free to use the same low-level structures but can then 
build different high-level structures to identify notes and patterned streams 
of notes — as music. 

 The brain in evolving systems for language and music confronts a criti-
cal design question. Given that much of what humans need to hear is either 
language or music, and that both are generated by the brain itself, what 
sound frequencies should be used? Why, for example, do we not converse 
in shrill tones and emit the rarer and briefer shrieks of joy or alarm at 
lower frequencies? One factor may be that high-frequency shrieks deliver 
information at a higher rate and stand out against a background noise. 
Another is that the chosen distribution of frequencies, mostly low plus 
infrequent bursts of high, is many-fold cheaper to generate and process 
(figure 4.8). 

 Many of the high-level areas mentioned here, such as the visual word 
form area, have been identified only recently. The reason is that, being 
highly specialized, they are small, so their discovery awaited critical 
improvements to the spatial resolution of  functional magnetic resonance 
imaging  (fMRI). It now appears that the lower size limit of specific cortical 
areas may be about 1 cm 2  (Wandell, 2011). 

 Disconnections of everyday life: Naming 
 Sigmund Freud, pondering more than a century ago on the  “ psychopathol-
ogy of everyday life, ”  suggested that a failure to recall the name of a familiar 
face may reflect a particular unconscious motivation. Certainly. But inde-
pendently of unconscious motivations, these failures become more fre-
quent with age. Moreover, it becomes harder to recall the names of common 
objects — even those we have no reason to resent. 

 Efficient design requires images of faces and objects to be identified and 
stored in high-level  visual  areas whereas their names are identified and 
stored in high-level  auditory  areas. Although a face may be identified visu-
ally in 200 ms, to find and attach the name requires querying a high-level 
auditory area — an additional step and thus additional time. Why this slows 
with age we cannot say — except that it ’ s just like everything else. 
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 Conclusions 

 This chapter began by asking where and how the retina ’ s varied representa-
tions of a scene finally serve behavior and whether these lines from retina 
are ultimately reintegrated. It also asked how levels beyond the retina fol-
low principles of neural design. Here, in brief, are some conclusions: 

 1. Certain stringently reduced versions of the scene, such as slow changes 
of light intensity or local direction of motion, serve simple behaviors at 
lower levels (midbrain, hypothalamus, etc.). These behaviors would not be 
improved by comparing current value to stored ones, nor would storing 
current values benefit future decisions. Stringently filtered data, essential 
only for the moment, may not warrant transmission to the highest levels, 
nor storage for any longer than  E. coli  stores the last encountered glucose 
concentration (see chapter 2).  22   
 2. Richer versions of the scene from nonstringent filters gather in a com-
plex of clusters. Three retinal lines that divide the spatial range from coarse 
to fine and the temporal range from slow to fast (figure 11.25) sort out in 
the LGN to prepare for transmission to V1 (  figure 12.1 ). These lines that 
were subdivided in retina remain so at the LGN level, as does their further 
subdivision into ON and OFF. The multiple lines from the two eyes also 
remain separate, but in the LGN they neatly interleave. These representa-
tions together contain most of the useful information in a scene that war-
rants further analysis by cortex. 
 3. V1 ’ s simple cells integrate various lines that were separated for economi-
cal transmission to construct Gabor filters that optimally integrate space 
and spatial frequency. Overlapping ON and OFF receptive fields now com-
bine by cooperative action: simultaneously turning on excitation ( “ push ” ) 
and turning off inhibition ( “ pull ” ). Neighboring receptive fields sum along 
one dimension to integrate space, but not along the other — to preserve acu-
ity. However, the lines carrying different spatiotemporal scales and color 
remain segregated in different layers, whose different energy needs are evi-
dent in their different levels of cytochrome oxidase expression. These pat-
terns carry forward to V2, which assembles the next stage of filters that 
segment the scene in behaviorally relevant ways: distinguishing figure from 
ground by stereopsis and computing which edges/lines belong together. 
The middle temporal visual area ( MT ) begins to segment scenes by relative 
motion. Beyond this basic level of segmentation and grouping elements, 
the cortex subdivides into more specialized representations of  “ what ”  (ven-
tral stream) and  “ where ”  (dorsal stream). 
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 4. As these streams flow forward, the pattern of cortical investment is 
revealed. Areas for recognizing objects and faces become more specific. A 
face, once perceived, must be compared to stored data to determine if it is 
familiar; if unfamiliar and useful, it should be stored for future reference. 
Some inkling of what matters most for human survival is given by the pat-
terns of cortical investment. What is stored long term are images, or edited 
versions of images, that carry lessons, and conclusions that can be used to 
predict what might happen and how to respond. 

 This chapter led deeply into the brain ’ s wiring and noted some features 
that promote economy of space and energy. But these examples were some-
what anecdotal, whereas this important topic warrants systematic treat-
ment. That is the next chapter. 
 
 
 
 
 
 
 
 
 
 
 



 All of the various conformations of the neuron and its components are simply mor-

phological adaptations governed by laws of conservation for time, space, and 

material. 

  — Santiago Ram ó n y Cajal (1909) (edited for brevity) 

 Earlier chapters noted that signal processing begins on the nanometer scale 
with the diffusion of transmitter in the synaptic cleft. Diffusion through 
the extracellular space allows the contents of one synaptic vesicle (~4,000 
molecules) to reach multiple postsynaptic sites. Thus, the chemical signal is 
broadcast wirelessly, requiring no extra space or energy. Moreover, on this 
spatial scale ( ≤ 1  μ m) it travels fast. But signals transmitted rapidly beyond 
about 1  μ m must go by wire which, as Cajal asserted, is governed by certain 
 “ laws of conservation. ”  

 Cajal inferred these laws by noticing various cases where designs save 
wire. As shown in   figure 13.1 , for example, axons branch at an acute angle 
rather than a right angle ( Y  vs.  T ). Also they tend to leave the parent neuron 
at the point nearest to their destination. Such savings may seem inconse-
quential, but they add up: the 5  μ m saved at 10 axonal branchings by each 
of 10 10  cerebrocortical neurons reduces wire by 500 km.  1   Similarly, the cer-
ebellar neurons in figure 13.1 reduce their irreducibly fine wire by 250 km.    

 Cajal asserted, as though his theory were insufficiently bold, that these 
conservation laws  “ should be immediately obvious to anyone thinking 
about them ”  (Ramón y Cajal, 1909; edited for brevity). Yet, such observa-
tions fall far short of a theory to explain the architecture of neurons and 
neuronal aggregates at all scales. The conservation laws should explain why 
neurons branch, what limits their individual volumes, their aggregate vol-
umes in local circuits, and their fractional volumes (wire vs. synapses). The 
same laws should explain specialized substructures of local circuits, such as 
cortical layers, columns, stripes, pinwheels, and barrels — plus the structure 
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of tracts. At a still larger scale, the laws should explain distinctive patterns 
of cortical folding, the relationships between cortical areas, and hemi-
spheric specialization. 

 Cajal missed one key law, conserve metabolic energy. This is easily for-
given because his major work preceded studies of brain metabolism, and 
probably he would have accepted the addition as a friendly amendment. 
Space and energy are strongly correlated, as we have noted, so any general 
theory of efficient wiring must consider energy as well. 

 This chapter compares three structures: retina, cerebellar cortex, and 
cerebral cortex (  figure 13.2 ). These structures share certain features, for 
example, all are layered and laid out as maps. Yet, they differ so greatly in 
size, form, and function that one wonders how they could possibly be 

 Figure 13.1 
  Axons exploit many small opportunities to save wire. Left : Axons branch as a Y. 

Thus, each branch takes the hypotenuse of a right triangle rather than the sum of 

the other two sides. For a 3, 4, 5 right triangle, the saving would be 1.4-fold.  Right : 
When a cell body is near its target layer ( A ), the axon exits from the cell body, but 

when the cell body is located far from its target layer, the axon exits from a dendrite 

nearest to the target layer. This example shows cerebellar granule cells, the brain ’ s 

most abundant cell type. Reprinted (with arrows added to right figure) from Ram ó n 

y Cajal (1909). 
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governed by the same rules? The key is to realize that they share a profound 
biophysical constraint. Thus, we begin with that constraint and the rules 
that it engenders. If the same rules can illuminate all three designs, then the 
generality of Cajal ’ s conservation laws for time, space, material, and energy 
will indeed become  “ immediately obvious. ”     

 Biophysical constraint on efficient wiring 

 The core constraint on all circuit design is the substantial and irreducible 
electrical resistance of neuronal cytoplasm. Resistance attenuates the spread 
of signals along a neural cable. It also limits the rate at which the mem-
brane capacitance charges, reducing the speed with which signals travel 
and spreading them out in time (figure 7.7). Consequently, cytoplasmic 
resistance sets an upper bound to the length of dendrites. Resistance can be 
reduced by increasing cable diameter (d), but spread of voltage in space and 
time increases only as  √ d. This causes a law of diminishing returns: a 

1 mm

0.5 mm

0.1 mm

Cerebral cortexCerebellar cortexRetina

wires

circuits

 Figure 13.2 
  Retina, cerebellum, and cerebral cortex differ greatly in thickness, shape, volume, 
and many other features, but their wiring follows the same principles . Although 

cerebral cortex folds in larger mammals, especially primates and cetaceans (dolphins 

and whales) to gain more area, folding is not intrinsic to the microscopic layout as 

it is in cerebellum. 
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dendrite, to double its conduction distance and/or halve its conduction 
delay, must quadruple its diameter, thus increasing its volume 16-fold. 

 To conserve volume, dendrites should stay thin. Being thin, they must 
stay short, which they typically do by branching symmetrically and com-
pactly about the cell body (  figure 13.3 ; Wen  &  Chklovskii, 2008). When a 
neuron ’ s function requires more synapses, for example, to increase S/N or 
sample more inputs, dendrites lengthen (chapter 11). But then to avoid 
attenuating and delaying the signal, the dendrites must also thicken, 
increasing volume as d 2 . But increasing neuronal volume reduces neuronal 

spine

mesh size

mesh size

 Figure 13.3 
  Dendritic arbors minimize conduction distance and conduction delay. Upper left : 
The optimal arbor is compact, symmetrical, and of optimal mesh. All synapses are 

near enough for potential contact on dendrite or spine. Conduction distances and 

delays are minimized.  Upper right : Dendritic arbor has same total length and mesh 

but longer conduction distances and times.  Lower left : Mesh is coarser than  “ spine-

reach ”  zone (dashed lines), so dendrites must lengthen to obtain the same number 

of potential contacts.  Lower right : Mesh size is too fine for all potential contacts, so 

dendrites occupy excessive space. Modified and reprinted with permission from Wen 

 &  Chklovskii (2008); see also Panico  &  Sterling (1995). 
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packing density. The greater distance between neurons requires longer, and 
therefore thicker, wires. Thus, the strategy of compensating for attenuation 
and delay by increasing dendritic diameter becomes self-defeating when 
the volume fraction of wiring (dendrites + axons) exceeds 3/5 (Chklovskii 
et al., 2002). This wiring fraction limits the extent to which a single neuron 
can integrate synaptic inputs; therefore, dendrites are thin and seldom 
more than 1 mm long.    

 The same constraint, low conductivity of cytoplasm, limits the length of 
unmyelinated axons in a local circuit. Their finest diameter (~0.15  μ m) con-
ducts at roughly 0.5 mm per millisecond, velocity increasing as  √ d. To dou-
ble the conduction distance without increasing delay, the axon must double 
its conduction velocity. As for dendrites, this requires quadrupling diameter, 
thus increasing volume by 16-fold. Volume rising as d 4  soon outstrips the 
axon ’ s ability to compensate for time delays; therefore, axons, like dendrites, 
are constrained to a wire fraction (dendrites + axons) of roughly 3/5 of the 
total volume. This fraction is optimal — it minimizes delays — and it roughly 
matches the fraction measured in circuits (Chklovskii et al., 2002).  2   

 The  “ three fifths rule ”  also sets the optimal fraction for synapses. Syn-
apses are irreducibly small, containing just sufficient vesicles for their job 
with little safety factor (  figure 13.10;  Sterling  &  Freed, 2007). More synaptic 
space would force the wire fraction away from its optimum. So for every 
synapse enlarged or added in a mature brain, another is shrunk or deleted 
(chapter 14). The three-fifths rule determines the branching of dendrites 
and axons and forces a custom layout for each circuit function (  figure 13.4 ). 
Retina, cerebellar cortex, and cerebral cortex are all subject to the same 
constraints; therefore, their local circuits are similar in scale (~1 mm or less) 
and obey the three fifths rule.  3   However, their tasks are different — which 
requires different connectivity and thus different optimal layouts. 

 Here we define their three connectional tasks and, for each, an optimal 
layout. Then we compare the actual neural structures. 

 Task 1: Connect a dense array to a sparse array with modest divergence 
and convergence 

 Consider 10 densely packed neurons connecting all-to-all to five more 
sparsely distributed neurons (  figure 13.4 ). The most efficient layout (least 
wire) is for each presynaptic neuron to send one axon to the sparse array 
and then diverge to all five neurons via multiple branches. Similarly, it is 
most efficient for each postsynaptic neuron to send a single dendrite toward 
the dense array and collect all 10 inputs on branches. Branched axons and 
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dendrites serve the same layout goal: they establish a given degree of con-
nectivity with the least wire and thus the least delay.    

 In two dimensions the optimal layout is for both arrays to tile the same 
space with matching, cospatial meshworks (  figure 13.4 ). Such interlacing 
establishes contiguity between the two arrays with no waste by either one. 
Elements that are not required for this circuit (cell bodies, extraneous wires, 
and tracts) are excluded because they are obstacles that force a longer path, 
like a tree across a hiking trail. This type of layout is exemplified by the 
retina. 

 Retina 
 The retinal circuit, about 100  μ m thick, sharply segregates cell bodies from 
synaptic circuits (  figure 13.5 ). This prevents cell bodies from interfering 
with the layout, and because the circuit connects in a simple sequence, the 
cell bodies locate near their sites of connection. Thus, photoreceptor and 
horizontal cell bodies are nearest to the outer synaptic layer; amacrine and 
ganglion cell bodies are nearest to the inner synaptic layer, and bipolar 
neurons that connect to both layers are in the middle. The retina ’ s output 
axons (from ganglion cells) need to travel in the plane of the retina to reach 
the optic nerve. They require additional space but avoid disrupting the cir-
cuit layout by using a separate layer beyond the circuitry.    

 The inner synaptic layer is thick enough to accommodate processes from 
approximately 70 neuron types. Each type connects only with a modest 
subset of other types to form a distinctive circuit that repeats across the 
retina. Consequently, each circuit is a monolayer of intertwining processes, 
 ≤ 2  μ m thick. The inner synaptic layer comprises a stack of about a dozen of 
these irreducibly thin circuits that avoid mutual interference. The dendrites 
of the output cell type with the broadest field span about 0.5 mm and thus 
cover about 0.2 mm 2 ,  4   similar to the dendrites of the output neurons of 
cerebellar and cerebral cortex (  figure 13.5 ). 

vs.vs.

 Figure 13.4 
  Layout for connecting dense array to sparse array with low divergence and conver-
gence: branched axons and dendrites minimize wire. Left : One presynaptic neu-

ron diverges to contact five postsynaptic neurons.  Right : Ten presynaptic neurons 

converge to contact one postsynaptic neuron. Modest divergence and convergence 

between arrays conserve wire by interfacing planar meshworks in a single stratum. In 

this layout the number of potential contacts equals actual contacts. 
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 Input axons form a loose mesh laid out as a thin (1 – 2  μ m) stratum, and 
ganglion cell dendrites do the same (Panico  &  Sterling, 1995; Chklovskii, 
2000). Their meshes match, maximizing points of contiguity, all potential 
sites for synapses (  figure 13.6 ). For bipolar-to-ganglion cell circuits, the ratio 
of actual synapses to potential synapses approaches unity (Sterling et al., 
1988). In this layout of matched meshes there is no need for dendritic 
spines, either as  “ reachers ”  or  “ spacers ”  (see below,   figures 13.7 and 13.11 ); 
therefore, with some exceptions, they are not used.  5      

 Task 2: Connect a dense array to a sparse array with extreme divergence 
and convergence 

 A circuit needing extreme divergence and convergence cannot use the reti-
nal layout. The dendritic and axonal arbors would overlap extensively, 
causing them to interfere with each other and increase path length. Instead, 

photoreceptor cell bodies

outer synaptic cell layer

horizontal

bipolar

amacrine

inner synaptic layer

ganglion cell bodies

ganglion cell axons

axon bundles

10μm

cell bodies

 Figure 13.5 
  Retinal layers minimize wire by segregating cell bodies and axon bundles from syn-
aptic circuits . The outer synaptic layer connects to the inner synaptic layer via pro-

cesses that descend vertically and then branch horizontally at a specified depth to 

contact particular types of process that ascend vertically and branch horizontally 

at the same level. Output axons gather in bundles beneath the circuits to avoid in-

terfering. This vertical section through mouse retina omits the photoreceptor outer 

regions; full thickness is about 200  μ m. Photo is modified and reprinted with permis-

sion from Masland (2012). 



370 Chapter 13

the optimal layout is for the dense array to use straight, unbranched axons 
and run them orthogonally through finely branched, planar dendritic 
meshworks of the sparse array (  figure 13.7 ). This type of layout is used by 
the cerebellum and by other central structures as well (Oertel  &  Young, 
2004; Bell et al., 1997).    

 Cerebellar cortex 
 The cerebellar cortex is roughly 0.5 mm thick, and the unit circuit includes 
about 10 5  neurons in a volume of about 0.6 mm 3 .  6   The scale resembles, in 
any given dimension, the retina ’ s two-dimensional circuit, reflecting their 

100μm 10 μm

 Figure 13.6 
  Coarse ganglion cell dendritic mesh evenly tiles and efficiently matches a fine axonal 
meshwork. Left : Eight directionally selective ganglion cells of the ON-OFF type and 

same preferred direction tile the retina with an even, planar meshwork. Only the OFF 

meshwork is shown here; the ON meshwork is similar but coarser (see chapter 11). 

 Right : Dendrites of one directionally selective ganglion cell (dark branches) neatly 

cofasciculate with the network of starburst processes (pale), thus establishing many 

contacts with the least possible wire. All directions are represented within the star-

burst network, but this ganglion cell selects inhibitory contacts only from processes 

that respond to motion in the null direction (see figure 11.24). Reprinted with modi-

fication and permission from Vaney (1994) and Vaney  &  Pow (2000). 
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shared size constraint. The layout resembles what is optimal for a dense-to-
sparse array with extreme divergence and convergence. In cerebellum, the 
dense elements making straight axons are granule cells; the sparse elements 
intersecting these with coplanar dendrites are Purkinje neurons (compare 
  figure 13.7  vs.   figure 13.8 ). Beyond this obvious correspondence of actual 
to ideal layout, there are a host of strange and subtle features to 
be explained.    

 Unlike retina, the cerebellar cortex mingles neurons with synaptic cir-
cuits (  figure 13.9 ). Moreover, it uses a different layering sequence: nearest to 
the white matter is the input layer; then comes the output layer; and finally, 
on top, the intermediate layer. Unlike retina, the smallest cerebellar neu-
rons are at the bottom and the largest are in the middle. The output tract 
from cerebellar cortex is short, just a few millimeters (compared to tens and 
hundreds of millimeters for retina and cerebral cortex). Finally, unlike ret-
ina, which is flat as a pancake, and unlike the cerebral cortex, which is 
raised like a layer cake and smooth in most species (see below), the cerebel-
lar cortex of all species is corrugated like a tin roof. Moreover, the corruga-
tions are oriented — perpendicular to the long axis of body and brain. All 
these oddities save wire.    

sparse
array

dense
array

~30 μm ~3 μm

axon

presynaptic varicosity
spine

dendrite

 Figure 13.7 
  Layout for connecting dense array to sparse array with extreme convergence and 
divergence and many potential synapses . Rectilinear axons run orthogonally to a 

fine two-dimensional dendritic meshwork with contacts to spines.  Left : Dense array 

of tiny neurons sends fine axons vertically to course orthogonally to sparse array 

of large neurons. Each axon traverses many dendritic arbors, allowing economical 

divergence via single contacts.  Middle : Large neuron shown perpendicular to the 

fine parallel axons. The extensive dendritic arbor allows economical convergence of 

single contacts from many axons.  Right : Dendrite projects spines to reach synaptic 

varicosities from passing axons. This creates space for many potential synaptic con-

tacts. Potential synapses in this layout are fivefold greater than actual synapses. 
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 Mixing cell bodies with local circuits at the input layer minimizes track-
ing thick wires through the circuits. The most numerous input axon (mossy 
fiber) fires at high rates and so is thick; therefore, it should deliver its mes-
sage immediately upon emerging from the white matter. Its target is the 
granule cell, which to pack densely, is tiny with thin, short dendrites. A 
layout like retina that separates cells from synapses would require longer, 
thicker dendrites. Granule cells reduce the mean spike rate by more than 
10-fold, thereby allowing their axons to be thin — essential to their extreme 
divergence and convergence onto the Purkinje neurons. 

 Neurons in the intermediate layer are relatively sparse and so do not 
greatly interfere with the wiring (  figure 13.8 ). Therefore, it is economical to 

50 μm

 Figure 13.8 
  A layout for extreme connection. Left : Cerebellar wiring viewed parallel to a fold ( fo-

lium ). Granule cell axons course parallel to the folium and orthogonal to the Purkinje 

arbor.  Right : Purkinje cell ’ s planar dendritic arbor viewed perpendicular to the fo-

lium (human). The dendritic mesh fills the plane evenly except for holes occupied by 

various neuron cell bodies. Left reprinted from Cunningham ’ s  Textbook of anatomy , 

by Daniel John Cunningham, published in 1913 by William Wood. Right reprinted 

from Ram ó n y Cajal (1909). 
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place them where needed. Similarly, a key input, the climbing fiber, is 
sparse, one for each Purkinje cell (  figure 13.9 ). It is also thin, so it is efficient 
to track the climbing fiber from white matter through the input and output 
layers. Purkinje cell axons are thickest of all (  figure 13.10 ), but they are 
sparser by more than 10-fold than mossy fibers, so to track them down 
through the input layer to the white matter is least bad.    

 In short, the layout of cerebellar cortex mixes cell bodies with circuits to 
minimize total wire. It also arranges the sequence of layers so that the thin-
nest traversing axons are the longest and the thickest traversing axons are 
the sparsest. This allows a granule-to-Purkinje convergence of nearly 
200,000, roughly 20-fold greater than for any other circuit,  7   an upper bound 
to neural connectivity. To achieve this, both granule and Purkinje neurons 
are forced toward various biophysical limits, as follows. 
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 Figure 13.9 
  Cerebellar layers minimize wire by mixing neuron cell bodies with synaptic circuits . 
 Left:  Large output neurons locate between input and intermediate layers.  Right:  One 

type of input axon (mossy fiber) is thick and numerous, so upon emerging from 

white matter, it ends deep. The other type of input axon (climbing fiber) is thin 

and sparse, so it traverses the deep layer to reach the intermediate synaptic layer. 

The single type of output axon (Purkinje cell) is thicker than the mossy fiber but 

far sparser (ratio of mossy fibers to Purkinje cells exceeds 13; Llin á s et.al., 2004), 

so spaced is saved by locating the output layer above the input layer and track-

ing the output axons through it to the white matter. PF, parallel fiber; BC, basket 

cell; PC, Purkinje cell; GC, granule cell; CF, climbing fiber, Pax, Purkinje axon; MF, 

mossy fiber. Left, mouse reprinted with permission from  http://brainmaps.org/ajax-

viewer.php?datid=62 & sname=086 & vX=-47.5 & vY=-22.0545 & vT=1.   ©  The Regents of 

the University of California, Davis campus, 2014. 
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 Granule cell 
 The granule cell is about as small as a mammalian neuron can be.  8   The cell 
body needs just enough synthetic capacity to supply four short dendrites 
plus the brain ’ s finest axon (  figure 13.11 ). This axon (parallel fiber), slightly 
exceeding 0.2  μ m in diameter,  9   is just thick enough to accommodate a few 
microtubules for transport and to prevent excessive channel noise due to 
high internal resistance (chapter 7). Channel noise causes fluctuations in 
conduction velocity and thus in spike arrival time. Such temporal jitter 
accumulates with distance, which may limit the axon ’ s useful length. How-
ever, the axon branches as a T, thus halving the jitter at each end and pos-
sibly doubling its useful length (~5 mm). 

 The synapse from a parallel fiber is as small as it can be. The axon, pass-
ing near a Purkinje cell spine, dilates by fivefold to form a varicosity just 
large enough to house a pool of about 480 synaptic vesicles (Xu-Friedman 
et al., 2001). These suffice to replenish presynaptic docking sites for a mean 
release rate of several vesicles per second, a recycling time of about 1 min-
ute, plus a modest safety factor (Sterling  &  Freed, 2007). Space is allotted to 
mitochondria in only half of the synaptic dilations, as is also true for fine 

0.0.55 μμmm0.5 μm

Purkinje
mitochondrion

mossy

 Figure 13.10 
  Purkinje cell axon is thick, heavily myelinated, and rich in mitochondria . Reprinted 

from Perge et al. (2012) with permission. 
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axons in cerebral cortex (Shepherd  &  Harris, 1998). The dilation ’ s volume is 
proportional to its radius cubed whereas the axon ’ s volume is proportional 
to its smaller radius squared, so the varicosity occupies 33-fold greater vol-
ume than an equivalent length of axon.  10   In short, the synapse of a parallel 
fiber, though irreducibly small, occupies a considerable volume. 

 A parallel fiber produces one varicosity per 5  μ m (Napper  &  Harvey, 
1988; Xu-Friedman et al., 2001). This increases the fiber ’ s total volume 
(axon + varicosity) over that distance by fivefold.  11   Thus, even the irreduc-
ibly small volume of a low-rate synapse ( < 3 Hz) is so space-greedy that it 
constrains the number of synapses that can be accommodated under the 
three-fifths rule. One is also reminded that a higher mean firing rate would 
require a thicker parallel fiber and a still larger varicosity. Axons of similar 
caliber elsewhere in the brain should produce similar dilations with similar 
spacing, and indeed, fine axons in cerebral cortex also produce one varicos-
ity per roughly 5  μ m (Braitenberg  &  Sch ü z, 1998). 

 The parallel fiber economizes to some extent on membrane area. To pro-
duce about 1,000 active zones, it forms about 800 dilations, that is, 1.25 
active zones per dilation. The larger varicosities with 2 or more active zones 
have a smaller ratio of surface area to volume, thereby reducing the surface 
area per active zone. Reducing membrane reduces the cost of resting 
potentials, which dominates the cerebellar energy budget (Howarth et al., 
2012) and, by reducing capacitive load, also reduces the cost of action 
potentials.  

 Purkinje cell 
 The Purkinje cell is among the brain ’ s largest neurons (  figure 13.8 ). Its cell 
body, more than 30  μ m in diameter, supports a planar dendritic arbor that 
extends more than 250  μ m across a folium and 250  μ m up to the cortical 
surface. Dendritic branches are just thick enough to support the required 
length and time constants. The dendritic arbor is also as compact as it can 
be and still accommodate the passage of parallel fibers. Dendritic spines 
reaching out for their contacts allow parallel fibers to maintain their straight 
trajectories (  figure 13.11 ). This saves about 1  μ m per synapse, which 
amounts to 0.2 mm of wire for each Purkinje neuron and thus 3 km of wire 
for the whole cerebellum (Nairn et al., 1989).    

 The spines serve another key function: they serve as  “ spacers ”  for the 
tightly compacted Purkinje arbor to allow through-passage for many paral-
lel fibers. Only some of the parallel fibers make contact as they intersect the 
arbor, but all course within the  “ spine-reach zone. ”  Thus, every passing 
parallel fiber is a potential contact — a fiber that could under the right 
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 Figure 13.11 
  Purkinje cell spines minimize wire. Upper left : Purkinje cell dendrite projects two 

spines that are contacted in passing by parallel fibers. Reconstructed from serial elec-

tron micrographs (Harris  &  Stevens, 1988).  Lower left : Cross section through irre-

ducibly fine parallel fibers (pf). One fiber is sliced through its presynaptic dilation 

that contacts a Purkinje cell spine en passage.  Right : Parallel fiber with presynaptic 

dilation. Reconstruction. Reproduced with permission from Xu-Friedman, Harris,  &  

Regehr (2001). 
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circumstances form a synapse. The abundance of potential contacts endows 
the cerebellar cortex with the opportunity to efficiently alter its connec-
tions (chapter 14). This contrasts with retinal ganglion cells where, as 
noted, every potential contact is actualized. 

 Efficiency at the cerebellar output 
 The Purkinje cell axons form what may be the brain ’ s most expensive out-
put tract. The cell ’ s high mean rate (~40 Hz) requires a thick axon with a 
high mitochondrial volume fraction. For example, a Purkinje axon costs 
25-fold more energy than a ganglion cell axon,  12   and Purkinje cells out-
number ganglion cells by about 10-fold, so their total axonal cost is nearly 
250-fold greater. A Purkinje cell axon may be cheaper than a vestibular 
axon because its firing rate is lower by half (figure 4.6), but Purkinje axons 
are 100-fold more numerous. Given the expense, efficient design would 
keep Purkinje axons short and would reduce both firing rates and axon 
numbers before broadcasting their message far beyond the cerebellum. 

 Indeed, most Purkinje axons project only a few millimeters — down to 
neuron clusters deeper in the cerebellum (  figure 13.12 ). These deep neurons 
fire at roughly half the rate of Purkinje cells (Thach, 1968), which reduces 
their axon diameter and energy use by at least fourfold.  13   Moreover, there is 
a net convergence that reduces their numbers by 25-fold (Person  &  Raman, 
2012)  14   — for an overall savings in space and energy of at least 100-fold. The 
synaptic design employed in this integrative step resembles that of other 
step-down sites, such as thalamus and mossy to granule cell: multiple 
release sites and enhancement of spillover by glial encapsulation (chapters 
4, 7, and 12; Telgkamp et al., 2004). The rate steps down further by about 
fivefold in the thalamic nuclei that integrate cerebellar signals before relay 
to motor cortex (chapter 4). Consequently spikes arrive at motor cortex at 
similar rates to sensory cortex, a feature essential to the shared layout across 
the whole cortical expanse.  

 Similarities in striatum 
 The striatum resembles the cerebellum in using large numbers of neurons 
that fire at high mean rates over very thick wires. This is a costly design; 
therefore, as in cerebellum, the striatum optimizes component placement 
and reduces neuron numbers and rates. 

 The striatum collects from large expanses of cerebral cortex, especially 
from anterior regions (figure 4.10). The striatum locates just beneath the 
cortex and expands anteriorly. The striatum narrows down, wedge-like, to 
converge on a smaller component ( globus pallidus ) that also fires at high 
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rates (~40 Hz) but reduces the number of output axons by 50- to 100-fold. 
The next stage of this loop is a neuron cluster in the  substantia nigra  that 
maintains high firing rates (~70 Hz in primate). But this region projects to 
the same thalamic clusters as the cerebellar output where the spike rates are 
stepped down before the final return relay to motor cortex. 

 In short, both the cerebellum and the striatum are systems for error cor-
rection that compute with high-rate neurons. Just why they use high rates 
remains to be clarified, but what  is  clear is that both systems concentrate 
their messages by reducing axon numbers and firing rates, thus conserving 
space and energy over long-distance relays. 

 Cerebellar macrostructure serves efficient wiring 
 Efficient layout for the granule-Purkinje cell circuit restricts Purkinje cells to 
a monolayer and requires their planar arbors to stack in rows (  figure 13.8 ). 
This design, to accommodate sufficient Purkinje neurons, leads to extreme 
cortical folding. The  folia  align perpendicular to the brain ’ s long axis and 
are so finely elaborated as to present in cross section a fern-like pattern (  fig-
ure 13.12 ). This so expands cerebellar surface area that in human it exceeds 
that of the cerebral cortex by 20-fold. Cerebellar surface area per tissue vol-
ume exceeds that of cerebral cortex by more than 140-fold. This striking 
macroscopic feature, as we now explain, is required to accomplish the opti-
mal layout at the microscopic scale (  figures 13.7 and 13.8 ).    

 Purkinje cells are 6- to 15-fold more numerous than retinal ganglion 
cells.  15   Moreover, they are on average more than threefold greater in diam-
eter and so occupy 10-fold greater cross-sectional area. Thus, overall, the 
Purkinje cell monolayer requires 150-fold more area than a ganglion cell 
monolayer. 

 Retinal ganglion cells over small regions of high density can stack verti-
cally to avoid folding, but this would be inefficient for Purkinje cells. Stack-
ing would require longer dendrites to reach the synaptic layer and would 
increase the numbers of thick Purkinje cell axons that track through the 
underlying granule cell layer and disturb its local wiring. Because stacking 
the cell bodies would increase wire length, a monolayer is more efficient; 
this needs a large surface area, and therefore dense folding is inevitable 
(  figure 13.12 ). 

 The folia align perpendicular to the body ’ s long axis, allowing the trunk 
to be represented along the midline with limbs extending bilaterally (  figure 
13.13 ). This preserves the body map with least wire, and the map itself 
saves wire (chapter 3). Cerebellar regions that serve the vestibular system 
locate near the brain-stem vestibular clusters, thus shortening the direct 
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Purkinje cell outputs to that system (  figure 13.13 ). In short, all these mac-
roscopic features — dense folding, orientation of the folds, and topographic 
layout — serve efficient wiring.    

 Task 3: Connect many dense arrays to many other dense arrays with 
moderate divergence and convergence, preserving a high ratio of 
potential to actual synapses 

 This task is characteristic for cerebral cortex. To encode and learn complex 
patterns (chapters 4, 12, and 14), each cortical neuron must access many 
possible combinations of axonal inputs. The  connectivity repertoire  depends 
on how many different axons can enter the dendritic spine-reach zone and 
thus potentially make synaptic contact (  figure 13.7;  Wen et al., 2009). 

1mm

deep cell cluster

 Figure 13.12 
  Cerebellar folia are essential for optimal layout . Slice shown here, parallel to long 

axis of body and brain (inset), shows fern-like macroscopic structure. Given a design 

that restricts Purkinje cell bodies to a monolayer, this fine folding expands the sur-

face area to accommodate more Purkinje cells. Purkinje cell axons converge upon a 

modest cluster of neurons deep in the white matter. This greatly reduces the number 

of spikes leaving cerebellum. This section from macaque is reprinted with permission 

from  http://brainmaps.org/ajax-viewer.php?datid=3 & sname=0548.   ©  The Regents of 

the University of California, Davis campus, 2014. 
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Because multiple contacts from one axon to one neuron shrink the reper-
toire, contacts should be sparse. An optimal layout will produce the largest 
repertoire for a given dendritic cost, and because dendritic arbors differ in 
size, the optimal layout should work across scales (Wen et al., 2009). 

 The dendritic arbor that satisfies these specifications is three-dimensional 
with straight dendrites arranged symmetrically about the cell body (  figure 
13.14 ). The arbor is sparse; therefore, straight axons traversing it from all 
angles will rarely make multiple contacts — except for close neighbors whose 
axons branch densely near the origin of the dendritic arbor, which is also 
dense (Markram et al., 1997; Silver et al., 2003). In this layout the connec-
tivity repertoire is set by the dendritic arbor ’ s three-dimensional shape. And 
by tailoring its arbor for each cortical layer, a neuron can select different 
repertoires (  figure 13.14 ).    

 This simple scheme allows the many types of neuron present in each 
cortical layer to establish their unique connectivity repertoires at least den-
dritic cost. Consequently, each type delivers a customized signal to a par-
ticular target. Targets include specific neuron types in other layers, in 
other cortical areas, in the opposite hemisphere, and in various subcortical 
areas, such as striatum, thalamus, midbrain, and clusters that supply the 
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flocculonodular lobe

 Figure 13.13 
  Bilateral symmetry of topographic body maps on cerebellum save wire.   Flocculonod-

ular lobe  serves brainstem vestibular circuits that lie just beneath it. Reprinted with 

permission from Manni  &  Petrosini (2004). 
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 Figure 13.14 
  Dendritic arbors that maximize connectivity repertoire are sparse in three dimen-
sions and similar across scales. Left : Basal dendritic arbors of pyramidal cells from 

four visual areas (monkey). Sparsity in three dimensions is far greater than apparent 

in this two-dimensional projection parallel to the cortical surface. The connectivity 

repertoire per dendritic length is the same across scales.  Right : Pyramidal neuron 

viewed perpendicular to cortical surface. Dendritic arbor assumes a different shape 

in each layer (a, b, P) and therefore selects a different repertoire from the axons in 

that layer. The pyramid cell ’ s axon (e) runs straight to the white matter, minimizing 

wire and local interference; its collateral branches (C) run straight, maximizing the 

number of dendritic arbors they can encounter with least wire. Figure is modified 

and reprinted with permission from Wen et al. (2009); pyramidal neuron reprinted 

from Ram ó n y Cajal (1909). 
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cerebellum (chapters 4 and 12). Overall, the number of types with different 
connectional repertoires and different targets can be on the order of 100. 

 This scheme is general in that it works wherever a circuit needs to pro-
vide many types with a rich connectivity repertoire.  16   This could help 
explain why the cortex looks so similar across different areas (  figure 13.15 ).    

 Cerebral Cortex 
 The cerebral cortex is roughly 1 mm thick, twice the thickness of cerebellar 
cortex, and instead of three layers, there are at least six (  figure 13.16 ). The 
neuron types are more diverse by more than 100-fold. Whereas the cerebel-
lar cortex gathers two excitatory inputs into one synaptic layer and inte-
grates them with one stereotyped output neuron (Purkinje cell), the cerebral 
cortex sends diverse excitatory inputs to all layers, integrates them with 
diverse cell types, and broadcasts a multiplicity of outputs to a multiplicity 

 Figure 13.15 
  Layout to maximize connectional repertoire appears similar across areas. Left : Vi-

sual cortex, upper layers (A – C). a, axon descending to white matter; b, collateral 

branches; C, thick dendrites ascending from deeper layers.  Right : Motor cortex, also 

upper layers, showing similar layout. Both drawings are from human infant, a few 

days postnatal on left, and a month postnatal on right. Reprinted from Ram ó n y 

Cajal (1909). 
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of targets (figures 12.8 and 12.9). Whereas cerebellar axonal and dendritic 
arbors are linear or flat (one- or two-dimensional), the cerebral axonal and 
dendritic arbors tend to be dense near their origin and spread out with dis-
tance (three-dimensional). Thus, the circuit layout matches in many 
respects what is optimal for high connectivity repertoires and a high ratio 
of potential to actual contacts.    

 Because cerebral circuits are built from three-dimensional components, 
the basic design does not require folding. Indeed the cerebral cortex in most 
species is smooth.  17   The columnar unit structure described in chapter 12 
extends about 0.5 – 1 mm in all dimensions, encompassing on the order of 
10 5  neurons (Braitenberg  &  Sch ü z, 1998). Thus, the unit circuits of cerebel-
lar and cerebral cortex, despite glaring differences, use similar numbers of 
neurons and occupy similar volumes. 

 The unit circuit is designed to maximize the number of potential con-
nections that can be made within its volume. For densely connecting 
the cerebral three-dimensional circuit, branching axon arbors with en 
passant contacts reduce wire volume by 300-fold, and dendritic arbors 
reduce volume by another 50-fold. By increasing a neuron ’ s reach, den-
dritic spines further reduce wire volume by approximately threefold. 

white matter10100 μm100 μm

III

II
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VI

 Figure 13.16 
  Cerebral cortex mixes cell bodies and synaptic circuits . Dark cell bodies are surround-

ed by pale regions of circuitry (dendrites, axons, synapses). Largest cell bodies with 

thicker axons are sparse and located deep, near white matter, whereas the smaller cell 

bodies with thinner axons are dense and located high, far from white matter. See also 

  figure 13.17 . Mouse, same section as   figure 13.9 . 
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Thus, volume is reduced 45,000-fold without losing potential synapses 
(Chklovskii, 2004). 

 Clearly, this layout to maximize connectivity repertoire is efficient, but 
can it serve all cortical circuits? Cortical neurons need to detect specific 
sorts of correlation: in V1, an edge; in V2, a corner; in ventral stream areas, 
a face (chapter 12). This involves integrating across progressively wider 
expanses but still using single, insecure synapses so that each type can pre-
serve a sparse signal. Moreover, cortical neurons in all these areas need the 
capacity to change their connections — to resculpt their circuitry — in 
response to shifts in correlated input (chapter 14). These needs are served 
by progressively expanding the characteristic reach of a neuron ’ s basal den-
drites from one area to the next going forward (figure 13.14). This allows 
progressively broader integration by individual neurons and maintains 
their connectivity repertoire per dendritic length across scales (Wen 
et al. 2009). 

 Cortical interfaces (input/output tracts) 
 The cerebral cortex takes its main input from thalamic clusters that have 
substantially sparsified the signal (chapter 12). For example, input rates to 
visual cortex are scaled-down from the optic nerve rates (figure 11.26), so 
the fiber diameters are scaled down correspondingly.  18   By continuing the 
relay with a log-normal distribution of axon diameters (figure 4.2), the thal-
amocortical input tract conserves space and energy. Additional space is 
saved by efficient interfacing at the cortex. 

 Thalamocortical axons fire at far lower rates than the cerebellum ’ s pri-
mary inputs, so they are thinner. Consequently, unlike the cerebellum ’ s 
thick mossy fibers, which must terminate immediately upon exiting the 
white matter (figure 13.9), thalamocortical axons can track through the 
deep cortical layers to arborize in the middle and upper layers (  figures 12.6 
and 13.17 ). The thinnest thalamic axons reach the uppermost cortical layer, 
taking the longest course through gray matter, whereas the thicker ones 
branch in the middle, taking the shortest course (figure 12.8). 

 The smallest pyramidal neurons locate in the upper layers so their thin 
axons can track downward through the circuitry with least interference 
(  figure 13.17 ). Then comes a stratum of larger pyramidal neurons with 
thicker axons, but the cells are sparser, also reducing interference. Consis-
tent with fine axon caliber, the synaptic dilations suggest low release rates, 
being smaller and with sixfold fewer vesicles than for the cerebellum ’ s par-
allel fibers. Pyramidal axons, upon entering the white matter, turn to course 
tangentially toward other cortical areas. Many of the fine axons from the 
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 Figure 13.17 
  Cerebral cortex reduces wire by placing smaller neurons with finer axons near the 
surface and larger neurons with thicker axons near the white matter. Left : Distribu-

tion of neuron cell bodies.  Right : Distribution of myelinated axons. There are excep-

tions: for example, larger neurons in layer IIIb lie above smaller neurons in layer IV. 

However, the smaller neurons distribute densely (like cerebellar granule cells) and 

receive many thick axons (like cerebellar mossy fibers); whereas the larger neurons 

distribute sparsely (like cerebellar Purkinje neurons). So this exception also mini-

mizes wire. This feature of cerebellar design repeated in cerebral design suggests that 

it is a motif. Reprinted from Braitenberg  &  Sch ü z (1998), who reprinted it from Bailey 

 &  von Bonin (1951). 



386 Chapter 13

upper layers form the  corpus callosum , the huge tract that couples the two 
hemispheres.    

 Larger neurons reside in the deeper layers — where their thicker output 
axons least disturb the circuitry. This reverses the cerebellar layering (small 
neurons deep), but it satisfies the rule for optimizing the interface with 
white matter. Deep neurons distribute to subcortical structures and are 
diverse (chapters 4 and 12). Therefore, they should distribute their axon 
diameters log-normally, a prediction supported by measurements of the 
long descending tract from frontal and parietal cortex to spinal cord (chap-
ters 3 and 4). Cerebral white matter is itself layered, the finer corticocortical 
axons coursing superficial to thicker corticosubcortical axons (Schmah-
mann  &  Pandya, 2008), so the overall distribution is finer than for the 
corticospinal tract. Such a distribution would draw less energy than cerebel-
lar white matter, which contains predominantly thick axons. Indeed, the 
capillary supply (strongly correlated with glucose utilization) to cerebral 
white matter is sparser by nearly half (Borowsky  &  Collins, 1989). 

 Cortical circuit: diverse types with minimal redundancy and wire 
 Roughly 80% of cortical neurons are pyramidal and nearly all project an 
axon into the white matter (Braitenberg  &  Sch ü z, 1998; Kevan Martin, 
unpublished, 2013). Since, as noted, there is a log-normal distribution of 
diameters, we also expect a log-normal distribution of firing rates (figure 
11.26; Perge et al., 2012). This is consistent with reported firing rate distri-
butions in cortex (Koulakov et al., 2009; Rust  &  DiCarlo, 2012). Such a 
highly skewed distribution of diameters and firing rates could be generated 
efficiently with a layout that optimizes the connectivity repertoire. Each 
pyramidal cell type, integrating a particular aspect of the total input — just 
what is needed by its downstream targets — follows the same design princi-
ples as retina (send only what is needed; send slowly as possible). But cor-
tex, requiring many more arrays, much richer connectivity repertoires, and 
needing to add and delete connections, requires a different design. 

 Whereas a retinal bipolar neuron diverges to only about 3 ganglion cells, 
mostly of one type, a cortical pyramidal neuron diverges locally to more 
than 5,000 other neurons, mostly pyramidal. This design expands the 
diversity of pyramidal cell types (i.e., neurons with different connections) 
by at least an order of magnitude. And, whereas a retinal bipolar axon 
provides multiple contacts to a given ganglion cell (for high S/N and 
high redundancy), a pyramidal axon provides few contacts to a given pyra-
midal neuron (Braitenberg  &  Sch ü z, 1998; for low S/N and low redun-
dancy). To efficiently execute this circuit for high diversity/low redundancy 
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requires three dimensions, plus specific features for the axonal and 
dendritic arbors. 

 Pyramidal axons, besides descending to white matter, branch locally but 
loosely and travel straight for relatively long distances (Stepanyants et al., 
2004). The local branches form synaptic dilations at roughly 5- μ m inter-
vals, so these intracortical axons over their total length of about 20 – 40 mm 
produce 4,000 – 8,000 synapses (Braitenberg  &  Sch ü z, 1998). These axons 
run without specific orientation (unlike cerebellar parallel fibers). Pyrami-
dal cell apical dendrites tend to run vertically, each type selecting one or 
more particular layers in which to expand its arbor (figures 12.8, 12.9, and 
13.14). The apical arbor remains sparse and open (compare to the compact 
and dense Purkinje arbor). Moreover, pyramidal dendrites are spiny, so 
besides their roughly 10 4  actual inputs, their extensive spine-reach zone 
provides space for many potential inputs (Chklovskii, 2004). 

 Thus, the design of the pyramidal cell circuit: straightish axons that 
course independently of the trajectories of sparse dendrites (Braitenberg  &  
Sch ü z, 1998). This ensures that a given axon will rarely contribute more 
than one synapse to a given neuron. Thus, all the excitatory synapses are 
insecure (as required for extensive integration — see chapter 12). Synaptic 
redundancy (even for potential contacts) approaches zero, which is effi-
cient because redundancy would reduce a pyramidal neuron ’ s potential to 
accept other inputs. In short, the cortical circuit maximizes a pyramidal 
neuron ’ s actual and potential connectional repertoire per unit of cost of its 
dendrites, axons, and synapses, which seems fitting for neurons tasked with 
learning to recognize  “ suspicious coincidences ”  (Barlow, 1989). This design 
holds for pyramidal neurons in different cortical areas across a substantial 
range of scales (Wen et al., 2009). 

 Thus, the cortical circuit approaches more closely than any other brain 
circuit the  “ all to all ”  limit of connectivity. In doing so it thoroughly 
exploits every available strategy of efficient wiring within a circuit: multi-
terminal axons running straight through sparse, open dendritic trees that 
branch in three dimensions and are studded with spines — all placed in 
strata that maximize their opportunities to donate and collect what is 
needed. Yet, there remains to discuss one more key feature. 

 Inhibitory contributions to the cortical circuit 
 Each cortical layer contains 10% – 30% inhibitory neurons. These connect 
in specific patterns to pyramidal neurons, further enhancing diversity of 
pyramidal cells by sculpting their output messages. Inhibitory neurons 
comprise at least 14 distinct neurochemical categories: different expression 
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patterns of neuropeptides, potassium channels, calcium-binding proteins, 
and so on (Gonchar et al., 2007). They also comprise more than half a 
dozen physiological categories: fast-firing, irregular firing, fast adapting, 
and so on (Burkhalter, 2008). Also, they express distinctive axon arbors that 
are generally confined to the layer of origin. A multiparameter space that 
displayed all known differences, such as used in retina (Sterling, 2004a), 
would probably reveal more than 100 types (Petilla Interneuron Nomencla-
ture Group, 2008; Gonchar et al., 2007). 

 Although the connections are incompletely known, the inhibitory cir-
cuits clearly depart from the pyramidal cell design. In particular, their 
design limits their connectional repertoires: (1) many types have denser, 
more compact dendritic and axonal arbors; (2) the axons are shorter than 
pyramidal axons and provide only 10% of cortical synapses; (3) arbors tend 
not to orient vertically or cross many layers; (4) axons, instead of being 
straight, are tortuous, with short branches that follow the course of their 
dendritic targets (Stepanyants et al., 2004); (5) axons do not contact spines 
but rather dendrites and cell bodies; and (6) certain GABA types, the  chan-
delier cells , specifically target the initial segment of particular pyramidal 
axons. Whether this synapse enhances or suppresses spiking is uncertain  19  , 
but either way, it contacts a known choke point. 

 Moreover, these circuits place many synapses where they will be most 
potent (proximal dendrite, cell body, axon initial segment). So although 
90% of synapses to a pyramidal neuron are excitatory, the less numerous 
inhibitory synapses being targeted exert substantial influence. The inhibi-
tory neurons serve diverse functions: constrict time windows for coinci-
dence detection; sharpen response tuning; and maintain circuit stability 
against the avalanche of mutually excitatory connections (Burkhalter, 
2008). These design features recall the inner retinal circuit and suggest that 
these neurons might be usefully viewed as the amacrine cells of the cortical 
circuit, that is, three-dimensional neurons tasked to carve away informa-
tion unneeded by a particular pyramidal output in order to maintain eco-
nomical spike rates. 

 Certain inhibitory types produce high-rate spike bursts ( > 50 Hz), and, 
since spikes are expensive, one wonders whether this violates the energy 
constraint? In fact, the fast-spiking neuron probably costs less than a pyra-
midal cell. It is more compact and receives fewer excitatory inputs, which 
are costly. Also, the axon is roughly 10-fold shorter than a pyramidal axon, 
so each spike costs less.  20   Only 20% of all cortical neurons are inhibitory, 
and fast-spiking neurons are a subset, so fast-spiking inhibitory neurons are 
a small item in the overall budget. Finally, a fast-spiking inhibitory neuron 
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reduces energy consumed by the far larger and more numerous pyramidal 
neurons and thus pays for itself. 

 Certain GABA-ergic interneurons in hippocampus project for longer dis-
tances and fire tonically at high rates. Correspondingly, these neurons use 
thick axons with thick myelin, resembling that of the Purkinje cell (Jinno 
et al., 2007). The point is that circuit design may require departures from 
the standard design, but the bill for space, materials and energy must ines-
capably be paid. 

 Columnar organization 
 Cortical neurons, besides segregating into layers, also segregate into col-
umns, neurons stacked perpendicular to the cortical surface. Neurons 
within a column share the same topographic location on the map of what-
ever sense is being served, plus they also share particular receptive field 
properties. For example, all neurons in a V1 column respond to the same 
stimulus orientation or direction of motion, and all neurons in an S1 col-
umn respond to the same type of somatic receptor, such as skin pressure or 
joint angle. Columnar segregation is achieved by orienting the apical den-
drites of pyramidal neurons vertically to traverse the layers and by also giv-
ing their axon collaterals (branches off the main axon) a net vertical 
orientation (figures 12.8 and 12.9). 

 The circuit ’ s function is to advance the assembly of small patterns deliv-
ered to the middle layers into larger patterns in the layers above and below 
and further sparsify the coding (chapter 12). These functions are served 
efficiently by columns in three respects: (1) topographic maps save wire; (2) 
placing components (cell bodies) near each other saves wire; and (3) giving 
axons and dendrites similar orientation allows them to connect with less 
wire. Thus, columnar organization seems designed to execute the coding 
requirements discussed in chapter 12 with the least time, space, and 
energy — by now completely obvious. 

 Efficient wiring at larger scales 
 The upper limit of scale for dendritic computing in local circuits is about 1 
mm. But brain organization extends to larger scales by nearly two orders of 
magnitude, and one expects these scales to follow the same conservation 
laws. Moreover, one expects the execution of these laws to follow the same 
design principles: maintain the map; place components optimally; reduce 
wire (Knudsen et al., 1987; Chklovskii  &  Koulakov, 2004). 

 It follows that whenever two neurons share significant input, they 
should stay close together. If they are separated, the shared input will 
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require more wire to reach them. This explains the omnipresence of topo-
graphic maps, which extend smoothly for millimeters and centimeters 
(chapters 4 and 12; Allman, 1999; Allman  &  Kaas, 1974; Mitchison, 1991; 
Swindale, 1996). It also explains why, when several  “ higher ”  cortical areas 
collect from a particular  “ lower ”  cortical area, they tend to surround its 
region of highest spatial resolution (fovea, fingertip) because this allows the 
most numerous connections to be short. 

 Why subdivide cerebral cortex into many distinct areas, rather than just 
go with one  “ superarea ” ? To prevent the wires for different circuits from 
sterically interfering with each other — for this would increase wire. Most 
generally, if two sets of neurons connect primarily  within  their set, it saves 
wire to separate the sets (Mitchison, 1991; Chklovskii  &  Koulakov, 2004). 
Where multiple areas at a given hierarchical level need to exchange connec-
tions, the areas with the densest connectivity should locate close together; 
areas with sparser connectivity should locate farther apart, next to the areas 
with which they connect most strongly. This explains the arrangement of 
11 cortical areas in frontal lobe (Klyachko  &  Stevens, 2003). 

 To summarize, wire minimization so far explains: (1) why cortical areas 
exist; (2) why they contain smooth maps; and (3) why related areas arrange 
themselves in particular patterns. These features in a large brain occupy a 
scale of centimeters. But what about features  within  an area on the scale of 
millimeters? We have explained why V1 contains orientation columns; 
now, why stripes and patches? The answers are the same. 

 Wherever one set of neurons needs to integrate its signals with those 
from a different set, the two sets should be close together. For example, 
simple cells in V1 integrate inputs from a patch of lateral geniculate neu-
rons that serve one eye. This creates a set of neurons at the cortical input 
layers which are dominated by that eye, plus a complementary set of neu-
rons dominated by the other eye (chapter 12). The two sets should integrate 
because corresponding points in each eye  “ see ”  the same point in the visual 
field. Their integration halves the wire needed to relay the integrated signal 
to higher cortical areas. 

 The optimal arrangement is to place ocular dominance regions for the 
two eyes next to each other so that they can exchange connections using 
the shortest wires. The dominance regions might form either stripes or 
patches, and which scheme is better depends on the degree of dominance. 
Where most neurons in a region favor one eye, parallel stripes would use 
the least wire. But where fewer than 40% of neurons are dominated by one 
eye, a patchy arrangement would be favored. The actual arrangements fol-
low these predictions (  figure 13.18 ). Therefore, the principle  “ minimize 
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wire ”  explains why ocular dominance columns exist and why they are 
either patchy or striped.    

 But why do stripes representing central vision run parallel to the hori-
zontal meridian of the visual field whereas stripes representing peripheral 
vision run concentrically? This too saves wire. Because the eyes are sepa-
rated horizontally, they have disparate points of view. Their cortical repre-
sentations of a given object are also separated horizontally on the cortical 
map. Combining these disparate representations allows stereoscopic vision 
(chapter 12). This can be done with least wire for central vision when the 
stripes run horizontally across V1 and for peripheral vision when they run 
concentrically — the pattern that is observed. 

 V1 ’ s orientation columns are grouped to minimize wire. Their layout 
problem resembles that for ocular dominance, but instead of two categories 

5 mm 

 Figure 13.18 
  Ocular dominance distribution in macaque V1 matches theory of optimal wiring . 

Gray and white regions contain neurons dominated by, respectively, the left and 

right eye. The large gray spot is the representation of the optic disc. Black line indi-

cates predicted transition between  patchy  and  stripy  patterns, based on the fraction of 

left-eye neurons being about 40% (as averaged over an area equivalent to the boxed 

region shown in the upper right). Original data were taken from Horton  &  Hocking 

(1996); this image is reprinted from Chklovskii and Koulakov (2004) with permission. 
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(right eye, left eye), there are many, defined by the preferred stimulus orien-
tations. Preferred orientation changes smoothly across adjacent columns 
except at a few points where it changes abruptly, a fracture. Also, for long 
stretches the orientation columns run in parallel, but occasionally they 
converge to a point to form a pinwheel (Ohki et al., 2006). 

 All of these features — smoothly changing orientation preferences, paral-
lel stripes, plus occasional fractures and pinwheels — minimize wire (Chk-
lovskii  &  Koulakov, 2004). 

 Hemispheric specialization 
 Information in human brain is processed differently by corresponding 
regions in the two hemispheres. For example, left auditory areas predomi-
nate in processing spoken language whereas right auditory areas predomi-
nate for music even though the sound patterns for voice and music span 
the same spatiotemporal spectrum (Purves et al., 2012). Similarly, ortho-
graphic symbols (writing) are processed by visual areas on the left side 
whereas pictorial symbols are processed on the right (chapter 14). Special-
ized computations are lateralized not only in large brains but also in the 
small brains of songbirds (Moorman et al., 2012). Clustering areas for spe-
cialized processing minimizes wire and reduces computing delays; the 
results can then be communicated between hemispheres by extremely 
fine axons. 

 The great tract interconnecting the cerebral hemispheres uses extremely 
fine axons. About 30% are unmyelinated with the most frequent diameter 
less than 0.2  μ m, resembling olfactory axons and cerebellar parallel fibers 
(  figures  4.6 and   13.11 ). The distribution of diameters, both unmyelinated 
and myelinated, is log normal — like many central tracts — and constant 
across a 1,000-fold difference in brain size (rat to horse; Caminiti et al., 
2013). Larger animals use some thicker axons — too few to be evident in the 
distribution — but occupying such disproportionate space as to constrain 
their numbers (Wang et al., 2008). Thus, the results of local cortical com-
puting are relayed between hemispheres mostly via axons that are irreduc-
ibly fine and slow (Ringo et al., 1994). Consistent with this, deficits from 
severing the corpus callosum are hardly noticeable without special testing 
(Sperry, 1981). 

 Pressure to compute locally seems to have driven hemispheric specializa-
tion.  21   Auditory patterns for spoken language and music are processed dif-
ferently by corresponding auditory areas in the two hemispheres; and so are 
visual patterns for writing and pictures. Separating the circuits for these 
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distinctly specialized functions allots each sufficient computing space, min-
imizes mutual interference, and reduces the need for high-rate interhemi-
spheric traffic. 

 Energy costs 

 Circuits 
 Having considered the fundamental basis for Cajal ’ s  “ laws ”  for conserving 
time, space, and materials, we turn now to the newer  “ law ”  for conserving 
metabolic energy. This is relevant because every design feature that reduces 
wire volume correspondingly reduces metabolic costs and thus saves energy 
for processing information. For scale, consider that human kidney and 
heart each consume 1.7-fold more energy per gram per day than human 
brain. So brain is expensive tissue, but not the most expensive (McClave  &  
Snider, 2001). Across different brain regions energy cost varies by up to 3.5-
fold, auditory structures being most costly because their neurons need short 
time constants to process high temporal frequencies. 

 Most energy in neural circuits goes for pumps to recharge ionic batteries 
against currents that run them down. In retina, several neuron types depo-
larize tonically and therefore must continually extrude sodium and cal-
cium. This includes photoreceptors, horizontal cells, and to some degree, 
ON bipolar cells. All of these elements strongly express pumps, such as the 
sodium – potassium pump (  figure 13.19 ). Amacrine and OFF bipolar neurons 
depolarize phasically, allowing them to express the pumps at lower levels. 
Ganglion cell bodies, and particularly the axons, admit sodium as a large, 
phasic current during the action potential and therefore strongly express 
the sodium – potassium pump (  figure 13.19 ).    

 Recall that when a ganglion cell fires a spike, 90% of the visual informa-
tion that entered the neural circuit at the cone terminals has been discarded 
(figure 11.2). It is sobering to recall that for a ganglion cell merely to double 
its information rate (bits per second) would require it to increase its spike 
rate 10-fold, increasing space and energy by 100-fold (figure 11.25). This 
illustrates vividly why the retina must process images: so that ganglion cells 
can send only what is needed. 

 The ATP consumed by ion pumps is produced mostly via respiratory 
processes in mitochondria that use the enzyme cytochrome oxidase. There-
fore, relative energy costs within a neural tissue can be visualized from the 
distribution of that enzyme, which also correlates with glucose uptake and 
capillary density (Borowsky and Collins, 1989; Weber et al., 2008). As 
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expected, cytochrome oxidase matches the pumps (  figure 13.19 ). Its 
greater expression in ON bipolar cells (compared to OFF cells) reflects 
the ON cells ’  incomplete rectification, illustrating that rectification con-
serves energy. 

 Relative energy costs in cerebellum are evident in the expression of cyto-
chrome oxidase, as shown in   figure 13.20 . Cytochrome oxidase is strong for 
high-rate inputs, the large mossy fiber terminals; and it is strong for high-
rate outputs, the large Purkinje cells. Cytochrome oxidase is weak for low-
rate inputs, the climbing fibers; and it is weak for low-rate neurons, the 
granule cells.  
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 Figure 13.19 
  Distribution of the energy demanding sodium-potassium pump   is matched distri-
bution of the energy producing enzyme, cytochrome oxidase. Left : Distribution of 

sodium-potassium pump follows known requirements for ion pumping: cone inner 

segments, rod terminals (short arrows), cone synaptic terminals, horizontal cell bod-

ies, and ON bipolar cells. The latter, being less rectified than OFF bipolar cells, are 

more tonically depolarized and so require more pumps. OFF bipolar and amacrine 

cell bodies are not tonically active and therefore need fewer pumps.  Right : Distri-

bution of cytochrome oxidase matches the distribution of pumps. Arrows point to 

mitochondria expressing the enzyme in cone terminals of the outer synaptic layer. 

Inner synaptic layer expresses cytochrome oxidase to support intense synaptic activ-

ity; ganglion cell bodies and axons express the enzyme to support action potentials 

Primate retina just beyond the fovea. Reprinted with permission from Wong-Riley 

et al. (2010). 
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 Relative energy costs in striate cortex are also evident in the expression 
of cytochrome oxidase (figure 13.20). Expression is strong for high spike 
rates at the input layers; and it is weak for low spike rates in the output lay-
ers, both superficial and deep (chapter 12).    

 Cerebellar and cerebral cortex differ remarkably in how they spend their 
allowance. The cerebellar circuit accepts a high-rate input with large, ener-
getically expensive synapses and delivers a single type of high-rate output. 
In between, it uses tiny low-rate neurons. In contrast, the cerebral circuit 
accepts low-rate inputs (compared to cerebellum); then it reduces the rates 
still further. Finally the cerebral circuit uses multiple types of output, each 
of which retains only what is needed for its particular purpose (figure 
12.10). Costs of spiking are similar for cerebellar and cerebral cortex, both 
about 20% of their budgets; but overall the cerebral cortex costs 1.7-fold 
more (Howarth et al., 2012). 
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 Figure 13.20 
  Distribution of cytochrome oxidase identifies energetically expensive compo-
nents. Left : Mossy fiber terminals fire at high mean rates and form numerous con-

tacts with granule cell dendritic claws (see   figure 13.1 ). Purkinje cells also fire at 

high mean rates. Granule cells (pale areas surrounding mossy terminals) fire high-

frequency bursts, but are mostly silent, as are their pale axons in the outer synaptic 

layer.  Right : Striate cortex. Input layers (1 – 4) express more cytochrome oxidase than 

the sparser coding neurons in deep output layers (5, 6). See figures 12.2, 12.6, and 

12.8. Both images are from macaque and reprinted with permission from Hevner  &  

Wong-Riley (1993). 
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 Tracts 
 Central tracts use only about one third as much energy as gray matter 
(Sokoloff et al., 1977). Although one might expect that nearly all of a tract ’ s 
space and energy would go to axons, considerable space (30%) is actually 
used by glial astrocytes, which also contain more than 70% of the mito-
chondria (  figure 13.21 ). The volume fraction of mitochondria in astrocytes 
is nearly twice that in axoplasm (Perge et al., 2009). What is accomplished 
by this substantial investment? 

 Each spike dumps a pulse of potassium into the extracellular space, caus-
ing a sharp, local rise in potassium concentration. This reduces the gradient 
across axonal membranes. The extracellular potassium concentration is 
restored in two phases: rapidly by a glial sodium – potassium pump with a 
low affinity for potassium and then more slowly by the axonal sodium –
 potassium pump with a high affinity (Ransom et al., 2000). This role in 
rapidly restoring the potassium gradient may be what the astrocytes deliver 
for their considerable share of scarce resources.    

 End of Story? 
 Our Introduction asked, how can a human brain with no more volume or 
power than a laptop be so much smarter than a supercomputer? The long 
answer, as promised, has been this book. We have deliberately tried not to 
explain exactly how it all works. Far too much is unknown, and we did not 
want to present speculative models. Our intent was to organize what is 
known of the brain ’ s functional architecture in terms of principles that 
underlie computational efficiency. 

 The retina ’ s broad computational tasks seem fairly clear, but those of the 
cerebellum remain to be determined (Alvarez-Icaza  &  Boahen, 2011). The 
cerebral cortex might be better understood computationally than cerebel-
lum, but its local circuits are far more obscure. Still, as this chapter has 
explained, all three structures closely follow the design principle 
 minimize wire . 

 All three structures share a deep biophysical constraint: the substantial 
and irreducible electrical resistance of neuronal cytoplasm. Cytoplasmic 
resistance prevents neural wires from being any finer than they are. It also 
prevents local circuits from being any more voluminous than they are 
because that would cause excessive conduction delays. This constraint on 
local circuit volume drives efficient layout — which in turn specifies equal 
lengths of dendrite and axon, an optimum proportion of wire, and an opti-
mal upper bound on synapse volume. 
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 The optimizations governing design of microcircuits have been seen to 
also govern design of their macro-organization and their interfacing with 
global connections. Thus, from the subnanometer scale (protein folding) to 
the meter scale (long tracts) — a 10 10  range — design follows the same prin-
ciples. The territory staked out in the Introduction has now been largely 
covered, sketchily perhaps, but to a degree consistent with another intro-
ductory promise, brevity. Yet, one key principle remains: brain efficiency 
requires the capacity to learn and store new information. This is the topic 
of the next and final chapter. 
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  How the optic nerve allocates space and energy capacity. Upper left : Astrocytes oc-

cupy the space between axons, nearly 30% of the total.  Lower left : Astrocyte process-
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 Right : Space budget. Reprinted with permission from Perge et al. (2009). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 That man should be  “ happy ”  is not included in the plan of  “ Creation. ”  What we call 

happiness comes from the sudden satisfaction of needs, and it is from nature only 

possible as an episodic phenomenon. 

  — Sigmund Freud (1930) (edited for brevity) 

 Freud, writing this comment two decades after publication of Ramón y 
Cajal ’ s  Histology of the Nervous System , might have wondered: must not 
man ’ s steady-state unhappiness and episodic happiness be generated by the 
brain? Might it not therefore belong to neural design? 

 This chapter will explain that for a brain to be efficient it must learn. 
Learning is a principle of brain design. Moreover, for learning itself to be 
efficient, it must follow an optimal schedule of effort versus reward. The 
schedule, as it turns out, requires that rewards be episodic and unpredict-
able (Glimcher, 2011). Thus, our average unhappiness interrupted ran-
domly by moments of happiness is no mere affliction; rather it is part of the 
design. Of course, what we self-referentially conceive as  humans  ’  unhappy 
state is equally the unhappy state of the mollusk, the fly, and the honeybee 
(Menzel, 2012; Mayford et al., 2012; Caroni et al., 2012). All animals suffer 
unhappiness because learning is design, and this particular design for learn-
ing is optimal. 

  “ Learn ”  as a principle of design 

  “ Learn ”  belongs to a broad principle that is actually a continuum:  adapt ,  
match ,  learn ,  and forget  (chapter 3). This principle is what distinguishes biol-
ogy from traditional engineering. An automobile is at its best when it rolls 
off the assembly line. Use simply wears it down. Moreover, a car built to 
meet certain environmental conditions is hard to modify when conditions 
change. But suppose a city car could respond to a rough road by thickening 

 14   Learning as Design/Design of Learning 
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its tires, stiffening its springs, and respecifying its gear ratios — that would 
be a hot item. 

 Yet for biological design, adaptive responses are the essence. Each fresh 
experience helps to prepare for a future need. Where skin sustains rough 
wear, it thickens to callus; where muscle and bone sustain mechanical ten-
sion, they strengthen. Likewise in brain, adjustments begin the instant that 
sufficient evidence accumulates at the environmental interface, as demon-
strated by the rapid adaptation of sensory receptors and circuits to changes 
in stimulus statistics (chapters 8, 9, and 11). Indeed it seems that wherever 
one looks, current experience is continually being used to update circuits in 
order to improve future performance. 

 These adjustments occur in all brains, from small ( C. elegans , chapter 2) 
to large (this chapter). They occur in all systems, from sensory to motor, 
and at all levels, from spinal cord and cerebellum (figures 7.16 and 7.17) to 
cerebral cortex (this chapter). Moreover, adjustments are made at all levels 
of circuit organization, from adding, removing, and modifying the struc-
ture of a protein molecule at a specific site in a neuron to adding and 
removing synapses and even entire neurons. 

 In the adult human brain — whose circuits until recently were considered 
as physically immutable as a Toyota — neurons are both recruited from 
existing circuits and manufactured de novo to meet new demands. 

 Consider, for example, the hippocampus, which is tasked with storing 
maps to guide navigation. London taxi drivers, who visually navigate a 
complex cityscape, expand their hippocampal gray matter (Maguire et al., 
2000). This occurs gradually with practice over several years. Piano tuners, 
who acoustically navigate a complex soundscape, also gradually expand 
their hippocampal gray matter (Teki et al., 2012), along with auditory areas 
in the temporal and frontal lobes. White matter also expands, suggesting 
that the new circuits formed to process and store information send it out 
over new or updated wires. 

 To adapt its capacity to changing demands, the hippocampus in adults 
continually generates new neurons. Many die back, but some newborn 
neurons are recruited during sustained practice to build new circuits 
(Chancey et al., 2013) — adding new synapses and new wire. These circuits 
apparently serve newly formed memories since deleting the new neurons 
shortly after learning also deletes the new memories (Arruda-Carvalho et 
al., 2011). The hippocampus also expands because memories are stored by 
strengthening synapses, which requires them to enlarge. Nor is the hippo-
campus unique: cortical motor areas expand with motor practice (Xu et al., 
2009; Yang et al., 2009; Landi et al., 2011); a visual area ( visual word form 
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area ) expands with literacy; and areas critical to social functioning expand 
with size of social network (Sallet et al., 2011; Bickart et al., 2012). 

 Thus, the brain follows a core principle that serves all biological systems: 
use current conditions to predict future needs and revise circuits accord-
ingly. During every sort of  “ neural exercise, ”  the brain readjusts physically 
across timescales from milliseconds to decades, and across spatial scales 
from nanometers to centimeters. Just as physical exercise sculpts particular 
muscles and bones, so neural exercise sculpts particular brain circuits. 

 This biological perspective defines learning as a structured channeling of 
information from present to future (Varshney et al., 2006). Current motor 
behavior can improve future motor skills; current perception and cognition 
can improve future perceptual and cognitive skills; and current behavioral 
choices can improve future choices. But learning, besides being a design 
principle, is also a neural function. Therefore, it must be constrained (like 
all neural functions) by space, time, and energy. Learning must obey all the 
principles that have been proposed for other aspects of neural design. 

 Principles for the design of learning 

 An important constraint on learning is space. The adult brain is jammed 
with circuits and tracts, and it cannot expand. So learning must conserve 
space with a design that: (1) is spatially specific; (2) stores only what is 
needed; (3) stores only for as long as needed (i.e., selectively forgets); (4) 
stores and retrieves information at the site where it is processed; (5) opti-
mizes the units of storage (size and number); and (6) optimizes a  “ teaching 
signal ”  for the real world, which is an environment rich in small surprises. 

 Specificity 
 In humans spatial relationships are processed in the right hemisphere. Cor-
respondingly, in taxi drivers it is the right hippocampus that expands — and 
not the whole structure — only the posterior region. Tonal relationships are 
also processed by the right hemisphere. Correspondingly in piano tuners, it 
is also the right hippocampus that enlarges — but only the anterior region. 
Thus, the principle  complicate  extends to learning: each circuit reconfigures 
for its specific task. 

 A design that expands a neural circuit following practice ought also to 
retract the circuit when it is persistently unused. Indeed, taxi drivers stud-
ied from the start of training across years of practice initially expanded 
the hippocampus and, upon retirement, restored it to normal (Woollett 
 &  Maguire, 2011; Woollett et al., 2009; Woollett  &  Maguire, 2012). 
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In practicing one skill over years, we neglect innumerable others. Thus, 
working taxi drivers perform below average on tests of short-term visual 
recall. But again, retirement restores performance to normal. Skills decay 
rapidly when supplanted by other activities, which is why professional ath-
letes, musicians, and surgeons need to constantly practice. 

 Store only what is needed 
 An animal whose body grows continually throughout life also continues to 
grow its brain. For example, as a fish enlarges throughout adulthood, so 
does its eye. The retina adds new neurons and new circuits in concentric 
rings; it adds new ganglion cells that send axons to connect to new circuits 
in the midbrain. Retinal neurons that at first serve the periphery gradually 
serve more centrally, so as the map expands, it must continually revise itself 
by breaking and reforming all the connections (Easter  &  Stuermer, 1984; 
Reh  &  Constantine-Paton, 1984). This degree of plasticity allows the animal 
to regenerate a complete retina from stem cells (pigment epithelium) and 
grow new optic axons that find their proper central targets (Sperry, 1963; 
Stone, 1960). 

 We fantasize that humans might gain this capacity to regenerate an eye 
and all its circuits and tracts. However, a rigid skull is not the place to 
unleash brain growth. Therefore mammalian design for learning must 
restrain growth and refrain from adding new circuits unless it is also pre-
pared to make space by pruning others.  1   

 Store information only for as long as needed 
 The adult brain stores countless items and procedures on innumerable tim-
escales. A glance at the printed number of our hotel room suffices to store 
it for the period of our stay. But by the time we reach the airport, it is gone. 
On the other hand, we store the physiognomies of friends, family, children, 
grandchildren — and scores of casual acquaintances — along with their phys-
ical, intellectual, and emotional status. This prodigious number of rich pat-
terns we retain for months and years without practice. Otherwise, we could 
not exclaim upon reencounter,  “ How tall you ’ ve grown! How deep your 
voice has become  . . .  ”  nor suppress exclamations such as  “ Yikes! How bald 
and gray  . . .  ”  

 At each reencounter the brain promptly revises the stored pattern. Thus, 
after a year ’ s absence, we recognize a toddler as our grandchild but thereaf-
ter cannot recall the infant. We may recognize a friend from our youth but 
recall his original appearance only from a photo. Like Orpheus, we may 
store the image of a lover in full bloom, but the instant we gaze upon her 
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once more, that image is irretrievably lost. This  “ auto-delete ”  matches the 
probability that the updated image will best serve future interactions. Thus, 
early drafts are well discarded. 

 Why then do we retain apparently trivial facts from our youth, such as 
the lineup of our favorite sports team, a rock lyric, and so on? Would not 
space for new information be cleared by discarding great chunks of now 
useless data? Perhaps, if they were separable, like cream from milk, but such 
facts that now seem trivial were not learned in an instant, but rather 
through repeated exposure and practice. They were woven into a rich con-
text and stamped with an emotion. You might have heard the baseball 
lineup repeated 100 times across a season on the radio as you worked at a 
project with your father. The broadcasts may be coupled with the memory 
of his aroma, and a memory of his pleasure at the task and at your participa-
tion. Such memories, once contextualized, emotionally stamped, and 
repeated, are nearly ineradicable. 

 Why? Adult character emerges through integrating diverse experience, 
which is needed for prompt and constructive responses to diverse and sub-
tle situations. For example, it tells us in each new context when to speak 
and when to hold our tongue. It informs our posture, facial expression, 
gestures, choice of words, and tone of voice — all to better serve the task at 
hand. Without such integration, it is hard to behave effectively. We are too 
soon to anger or too late; we are too generous or too stingy, and so on. 

 Over decades we continually resift our web of experience seeking to 
recover new insights and deeper understandings. To facilitate this process, 
we invest diversely: meditation, prayer, music, literature, theater, drugs, 
dreams, and psychotherapy. The issues to be integrated shift across the life 
cycle, and the process continues into old age.  2   In short, the brain devotes 
huge resources to long-term storage of facts and experience because they 
are raw materials for the continual resculpting of neural circuits that 
improves our behavior. 

 The brain  does  delete genuine trivia — facts and experience lacking context 
and stamped weakly by emotion — like the number of your hotel room. But 
the team lineup learned with your father and the rock lyric learned with your 
first kiss are not trivia; they are essential threads, the warp and weft of your 
neural web. Deprived of this fabric, we become profoundly disoriented — as 
reported, for example, by individuals with severe retrograde memory loss 
following treatment with electroconvulsive shock (Donohue, 2000).  3   

 Retaining this fabric, we gradually deepen our understanding of people, 
events, and situations. We gradually improve our ability to perceive, judge, 
and act in keeping with deepened understanding. We gradually improve 
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control of emotions to better direct each action engendered by reason and 
knowledge. And we gradually improve intellectual control over actions 
engendered by emotion. In mature form, these capacities, which define 
 “ wisdom, ”  occupy considerable space in the human brain — presumably 
because they increase biological fitness. Simpler versions are observed in 
baboon societies — where they have been documented to increase fitness 
(Cheney  &  Seyfarth, 2007; Seyfarth et al., 2012). This suggests a rule in 
design of learning across phyla, including mollusk and honeybee: delete 
true trivia, but retain contextualized material for long-term integration. In 
short,  store only what is needed . 

 Store and retrieve information without adding wire 
 The obvious site to compactly store information is at the synapse.  4   Storage 
occurs by changing its transfer  “ weight, ”  that is, its ability to excite or 
inhibit a postsynaptic neuron. Since the synapse is the key site for process-
ing information, storing it there avoids additional wire for relay. Moreover, 
information stored directly at a synapse can be retrieved directly — also 
avoiding additional wire. In short, as we peruse a blueprint of brain design, 
we should not seek a special organ for  “ information storage ”  — it is stored, 
as it should be, in every circuit. 

 Synaptic sensitivity needs to shift across all timescales. Rapid, brief shifts 
can improve the efficiency with which information is coded and processed. 
When the average signal weakens, vesicle release sensitivity tunes up; when 
the average signal strengthens, release sensitivity turns down (Abbott  &  
Regehr, 2004; Goldman et al., 2002; Yang  &  Xu-Friedman, 2012; Silver, 
2010). These short-term adjustments control gain to maintain coding in a 
sensitive region of a neuron ’ s input/output curve; moreover, they increase 
efficiency by reducing redundancy and by avoiding high mean rates (chap-
ters 3, 9, 11, and 12). 

 This short-term synaptic plasticity fits the broad definition of learning: 
use present information to adjust a circuit, in order to improve future per-
formance. On the relatively fast timescales of environmental fluctuation, 
these changes need to be rapid, brief, and cheap. Consequently, they are 
accomplished by chemistry — by changes in presynaptic calcium concentra-
tion that alter release probability and the size of the releasable vesicle pool, 
and by modifying the sensitivities of signaling proteins by, for example, 
phosphorylating postsynaptic receptors. On the other hand, being short-
term, they require no restructuring and thus no additional space for stor-
age. However, when signal statistics change for longer times, circuits begin 
to reconfigure. 
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 Sculpt circuits to match stable changes in bottom-up statistics 
 When input statistics to a particular circuit change stably for a few days in 
an adult animal, longer term changes are initiated. Synapses that were dor-
mant are strengthened, and newly dormant synapses are depressed. For 
example, restrict visual input to one eye, and within days the geniculocorti-
cal synapses for that eye are expanding in V1 ’ s ocular dominance stripes. 
Simultaneously synapses for the deprived eye are retracting.  5   Or, shift the 
wavelength of chromatic input to one eye with a tinted contact lens for a 
few days, and color perception shifts for several weeks (Neitz et al., 2002). 
Sew two fingers together so that their surfaces function as one, and the 
primary somatosensory cortex (S1) soon resculpts the sensory map of the 
hand from five fingers to four (Clark et al., 1988). 

 Such sculpting of local circuits by a stable change of input statistics 
occurs most rapidly and completely during a  critical period  of juvenile devel-
opment, corresponding to the time of the circuit ’ s initial assembly. A kitten, 
during the first months after eye opening, develops ocular dominance 
stripes in V1 where neurons in a given stripe respond mainly to one eye 
(chapters 12 and 13). During this critical period, masking one eye for a few 
hours reduces responses of cortical neurons to that eye. Masking for a few 
weeks causes the LGN axon arbors for that eye to shrivel, thereby freeing 
synaptic territory for expansion of axon arbors from the normal (Hubel et 
al., 1977; Tomita et al., 2012). This capacity to resculpt is retained by the 
adult brain. For example, three days of masking in an adult mouse suffices 
to induce substantial resculpting of its thalamocortical synapses and a shift 
in ocular dominance (Coleman et al., 2010). 

 The economics seem clear. Short-term changes of input statistics (a pass-
ing cloud, a shift from field to forest) cause circuits in retina, LGN, and V1 
to  adapt  via short-term synaptic facilitation and depression — which is 
cheap. Long-term changes of input (masking an eye) cause circuits in V1 to 
 resculpt . This requires dismantling and disposal of used materials and syn-
thesis of fresh ones — which is more costly and harder to reverse. Conse-
quently, adaptation spans milliseconds to minutes while resculpting begins 
within days and continues for months to years. But what about intermediate-
term changes that span hours to weeks? Should a five-day hike in a forest 
rewire our V1 orientation columns to favor vertical? Apparently so, since 
five days of intermittent exposure to an oriented grating induces orientation-
specific,  long-term potentiation  (LTP).  6   

 Resculpting a particular circuit must balance probable gains against 
costs. Decisions on when to initiate, how far to go, and how long are prob-
ably settled case by case for each circuit via natural selection. Some areas are 
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readily sculpted during a critical period. But other areas maintain perma-
nently high levels of plasticity and the capacity to grow out new axons. 
Such permanent plasticity may be expensive, but the payoff can be huge. 
This suggests another principle in the design of learning: certain brain areas 
should specialize in maintaining high levels of plasticity. This allows them 
to learn subsets of arbitrary patterns, as exemplified by a cortical area in 
humans that serves literacy. 

 Special circuits learn certain sets of images 
 The ventral occipitotemporal cortex of the left hemisphere contains an area 
recently dubbed the  visual word form area  (VWFA).  7   During early childhood, 
this area serves to recognize objects and symbols — a house and a drawing of 
a house. In preliterate cultures that is all it does. However, around age 7 in 
cultures that teach reading, this area starts responding more strongly to 
written words than to drawings of objects. Across cultures, it is always  this  
area and no other that learns writing, whether it is alphabetic or logo-
graphic.  8   So something about the circuitry of this cortical area suits it above 
all others to this task of storing arbitrary squiggles.    

 Initially, a written word is  “ sounded out ”  — that is, the visual symbol 
links temporally to the voiced sound. That sound, of course, already has 
linguistic meaning. But this slow process would never get us through  War 
and Peace . Facile reading requires storing thousands of orthographic sym-
bols in some format that allows rapid access.  9   Over months and years of 
practice with thousands of words, this area prunes away its responses to 
checkerboards and faces, and it gradually captures new territory at its 
boundary with the fusiform face area. Thus, there are territorial trade-offs, 
but the benefit is huge: the ability to read vastly extends an individual ’ s 
information storage capacity by moving it beyond the skull. 

 The growth in selectivity for written words versus drawn objects does 
not occur spontaneously but requires tutelage. Therefore, it must be initi-
ated top-down from higher cortical areas. Moreover, responses to horizon-
tal strings of writing and even horizontal checkerboards are strengthened 
in early visual areas, such as V1 (  figure 14.1 ). Responses to horizontal check-
erboards are stronger for the left V1, which is closest to the VWFA. This 
suggests a function for the reciprocal pathways from higher visual areas 
down to lower ones: they tune up the lower areas for line segments that 
have attained symbolic importance. 

 Chapter 12 noted that cortex invests heavily in specialized areas in order 
to rapidly identify something critical — a face, a voice, an object. Now we 
see that the same rule applies to storage of myriad arbitrary symbols and 
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their rapid recall. In reading, the fixations between saccades last about 200 
ms. This time interval suffices to transfer the low-level visual image of a 
word string up to the VWFA and evoke recognition. Also, within this inter-
val, the recalled message relays forward to language areas to recall the 
meaning of this string and to integrate it with preceding word strings to 
comprehend the larger message. In short, the text fragment captured dur-
ing each fixation is processed sufficiently to drive the next saccade: reading 
does not allow unprocessed fragments to stack up in a buffer (Rayner, 1998). 
With all this to be accomplished, dwell time in the VWFA can use only a 
fraction of the 200-ms interval — so visual recall of words must be fast. 
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  VWFA responds to orthographic squiggles when we learn to read.  Plots indicate 

where activation was modulated by literacy during exposure to written sentences 

relative to rest. Plots report activation to visual checkers, spoken and written 

language relative to rest. Horizontal slice shows activation in literates of VWFA and 

left temporofrontal language areas. Right occipital areas are also modulated by 

literacy — a top-down effect.  “ ex-illiterate ”  = illiterate adult who learned to read. 

Modified and reprinted with permission from Dehaene et al. (2010). 
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 Storage area for orthographic images needs to grow new connections 
 Orthographic squiggles in isolation are true trivia and should be deleted. To 
be stored, they require context, which means access to the spoken words 
that they symbolize. This requires connections to the auditory language 
network, so one expects that expanding storage of squiggles by the 
VWFA would require two-way traffic between the VWFA and the temporo-
frontal language network. Indeed, such pathways develop as literacy is 
established. 

 A written sentence viewed by a nonliterate person does not activate 
either the VWFA or the network for spoken language. But the sentence 
viewed by a literate person activates both. In short, a recent cultural inven-
tion (literacy) captures a long evolved communication channel for speech. 
To do so, an established cortical area (VWFA) apparently sends new wires 
over centimeters to an area with which it had never connected until read-
ing was invented. VWFA ’ s forward coupling to the language network and its 
top-down resculpting of early visual areas both occur when an adult learns 
to read. Thus, this modest patch of cortex preserves its potential for plastic-
ity across the whole life cycle. 

 The only downside to growth is that it needs space in the skull. Within 
the VWFA, as word storage advances, there is selective pruning of circuits 
for objects and faces; moreover, the VWFA captures some territory from the 
fusiform face area at their shared boundary, and as that occurs, there are 
decrements in memory for faces (Dehaene et al., 2010). So, again, plasticity 
that improves one function causes another to decay. Again, memory capac-
ity is constrained by space. Thus, the design of learning must include rules 
for deciding what to store. 

 Empty the trash 
 In learning words, it would be inefficient to store every voiced sound, for 
that would include throat clearings, stutters, and so on. The memory bank 
would soon fill with trash; therefore, to conserve space, true words need 
sorting from noise. In this regard, the brain should accumulate evidence 
that a particular utterance belongs in the lexicon, and this implies repeti-
tion. But how many repetitions should be required? Over what time span? 
And where should they be stored? The cortex has clear rules, as we now 
recount. The rules certainly seem prudent, but whether they are optimal is 
unknown. 

 For example, when a word already stored in the lexicon, such as  “ pipe, ”  
is voiced, it evokes a specific voltage signature about 100 ms after the last 
phoneme ( “ p ” ). This voltage pattern is stable as  “ pipe ”  is repeated amid 
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other sounds 160 times over 14 minutes, and it localizes over a large part of 
the perisylvian language area (  figure 14.2;  Shtyrov et al., 2010).    

 When a word not stored in the lexicon, such as  “ pite, ”  is voiced, its 
evoked voltage initially differs from that evoked by the known word; more-
over it does not localize to the language areas (  figure 14.2 ). However, as 
 “ pite ”  is repeated, its signature eventually resembles that for the known 
word, and so does its localization. After 160 repetitions over 14 minutes, a 
pseudo-word has been admitted to the lexicon and stored within the lan-
guage complex, especially in the ventral  “ what ”  region of the auditory 
stream. Pite is a pseudo-word because it lacks semantic meaning, yet its 
voltage looks like a word and it is stored along with true words. Apparently, 
words are initially stored without their meanings — probably because mean-
ing is not what first distinguishes them from noise; rather it is repetition. 

 These language areas couple to the VWFA and apparently activate it by 
top-down signals. That is, as a voiced word activates the language areas, it 
instructs the VWFA to store the corresponding orthographic squiggle. And 
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  Adding a spoken word to the lexicon . Black trace shows that the evoked response to 
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with top-down instruction VWFA grows connections to the language areas 
that are needed to attach meaning to the squiggles and to read them aloud. 

 In summary, designs for learning store information at the sites where it 
is learned and from whence it can be directly recalled. We have noted a 
range of examples: arbitrary sound images, such as pseudo-words, are 
learned over minutes at auditory language sites; arbitrary visual images, 
such as orthographic squiggles, are learned on a similar timescale in the 
VWFA. Arbitrary motor tasks during long practice (months) reorganize cer-
ebellum and also primary motor cortex (Karni et al., 1995; Matsuzaka et al., 
2007; Kleim et al., 2004). To master two languages instead of one requires 
more space in the auditory cortex (Ressel et al., 2012). What these designs 
share is repetition. Repetition is one important way that the brain discovers 
what is worth storing. But why does storing information require space, and 
how is this need reflected in the neural designs for learning? 

 Cellular design for efficient information storage 

 As noted, information is stored and retrieved at synapses. Storage occurs by 
increasing synaptic  weight , that is, its contribution to firing the postsynap-
tic neuron. Space for synapses is already constrained by competing needs 
for local wires and long tracts, and cortical synapses are already as small as 
they can be (chapter 13), so memory capacity cannot increase by shrinking 
them further. In fact, to increase its synaptic weight, a synapse must  enlarge . 
The presynaptic terminal enlarges to accommodate more vesicles and more 
active zones for release. The postsynaptic structure, typically a dendritic 
spine, also enlarges to accommodate more transmitter receptors, more syn-
aptic scaffold proteins, and more regulatory proteins. When new active 
zones are added presynaptically, they are matched postsynaptically by 
new spines. 

 When more information is stored at a postsynaptic site, the neuron has 
more to convey to other sites, and this requires expanding its synaptic 
output — first by enlarging the active zones, and then by adding more of 
them. This requires more resources to be ferried from the cell body down 
the axon, which requires a thicker axon (figures 4.6, 11.9, 11.12, and 11.25). 
Thus, the costs of learning are not confined to the initial synapse but propa-
gate through the system.  10   

 One might wonder if memory storage could be improved by using larger 
synapses. A larger synapse can store and recall more information because it 
has a higher S/N, but this requires more space and materials. In fact, the 
storage capacity per unit volume is greatest when information is stored by 
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many small, noisy synapses — as used in cerebral and cerebellar cortex. The 
reasons are familiar: information capacity increases in proportion to the 
number synapses and as the log of synaptic S/N (Varshney et al., 2006). 
Energy costs rise linearly with the number of synapses but increase qua-
dratically with S/N. Thus it is more efficient to store information at many 
small synapses of low S/N. Just as information is transmitted more effi-
ciently at low rates, it is stored more efficiently in synapses of low 
capacity. 

 Several design features increase the storage efficiency of a low-capacity 
synapse (Varshney et al., 2006; Sterratt et al., 2011). First, in a population of 
synapses, positive and negative weights are balanced, thus eliminating 
redundancy and allowing storage of only what is needed. Second, storage 
proceeds with sparse firing, so a given synapse less frequently changes 
weight in response to two or more different input patterns. Thus sparsity 
reduces interference between stored patterns. Third, synapses are prevented 
from continually increasing their weights — for that would require continu-
ally increasing S/N and thus synapse size. So setting an upper bound to 
synaptic weight holds storage capacity to the efficient regime of small, low-
S/N synapses. 

 Synaptic weight is limited by three mechanisms: (1) synapses are physi-
cally constrained from greatly expanding — the space is already occupied; 
(2)  Hebbian synapses  (see below) increase weight when activated right before 
an action potential in their postsynaptic neuron, but they also decrease 
weight when activated right after an action potential; consequently, when 
synaptic potentials and action potentials occur at random; that is, when 
there are no correlations to learn, there is no net change in weight; and (3) 
synaptic plasticity is regulated homeostatically (Turrigiano, 2011). 

 Homeostatic regulation occurs by mechanisms that sense a neuron ’ s 
average firing rate, for example, by sensing calcium accumulation from 
voltage-gated channels at synapses and elsewhere. This signal couples to 
protein circuits that control the numbers of ion channels in the membrane. 
When mean spike rate increases, channels are removed to reduce synaptic 
currents, and when spike rate falls, channels are added. The mechanism is 
homeostatic because it stabilizes the sums of synaptic weights (positive and 
negative) to maintain an efficient firing rate. 

 Homeostatic mechanisms adjust the rates of synaptic receptor turnover 
such that the weight of each synapse is reduced/increased by a constant 
proportion. This normalization preserves the relative differences in weight 
established by stored patterns so that memories are preserved, costs are 
bounded, and efficiency is maintained. Thus, local homeostatic synaptic 
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plasticity allows learning ’ s broader circuits to keep operating in an efficient 
regime. Unsurprisingly, synaptic homeostasis is slow; otherwise it would 
erase memories as they form. Having indicated that memory systems at the 
synaptic level follow familiar design principles, we now consider the design 
of learning at the molecular level. 

 Molecular design of short-term memory 
 Cortical mechanisms, like memory mechanisms in general (see below), 
adhere to a familiar principle: start with chemistry and protein folding 
because they are cheap, compact, and fast. So a memory begins with a 
quantum of glutamate binding to its receptors on the spine of a cortical 
dendrite. The receptors change conformation to admit an inward flood of 
depolarizing cations. 

 The key trigger for memory formation is a transient rise in calcium con-
centration, and this occurs through various means. If the spine expresses 
the GluR2 subunit, calcium will enter directly through the channel; or if 
the spine expresses voltage-gated calcium channels, calcium will enter dur-
ing depolarization; or if the spine expresses the NMDA-type glutamate 
receptor (NMDAR), calcium will enter through that channel if glutamate 
binding coincides with a strong depolarization, such as occurs when the 
neuron fires (chapter 7). 

 The spine head expresses about 10 glutamate receptors and about 10 
voltage-gated calcium channels (Nimchinsky et al., 2004; Sabatini  &  Svo-
boda, 2000). These set the magnitude of the calcium surge and its variabil-
ity. For a calcium surge to initiate synaptic strengthening, it should be brief 
and local: a concentration sufficient to bind a protein at the synapse. This 
occurs with a brief channel opening because the cytoplasmic calcium con-
centration rises steeply at the channel and decays steeply over nanometers 
(chapters 7, 10, and 11). The calcium flux should be small enough for a 
pump or exchanger to promptly restore the initial concentration. A single 
channel would be too noisy and inject too little calcium; 10 channels would 
improve S/N sufficiently to match S/N of presynaptic release, but more 
might flood the synapse. So the numbers of channels could well be opti-
mized to store the present signal for the future (Varshney et al., 2006). 

 Each mechanism for elevating calcium offers something different, as will 
be explained. But simply to initiate information storage, the means doesn ’ t 
matter, only the result: when calcium ions bind to a specific kinase (CaM 
kinase II) attached to the inner face of the postsynaptic membrane, the 
enzyme changes conformation and begins to phosphorylate the glutamate 
receptors. Their conformation is thereby altered (chapter 5) so that their 
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next binding of glutamate will cause a larger inward current, and this 
potentiation increases the synaptic weight. If glutamate quanta recur in the 
same pattern, all the synapses that were potentiated together will respond 
strongly together and thus recall the original pattern.  11   

 This design, simply tweaking the conformation of about 10 receptor pro-
teins to increase the synaptic weight, is irreducibly fast and cheap (chapter 
5). But although the change in weight far outlasts the initiating calcium 
transient, it nonetheless decays. Calcium is pumped out over milliseconds, 
the kinase inactivates over seconds, and the phosphorylated glutamate 
receptors are retrieved from the membrane over and hour or so by endocy-
tosis (chapter 7). As the phosphorylated receptors are replaced with non-
phosphorylated receptors from the spine ’ s cytoplasmic pool, the potentiated 
synaptic current returns to normal. This decay of initial storage is a critical 
design feature because it prevents long-term storage of events that turn out 
to be fleetingly correlated and/or of little consequence. This storage mode, 
 early long-term potentiation , resembles a  “ speed date ”  — little invested, soon 
forgotten — unless something special warrants a longer look. 

 A longer look is provided when the behavior that caused the initial 
potentiation is repeated. One important signal that encourages a behavior 
to repeat is dopamine — which is released within specific brain regions. 
When dopamine is released near a potentiating spine, it binds to D1 recep-
tors that trigger a G-protein cascade that activates multiple kinases. Each 
kinase plays a specific role in extending LTP and converting it to a stable 
store. Where the dopamine originates and what structures its release will be 
discussed later. 

 Molecular design of long-term memory 
 In one well-studied example, the next step recruits the kinase PKM  ζ   by ini-
tiating its translation from messenger RNA parked nearby in the dendrite 
(Sacktor, 2011; Lisman et al., 2011). PKM  ζ   lacks a regulatory subunit, so it 
is constitutively active and begins to phosphorylate various proteins that 
regulate endocytosis. This shifts the balance between receptor insertion and 
retrieval, stably increasing the number of receptors in the postsynaptic 
membrane. Signals also travel backward across the synapse, announcing a 
stable postsynaptic expansion and triggering a presynaptic expansion to 
match (Tokuoka  &  Goda, 2008; Vitureira et al., 2012). In these ways, pre- 
and postsynaptic mechanisms extend synaptic potentiation for several 
hours while additional proteins are being synthesized. This is LTP.  12    

 Meanwhile, dopamine has also recruited another kinase within the 
spine, PKA, which triggers signaling pathways to the dendrite and cell 
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nucleus that now produce a host of fresh plasticity-related proteins. These 
are recruited by the spines that were  “ tagged ”  during the initial potentia-
tion (Kandel, 2012; Mayford et al., 2012). The new proteins stabilize the 
potentiated state well beyond 4 hours, doubling the spine ’ s inward current 
to a single transmitter quantum and also doubling its volume (Govindara-
jan et al., 2011). Plasticity-related proteins then arrive from the cell body to 
stabilize the spine ’ s potentiation indefinitely and also induce new spines at 
the tagged site. Nearby  non potentiated spines are induced to regress. Thus, 
spines clustered along a stretch of dendrite come to share a stable record of 
the past (  figure 14.3 ).    

 For dopamine to convert early LTP to late LTP, its timing at the synapse 
need not be critical. (But see Arbuthnott  &  Wickens, 2007.) Dopamine can 
stabilize events that occurred many minutes before or minutes after its 
release. So to initiate long-term storage, dopamine need merely create a 
broad  “ penumbra ”  that can capture and prolong any early LTP before it 
finally decays  13   (Lisman et al., 2011). This raises an important design issue: 
how many synapses are needed to stabilize a given memory and where 
should they be located? 

 The number of synapses involved in laying down a specific memory (i.e., 
a particular association of events) has not been determined — we know too 
little about how patterns that are memorized are read into specific sets of 
synapses and then read out.  14   However, there is the intriguing possibility 
that synapses clustering on a single dendrite cooperate to lay down memo-
ries. Where late LTP is mild, single spines may not reach threshold for sta-
bilization, but over a roughly 70- μ m stretch of dendrite, they share 
plasticity-related proteins, and so all stabilize together (  figure 14.4 ). Thus, a 
dendrite could be a compact memory module.    

 This design allows for efficient recall. Whereas EPSCs in spines located 
on different dendritic branches sum linearly, EPSCs in multiple spines 
along the same branch sum  supra linearly to cause a sharply timed, local 
dendritic spike (Gasparini  &  Magee, 2006; Makaral et al., 2009). This design, 
which uses just the right set of potassium channels, allows recall of 10 – 100 
independent patterns with minimal mutual interference. Thus, the princi-
ples  complicate circuits  and  minimize wire  could extend down to the integra-
tive level of a dendritic segment. 

 In short, memory could be stored when about 100 irreducibly small syn-
apses on spines clustered on a dendritic segment stably double their excit-
atory currents. This stably doubles their use of constrained resources — energy 
and space — so the brain invests cautiously, waiting for evidence that a par-
ticular memory will be important. The evidence accumulates from a cycle: 



Learning as Design/Design of Learning 415

glut + inhib prot synth

current

current

volume

volume

150

50

100

200
250

150

50

0

100

200

N
o

rm
alized

 E
P

S
C

 (%
)

N
o

rm
al

iz
ed

 s
p

in
e 

vo
lu

m
e 

(%
)

–20 0 4020 60

Time (min)t = 0’ t = 80’

neighboring spine

glut + dop mimic

glut + dop mimic 
+ inhib prot synth

glut

250

150

50

0

100

200

N
o

rm
al

iz
ed

 s
p

in
e 

vo
lu

m
e 

(%
)

–25 25 125 225175 27575

Time (min)

10
p

A

10ms

10μm

dendrite of
hippocampal
pyramidal cell

spine with 
glutamate + 
dopamine 
mimic

 Figure 14.3 
  Early long-term potentiation (LTP) and late LTP both occur at a single spine.   Left : 
Closely spaced glutamate pulses are delivered to one spine on the dendrite of a hip-

pocampal pyramidal cell ( • ) but not its neighbor (o). After 80 minutes the stimulated 

spine has enlarged.  Right:  Brief glutamate stimulus (bar) plus a dopamine mimic 

to activate a spine ’ s PKA doubles spine volume and postsynaptic current over the 
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requires synthesis of new proteins. Modified and reprinted with permission from 

Govindarajan et al. (2011). 
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phasic release of dopamine activates the  “ reward circuit ”  that causes the 
behavior to repeat. Repetition strengthens early LTP at spines and eventu-
ally converts them to late LTP. Spine clusters that stabilize simultaneously 
as separate memory quanta can be widely distributed across brain areas; yet 
when the stimulus pattern that initially caused storage recurs, they are 
recruited together. Consequently, what we experience as an integrated 
memory may be assembled like a jigsaw puzzle. 

 This account has focused on the roles of dopamine in cortical synaptic 
plasticity. Other molecules can also initiate long-term storage (Mayford et 
al., 2012; Gao et al., 2012), but as we now explain, the role of dopamine can 

1–10 spines

potentiated

unpotentiated

12
14
16
18

300

250

150

50

0

100

200

–25 0 25 50 75 100 120

time (min)
n

o
rm

al
iz

ed
 v

o
lu

m
e 

(%
)

0

–2
–25 0 25 50 75 100 125

2

4

6

8

10

time (min)

# 
o

f 
p

o
te

n
ti

at
ed

 s
p

in
es

0

–2
0 50 100

2

4

6

8

10

time (min)

# 
o

f 
p

o
te

n
ti

at
ed

 s
p

in
es

# of stimulated spines

5μm

5μm

 Figure 14.4 
  Long-term potentiation requires stimulation of more than 10 spines on one den-
dritic branch .  Upper left:  Fourteen spines stimulated (bright dots) on one dendritic 
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be followed from cellular mechanisms of plasticity to the broadest princi-
ples of learning. 

 How the design of memory couples to the design of learning 

 So far we have considered the design of storage. But the point of learning is 
to store information linked to a particular signal so that it can be recalled. 
For example, the sound of a word from the stored lexicon recalls its written 
form. How is such a linkage established at the synapse? 

 One key is a glutamate receptor of astonishingly clever design. When an 
NMDA receptor binds a quantum of glutamate, its cation channel admits 
only a modest current because the channel ’ s mouth is partially blocked by 
a magnesium ion. However, if a different input excites the neuron to fire a 
spike, the strong depolarization pops the magnesium from the channel, 
allowing an inward surge of current carrying calcium (figure 14.5). This 
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 Figure 14.5 
  NMDA receptor provides a mechanism for Hebbian learning . Current elicited by glu-

tamate binding to the NMDA receptor channel is blocked in the presence of magne-

sium ion. However, if a glutamate quantum arrives while the neuron is depolarized 

below about  – 50 mV by an action potential, the channel is unblocked and a strong 

current flows, delivering a pulse of calcium. Consequently, the NMDA receptor chan-

nel detects the coincident arrival of a glutamate quantum from one source and an 

action potential from another source. Reprinted with permission from Miyashita et 

al. (2012). 
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pulse of calcium initiates early LTP. Thus, when the printed symbol  “ pipe ”  
excites spines on a pyramidal dendrite in the VWFA, the response fades 
quickly. But if the voiced word causes a spike while the visual symbol excites 
the NMDA receptors, they open fully to potentiate the spines.    

 This mechanism is termed  Hebbian  because the experimental psycholo-
gist D. O. Hebb realized that a mechanism of this type could explain mem-
ory storage, and 40 years later, voil á , it was found. The NMDA channel is 
one important example among others. Here, all that is needed is to couple 
two inputs temporally to drive a surge of intracellular calcium. The Purkinje 
cell does this with a different mechanism, releasing a surge of calcium from 
intracellular stores via a kinase-driven signaling cascade. What the designs 
all share is a coincidence detector. But that alone is insufficient because it 
does not indicate whether a coincidence is accidental or significant. This is 
why synaptic potentiation by a single  “ suspicious coincidence ”  is allowed 
to dissipate. 

 However, if a coincidence repeats, statistical evidence accumulates that 
it is no accident, and potentiation grows. What causes repetition? A behav-
ior repeats if it is followed by some rewarding event. If a thirsty lab animal 
presses a lever by accident and receives a drop of juice, it will likely press 
again. If a beginning reader views the printed symbol  “ pipe ”  and hears it 
voiced, the coincidence of symbol and sound is suspicious, but repetition is 
needed to confirm the association. What drives the student to repeat the 
sound while viewing the symbol? The reward is a teacher ’ s praise — for we 
thirst for praise as a lab rat thirsts for juice. Another reward is the sense of 
mastery — which sustains learning when the teacher is long gone. 

 The brain represents all of these rewards — juice for the rat, praise and 
mastery for the student — with one internal signal. It is a pulse of dopamine 
released when neurons clustered deep in the midbrain fire a burst of spikes 
(figures 4.1 and 4.4). The dopaminergic axons distribute to various sites 
critical for learning. Some regions, such as prefrontal cortex, select a behav-
ior and evaluate whether it should be repeated. Other regions, such as ven-
tral striatum and hypothalamus, drive the repetition. From these regions an 
electrode can drive repetition even more potently than common external 
rewards such as food or sex. Naturally, sites that choose and evaluate con-
nect (via long loops) with the sites that drive repetition (Bromberg-Martin 
et al., 2010). 

 To summarize: synapses are potentiated by repetition, and when they 
are also bathed in dopamine (or a different molecular signal), the combina-
tion initiates long-term storage (  figure 14.4 ). At certain sites the same signal 
drives all the essential components: behavioral repetition, synaptic poten-
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tiation, and long-term storage. What makes this  “ teaching signal ”  so effi-
cient will be explained later. 

 Storage in many areas is driven directly by dopamine input. This includes 
hippocampal maps of spatial and musical landscapes and other areas such 
as prefrontal cortex, striatum, and amygdala — where decisions to store or 
not to store are worked out. However, areas closer to the sensory side, such 
as the VWFA and language areas, do not receive dopamine input, so their 
synapses require different mechanisms to initiate long-term storage. These 
posterior areas receive rich feedback connections from forward cortical areas 
(see later,   figure 14.7 ). This might be another case where complex decisions 
are computed at higher levels and then communicated back to earlier areas 
as executive orders ( “ store ” / “ don ’ t store ” ). Corticocortical axons use the 
same log-normal distribution of diameters noted to be efficient for various 
other tracts (figure 4.2; Pajevic  &  Basser, 2013). Which particular chemical 
signal initiates long-term storage by dendritic spines in VWFA remains to 
be determined (Caroni et al., 2012; Holtmaat  &  Svoboda, 2009). 

 What rules govern choice? 

 Information is stored and retrieved locally, as we have seen, because that is 
efficient. Storage can be triggered by repetition and solidified by further 
repetition. But how does the brain  choose  a particular behavior to repeat 
and thus to store? Moreover, given that a behavior integrates many ele-
ments through a final common motor pathway, how could it possibly be 
 “ stored locally ”  — what would that even mean? Consider the following quo-
tidian example — fictitious in its details but firmly based on current under-
standing from electrophysiology, neuroanatomy, and fMRI. 

 Choosing an Exit 
 London ’ s Paddington Station is a hub with many exits. Its geometry some-
what resembles the Morris maze that tests spatial navigation in rodents. 
And like rodents, commuters map this space in their hippocampus. Our 
particular commuter, arriving on the 8:09, steps down, turns right and 
strides directly to Exit 2. This route he repeats nine days out of ten. He 
nearly always chooses this exit because he always needs a taxi. Initially he 
wandered the station in mild bewilderment until he happened upon Exit 2 
and was rewarded by a queue of taxis. Taxi drivers gather at Exit 2 because 
there  they  are rewarded by a queue of commuters. This exemplifies an iron 
law of learning: what will most likely be rewarded, we repeat (see later, 
  figure  14.8). 
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 But today our commuter pauses at Exit 1, looks to his watch, hesitates 
again, and finally selects it. What explains this break from routine? Rising 
late, our commuter skipped breakfast to catch the train, so he ’ s hungry. He 
knows that Exit 1 leads to a food court and that choosing it will reward him 
with a snack. Why then does he check his watch and hesitate? Because he 
was reared to be punctual. In choosing Exit 1, our commuter values the 
prospect of satisfying his hunger more highly than the prospect of satisfy-
ing a family rule. 

 This leads him to another choice: plump croissant or plain scone at half 
the price. To choose, he must again compare their subjective values. If our 
commuter values novelty and savor, one croissant is worth at least two 
scones, so he will chose the croissant. But now, from some deep memory 
store, his mother speaks — astonished and disappointed that her son might 
choose pleasure over price. He selects the scone (Levy  &  Glimcher, 2012; 
Smith et al., 2010; Levy  &  Glimcher, 2012). 

 Neoclassical economic theory proved mathematically that whenever 
choices are logically consistent, the chooser behaves as if the alternatives 
are valued on a common scale. The chooser selects the alternative with the 
highest value (Levy  &  Glimcher, 2011). Accordingly, there must be neurons 
to mediate this behavior — cells whose firing patterns reflect subjective 
choice value. The subjective scale must integrate myriad factors: both our 
humble need to eat and our higher need to satisfy the family rules — in this 
case, punctuality and thrift. Such a scale requires information from all 
sources to converge for final weighing. 

 These design specifications are instantiated in a defined region of orbito-
frontal cortex (figure 14.6). This region ( area 13  and vicinity) receives con-
vergent input from essentially all sensory modalities and from limbic 
structures such as the amygdala and accumbens (figure 14.7; Ongur  &  Price, 
2000). The region becomes active during choices; moreover, it contains 
neurons that code subjective choice value — neurons that can fire more to a 
croissant than a scone (Levy  &  Glimcher, 2011; Padoa-Schioppa  &  Assad, 
2008; Kable  &  Glimcher, 2009). Experiments have yet to include a mother ’ s 
voice — but one can well imagine that it weighs in regularly from wherever 
it is stored. If all values are weighed on a single scale, rewards must be dis-
tributed to their original contributors to keep them in the game. That is, the 
family value of thrift must be rewarded somewhere so that it can continue 
to compete with the taste of a croissant.    

 In short, even apparently simple choices — to eat or to arrive on time, to 
select a croissant or a scone — cut deep. That is because some part of the 
choice often reflects a strongly held value, either instinctual (nature), devel-
opmental (nurture), or both. When the commuter chooses a scone, he 
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values his own preference lower on the scale than he values the preference 
of his mother. 

 Designs to optimize choice and information storage 
 The brain addresses the problem of choice with neurons that encode value. 
A value-coding neuron should optimize its ability to encode different val-
ues. This requires a steep curve for response versus reward — just as for neu-
rons at all lower levels (chapters 3, 6, 9, and 11). The value-coding neuron 
needs to continually reposition this curve along the reward axis in order to 
match any change in the mean reward distribution (figure 3.4). Moreover, 
the neuron should flatten the curve if the reward distribution broadens to 
better encode the wider distribution. About a quarter of the value-coding 
neurons recorded in orbitofrontal cortex behave this way (Kobayashi et al., 
2010; Louie et al., 2011). 

 Notice that neurons at the highest cortical level implement fundamental 
economic behavior using the same adaptive design (shifting response 
curves) as the humblest sensory neurons. This is why we list  adapt  as part of 
the principle  learn  from which it is distinguished mainly by timescale. As 
we have noted, any mechanism that uses current inputs to shape future 
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  Posterior ventromedial prefrontal cortex encodes social value and monetary value 
on the same scale.   Left : Locus in prefrontal cortex where activity correlates with 

likelihood of economic exchange.  Right : Within this region, a stronger neurometric 

signal predicts likelihood of economic exchange: money versus opportunity to view 

a pretty face. Individuals showing greatest neurometric value for pretty faces readily 

exchanged money to view more of them whereas individuals showing least neuro-

metric value for pretty faces versus money were less likely to pay for that opportu-

nity. Line represents the least-squares fit to the data points; each point reflects the av-

erage response for a participant. Reprinted with permission from Smith et al. (2010). 
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responses is projecting information from the present into the future to 
change behavior. This is learning.  15   

 This chapter asked initially, what information should be stored? By now, 
one answer seems obvious: store those scenarios that yield better than 
expected rewards — because those are what bear repeating. Moreover, it is 
efficient to store the diverse components of a given scenario in the cortical 
areas where they originated. This is one likely use for the connections that 
higher areas, such as orbitofrontal cortex, return to areas that provide their 
inputs (figure 14.7). Top-down orders can be simple:  save  ( facilitate  the syn-
apses) or  delete  (depress the synapses; Ayzenshtat et al., 2012). Simple orders 
can be conveyed with minimal wire (chapter 4). But to learn which deci-
sions bear repeating, the orbitofrontal areas require a  teaching signal .    

 How predictors of value learn the value of their predictions 

 The most efficient teaching signal for any learner — machine or animal — is 
computed by the  temporal difference model  (Glimcher, 2011; Schultz, 2011; 
Montague et al., 1995). The behavioral choice is evaluated by an internal 
signal that compares the currently experienced reward value to the expected 
reward value. This signal, reporting the difference between actual and pre-
dicted reward, feeds back to the choice mechanism to update the predic-
tion. It says, if better than predicted,  “ Repeat! ”  or, if worse than predicted, 
 “ Forget it! ”  

 Quantitatively, this  reward prediction error  is the magnitude of the reward 
signal divided by the standard deviation of its probability distribution —
 something like a contrast signal divisively normalized (chapter 12; Louie et 
al., 2011). As learning proceeds, the error diminishes, so the rate of learning 
declines. When the reward and the prediction are identical, learning does 
not occur. One hallmark of this optimal teaching signal is its timing shifts. 
At first, it closely follows the objective reward — delivery of food, sex, 
money, and so forth. But as suspicion grows that a stimulus predicts an 
objective reward, the teaching signal diminishes for the actual reward and 
grows for the predictive signal (  figure 14.8 ).    

 A signal with all the foregoing properties, shown to be both necessary 
and sufficient for an optimal teaching signal (Glimcher, 2011), occurs in a 
defined region of the ventral midbrain (Schultz, 2010). Neurons clustered 
there show exactly these properties, firing tonically at low mean rates and 
then phasically when a behavior is unexpectedly well rewarded. When a 
behavior is rewarded, but no better than expected, the spike burst does 
not occur. The dynamic range for this critical teaching signal seems 
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shows brain of macaque monkey. Modified from Sterling (2004b) and reprinted with 

permission. 
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 Figure 14.8 
  Properties of the temporal-difference teaching signal .  Upper:  Dopamine neuron 

fires phasically following primary rewards.  Lower:  As the animal learns that a signal 

(light or sound) predicts a primary reward, phasic activation declines for the pri-

mary reward and grows for the predictive signal. Black histograms show accumulated 

spikes across trials. Reprinted with permission from Schultz (2010). 
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astonishingly small: a tonic rate of about 4 Hz rises phasically to about 40 
Hz, but only for approximately 100 ms, thus four spikes. It may seem sur-
prising that joy could depend on such a slender signal, but this dynamic 
range is similar to retinal ganglion cells (chapter 11). 

 Teaching neurons need to distribute their signal widely: to all the areas 
where value is represented, where choices are made, and where actions are 
selected. This includes orbitofrontal cortex, dorsal striatum ( caudate ) for the 
motor components of choice, and ventral striatum ( nucleus accumbens ) for 
the emotional components (Asaad  &  Eskandar, 2011; Hare et al., 2008). As 
noted, these areas can then relay executive orders cheaply by fine axons.  

 To be clear, many sorts of surprising external and internal rewards —
 much of what the heart might desire but does not expect — are represented 
in the brain by the magnitude of this signal and its timing. It is a final com-
mon pathway for learning, just as motor neurons are the final common 
pathway for motor behavior. This design is essential to valuing all choices 
on a single scale: were we to reward taste, thirst, and sex via separate sys-
tems, choosing would be even more of a problem than it already is. Such 
considerations suggest an economical neural design that we term  “ quasi-
wireless ”  for a reason now to be explained. 

 How the teaching signal reaches its forward targets 
 The cheapest route to inform large volumes of neural tissue would be to 
broadcast a neuroendocrine signal via the circulation, that is, wireless sig-
naling (chapter 4). However, that would be too slow; moreover, it would 
smear the critical temporal differences. On the other hand, to implement 
extremely sharp timing would require that a  “ teaching synapse ”  contact 
every learning synapse — at a huge cost in space. 

 But the teaching signal does not require extremely sharp timing. It can 
be roughly 100-fold broader than, for example, an auditory signal. Conse-
quently, the teaching signal can be sent by wire to within a few microme-
ters of some learning synapses and there release a well-timed pulse of 
chemical transmitter into the extracellular space. Transmitter is allowed to 
diffuse over micrometers to reach multiple synapses. Diffusion over a few 
micrometers allows sharp enough timing, and the spatial blurring from dif-
fusion doesn ’ t matter because only synapses that are already potentiated 
will respond (figure 14.3). 

 A single axon delivers this teaching signal far and wide — to prefrontal 
cortex, hippocampus, dorsal and ventral striatum, amygdala, and hypo-
thalamus (figure 14.9). This requires a huge terminal arbor with up to 10 6  
dilations containing vesicles filled with transmitter (Glimcher, 2011; 
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 Figure 14.9 
  Teacher axons employ dense arbors to broadcast signal to large volumes of tissue. 
Upper : Axon arbor of a dopamine neuron projecting from substantia nigra (SNr) to 

dorsal striatum (Matsuda et al., 2009; rat). The arbor supplies dopamine to a volume 

that includes 75,000 neurons. Each point in the target is  “ covered ”  by about 150 

overlapping input arbors, and thus all dendritic spines lie within 3  μ m of a dopami-
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nergic synaptic dilation. Total wire length of arbor is about 0.5 m, and human arbor 

is nearly 10-fold greater. Dopamine arbors in frontal cortex are less dense (Matsuda 

et al., 2012).  Lower : Axon arbor of octopamine neuron (honeybee) projecting bilat-

erally to multiple regions that encode reward for olfactory learning. Like dopamine 

neurons in the ventral tegmentum of the mammalian brain, this neuron codes for 

a prediction error: it decreases its response to an expected reward but increases its 

response to an unexpected reward. Reprinted with permission from Menzel (2012). 

Schultz, 2007). This is 100 to 1,000-fold more active zones than are 
expressed by standard neuron types which require a large cell body and a 
thick axon to sustain them. This neuron uses a fairly slow action potential —
 just fast enough to support the degree of spike-timing precision required for 
efficient teaching. The slow action potentials also match the final stage of 
wireless transmission, that is, diffusion in the extracellular space across 
3 – 10  μ m over tens of milliseconds.    

 To deliver this teaching signal to large volumes of neural tissue requires 
in human on the order of 200,000 neurons per hemisphere  16   (Damier et al., 
1999). This is about one fifth as many neurons as contribute to the optic 
nerve. The tasks are essentially the opposite. Whereas ganglion cells need to 
signal independently and preserve a fine spatial map, the  “ teacher neu-
rons ”  need to send one message synchronously throughout the hemi-
sphere. When the same teaching signal is broadcast to all synapses, those 
that have been potentiated during a repeated behavior will all strengthen 
together. To promote synchrony, the teacher neurons couple strongly with 
gap junctions. That allows synchronous release of a transmitter from about 
10 11  synaptic dilations  17   distributed densely and uniformly, an efficient way 
to synchronously bathe large volumes. 

 The mammalian neurotransmitter released to signal reward-prediction 
error is dopamine.  18   So the teaching signal required for efficient learning is 
a brief pulse of dopamine delivered by a burst of spikes at roughly 40 Hz 
over 100 – 500 ms at key sites for subjective value and choice. The teaching 
signal encourages a behavior to repeat if the behavior delivers a positive 
reward-prediction error. This design couples the dopamine pulse to a mech-
anism that causes a subjective pulse of  “ well-being. ”   19   Whether, besides 
humans, other animals also feel this pulse, we cannot say, but their reward-
seeking behaviors certainly suggest it. 

 Neuroscientists were formerly reluctant to think about subjective feel-
ings. However, if we accept that firing by certain orbitofrontal neurons 
encodes flavor, punctuality, and thrift according to their relative subjective 
values, we might as well accept that dopamine ’ s sculpting of their synapses 
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is associated with a moment of subjective  “ happiness. ”  This is what we 
often seek during choice and learning: a pulse of subjective well-being. The 
visual image of a croissant is of no particular interest, nor is the raw gusta-
tory information from a bite. It is what they elicit: a signal that delivers a 
pulse of dopamine to striatal and orbitofrontal neurons. 

 Mysteries still abound. For example, a thirsty animal enjoys its earned 
juice reward even though it was anticipated, and the commuter enjoys his 
scone even though it is what he expected. In these cases the dopamine 
neurons do not fire because the reward-prediction error = 0. These subjec-
tive pleasures must depend on other intrinsic signals, obvious candidates 
being endogenous opioids and cannabinoids. 

 Downsides to the  “ temporal difference ”  design for learning 

 Can ’ t get no satisfaction 
 Temporal-difference learning is, from a theoretical perspective, a highly 
efficient design (Glimcher, 2011). Moreover, the brain executes it efficiently 
via dopamine neurons that fire brief bursts of slow action potentials to 
deliver, quasi-wirelessly, a pulse of subjective well-being that encodes a pos-
itive surprise as the teaching signal. This works brilliantly in natural envi-
ronments because they are unpredictable and therefore provide diverse 
small surprises and frequent pulses of subjective well-being. But modern 
environments are crafted to be highly predictable. For the temporal-
difference design, this creates two huge problems. 

 First, because the teaching signal needs to be brief, the sense of well-
being — what Freud termed  “ happiness ”  —  must  be episodic. This is bearable 
when the environment delivers small reward-prediction error signals with 
some frequency. However, as the environment grows more predictable, 
sources of these signals shrink, and the intervals between episodes of satis-
faction lengthen. The efficient design for learning in an unpredictable envi-
ronment becomes in a predictable environment — zoo or modern city — an 
efficient design for existential angst. 

 Live with artificial light in a temperature-controlled building, and there 
will be few surprises from weather or climate. Shop in a supermarket where 
the goods are always the same; eat prepared foods designed to always taste 
the same. Instead of playing a sport, or an instrument, or having sex — play 
a DVD of someone else doing it. Be surprised by an  “ action film, ”  but soon 
it is routine. Repetition shrinks surprise and thus the pulse of well-being. 

 The second huge problem is that the teaching signal makes us so clever 
that we find ways to  “ fool ”  it. We identify natural products, such as alcohol, 
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nicotine, opiates, and cannabinoids that release dopamine in greater than 
quotidian amounts (Cheer et al., 2004). We find and distill other products, 
such as cocaine, that inhibit the dopamine transporter, thereby increasing 
and prolonging dopamine ’ s elevated concentration in the extracellular 
space. Both methods intensify the sense of well-being and hold it at a 
plateau — for a while. But the reward-prediction error signal is all about 
surprise — so the system includes numerous mechanisms that adapt. This 
requires progressively stronger stimuli to achieve the same sense of well-
being. So we initially fool the system but ultimately fool ourselves — as 
exemplified by Freud, who was doubly addicted — to nicotine and cocaine.  

 Given this bit of neural design, the best we can do for comfort is to find 
sources of small surprise that can deliver brief pulses. On vacation we reen-
counter surprises from Nature: sunrise, sunset, night sky; warm breeze 
when we are cool and cool breeze when we are warm; sports, music, crafts, 
dance, sex. The learning system built upon small, episodic surprises drives 
us to keep them coming whereas urban life  “ protects ”  us from them, leav-
ing a few vicarious sources that prove to be poor substitutes. 

 Nearly any behavior can act like a drug — eating, running, and gambling 
can all drive the reward-prediction error signal — some to more constructive 
effect than others. However, reliance on a single behavior to drive the 
reward-prediction error signal, like drugs, gradually requires increasing 
doses to achieve the same effect. 

 In short, the downside to this brilliantly engineered system is that it 
evolved to work in environments rich in surprise (  figure 14.10 ). Narrow the 
range of surprises, and the teaching system locks onto whatever source of 
reward is readily available. This defines  addiction  — a dysfunctional behavior 
that develops inexorably when a system designed for surprise is deprived of 
it. Nothing wrong with the system — just that it was engineered for a differ-
ent set of conditions. Modern societies address this so poorly. Instead of 
fighting narco-wars, we should be developing more surprising environ-
ments and richer ensembles of activities.    

 This account is far from complete. For example, what encodes disap-
pointment? Since a positive reward signal delivers a pulse of well-being, 
does a negative signal that accompanies failure deliver a pulse of unwell-
being? What causes single-trial learning, avoidance learning, and motor 
learning? What strengthens synapses in brain areas devoid of dopamine 
axons? This chapter, to reduce space and energy, has been circumscribed. It 
has gathered and integrated what amount to interim reports from highly 
focused investigators, and the elephant they are exploring is large. Never-
theless, a few conclusions seem warranted. 
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 Some conclusions 

 Recycle space 
 To store information requires space, so ultimately an adult brain can hold 
only a limited number of memories. The brain solves this problem by recy-
cling the space. In an adult brain there can be no learning without equal 
forgetting, and this is why  forget  belongs to the design principle that 
includes  learn . 

 The brain winnows all memories. Fresh ones with little promise of future 
reward, it deletes wholesale. Those with greater promise it saves, but gradu-
ally discards inessential details. So the brain continually prunes and res-
culpts its stories — by continually pruning and resculpting its synaptic 
connections. 
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 This design — recycling of brain space — involves matching synaptic plas-
ticity, that is, the capacity to resculpt, to local need. For example, synaptic 
plasticity is high in the VWFA during childhood, which is critical for rap-
idly learning to read, and it is high in motor areas when it becomes critical 
to learn fine motor skills. Plasticity eventually tapers off but persists to 
some degree, which is why a pensioner can learn a new musical instrument 
or a new language. But as resculpting slows with age, early memories and 
habits tend to stabilize, and new ones are established more slowly. Conse-
quently, we grow  “ set in our ways, ”  and old dogs grow harder to teach. 

 Specializing 
 Learning is designed to process, store, retrieve, and resculpt information at 
the same site: the synapse. Therefore, learning follows the basic patterns of 
cortical specialization. Moreover, specialization extends to the individual 
hemispheres: languages are learned primarily on the left and music primar-
ily on the right, motor skills (handedness) are learned commonly on the 
right, and so on. Motor asymmetry is marked in humans — where it can 
exploit direct connections from motor cortex to individual motor neurons. 
This pathway is essential for fine control of individual fingers and effective 
use of our uniquely opposable thumb. The direct corticomotorneuronal 
connections are most highly developed in humans (Kuypers, 1981; Rathe-
lot  &  Strick, 2009). Thus, even if other apes had the patience to practice the 
violin, they would lack the essential fine motor control.  20   

 The brain ’ s tendency toward specialized areas for different skills extends 
to the pool of brains within a community. Because one brain has limited 
capacity and requires constant practice to maintain its particular skills, an 
efficient community will support specialization across brains: butcher, 
baker, doctor, spiritual leader. This can only work, of course, if people man-
age to cooperate. That requires kindnesses that encourage trust and suspi-
cions that thwart trickery.  21   That simple rules of fairness and reciprocity are 
shared across cultures suggests that they belong to a neural design that sup-
ports specialization of brains within a community (e.g., Gintis  &  Fehr, 
2012; Baumgartner et al., 2009; Fehr  &  Camerer, 2007; Camerer  &  Fehr, 
2006). 

 Education 
 Each brain expresses different splice variants of myriad synaptic proteins 
that serve learning and plasticity. Moreover, each person experiences differ-
ent education, different life events. Also, each person behaves differently 
and so experiences different feedback. Every interaction between two 
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people, even a  “ simple ”  handshake, changes both brains in varied and 
unfathomable ways. The rich interactions between varied synaptic proteins 
and varied experiences give each brain a unique functional architecture, 
and this causes each person to learn differently. 

 Given that brains differ at birth and differ more with every new experi-
ence, uniform education cannot be optimal. Yet, we typically confine 30 
children to desks in a small room for many hours per day, insisting that 
they  “ pay attention ”  and not fidget. About 5% of these children, whose 
brains by dint of genes and experience respond poorly to such confine-
ment, we diagnose with a mental health disorder ( attention deficit hyperactiv-
ity disorder ) whose peak onset coincides with matriculation. More than half 
of the children exhibiting this  “ disorder ”  are treated with drugs with the 
same properties as methamphetamine and cocaine (Low, 2012). This is a 
Procrustean solution: prescribing drugs of abuse, instead of discovering 
what activities calm and engage the child. 

 Given the brain ’ s limited storage capacity, it matters how we fill it. So 
what should we teach and how? For students to grow facile at accessing and 
evaluating information, they must do it for themselves — discover what 
they do best, what encourages them to repeat — to practice. Probably the 
best we can do is to provide diverse opportunities: a walk in the woods, a 
playground, a garden, a chisel, a cello. Instruction should include basic 
rules for safety and some pointers on observing, recording, evaluating, and 
integrating. None of these except for safety are truly teachable, because 
there is magic to it — like the conductor drawing out a symphony with a 
baton. 

 The best a teacher can do beyond providing opportunities is to give feed-
back that encourages continued, mindful practice. That is why a few prin-
ciples can be as helpful as a compendium, and that is what this book has 
attempted. 
 
 
 
 
 
 
 
 
 
 



 Summary 

 This book opened by asking, how can the brain be far smarter than a super-
computer yet consume 100,000-fold less space and energy? Brain and com-
puter are governed by mathematical and physical laws specifying that the 
costs to capture, process, send, store, and retrieve information rise dispro-
portionately for higher information rates. One reason for the brain ’ s effi-
ciency is that it has more ways to stay on the linear region of this curve. 
Those ways constitute principles of neural design. 

 To restrain its overall signaling rate, a communication channel should 
try to fill its capacity with more information and less noise. All neural pro-
cesses have a noisy component: transmitter molecules arrive stochastically; 
ligands bind, channels open, vesicles fuse, and spikes fire — all stochasti-
cally. To distill information from stochastic processes, all levels use the 
same strategy: sum n correlated events and thereby improve S/N as  √ n. 

 This core strategy, which operates at all levels from molecules to behav-
ior, has a drawback: cost rises faster than the benefit. Although S/N can 
improve 10-fold with only 100 events, the next factor of 10 requires 10,000 
events. Because costs rise linearly, whereas improvements rise as the square 
root, there soon arises a point of diminishing returns where improving S/N 
by spatial and temporal summation becomes uneconomical. Greater effi-
ciencies for a communication channel require additional design strategies. 

 One strategy is to clear room for more information on a channel ’ s lim-
ited capacity by reducing redundancy. Events arriving closely in space or 
time carry similar information, so integrating more ion channels, synapses 
and spikes tends to fill the capacity without adding information. Neural 
designs at all levels combat this tendency by using some form of inhibition 
to subtract the mean and transmit only the difference signal. Where indi-
vidual elements in an array sum their inputs broadly to improve S/N their 

 15   Summary and Conclusions 
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overlap increases redundancy within the array. In that case, elements 
restrain their individual S/N to maximize total information sent by the 
array, as exemplified by an array of retinal ganglion cells coding the retinal 
image. This illustrates that a design goal at the single neuron level (improve 
S/N) is integrated with another goal (reduce redundancy) so that an array 
can maximize its total information. 

 The theoretical optima for spatial and temporal summation to improve 
S/N and the theoretical optima for lateral inhibition to reduce redundancy 
change according to input signal and noise. Consequently, efficient designs 
should adapt both processes to the statistics of signal and noise. Moreover, 
adaptation should start as soon as there is sufficient statistical evidence that 
the mean has indeed changed. Adaptation to enhance efficient use of chan-
nel capacity is widely employed by the brain, and many instances are 
known to approach optimality. They all serve the principle  send only what is 
needed . 

 Another route to restraining a neuron ’ s information rate is to sculpt the 
message in order to send its downstream user only what it needs. Since 
there are various downstream users, this strategy requires multiple, parallel 
pathways. Each communication channel, by sending less information, 
restrains its own rate, thus economizing on space and energy. 

 Multiple parallel channels also allow better matching of capacity to the 
natural distribution of information, and in some cases the match is shown 
to be optimal. For example, a retina sending bright and dark visual con-
trasts separately over ON and OFF channels optimally matches the distribu-
tion of channels to the distribution of bright and dark in natural scenes. It 
also halves the information per channel, reducing the cost of transmission 
by fourfold. Moreover, the benefits carry across many subsequent stages. 
Thus, routing information via parallel communication channels serves the 
principle  send at the lowest possible rate . 

 Compute at the cheapest level 
 The mathematical rules mentioned specify the general costs of transmitting 
and processing information, so they apply to all levels, from molecules to 
tracts and areas. These rules do not indicate the relative costs of different 
levels, yet those differences are substantial. Physics sets a lower bound to 
the energy needed to code 1 bit: ~ 1  k B T  joules. This lower limit is approached 
by the coding of 1 bit as a change in protein conformation. 

 It follows that when neurons capture information efficiently via changes 
in protein conformation, they should use proteins to process the informa-
tion efficiently. For this, protein molecules are linked chemically, by 
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binding and catalysis, to form a circuit. With each protein molecule chang-
ing the signal in a specific way, the circuit computes. 

 Computing with such a chemical circuit is efficient. A protein molecule 
is irreducibly small and operates close to thermodynamic limits and, by 
changing conformation allosterically, it computes as a finite-state machine. 
Efficiency is maximized by containing circuits in complexes and small com-
partments. Delays and noise from diffusion are reduced, and small com-
partments achieve high concentrations with relatively few molecules. High 
concentrations speed processing by accelerating reactions and by allowing 
low binding affinities. 

 Chemical computing with small numbers of molecules increases noise —
 from diffusion, stochastic binding, and so on. Compartmentalization and 
complexing help, but ultimately S/N can only be improved by using more 
molecules to carry the same signal. This is done most efficiently by  match-
ing  the number of molecules to the signal that they carry. A reliable signal 
requires many molecules to conserve S/N, but when S/N is low, fewer mol-
ecules can be used, thereby avoiding wasteful excess capacity. 

 Chemical computation has a serious disadvantage. Although chemistry 
over short distances can be fast — chemical signals diffuse 1  μ m in a 
millisecond — it cannot operate rapidly over longer distances. That requires 
electrical signals, which transmit passively 1,000-fold farther, 1 mm in a 
millisecond. To travel still farther, signals amplified as spikes course 
throughout the brain and body up to 100 mm in a millisecond. But these 
speeds over these distances cost more energy and space. Thus, wherever 
possible, neurons follow the principle  compute with chemistry . 

 Costs of speed over distance 
 Electrical signaling for speed over distance is limited by the resistance of a 
single ion channel, membrane capacitance, the resistance of a neuron ’ s 
internal cytoplasm and ion channel noise. All four limitations can be 
reduced by opening more channels. But in contrast to a protein signaling 
chemically, an ion channel ’ s electrical signal is expensive. For example, the 
cost of opening a sodium channel by changing its conformation is only 
about 25  k B T  joules. But one millisecond ’ s worth of current flowing through 
that channel, for a power gain of  × 1,000, admits 6,000 sodium ions. These 
cost 2,000 ATP (equivalent to 50,000  k B T ) to pump out, which is 2,000 
times the cost of a G protein signaling chemically. 

 Electrical signaling also costs substantially more space. Chemical signal-
ing is wireless, but electrical signals travel along wires, such as the dendrites 
and axons that occupy more than 50% of a brain ’ s volume. Supplying 
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energy also takes space. The sodium – potassium pump works relatively 
slowly: a pump protein molecule extrudes 3 sodium ions every 5 ms. Con-
sequently, keeping pace with one sodium channel requires 10,000 pump 
molecules. The pumps are powered with ATP, and although the mitochon-
dria that produce ATP pack their oxidative proteins densely, mitochondria 
cannot be packed too tightly inside a neuron. Consequently it takes 5  μ m 3 

 of a neuron ’ s internal volume to power one open sodium channel. Thus, 
although a neuron could easily pack its membrane with more than 10 3  
channels  μ m  – 2 , the additional membrane area for pumps and cytoplasmic 
volume for mitochondria set stringent limits. Consequently, opening more 
channels requires more space, so neurons are larger and wires longer. 

 Responding to these constraints on energy and space, designs follow the 
principle  make neural components irreducibly small . A smaller neuron needs 
fewer ion channels to produce a signal of given amplitude because it has 
less membrane to charge and polarize. Thus, with space and energy costs 
rising as (diameter) 2 , axons are encouraged to shrink, but eventually they 
hit a lower bound set by channel noise. As axon diameter falls below 0.2 
 μ m, a single sodium channel depolarizes the membrane to threshold, so 
channel noise generates spontaneous action potentials that would over-
whelm communication. Other key components, such as synapses, are also 
small, and they exploit chemistry and mechanics at the nanoscale to com-
pute with least energy and space. They too approach limits set by noise. 

 Irreducibly thin axons conduct at about 1 mm per millisecond, match-
ing the timescale at which local circuits compute. Therefore, circuits that 
rely on such fine axons to conserve resources must limit their spatial extent. 
Indeed, local circuits in cerebral cortex and cerebellar cortex, which together 
account for most of the brain ’ s gray matter, rely on the finest axons. Con-
sequently, the upper bound to the extent of their local circuits is on the 
order of a millimeter. 

 In short, neural structures on each scale are irreducibly small. This starts 
on the nanoscale with single protein molecules which can shrink no fur-
ther without loss of functionality. Then protein molecules assemble into 
circuits inside synapses, dendrites and axons. These irreducibly fine neural 
structures set the possibilities for neural wiring at the millimeter scale — six 
orders of magnitude above the proteins. The irreducibly small neural com-
ponents set an upper bound to spike rates. The thinnest axons support the 
lowest mean firing rates which convey the lowest information rates. Thus, 
these circuits stay low on the information-versus-cost curve.  

 Note that neural designs often satisfy several principles at once. Proteins 
are irreducibly small, compute by chemistry, reduce wire by sending 
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chemical signals, and can transmit efficiently by sending at very low rates. 
Axons can be irreducibly thin, transmit with the fewest possible channels, 
and send slowly as possible to stay low on the rate-versus-cost curve. But 
what additional principles govern how a neuron and a neuronal array 
should spend the available resources? 

 Analogue is cheapest 
 Analogue signals are cheapest for several reasons: (1) Output can continu-
ously match input, reducing waste. (2) Analogue is well suited for chemis-
try, and chemistry is cheapest. (3) Analogue computing is direct and 
therefore completes a basic operation in the fewest steps. (4) Analogue pro-
cessing avoids the physical constraint of dividing time into discrete 
intervals — so it can operate at high information rates. 

 The transition from cheap chemistry to costly electrical processing pre-
serves efficiency by continuing in analogue mode. Thus, a graded EPSP of 
1.5 mV costs 100-fold less per wire length than an all-or-none spike of 150 
mV. Therefore, it pays to integrate many graded electrical events before 
sending a spike. Spikes are unavoidable because they alone provide speed 
over longer distances, and they become efficient when noise accumulates 
in analogue circuits. Taking a threshold by triggering an action potential 
reestablishes sufficiently high S/N that the brain can track a single action 
potential across many levels and rely on it for behavior. So, neural designs 
follow the principles  compute directly with analogue primitives  and  combine 
analogue and pulsatile processing . 

 Concentrate resources 
 A key design issue at all levels is how to distribute computation. Physics 
dictates that to maximize efficiency, signals should be concentrated in 
space and time. Thus, it pays to spatially concentrate chemical transmitter 
molecules in a small packet and to temporally concentrate their delivery to 
a spatially concentrated cluster of postsynaptic receptor proteins. The 
resulting current, when integrated in space and time with other currents at 
the axon initial segment, causes a few temporally concentrated spikes. 
Thus, neurons are typically silent for substantial intervals between con-
certed spike bursts. At the next level, the neuronal array, activity is also 
most efficiently encoded when it is concentrated in a small proportion of 
the neurons. 

 The consequence of these  “ designs for concentration ”  is that fast electri-
cal pulses, costing 1,000-fold more energy than the chemical signals that 
caused them, occur relatively rarely and in relatively few neurons. This 
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restrains the mean spike rate in an array. Thus, information is concentrated 
at every scale: a few transmitter puffs open a few ligand-gated ion channels 
that allow a few analogue currents that sum to cause a few spikes in a few 
active neurons; and with this design information is sent and received effi-
ciently. Certain cases are even shown to be optimal, but all follow the prin-
ciple  sparsify . 

 Specialize 
 To be efficient, neural designs at all scales specialize. Single protein mole-
cules specialize to match speed and sensitivity to the properties of their 
inputs. For example, the sodium channel serving a thin, low-rate axon dif-
fers from the sodium channel serving thick, high-rate axons. Protein cir-
cuits specialize to match their properties and ratios to each other for 
appropriate speed and S/N. 

 Synapses specialize presynaptically, for example, by using different 
voltage-gated calcium channels and different calcium sensors to achieve 
particular sensitivity and gain. Synapses specialize postsynaptically, for 
example, by using transmitter receptor proteins of different binding affin-
ity, different cooperativity, different selectivity for ions, and different abili-
ties to activate G proteins. By varying these parameters, a synapse can 
match its transfer function to provide optimal sensitivity and S/N, plus an 
I/O function that computes directly across the necessary timescale. Neural 
circuits specialize their connections for the same reason, to use resources 
more efficiently. In short, a key contribution to the brain ’ s ability to stay 
low on the rate-versus-cost curve is its immense capacity to specialize — its 
obeisance to the principle  complicate . 

 Save wire 
 An action potential, to travel much faster than the graded signal that caused 
it, relies on two large, countervailing currents. And despite their optimal 
matching, a spike costs about 100-fold more than the graded signal. More-
over, this initial high cost repeats along the length of an axon. This leads 
naturally to the principle  minimize wire . 

 To minimize wire volume, it is efficient to reduce diameter because vol-
ume falls as 1/d 2 . But small diameters are limited to low firing rates whereas 
certain axons require high firing rates to serve their particular function. 
Where thick axons are needed, they often project for relatively short dis-
tances and then converge on relay neurons that step down their rates and 
numbers. However, even irreducibly thin axons are costly, so there is pres-
sure to economize on length; and there are many ways to do so. 
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 On the finer scales, neurons form spines to maximize connectivity and 
minimize volume, and both dendrites and axons branch to save wire. 
Ascending in scale, neurons with the strongest interconnections locate 
closest to each other, and in some cases, such as the fly lamina cartridge of 
16 neurons and the  C. elegans  brain of 302 neurons, neurons locate opti-
mally to save wire. Neurons form orderly maps to save wire by reducing 
mutual interference that would increase path length. Neuronal circuits seg-
regate into specific clusters for the same reason; they form layers to mini-
mize interference from input and output wires. Cortical areas with strongest 
interconnections locate closest together to minimize wire length, and they 
signal to distant circuits with reduced instructions to minimize the number 
and caliber of wires. 

 Efficiency from prediction 
 Many of the efficiencies mentioned so far apply to time intervals in which 
the statistics of signals and wiring are essentially fixed. However, as time 
advances, probabilities change, leading to mismatches and inefficiencies. 
This occurs at all levels from proteins to behavior. The best way to deal with 
changing probabilities is to predict what they are most likely to be in the 
next instant and the next  . . .  and then use those predictions to readjust all 
the matches in timely and cost-effective fashion. 

 Consequently, circuits at all levels — from molecules to large-scale neu-
ron arrays — adapt their input/output curves to maintain efficiency across 
huge changes in dynamic range. Each level efficiently matches the next. 
Such adaptive adjustments span a broad range of timescales. Some are fast 
and cheap: a synapse can adapt in within milliseconds by altering the num-
ber of vesicles at docking sites and changing the conformation of receptor 
proteins; and it can adapt over minutes by altering the number of receptor 
proteins. Other adjustments are slower and more costly: a neuron can adapt 
over tens of minutes by changing the concentration of its protein circuits 
and over hours by synthesizing new postsynaptic receptors and inserting 
them stably into postsynaptic membrane. A neuron can adapt over days to 
years by adding new synapses and pruning old ones. Finally, a brain can 
adapt by adding and removing neurons. 

 Of all these adjustments, the more stable and costly are classed as  “ learn-
ing. ”  Neuroscience is still learning about learning; yet it is already evident 
that learning — stable changes in functional architecture of synapses in 
response to their signaling history — is ubiquitous in the brain, from early 
sensory stages to cortex and final motor outputs. Moreover, learning fol-
lows mathematical rules that deliver the greatest reward for the least 
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investment. Thus, the process of learning that improves brain efficiency is 
itself efficient. These processes constitute the final principle of neural 
design:  adapt, match, learn, and forget.  

 Conclusions 

 If the principles suggested for neural design are correct and not mere slo-
gans, they should apply across a range of spatial and temporal scales. 
Indeed, we have noted their traces across a 10 9  range of spatial scales — from 
nanometers (protein folding, structure of ion channels) to micrometers 
(structure of synapses and local circuits) to a meter (structure of long tracts). 
Ditto for a 10 13  range of temporal scales — from microseconds (transmitter 
diffusion) to decades (human memory). If the principles are correct, they 
should apply across brain regions and across brains of diverse species — and 
they do. 

 Principles for neural design should apply to related devices. And they do, 
especially regarding energy-efficient electronics (Sarpeshkar, 2010, 2012). 
Two neural principles,  compute directly with analogue primitives  and  mix ana-
logue and pulsatile  (digital), were adopted from electronics (Sarpeshkar, 
1998). Four more principles,  send at the lowest rate ,  send only what is needed , 
 sparsify , and  match and adapt , have been derived independently. Two more 
principles,  minimize wire  and  make components irreducibly small , are standard 
practice in chip design. Of the last two,  complicate  comes from mechanical 
engineering (chapter 1);  compute with chemistry  derives from biology and is 
just now entering electronics (Akyildiz et al., 2008; Sarpeshkar, 2010, 2014). 
In short, the 10 principles of neural design seem well grounded in the phys-
ics, chemistry, and mathematics of information. 

 Our coverage in applying the 10 design principles has been selective —
 some might say  “ spotty ”  — for we chose not to write a textbook. Instead, we 
constructed a close  “ interpretive reading ”  of neural design: a brain ’ s func-
tional architecture viewed from the perspective of information theory and 
biophysics. With some exceptions these perspectives do not reveal what 
any bit of brain architecture  “ does. ”  

 But these perspectives do explain many  “ whys ”  of the design and pro-
vide tools to interrogate any system. Are the axons thick or thin? Are they 
uniform or mixed? How are the layers arranged? Do neurons use lateral 
inhibition to eliminate redundancy? What is optimized when neurons 
adapt and match? So viewed, each structure and mechanism suggests how 
much information might be sent and how fast. So these principles can serve 
as a guide to the perplexed. 



Summary and Conclusions 441

 Could our brain do better? 
 Neuroscientists are frequently asked at parties,  “ Is it true that we use only 
10% of our brain? ”  People wonder if they might make more efficient use of 
the brain that natural selection has provided them. The design principles 
suggest not: we seem to fully use all of our brain. For example, memories are 
stored at synapses, which always fill their allotted space. Even if some frac-
tion of synapses were held in reserve, the reserve pool belongs to the overall 
design. So our memory banks are effectively full, and new memories can be 
stored only by pruning old ones. 

 It is true that most areas are relatively silent until called. This is evident 
in the shifting patterns of cerebral blood flow visualized by fMRI. Moreover, 
when an area  is  called, only a fraction of its neurons respond; therefore, 
activity increases by just a few percent. This may strike the questioner as 
tragically wasteful: if we used more of our neurons more of the time, would 
not the brain compute more effectively? 

 But, of course, using neurons sparsely is efficient design. Neurons may 
not be used to their full effect, but space, materials, and energy are. Indeed, 
sparse usage is so important that the brain devotes special resources to regu-
late which neurons should turn up, and which should turn down. Such 
neural mechanisms for  attention  and  mind wandering  are essential for the 
brain to follow the core principles of efficient design. Although we have 
omitted to describe these mechanisms in any detail, they certainly wield 
the baton (Cohen  &  Maunsell, 2009, 2011; Ni et al., 2012; Purcell et al., 
2012; Gruberger et al., 2011). 

 If the neuroscientist concedes that the brain does not work for very long 
at peak capacity, the questioner visibly brightens: yes, too bad that the 
mind tires with intense mental effort; too bad that we need to sleep — such 
a waste! But it resembles the too bad that we cannot run at top speed for 
very long or run a marathon every day. The brain, like the body, must 
repair, revise, and replenish. So it is a fantasy that we could be much better 
than we are. Of course, brain, like body, can improve with exercise — but up 
to definite limits. Beyond these, exercise in one mental domain necessarily 
comes at the expense of others. 

 Could natural selection do better? 
 Another party question concerns brain efficiency:  “ Is it true we could evolve 
a more efficient brain if natural selection were allowed more time? ”  Again, 
information theory and physics suggest not. Many neural computations 
already operate near the lower bounds on space and energy costs defined 
by thermodynamics. Recall that the lower bound on space per bit of 
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information is approached by single protein molecules that could be no 
smaller and still stably change conformation. Recall that the theoretical 
lower bound on energy per bit of information is approached when a pro-
tein molecule changes conformation. 

 Recall also that proteins coupled in circuits are often matched for best 
possible trade-offs of speed, S/N, and sensitivity. And when parallel protein 
circuits specialize to improve performance under different conditions, the 
same protein types are often retained but modified slightly to tweak perfor-
mance appropriate to the condition. Thus, the rod specialized for process-
ing starlight, and the cone specialized for daylight, both use opsin coupled 
to a cascade of other proteins with feedbacks. Rod and cone opsins differ 
slightly, as do their G proteins, phosphodiesterases, kinases, cyclases, and 
so on. Thus, information processing by proteins and circuits of proteins 
seems already to have approached maximum efficiency, and one cannot 
expect much improvement at that level. 

 Cellular structures also operate near their lower physical bounds for 
space and energy efficiency. Recall, for example, that axons approach the 
lower limit on diameter set by channel noise and microtubule size. Thus, 
the thinnest axons are as economical as can be. Dendrites also approach a 
lower limit on caliber. However, the finest axons and dendrites support 
only low information rates, so functions that require higher information 
rates need thicker axons with more ion channels and microtubules, plus 
thicker dendrites with more synapses. 

 But the returns on these investments are limited by mathematical and 
physical laws that all produce diminishing returns. Natural selection can-
not skirt the statistics of channel opening and vesicle release, nor can it 
tunnel under the cable equations that describe membrane space and time 
constants, nor has it evolved metallic conductors to increase length con-
stants, nor can it outrun Shannon ’ s equations that explain why higher 
information rates cost disproportionately more. In short, natural selection 
can certainly improve a neuron ’ s performance by investing more, but for a 
given cost, it cannot do a whole lot better. 

 At the next level of structure, neural circuits try to minimize wire length. 
We have seen that the retinal circuit succeeds in laying out 20 parallel cir-
cuits of modest convergence and divergence with the least possible wire. 
The cerebellar circuit also succeeds in laying out a quite different circuit of 
tremendous convergence and divergence with the least possible wire. Spi-
nal motor circuits do the same, and if one accepts the idea that cerebral 
cortex circuits try to maximize potential connections, its local circuits also 
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minimize wire. Thus, circuits that together constitute a substantial propor-
tion of total gray matter are wired about as efficiently as possible. 

 Myelinated tracts occupy up to about 40% of brain volume, and that 
space is also used efficiently. Axon diameters in white matter distribute log-
normally, with most axons near the lower bound on diameter and a few 
with larger diameters. This requires local circuits to accomplish intense 
computations so that long tracts, such as fornix, corticospinal tract, and 
corpus callosum, can guide them with a  “ reduced instruction set. ”  Space 
could be saved, of course, by shifting a long tract ’ s distribution toward finer 
fibers or by amputating its tail of thicker ones, but this would impair perfor-
mance, not improve it. 

 Circuits at all levels from molecules to large-scale neuron arrays adapt 
their input/output curves to optimize gain across huge changes in dynamic 
range; moreover, the different levels efficiently match each other. Given 
that these adaptive adjustments are initiated the instant that there is 
sufficient statistical evidence to direct a change, this cannot improve. Adap-
tations on longer timescales use mechanisms that are classed as  “ learning ”  —
 stable changes in synaptic structure and function. These changes are 
ubiquitous, so learning appears to serve every function. Moreover, since it 
follows mathematical rules that deliver the greatest reward for least invest-
ment, the algorithm cannot be improved. 

 In short, the processing, transmitting, and storing of information is effi-
cient on all levels: from proteins and protein circuits to neurons and neural 
circuits, and thence to neural systems and behavior. In certain cases, opti-
mal designs can be followed stepwise across spatiotemporal scales and 
across hierarchical levels, for example, from photoreceptors through retina 
and V1 to the level of visual behavior. Indeed, when discriminating a small 
brief spot, sensitivity is set by neural noise measured at the ganglion cell 
output; noise associated with processing across the many subsequent stages 
leading to a perceptual decision do not reduce performance. Optimality is 
proven only for a limited number of examples, but nothing has been 
encountered so far to suggest that brains built of protein circuits could 
become a great deal more efficient. 

 Natural selection has driven fly and mammal in strikingly different 
directions for 450 Myr, allowing the fly roughly 100-fold more generations 
per year than human. Yet, on all comparable measures the neural compo-
nents, processing, and layouts of fly and mammal are equally efficient. So 
it seems that with regard to brain design, natural selection has followed dif-
ferent routes but reached the same destination. This suggests that the core 
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principles of neural design were established already in their shared ances-
tors. If we evolve for another 450 Myr, we will certainly look different; we 
will think and behave differently because we will have continued to be 
shaped by natural selection. But our brains will probably be no more 
efficient. 

 Last question 
 The brain is effective in allowing its owner to economically explore a wider 
world that contains more resources. The brain has taken animals from soup 
to soil, thence to land, sea, and air — and now to outer space. The brain 
allows a human to repair a heart and even to do it robotically from half a 
world away — or, alternatively, to identify and assassinate an enemy. This 
raises what is perhaps the biggest question. Will our efficient brain — our 
12-watt bundle of cleverness — irreversibly overexploit all of nature and 
extinguish our species along with many others? This question neuroscience 
cannot answer. 



  Compute with chemistry     
  •  Bits per joule approaches lower bound set by thermodynamic limit. 
  •  Bits per liter reaches lower bound set by protein structure. 
  •  Signals are fast at short distances. 
  •  Computation is direct. 

  Compute directly with analogue primitives     
  •  Analogue completes a basic operation in fewer steps than digital. 
  •  Analogue is well suited to chemical and electrical computing. 

  Combine analogue and pulsatile processing     
  •  Analogue processes information at high rates. 
  •  Analogue electrical signals are cheaper than pulses. 
  •  But stochasticity at all stages (vesicle release, ligand binding, channel 

opening) accumulates noise. 
  •  Therefore, compute locally in analogue; threshold to restore S/N, and 

send noise-resistant pulses. 

  Sparsify     
  •  Signal with proteins in small clusters. 
  •  Release vesicles in brief bursts. 
  •  Fire spikes in brief bursts. 
  •  Maximize information per array for least space and energy: optimize frac-

tion of active neurons; optimize S/N vs redundancy. 

  Send only what is needed     
  •  Reduce noise and redundancy. 
  •  Sculpt message for downstream users. 
  •  Reduce number of signals to save energy and space. 

  Send at the lowest acceptable rate     
  •  Higher rates cost disproportionately more. 

 Principles of Neural Design 
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  Minimize wire     
  •  Space and energy decrease as length and (diameter) 2 . 
  •  Small diameter allows few bits per second. 
  •  Slowest signals can use zero wire (neuromodulators, hormones). 
  •  Shorter wires reduce processing time. 
  To shorten wire:     
  •  Organize neurons in maps;  
  •  Within a map segregate computations in parallel circuits.  
  •  Separate circuits in layers, columns, stripes, barrels.  
  •  Arrange maps to interconnect with least wire 
  •  Connect neurons by matching their axonal and dendritic meshworks. 
  •  Reduce instruction set to send long distance. 

  Make neural components irreducibly small     
  •  Smaller reaction vessel allows faster chemistry with fewer molecules. 
  •  Lower membrane capacitance charges with smaller current. 
  •  Nanoscale molecular components allow smaller axons and synapses. 

  Complicate     
  •  Specialize molecules to match signal properties (match molecular bind-

ing affinity to temporal bandwidth, protein stability to photon energy). 
  •  Specialize neural circuits to match task (rod circuit for starlight, cone cir-

cuit for daylight). 
  •  Optimize across levels, from molecules to neural circuits. 

  Adapt, match, learn, and forget     
  •  Adapt output capacity to predicted range of inputs. 
  •  Match capacity across levels (symmorphosis). 
  •  Learn in order to improve future predictions. 
  •  Forget in order to preserve storage capacity. 



 Introduction 

 1.   According to Darwin,  “ the best definition of a high standard of organization is 

the degree to which the parts have been specialized, and natural selection tends 

toward this end, inasmuch as the parts are thus enabled to perform their functions 

more efficiently ”  (Darwin, 1859, slightly edited for brevity). 

 2.   Anticipatory regulation has been termed allostasis (stability through change) to 

distinguish it from homeostasis (stability through constancy) (Sterling, 2012). 

 3.   Here we feel in good company. Santiago Ram ó n y Cajal stated a century ago: 

  . . .  we must state that such terms as goals, designs, and refinements, do not indicate 

an intentional or preconceived plan in the evolution of nature; they are only varia-

tions and adaptations that have prevailed because of their utility in the struggle for 

survival. (Ramon y Cajal, 1909) (edited for brevity) 

 And more than 150 years ago, Darwin wrote: 

 It has been said that I speak of natural selection as an active power or Deity; but who 

objects to an author speaking of the attraction of gravity as ruling the movements of 

the planets? Everyone knows what is meant and is implied by such metaphorical 

expressions; and they are almost necessary for brevity. So again it is difficult to avoid 

personifying the word Nature; but I mean by Nature, only the aggregate action and 

product of many natural laws, and by laws the sequence of events as ascertained by 

us. With a little familiarity such superficial objections will be forgotten. (Darwin, 

1859) 

 Chapter 1 

 1.   The following sections draw heavily on two wonderful books by G. L. Glegg,  The 

Design of Design  (Glegg, 1969/2009a) and  The Selection of Design  (Glegg, 1972/2009b). 

 Notes   
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 2.   A comprehensive account of design is given by Pahl, Beitz, Feldhusen, and Grote 

(2007, chapters 1, 2, 3, and 7). 

 3.   This history of the Model T design draws on Casey (2009). 

 Chapter 2 

 1.   There is overlap in that some small multicellular organisms can be smaller than a 

large unicellular organism and live a shorter time. For example, rotifers are among 

the smallest multicellular animals and are about the same size as  Paramecium . The 

smallest insects, parasitic wasps, are only slightly larger. 

 Chapter 3 

 1.   This occurs via hormones detected in the brain by the  subfornical organ  — a cir-

cumventricular organ (Fry et al., 2007). The gut produces additional satiety hor-

mones, such as cholecystokinin (CCK) and neuropeptide Y (NPY) that are also 

detected in brain. 

 2.   Antidiuretic hormone (ADH), also called vasopressin. 

 3.   Later chapters explain more. For now consider some numbers: macaque brain, 

which commonly is treated as a surrogate for human, is smaller by about 16-fold in 

weight and neuron number. The number of cortical areas expands from small mam-

mals to human by about 10-fold: 20 in mouse and 200 in human. The breakdown in 

macaque is 30 – 40 areas for vision, 15 – 20 areas for hearing, 15 – 20 areas for tactile 

sensing, and more than 10 areas for motor control (Kaas, 2008). 

 4.   Certain small neurons, such as spinal Renshaw cells, cerebellar granule cells 

(chapter 7), and cortical inhibitory neurons, fire at high rates in brief bursts. How-

ever, their mean rates over seconds and minutes are low. 

 Chapter 4 

 1.   There are exceptions, for example, the tiny vole whose high metabolic rate 

requires frequent foraging and whose life therefore departs from the standard circa-

dian rhythm (van der Veen et al., 2006). 

 2.   In vertebrate neuroanatomy a neuron cluster is called  “ nucleus ”  — but since that 

can be confused with a cell nucleus, and the term doesn ’ t apply to insect neuro-

anatomy, we use  “ cluster. ”  

 3.    “ Sham rage ”  is easily elicited when the cortex is removed — so the complex pat-

tern does not require the cortex, but without the cortex, the pattern is poorly 

directed since it has no access to the critical sensory processors. 



Notes 449

 4.   Certain neuron clusters in this network have intrinsic circadian oscillators that 

require entrainment by SCN but not continuous signaling. 

 5.   Another example is the  area postrema  (  figure 4.4 ) which locates near the brain-

stem generator for respiratory patterns and senses blood pH. Collecting this data 

wirelessly, it communicates via short wires to the respiratory center, providing key 

information for use in regulating blood levels of CO 2 . The area postrema has various 

additional functions. 

 6.   See Chung and Coggeshall (1983). This work shows that the ventral funiculus 

(serving local motor circuits) has sevenfold more myelinated than unmyelinated 

fibers whereas the lateral funiculus (serving local sensory circuits) has more unmy-

elinated than myelinated fibers. 

 7.   Of course, larger mammals use mostly fine fibers but also need a few thick ones 

(3 – 22  μ m in humans) for transiently high information rates and high conduction 

velocity. Nevertheless, the diameter distributions of the human and rodent pyrami-

dal tract are nearly identical but for a long tail toward larger diameters. 

 8.   The rule of thumb for calculating diameter of myelinated axons from conduction 

velocity and vice versa is 1  μ m ~ 6 m/s. 

 9.   This assumes that cross sections of ventral horn and hypothalamic pattern gen-

erators are equal, that hypothalamic pattern generators extend for 10 mm, and that 

the spinal cord extends for 1 m. 

 10.   This differs from the standard slogan:  “ Neurons that fire together wire together. ”  

That slogan refers to how the connections are established during development and 

learning, whereas our point refers to the principle  minimize wire . 

 11.   These are temperature receptors gathered to form an imaging organ of low spa-

tial resolution. These receptors are served by the trigeminal nerve that innervates 

the skin on our face, cornea, teeth, and so on (Newman  &  Hartline, 1981) 

 12.   This is for human, but the range in octaves is similar for guinea pig (54 Hz – 50 

kHz), whose auditory axons are shown in figures 4.6 and 4.8. 

 13.   This occurs also for tactile exploration with finger tips and tongue. 

 14.   A mechanism that integrates across sensors should weight most strongly the 

sense with the most reliable information. In daylight this would be vision, but in 

twilight, as vision becomes noisier, the mechanism relies more on sound and touch 

(Burge et al., 2010). 

 15.   From retina, inferior colliculus, spinal, and brainstem somatosensory clusters. 

Thus, they have undergone some processing, but nothing like what has occurred 

between V1 and frontal/parietal cortex. 

 16.   Projection is from deep superior colliculus to mediodorsal nucleus of thalamus 

to frontal eye field (Sommer  &  Wurtz, 2006). 
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 17.   The  dorsal column nuclei . 

 18.   The thalamic pulvinar and mediodorsal nucleus reduce rates from superior col-

liculus by 2 – 3 times (Berman  &  Wurtz, 2010). The ventral anterior and ventrolateral 

thalamic nuclei reduce rates from the deep cerebellar nuclei and striatum by as 

much as fivefold (D. Contreras and M. Farries, private communications). 

 19.   For example, they implement similar spatial, chromatic, and temporal sampling 

and express similar numbers of ganglion cells projecting to the brain (Sterling, 

2004a). 

 20.   Mammal and insect occupy the same taxonomic levels: class Mammalia belongs 

to the phylum Vertebrata, and class Insecta belongs to the phylum Arthropoda. 

Mouse, monkey, and human belong to different orders: Rodentia and Primate; fly, 

bee, and locust also belong to different orders: Diptera, Hymenoptera, and Orthop-

tera. 

 21.   In a delayed match-to-sample task, a bee flies into a y-maze and has to choose 

between two colors, one of which is rewarding. The bee learns to associate a color 

displayed at the maze entrance with the color of the reward inside the maze. In the 

symbolic delayed match-to-sample task, the bee shows that she can generalize. 

Whatever pattern is displayed at the maze entrance (e.g., horizontal stripes), once 

inside she heads for it to collect her reward. 

 Chapter 5 

 1.   Some wireless messengers, such as steroid hormones, are nonpolar and therefore 

penetrate the cell membrane and the nuclear membrane to bind a protein within 

the cell nucleus, changing its conformation and so delivering its information. 

 2.   This pleased Shannon ’ s employer, Bell Telephone. Bell prospered immensely, and 

Shannon had the satisfaction of seeing his mathematical theory revolutionize infor-

mation technology. 

 3.    Power spectrum  plots the power of each frequency against frequency. 

 4.   Allostery serves many functions besides information processing and in fact medi-

ates most of a cell ’ s vital processes. For example, it moves molecular motors, pumps 

ions across membranes, reads DNA, converts energy from sugar and oxygen into 

ATP. Allostery is, therefore, a cornerstone of the brain ’ s winning technology, cell 

and molecular biology. See Monod (1971) and Alberts et al. (2008). 

 5.   Wikipedia gives the following definition.  “ A finite-state machine (FSM) or finite-

state automaton (plural: automata), or simply a state machine, is a mathematical 

model of computation used to design both computer programs and sequential logic 

circuits. It is conceived as an abstract machine that can be in one of a finite number 

of states. The machine is in only one state at a time; the state it is in at any given 
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time is called the current state. It can change from one state to another when initi-

ated by a triggering event or condition; this is called a transition. A particular FSM is 

defined by a list of its states, and the triggering condition for each transition. ”  

 6.   When a bead of sweat drops to the floor from an author ’ s brow its kinetic energy 

is equivalent to more than 10 12  bits. 

 Chapter 6 

 1.   We routinely practice arithmetic and algebra, but how our brains use circuits of 

identified neurons to generate this behavior remains a mystery. 

 2.   There are cases where noise is helpful, but, more often than not, noise is deleteri-

ous (McDonnell  &  Ward, 2011). 

 3.   The hydrolysis of 2,000 ATP molecules to ADP releases 2,000  ×  25  k B T  joules = 5  ×  

10 4   k B T  joules. The current carried by the 6,000 sodium ions passing through the 

channel delivers 2.4  ×  10 4   k B T  joules of energy. 

 4.   The durations of sodium current, potassium current, sodium inactivation, refrac-

tory period, and of the action potential vary among neuron types by several milli-

seconds to satisfy particular functional requirements (e.g., Carter  &  Bean, 2009). The 

values given here are typical. 

 5.   The human genome contains at least 232 genes for the subunits that form ion 

channels (Nayak et al., 2009).  

 6.   One alternative design, using pumps located in other cells to create an electrical 

driving force, is used by invertebrate mechanosensors (from the simple  Hydra  to 

more complicated forms), and by the hair cells of the inner ear. Here pumps in the 

stria vascularis create and maintain the electrical potential in the scala media that 

drives transduction current into hair cells. 

 7.   Not all brains adopt this complete package. In chapter 2 we saw that  C. 

elegans , which is relatively small and slow, has synapses but no sodium action 

potentials. 

 Chapter 7 

 1.   James Eberwine estimates that that there are approximately five- to eightfold 

more protein species than mRNA species (due to posttranslational modifications). 

That would be 50,000 to 80,000 different types of proteins, each at a differing 

abundance. 

 2.    Order of magnitude estimate based on 3.3  ×  10 9  ATP per second for a cortical 

pyramidal cell firing at 4 Hz (Attwell and Laughlin 2001) and transmitting 8 bits 

per spike. 
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 3.   Certain electrical synapses can also be more complicated: some rectify to serve as 

a diode, respond to neuromodulators, undergo long-term potentiation, and so on 

(Pereda, 2014). 

 4. We have added an estimate for the cost of SNAREs. Assuming that each of the 

four SNARE proteins is phosphorylated  ×  5, and that three SNAREs release their 

energy to discharge a vesicle, the total is 60 ATP. This small number is realistic. 

Attwell and Laughlin (2001) suggested a minimum cost of 10 ATP based on Siegel 

(1993). 

 5. This basic picture applies to a variety of transmitters: glutamate, GABA, acetylcho-

line, epinephrine, dopamine, and serotonin. All use vesicles in this size range; all use 

specialized vesicular transporters for loading, and all use low affinity receptors at 

conventional synapses. All transmitters also use high affinity receptors for greater 

distances and greater times, as will be explained. 

 6.   Calcium enters only if the channel includes a particular subunit ( GluR2 ), as will 

be further explained, serving as a chemical messenger. 

 7.   Vesicular glutamate concentration does vary across the vesicles at a synapse; this 

causes variations in cleft concentration which are a significant source of noise. See 

Wu et al. (2007). 

 8.   When receptors are removed from or added to a cluster by endocytosis or exocy-

tosis, the unit change is about 20 receptors. 

 9.   These abbreviations stand for long chemical names of the molecules whose bind-

ing competition with glutamate led to the discovery of the two receptor types. 

 10.    Distance for signal amplitude to reach 1/e = 37%. 

 11.   Because spines are so small, it is difficult to estimate neck resistance, and pub-

lished values range from 1 M Ω  to 500 M Ω . This wide range of resistances in one type 

of neuron (CA1 pyramidal cells in mouse hippocampus) is associated with large pro-

portional changes in neck length and diameter. These variations suggest that neck 

resistance is actively adjusted to change the amplitude of the EPSP in the head and 

the current delivered via the neck by 20-fold or more (T ø nnesen et al., 2014). 

 12.    In insects the cell body is separated from synapses by a long, naked neurite. The 

spike initiation site is on the primary neurite, near the point at which it becomes the 

axon (Burrows, 1996). Certain invertebrate neurons have more than one spike initia-

tion site (Zecevic, 1996). In vertebrates spikes are initiated at the axon ’ s initial seg-

ment, roughly 10 – 100  μ m from the point at which the axon leaves the cell body 

(Debanne et al., 2011; Kole and Stuart, 2012). 

 13.   This is something like  E. coli  ’ s permease informing its DNA that lactose has 

arrived and new proteins are needed to exploit it (figure 2.2). 
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 Chapter 8 

 1.   Finer spatial detail could be gained by longer exposure, but since photons follow 

Poisson statistics, doubling the image quality (S/N) would require quadrupling the 

exposure — to nearly a second. This strategy works for a slow-moving amphibian, but 

not for a fast-moving mammal. 

 2.   Convergence varies with species (reviewed in Sterling, 2004a). 

 3.   This paper reported a low value for the mouse rod S/N and thus a high value for 

false negatives. Subsequent studies with improved recordings find a higher S/N that 

would relax the threshold and give fewer false negatives (Cangiano et al., 2012). 

 4.   The proportion declines at highest intensities as rod photopigment bleaches and 

recovers slowly whereas cone photopigment regenerates rapidly (Yin et al., 2006; 

Borghuis et al., 2009). 

 5.   Following exposure to bright light, it takes more than 20 minutes to replenish all 

rod opsins with cis chromophore. 

 6.   Although cones pack densely in the primate fovea, the fovea occupies such a 

small area that the overall ratio is as stated. 

 7.   R* has sites for phosphorylation, but under physiological conditions it is inacti-

vated by arrestin within 20 ms, without phosphorylation (Yau  &  Hardie, 2009). 

 8.   Many nocturnal insect photoreceptors make longer microvilli to catch more pho-

tons, but all microvilli have approximately the same diameter. To guide photons 

efficiently, the waveguide has a rounded cross section. Consequently, a few micro-

villi are less than 1  μ m long (  figure 8.9 ). 

 9.   Waveguiding sets the same limit to the diameter of a foveal cone inner segment 

(reviewed in Sterling, 2004a). 

 10.   A fly photoreceptor also uses a light-adaptation mechanism that acts within 

seconds to reduce the number of photons reaching its microvilli. Pigment granules 

are moved up against the photosensitive waveguide. Here they reduce the photon 

flux in the waveguide 100-fold by absorbing light as it is internally reflected at the 

waveguide ’ s boundary (strictly speaking, they attenuate the evanescent wave). 

Because the pigment granules are moved mechanically to attenuate light, then by 

analogy with the human pupil, the fly ’ s mechanism is referred to as a longitudinal 

pupil. Reviewed by Hardie (1984). 

 11.   Calcium shifts the blowfly curve by 2 log units, mainly at lower light levels. At 

higher light levels the longitudinal pupil shifts the curve 2 more log units. 

 12.   Neither a cone ’ s bit rate nor its energy consumption has been measured. We 

assume that a cone uses similar energy as a rod midway through its dynamic range.  
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 13.   Efficiency also increases with light level because the input S/N improves, but 

this has less effect on efficiency than gain control. 

 14.   Bandwidth is defined conventionally as the frequency at which the fraction of 

transmitted power is 1/ √ 2. In other words, signal amplitude is halved. This frequency 

is well below the true cutoff frequency, above which no detectable signal is trans-

mitted. As a rule of thumb, the cutoff occurs at the frequency at which transmission 

reduces signal amplitude by 99%. When an input signal at this frequency has its 

maximum amplitude, a contrast of 1 is reduced to 1%, which is close to the thresh-

old for detection by the brain. 

 15. The contrast of a dark target is increased by making the background brighter and 

this is achieved by increasing sensitivity to the background. 

 Chapter 9 

 1.   These percentages are for the housefly  Musca  (Strausfeld, 1976, tables 5.1 – 5.6). 

They will be similar in the slightly larger blowfly,  Calliphora . 

 2.   R7 and R8 form a narrower waveguide, so they receive slightly fewer photons. 

 3.   See also chapter 3,  “ Ram ó n y Cajal ’ s Hunting Case Watch ”  in Strausfeld (2012), 

for a beautifully illustrated account of these exquisite neural circuits. 

 4.   To illustrate this point, Laughlin et al. (1998) observe that this could be done by 

operating the system linearly and tuning each synapse to deliver its own band of 

temporal frequencies. 

 5.   Examples include the bipolar cells and ganglion cells of vertebrate retina, neu-

rons in the mammalian lateral geniculate nucleus (chapters 11 and 12). Neurons in 

the olfactory glomeruli of vertebrates and insects also remove redundancy with lat-

eral inhibition. 

 6.   H. Keffer Hartline (1903 – 1983) was awarded the Nobel Prize in 1967 for discover-

ing how sensory neurons implement lateral inhibition. He made these discoveries in 

an advantageous model system that evolved 400,000,000 years ago, the compound 

eye of the horseshoe crab,  Limulus . 

 7.   Predictive coding removes the background signal which in daylight is 3 times the 

mean amplitude of the response to contrast. 

 8. Effects that can be attributed to voltage-gated channels, fast voltage transients 

and high-frequency noise, have been observed in photoreceptor terminals (Weck-

str ö m et al., 1992). 

 9.   An efficient molecular mechanism, desensitization of the histamine-gated chlo-

ride channels, acts postsynaptically to reduce signal amplitude without employing 
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extra synapses (Skingsley, Laughlin,  &  Hardie, 1995), but its contributions to predic-

tive coding and circuit efficiency have not been determined.  

 10.   If another potential mechanism for generating lateral inhibition presynaptically 

exists — namely, lateral-inhibitory interneurons that synapse onto photoreceptors —

 then the mechanism must be weak and slow. The connectome demonstrates that a 

photoreceptor terminal receives fewer than five synapses, at most one from L2 and 

the rest from neurons that spread laterally, the amacrines and the processes of L4. 

These two neurons are well placed to mediate lateral interactions between cartridges, 

but their roles are unknown. 

 11.   Reducing low frequencies is a winning strategy because information increases as 

log 2 (S/N). Consequently, when a high frequency signal and a low frequency signal 

are reduced by the same proportion, each loses the same number of bits. However, 

because the low frequency signal ’ s amplitude is larger, its reduction frees up more 

dynamic range. 

 Chapter 10 

 1.   By comparison, a rod photosensor expresses 4  ×  10 7  receptor molecules in order 

to capture a substantial fraction of the arriving photons. 

 2.    Merkel ’ s disk , of different morphology and located more superficially, transmits 

lower frequencies (5 – 40 Hz) that we sense as light touch. Recent studies suggest that 

the epithelial Merkel ’ s cells themselves can release a transmitter to evoke spikes in 

the sensory neuron. So the story for skin sensors continues. See Maksimovic et al. 

(2013). 

 3.   The skin ’ s mechanical arrangements are relatively few — mostly named for their 

discoverers, Italian and German histologists of the late nineteenth century —

 including Ruffini, Pacini, Meissner, and Merkel. However, the possibilities for 

mechanical amplification and filtering, rectification, and so on are limitless and are 

exploited by every organism: wind receptors, hair bending, and so forth. 

 4.   Processing also occurs prior to a synapse, for example, by voltage-sensitive and 

calcium-sensitive potassium channels in the hair cell membrane. These contribute 

to fast and strong adaptive mechanisms that remove redundancy from the voltage 

that drives synaptic calcium channels. Thus, the synapse is part of a system that 

uses several prominent mechanisms to ensure that the right bits are encoded 

as spikes. 

 5.   Although the cone synapse uses similar numbers of synaptic ribbons, they are 

uniform. The cone synapse, like the hair cell, performs custom filtering before digi-

tizing, but because it can tolerate temporal delays, its spikes can be postponed to a 

second processing stage, greatly reducing the spike rates. 
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 6.   This account omits numerous complexities of the vestibular system. There are 

different organs with different mechanical couplings and varied species of ion 

channel — for example, multiple isoforms of voltage-gated calcium and sodium 

channels. Correspondingly there are different synaptic arrangements — but they all 

show the basic pattern described here. See Eatock et al. (2008) and Eatock and 

Songer (2011). For a start at sorting out these complexities using information theory, 

see Sadeghi et al. (2007). 

 Chapter 11 

 1.   The human eye uses 4.5 megapixels (cones) concentrated in a central fovea. Mars 

rover uses 96 megapixels (charge-coupled device sensors) elongated in a  “ streak ”  

(4,000 pixels high  ×  24,000 pixels wide) arranged to pan horizontally. 

 2.   It is not images that are stored, but their lessons. One hundred milliseconds of 

raw photoreceptor data would be 10 Mbits; in 1 minute, 60 Mbits; in an hour, 3,600 

Mbits = 3.6 Gbits. The brain could not store this, so it stores the analysis — the con-

clusions and the lessons after processing by temporal and frontal areas. What we 

recall from a visual image, no matter how vivid and raw it may seem, has been 

shaped and reshaped profoundly. That is why an  “ eyewitness ”  is so often wrong 

(Neisser, 1997).  

 3.   In dim light images are impoverished — starved for photons — so the retina uses 

various mechanisms to extend summation in both space and time. The design prin-

ciples are the same (Sterling, 2004a). 

 4.   This includes cat, monkey, and human versus about 20  μ m for  “ avascular ”  reti-

nas, such as rabbit and guinea pig. Birds have finer spatial vision and thus finer 

optics and a denser cone array; this requires more circuitry and thus a thicker 

retina — therefore, a special apparatus ( pecten ) to supply energy and remove waste. 

 5.   This chapter answers these questions for mammals. It includes data from human, 

monkey, cat, rabbit, guinea pig, and mouse. Because the retina ’ s fundamental plan 

is identical across these species, we will not burden the reader by noting species in 

every case. A determined reader can track them down via the citations. 

 6.   Approximately 100 glutamate pulses per 100 ms from about 20 active zones per 

cone and about 1,000 cone terminals.  √ 10 5   >  300. 

 7.   It is sobering to realize that Cajal, who brilliantly launched modern studies of the 

retina, totally rejected the hypothesis of intercellular coupling; moreover, he repeat-

edly ridiculed its proponents. Yet the retina ’ s first three neural integrative mecha-

nisms use intercellular coupling (gap junctions): rod – cone, cone – cone, and 

horizontal cell – horizontal cell. There is a lesson: in denying the existence of some-

thing smaller than you can actually resolve, at least be polite because you could well 

be wrong. 
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 8.   The calculation: about 300 docking sites per terminal releasing about 600 

vesicles s  – 1  gives about 2 vesicles/site s  – 1 . That amounts to 0.2 synaptic vesicles 

released per site for a 100-ms interval (Sterling 2004a; Sterling  &  Freed, 2007; DeVr-

ies et al., 2006). 

 9. Haverkamp et al. (2000) give the ribbon numbers. The calculation: S/N ~ 2.2  ×   √ 20 

~ 10. Strong stimuli can cause steep voltage changes that can synchronize release 

and thereby transmit a higher information rate than by simply modulating a tonic 

rate (DeVries, 2000; Rabl et al., 2005). 

 10.   Note that the inner hair cell ’ s postsynaptic knob is near to voltage-gated sodium 

channels, but the cone bipolar postsynaptic dendrites are farther away, about 100 

 μ m. This allows the cone bipolar to integrate via multiple mechanisms before the 

next round of analogue-to-discrete recoding. 

 11.   High rate: about 100 receptor clusters for a midget bipolar cell; lower rate: 

60, 35, and 25 receptor clusters for several nonmidget types (Haverkamp et al., 

2001b). 

 12.   For primate, see Dacey (2004); for mouse, see Kim et al. (2010). Smallest mouse 

ganglion cell dendritic field is about 55  μ m and largest is about 350  μ m  

 13. The discovery of ganglion cell structural and functional diversity has extended 

over half a century. The following references are offered as highlights: Lettvin et al. 

(1959); Barlow and Levick (1965); Enroth-Cugell and Robson (1966); Cleland and 

Levick (1974); Boycott and Wassle (1974); Stone and Fukuda (1974); Kolb et al. 

(1981); Rodieck and Brening (1984); Amthor et al. (1989); Rockhill et al. (2002); van 

Wyk et al. (2006); Zhang et al., (2012). 

 14.   Every mammalian retina exhibits this basic pattern. Some show subtle variants. 

For example, the wide-field, brisk-transient type in cat (alpha/Y) collects only from 

the fast-transient bipolar type (Freed  &  Sterling, 1988), but the narrow-field, brisk-

sustained type (beta/X) collects from three bipolar types in a specific ratio: 4:2:1 

(Cohen  &  Sterling, 1992). The brisk-sustained type thus assembles its bandwidth by 

combining inputs from different bipolar types in specific proportions. Brisk-

sustained types have not been identified in mouse (though they are present in 

rabbit, guinea pig, and rat), but mouse bipolar cells certainly release glutamate in 

sustained manner, and brisk-transient ganglion cells exhibit sustained responses 

(Borghuis et al., 2014). 

 15.   In fact, the smallest, slowest type (local-edge) branches at the junction of OFF 

and ON strata, collecting most contacts from the slowest OFF bipolars but some also 

from the slowest ON bipolars. This uses the bright contrasts, which are sparse on 

this spatial scale, to fill out the information capacity of the lowest rate ganglion cell. 

Thus, the local-edge type matches the proportion of dark and bright contrasts avail-

able on that fine scale, which contains insufficient slow ON information to justify a 

separate array. 
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 16.   Mouse, about 3 mm; cow, about 30 mm eye diameter. 

 17.    For the AII ’ s role in spatially summing rod bipolar inputs, a much broader field 

would better, and the AII cells achieve this through intense coupling via many large 

gap junctions (Sterling et al., 1988). 

 18.   Primate retina uses several more with larger fields to capture higher temporal 

frequencies. Thus, a brisk-transient type with twofold wider dendritic field (Crook et 

al., 2011) and a second type of blue – yellow cell, also tuned to lower spatial frequen-

cies (Schein et al., 2004). 

 19.   Cone photovoltage (analogue)  →  voltage-gated calcium channels and cone syn-

aptic quanta (discrete)  →  bipolar voltage (analogue)  →  voltage-gated Ca channels 

and bipolar quanta (discrete)  →  ganglion cell membrane voltage (analogue)  →  spikes 

to brain (discrete, i.e., pulsatile). 

 Chapter 12 

 1.   Experts on the LGN will notice that this treatment draws on cat, rodent, and pri-

mate but omits various details to allow a readable narrative on our theme: efficiency 

of design. 

 2.   The calculation: brisk-sustained ganglion cell axon delivers about 1,600 active 

zones to LGN; 25% go to inhibitory interneurons, leaving 600 for standard and 600 

for lagged relay cells. Of the 600 contacts to a brisk-sustained relay cell, half (300) 

are from the private line ganglion cell and the rest from about five overlapping gan-

glion cells, each contributing 60 contacts. The private line ganglion cell that delivers 

only 300 contacts to its main target diverges the rest to relay cells that it overlaps. 

 3.   This paper shows how this works for a second type of Y cell in lamina C with 

slightly different properties than the main Y cell in the A laminae. 

 4.   There is a history of research on  “ blindsight. ”  This is demonstrable visual behav-

ior that remains in the absence of V1. Subjects may deny seeing anything but show 

behaviorally that they do see. Given the nearly two dozen pathways to lower brain 

regions, and the rule to carry out the behavior at lowest possible level, this should be 

no surprise. But one should keep in mind that  “ blindsight ”  is too rudimentary to 

support independent navigation. 

 5.   Experts will recognize that our treatment simplifies. It ignores differences between 

species and avoids discussing points that are not yet fully resolved. Therefore, we 

consider this interpretation of V1 design as provisional. 

 6.   Primate has its own terminology: the high-rate neurons (b-t) are termed M and 

supply upper layer 4 (primate 4 C α  ) whereas medium-rate neurons (b-s) are termed P 

and supply lower layer 4 (primate 4A, 4 C β  ). The lowest-rate relay neurons are termed 

K and supply upper layers (1 – 3). Cat has a different terminology, but the same pat-
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terns hold: high-rate (Y) terminates in upper layer 4; medium-rate (X) deeper in 

layer 4; lowest rate (W) in layers 2 – 3. 

 7.   Valverde Salzmann et al. (2012). This paper shows strong responses to red – green 

isoluminant stimuli, but not to blue – yellow. However, studies of other primate spe-

cies report blue – yellow signals as well. 

 8.   Economides et al. (2011). This paper shows that patch neurons respond to achro-

matic as well as chromatic stimuli at higher than average rates. 

 9.   A dark contrast that excites an adjacent line of OFF relay cells to  “ push, ”  simulta-

neously disinhibits by suppressing a cospatial line of ON relay cells that drive a dif-

ferent inhibitory input to  “ pull. ”  

 10.   Essentially identical mechanisms occur in V1 and V2 (cat). V2 ’ s larger spatial 

receptive fields allows tuning for threefold higher velocities. This explanation of 

early motion coding was provided by L. A. Palmer. 

 11.   Learning has been suggested as a mechanism for complex cell generalization 

(Karklin  &  Lewicki, 2009). 

 12.   This account is simplified. For example, the full V1  →  V2 projection comes 

from layers 2 – 3, 4A, 4B, 5, and 6. Only layers 1 and 4C ignore V2 (Sincich  &  

Horton, 2005). 

 13.   This contrasts with high-rate outputs from cerebellar cortex that require a stage 

of convergence to relay neurons in order to reduce numbers and rates (chapter 4). 

 14.   Just as the LGN relay neurons are gated by feedback from V1, each cortical area 

also receives reciprocal projections from the higher order cortical area(s) to which it 

projects (Felleman  &  Van Essen, 1991). 

 15.   The upper layers also project to the opposite hemisphere via the giant commis-

sure, the  corpus callosum  (chapter 13). 

 16.   All connections between cortical areas are reciprocal. Upper layers forward (V1 

 →  V2) and lower layers the reverse. 

 17. Our account here of Gestalt grouping draws on this paper. 

 18.   Bertold Brecht,  “ To Posterity #1. ”   

 19.   These are the  parahippocampal place area ,  transverse occipital sulcus , and  retrosple-

nial corte x (Nasr et al., 2011). 

 20.   This oversimplifies V2 and its connections — for example, we have omitted  “ pale 

stripes ”  and their connections. But the basic theme is captured here. We too are 

shedding detail! 

 21.   Early exposure to faces of one race, excluding all others, stably enhances sensi-

tivity to recognizing emotional expression of that race and enhances amygdala 
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activity to out-group faces. Thus, an  “ early warning system ”  to rapidly recognize and 

trigger alarm to out-group faces appears to originate at least partly in neural develop-

ment (Telzer et al., 2013). 

 22.   We recognize that unsuspected connections continue to be discovered as meth-

ods for tracing grow more sensitive. A new connection would not lead us to reject 

the principle  send only what is needed  but rather to investigate what value accrues. 

 Chapter 13 

 1.   For perspective, adult human nervous system has of the order of 1.5  ×  10 6  km of 

axon, so the granule cell saving is 0.03% of total wire. 

 2.   Braitenberg and Sch ü z (1998) report 35% for each but may have used somewhat 

different criteria. This fraction is intended as a rule of thumb — to emphasize that a 

constraint exists. 

 3.   In   figure 13.5 , the thickness of the retinal synaptic layers (inner + outer)  ÷  the 

sum of those layers + the cell body layers (inner nuclear + ganglion cell layer) = 3/5; 

and in   figure 13.9 , the thickness of outer synaptic layer + 30% of granule cell layer 

occupied by synapses  ÷  total thickness is approximately 3/5. 

 4.   Certain specialized amacrine types contribute long axons ( > 1 mm). The cells and 

axons are sparse; nevertheless, because the axons are so long, they contribute a 

locally dense meshwork (Dacey, 1989). 

 5.   Spines are used by a few specialized types, such as the dopamine amacrine cell — a 

hint that, unlike most retinal synapses, it might participate in stable plastic changes 

(see chapter 14). 

 6.   Rat: 0.3 mm flanking Purkinje cell bodies  ×  5-mm parallel fiber length = 0.3 mm 2  

 ×  0.37 mm thick = 0.55 mm 3   

 7.   Convergence/divergence = 200 for cerebellar circuit (200,000/1,000), but 

convergence/divergence is about 10 for cerebral pyramidal neuron (10,000/1,000). A 

few giant pyramids may converge 60,000 synapses according to Braitenberg and 

Sch ü z. 

 8.   Granule cell is about 7  μ m in diameter, the same as a red blood cell, but the latter 

reduces its volume by ejecting the nucleus. This limits the lifetime of the red blood 

cell to about 45 days whereas the granule cell lasts for the life of the animal. 

 9.   This irreducibly thin axon is confined to a low mean spike rate, and a key task of 

the mossy-fiber-to-granule-cell connection to reduce spiking to a rate that the paral-

lel fiber can support. 

 10.   This is 4/3 times the ratio between radii squared (axon radius = 0.15  μ m, varicos-

ity radius = 0.75  μ m. 
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 11.   Ratio of parallel fiber (pf) volume to varicosity volume: pf radius squared 

(0.15  μ m) 2   ×  length (6.25  μ m) = 0.141 mm 3   ÷  4/3  ×  varicosity radius cubed (0.75) 3  = 

0.563  μ m 3 ; pf length excluded from varicosity = 6.25  μ m  –  0.3  μ m (diameter of vari-

cosity) = 5.95  μ m; volume of that part of pf = 0.225  ×  5.95 = 0.134  μ m 3 . So, pf = 

varicosity = 0.134 + 0.563 = 0.696; ratio = 4.95. 

 12.   Sevenfold greater mitochondrial volume fraction  ×  3.5-fold greater cytoplasmic 

volume (Perge et al., 2012). 

 13.   If the mitochondrial volume fraction is lower in the deep neurons, this would 

reduce energy costs by an additional factor. 

 14.   Some Purkinje axons do leave the cerebellum for the vestibular neuron cluster, 

which, being nearby, also keeps the axons short. 

 15.   Cat: ~1.2  ×  10 6  Purkinje cells versus ~0.2  ×  10 6  ganglion cells. Human: ~1  ×  10 6  

ganglion cells versus ~15  ×  10 6  Purkinje cells. 

 16.   The number of synapses converging on one pyramidal neuron is about 10 3  to 

10 4 . Thus, the divergence and convergence of each type of pyramidal cell exceed 

that of a retinal ganglion cell but are far less than for a Purkinje cell. 

 17.   Folding only becomes prominent in higher primates and dolphins (Cetacea). 

 18.   Mean diameter of retino – LGN axons: brisk-sustained (X) = 2.0  μ m; brisk tran-

sient (Y) = 3.0  μ m (Sur et al., 1987). Mean diameter of LGN – area 17 axons: brisk-

sustained (x) = 1.3  μ m; brisk transient (Y) = 1.8  μ m (Humphrey et al., 1985). 

 19.   Whether GABA enhances or suppresses spiking depends on whether the particu-

lar chloride transporter that is expressed holds local E Cl  positive or negative to rest-

ing potential (figure 7.4). 

 20.   Assuming similar frequency of synaptic outputs for pyramidal and nonpyrami-

dal neurons, given that inhibitory synapses are only 10% of total. 

 21.   Recognition that that the right hemisphere in humans serves unique functions 

and is not simply a  “ spare part ”  is relatively recent. For example, the 1943 edition of 

 Human Neuroanatomy , the text by Strong and Elwyn, stated,  “ in man the higher cor-

tical functions are vested principally in one cerebral hemisphere, the left one in 

right-handed individuals — lesions of the other hemisphere producing as a rule no 

recognizable disturbances ”  (see Bogen, 1969). 

 Chapter 14 

 1.   A professor of ichthyology famously justified his reluctance to learn students ’  

names, saying,  “ Whenever I learn a name, I forget a fish. ”  This has been considered 

merely an excuse for laziness, but perhaps it is justified by neural design. The profes-

sor was David Starr Jordan, first president of Stanford University. 
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 2.   For a sense of the different stages, consult the works of Erik Erikson (e.g., Erikson 

 &  Erikson, 1997). For an integration of the neuroscience of memory and personal 

history, see Kandel (2006). 

 3.   Conversely, when large quantities of facts and experience are obliterated, as in 

the retrograde memory loss of Korsakoff ’ s syndrome, the context offered by religious 

practice, music, or gardening may remain to knit the raveled web. See Oliver Sacks ’ s 

 “ The Lost Mariner ”  (in Sacks, 1985).  

 4.   The idea that learning occurs by changing connections and adding new ones 

dates back more than a century. Cajal was not the first to suggest this, but he made 

many relevant observations and many comments as well. See DeFelipe (2006). 

 5.   This shaping of neural circuits to match their anticipated long-term input statis-

tics ( plasticity ) serves the same design goals as familiar types of learning. Moreover, it 

uses the same mechanisms, as will later be explained. 

 6.   Visual stimulation activates postsynaptic NMDA receptors that, under control of 

the enzyme PKM  ζ ,  cause insertion of the GluR1 subunit into the postsynaptic GluR 

receptors. This maintains potentiation, which improves contrast sensitivity and spa-

tial acuity of the visual evoked potential (Cooke  &  Bear, 2010).  

 7.   This section draws on studies over the last decade using fMRI. Summarized criti-

cally by Wandell et al. (2012). Also Dehaene et al. (2010). 

 8.   The smallest unit of meaning (morpheme) is the smallest unit of writing — as in 

Chinese characters. 

 9.   This is true as well for face areas, where face recognition is 80 ms faster for a 

familiar versus an unfamiliar face (380 ms vs 460 ms) (Ramon et al., 2011). 

 10.   This is shown for motor cortex learning as early changes in the descending tract. 

 11.   This account necessarily simplifies and compresses what is actually a complex 

and diverse set of mechanisms. To get some idea, consider that CaM kinase has 28 

isoforms and constitutes 1% – 2% of brain protein. 

 12.   PKM ζ  also provides a simple mechanism for long-term depression, that is, 

returning a potentiated synapse to its basal condition. Again it is chemistry: an 

appropriate stimulus reduces the calcium influx, thereby activating a phosphatase 

that dephosphorylates PKM ζ , restoring the initial balance of receptor cycling and 

the basal number of receptors. 

 13.   However, in dopamine ’ s role as a  “ teaching signal ”  its timing is critical because, 

as will be discussed, dopamine can be important in encouraging an animal to repeat 

the behavior. 

 14.   For the better characterized cerebellar circuit, estimates of the numbers of asso-

ciations made by a Purkinje cell ’ s input synapses vary from 40,000 to 100, depend-
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ing on the model used for storage and recall. This is reviewed by Howarth et al., 

(2010). Promising new techniques for resolving the engram, including those pre-

sented here, are critically reviewed by Sakaguchi and Hayashi (2012). 

 15.   This account is certainly oversimplified, for it is based mainly on studies cen-

tered on one particular area of medial and orbital frontal cortex whereas the whole 

region contains 22 areas. Moreover, our commuter has dealt so far only with an 

inanimate bit of pastry and has not yet even gotten to work.    

 16.    These neurons in the right hemisphere teach music, spatial mapping, and art; 

in the left hemisphere they teach language, history, and zoology. 

 17.   10 6  synapses per neuron  ×  10 5  neurons. Although a dopamine neuron fires at 

similar mean rates to a retinal ganglion cell, its cell body is about 10-fold greater in 

volume and its axon is also thicker. This seems attributable to its need to supply a 

much larger axon arbor with about 1,000-fold more release sites. 

 18.   Arthropods use the same signal but a different transmitter, octopamine.  

 19.   This captures the experience that follows brief block of reuptake by a snort of 

cocaine. 

 20.   However, monkeys and chimpanzees do show evidence of hemispheric special-

ization for face recognition (Dahl et al., 2013). 

 21.   There must be differences in brain structure between a leader and a confidence 

man, but they are probably subtle. 
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 Acetylcholine, 180, 184, 452n 

 Acetylcholine receptor, molecular 

structure, 139 

 Action potential, mechanism, 147 – 150 

 Active zone.  See  Synapse, active zone 

  Adapt, match, learn, and forget,  48 – 49, 

173, 234, 263, 399, 434, 440, 446 

 Adapt, match, trade, 48 – 50.  See also  

Symmorphosis 

 Adapt and match 

 array to input S/N, 136 – 137, 248, 

306 – 309 

 bandwidth to input 213, 218 – 222, 

224, 228 – 230, 299, 330 

 capacities across systems, 13, 48 – 49 

( see also  Symmorphosis) 

 capacity to natural distribution of 

information, 434 – 435 

 circuits to stable statistics, 405 

 coding to natural statistics, 251 – 252, 

258 – 263 290, 301 – 313, 327, 337 –

 342, 351 – 357 

 dendritic arbors to image statistics, 

307 

 electrical coupling to input statistics, 

280 – 284, 287 – 288, 310 

 energy capacity to information rate, 

336 

 gain to light level, 220 – 221 

 information capacity to supply, 228 –

 230, 248 

 Index 

 I/O function to input, 49, 129, 130, 

145, 221, 260, 270, 289, 299 

 locomotion to terrain and viscosity, 23 

 memory to lifespan and lifestyle, 16, 

21, 38 – 39 

 parallel channels to distribution of 

information, 306 – 309, 354 

 potassium channels to visual ecology, 

230 – 233 

 predictive coding to input statistics, 

251 – 252 

 receptive field to image statistics, 

251 – 252, 306 – 309, 337 – 344 

 resources to information, 135 – 137, 

291 – 295 

 response waveform to input statistics, 

219, 260 – 263 

 sensor to signal quality, 195 – 234, 274 

 structures and molecular mechanisms, 

195 – 234, 291 – 295 

 synapse to input, 186 – 190, 210, 241 –

 263, 268 – 276, 287 – 295, 327 – 332 

 Adaptation relates to learning, 421 – 422 

 to changing demand, 3 

 Addiction, cause of, 429 

 Addition (arithmetical operation), 128, 

145, 172 

 Adenosine triphosphate (ATP).  See also  

Mitochondria 

 constrains information processing, 

152 – 153, 157 
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 drives signaling in protein circuits, 

122 – 123, 138 

 inactivates receptor proteins, 121 

 production of, 58 

 standard unit of cellular energy, 52, 

54 

 Adrenal gland, 64, 67 

 Adrenaline (epinephrine), 91, 116 – 122, 

125, 129 

 Affinity.  See  Binding affinity 

 AII amacrine.  See  Retinal amacrine cells 

 Aldosterone, 66 – 67 

 Allostasis, 447n2 

 Allostery, 115, 126, 213, 450n4 

 information processing and 

computation, 117 – 118 

 synaptic vesicle release, 160, 163 

 Amacrine cell.  See  Retinal amacrine cells 

 AMPA receptor.  See  Glutamate receptor 

 Amplification, optimization, 258 – 260 

 push-pull, 308 – 309, 341 – 342 

 Amplifier, xvii, 35, 107, 120, 126, 130, 

268.  See also  G-protein-coupled 

receptor 

 ion channel, 141 

 protein circuit for phototransduction, 

126, 195 – 204, 210 – 12, 217, 233 

 Amygdala 86, 357 

 Anabolism, 58 – 59.  See also  Catabolism 

 Analogue computation.  See  

Computation, analogue; 

Computation, direct;  Compute 

directly with analogue primitives  

 Analogue circuit elements, 146 – 147 

 Analogue primitives, 131, 221, 440 

 used for coding, 234, 260, 263, 281 –

 287, 301, 322 

 Analogue to pulsatile, 37 – 38, 96, 174 –

 175, 265 – 276, 300, 333 

 AND gate, 117 – 118, 218 

 Anticipatory regulation, xiv — xvi, 47, 

67, 447n2 

 Anxiety, xvi 

 Arithmetical operators, 125, 127 – 131, 

145 – 146, 172, 451 

 Array.  See also  Sensor array; Neuronal 

array; Synaptic array 

 maximize information within, 303 –

 311, 434 – 437 

 optimization, 135 – 137, 247 – 248, 280 –

 298, 303 – 311, 316 – 319, 433 – 439 

 Arrays, interconnecting efficiently, 

367 – 387 

 Arrestin, 121, 202, 216 

 Assembling patterns, 45, 359, 361, 416 

 Associative learning, 32, 95, 100, 102, 

450n2 

 mammal, 410 – 430 

 Astrocyte.  See  Glial cells 

 A to P.  See  Analogue to pulsatile 

 Auditory cortical areas, similarities to 

visual, 359 – 360 

 Auditory patterns, 74 

 Auditory sensors, 92, 92, 268 – 274.  See 

also  Hair cell 

 Autonomic system, 45, 89 

 low information rates, 68 

 sympathetic and parasympathetic 

subsystems, 68 

 Avoidance response,  Paramecium  18 – 20 

 Awakening, 63 – 64 

 Axon 

 analogue to pulsatile, 174 – 175, 

425n12 

 channel noise limit to diameter, 185 

 initial segment, 174 – 175, 178 – 179 

 local computing, 178 – 179 

 as matched filter, 255 – 258 

 matched to active zones, 291, 294 

 Axonal transport, mechanism and cost 

175 

 Axon diameter, and rates xvii, 54, 

75 – 76, 87, 186, 266 – 268, 273, 

320 – 322 

 minimum, 185 

Adenosine triphosphate (ATP) (cont.)
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 Axon diameter distribution, in nerves 

and tracts, 63, 75, 99, 267, 320 – 322, 

384 – 386, 416 

 log-normal 63, 384, 386, 419 

 B 29 (Boeing), 1.  See also  Reverse 

engineering 

 Bandwidth 

 at chemical synapse, 161, 188, 234, 

268, 291, 293 – 295 

 determines information rate and 

capacity, 113 – 114, 220, 225 – 227, 241 

 limited by dendrite, 170 

 match to input, 213, 218 – 220, 224, 

228 – 230, 299, 330 

 and membrane time constant, 146, 

151, 166, 170, 227 

 photoreceptor, 213, 224, 218 – 220, 

224, 228 – 230 

 and receptor binding affinity, 128 –

 129, 137, 160 – 161, 165 – 168, 270 –

 271, 286, 330 

 regulated by potassium channels, 

230 – 234 

 segmented by synapse, 164 – 168, 

291 – 296 

 segmented in parallel neurons, 310, 

322, 353 

 sets receptive field size, 310 

 spatial, 338 – 339, 353 

 and spike rate, 312 

 trade for energy, S/N and gain, 135, 

137, 146, 161, 202, 209, 260 – 263 

 Basal ganglia, 98 

 Basket cell (cerebellum), 177 – 179, 184, 

186, 189, 190, 373 

 Bat, 73 – 74, 92 

 Battery (ionic), 140 – 144, 150, 152, 164 

 cost of recharging, 141 – 142, 153, 222, 

145, 393 

 Behavior, 41 – 50 

 aversive response, 27 – 28 

 choice, 43 – 44 

 foraging, 21 

 motor, 44 

 random, 20 – 21 

 selection of, 28 – 31, 44 

 Behavioral threshold for discrimination, 

323 

 Benzodiazepine.  See  Tranquilizers 

 Bergman glia, 156, 190 

  β 2 adrenergic receptor, 117 – 123 

 Biased random walk (search strategy), 

15 – 16, 29 

 Binding affinity 

 and bandwidth/timescale, 128 – 129, 

137, 160 – 161, 165 – 168, 270 – 271, 

286, 330 

 and dissociation constant,  K D  , 

127 – 129 

 matched to input signal, 12, 67, 

155 

 matched within a circuit, 160 – 161, 

167 – 168, 204, 213, 270 – 271, 290 –

 291, 438 

 Bit, unit of information defined, 51 

 Bit rate.  See  Information rate 

 Bits per spike, 52 – 53, 84, 174, 300, 309, 

327 – 334, 340, 353, 451n2 

 Blindsight, 458n4 

 Blood pressure, 45 – 47, 66 – 67 

 Boltzmann, L. 

 entropy, 110 

 constant ( K D  ) 122 

 Boolean operation.  See  AND gate 

 Brain 

 broad aspects of design, 41 – 43 

 can ours do better? 441 

 constraints on, 50 – 55, 89 

 core tasks, 43 – 45, 89, 104 

 emergence of, 20 – 21 

 insect, 89 – 104 

 mammal, 57 – 89 

 organizational principles, 57 – 104 

 purpose, 11 

 will ours survive? 444 
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 Brain size, 22, 392 

  C. elegans , 33, 35 

 comparison of fly, mouse, monkey, 

human, 41 

 honeybee, 102 

 mormyrid fish, 77 

 Brecht, Bertold, 459n18 

 Brownian motion, 17, 133, 155 

 Brownian noise, 92, 133, 137, 198. 

 See also  Noise sources, thermal 

 C aenorhabditis elegans  ( C. elegans ), xiii, 

13, 21 – 39, 400 

 Cable theory, 170 – 171, 255, 365, 422 

 Cajal, S. R.  See  Ram ó n y Cajal, S. R. 

 Cajal ’ s laws of conservation, 363, 393 

 Calcium channel, and memristor, 

147 

 links electrical signals to chemical, 

150 – 151 

 Calcium channels 

 control simple behavior, 18 – 20 

 and synaptic vesicle release, 160 – 162, 

270 – 272, 281 – 290, 299 

 Calcium ions 

 as chemical messenger, 150 

 control gain and bandwidth, 202, 

209, 216 – 218, 220 – 222, 270 – 272, 

281 – 293 

 couple chemical and electrical circuits, 

150 – 151, 160 – 162 

 driving force on, 162 

 pumps ( see  Calcium pumps and 

exchangers) 

 and synaptic plasticity and memory, 

167, 404, 412 – 413,417 – 418 

 trigger synaptic vesicle release, 150, 

160 – 162 

 Calcium pumps and exchangers, 20, 

192, 202, 212, 217, 221 

 CaM kinase II, 412 

 cAMP.  See  Cyclic adenosine 

monophosphate 

 Capacitance.  See  Membrane 

capacitance; Analogue circuit 

elements 

 Capillary network, 157 – 158, 325, 386, 

393 

 Capgras syndrome, 358 

 Catabolic/anabolic cycle, 58 – 59, 64, 91 

 Catabolism, 58 – 59.  See also  Anabolism 

 Central complex, 96 – 97 

 Central pattern generators.  See  Pattern 

generators, central 

 Cerebellar cortex, 370 

 design requirements, 371 

 Cerebellum 

 axon diameters vs. firing rates, 75 

 basic circuit ’ s cell types ( see  Granule 

cell; Purkinje cell; Basket cell; Golgi 

cell; Bergman glia) 

 climbing fiber, 156, 165, 184, 190, 

348, 373, 394 

 deep neuron clusters, 88, 391 

 design of basic circuit, 185 – 190, 371 

 design requirements, 371 

 energy costs, 190 – 194, 394 – 395 

 inferior olive, 348 

 of mormyrid, fish 74 

 mossy fiber, 156, 165,184, 186 – 188, 

190 – 193, 330, 348, 372 – 373, 384, 

394 – 395, 460n9 

 parallel fiber (s ee  Granule cell) 

 pontine cluster, 348 

 sections through, 42, 88, 346, 347, 

383, 38 

 synaptic architecture, 186 – 190 

 Cerebral cortex 

 adaptive responses, 400 

 circuits repeat, 353 

 comparison to retina and cerebellar 

cortex, 364 – 365 

 distribution of blood vessels, 158 

 energy costs vs. cerebellum, 395 

 energy usage, 153 – 154, 336 – 337, 342, 

352 
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 executive summary, 63 

 functional architecture, 384 – 389 

 interfaces (input/output tracts), 384 

 maximizes potential connections, 

442 

 number of neurons, 41 

 pyramidal neuron, xix, 153 174, 175, 

381, 384, 386 – 389, 460n7, 469n16, 

460n20 

 sections through, 42, 88, 346, 347, 

383, 385 

 similarity to mushroom body, 102 

 sparse codes used, 341 – 343, 353, 359, 

411 

 wiring maximizes connectivity 

repertoire, 381 

 Cerebral cortical areas 

 auditory, 353, 359 – 360, 392 – 393, 

408 – 410, 423 

 efficient placement for 

interconnection, 86 

 face identification, 85 – 86, 357, 358 

 human, 350 

 language, 359 – 360, 407, 409 – 410 

 middle temporal (MT), 361 

 monkey, 423 

 number of, human vs. mouse, 85 

 for object grasp, 85 

 for object identification, 356, 359 

 for scenes, 356 

 in star-nosed mole, 80 

 visual (s ee  V1; V2) 

 why separate areas, 390 – 392 

 written word recognition, 406 – 410, 

418 – 419, 431 

 cGMP.  See  Cyclic guanosine 

monophosphate 

 cGMP-gated channel, 212, 213, 217, 

224 

 Chemical circuit, design basics 

125 – 137 

 constraints on, 137 

 Chemotaxis, 15, 21 

 Chess, xi, xvi 

 Chloride channel, 140, 169 

 histamine-gated, 140, 146, 241, 246, 

254, 260, 454n9 

 roles in inhibition, 169, 179, 461n9 

 Chloride ions, 140, 169, 179 

 driving force, 162 

 Chloride pumps, KCC2, NKCC1, 

179 

 Choice 

 of action, 96 – 98 

 rules governing, 419 – 422 

 Choosing or selecting components and 

materials, 4 – 6, 8, 210, 232, 234. 

 See also  Parts, catalogue or list 

 Chromophore, 195 

 regeneration of 214, 224 

 Circadian rhythm, xv1, 59, 448n1. 

 See also  Clock 

 Circumventricular organ, 65, 448, 

448n1 

 Clock (circadian), 59 – 64, 69, 91, 98, 

323, 449n4 

 coupling to behavior, 61 – 64 

 entrainment by light, 59, 197, 323 

 location, 59 – 60, 69, 91 

 regulates neural mechanisms, 233, 

287, 334 

 Cluster, use of term 448n2 

 Cochlea, 76, 78, 92, 271, 273 

 Cochlear (auditory) nerve, 74 – 75 

 Coincidence detection, 102, 167 – 168, 

172, 189, 218 

 Collecting sensory patterns, 91 

 Color perception 

 loss of (achromatopsia), 358 

 shift in, 405 

 Color vision, specializations for, 

284, 316, 319, 325, 336, 351, 

356, 458 

  Combine analogue and pulsatile processing , 

206, 437.  See also  Analogue to 

pulsatile 
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 Command neuron, 27 – 28, 30, 33 

 Compartment size and performance 

 in practice, 170, 172, 201, 214, 216 –

 218, 220, 234, 435 

 in principle, 113, 133 – 134, 137 

  Complicate , xiii, 7, 21, 401, 414, 438 

 Complex.  See  Signaling complex 

 Complex cell, 367, 369, 374, 481. 

 See also  V1 

 Component placement.  See also  Wiring 

efficiency 

 motor neurons, 70 – 71 

 optimization, 36, 239 

 silicon and worm, 36 

 striatum, 377 

 Computation.  See also  Information 

processing 

 analogue, 26, 37, 95, 130 – 134, 142 –

 147, 221, 281 – 282, 287, 301, 437, 

445 

 chemical, 12 – 21, 32 – 35, 127 – 133 

 dendritic, 170 – 174, 176 – 177 

 design principles summarized, 

434 – 437 

 direct, 131, 140, 281 – 288, 301 – 302, 

339 

 efficiency of, xi, xvii, 93, 131 – 133, 

153, 396 

 electrical, 18 – 20, 145 – 147, 255 

 embodied, 26, 103 

 load reduction, 26, 103, 131 

 local, 62, 83, 176 – 177, 179 – 180, 392, 

445 

 at nanometer scale, 126 

 by protein circuit, 125 – 154 

 reversible, 122 

 by single molecule, 117 – 125 

 Turing Universal, 131 

 Compute 

 as much as possible in a single cell, 

33 – 35 

 at the lowest level, 319 

 locally, 83 

  Compute directly with analogue primitives , 

221, 234, 260, 263, 281 – 282, 301, 

322, 437, 440 

 Computer vs. brain, xi — xii, xvi — xvii, 

xx, 9, 26, 287, 433 

  Compute with chemistry , 34 – 35, 124, 154, 

212, 234, 322, 435 

 Concentrate resources, 437 – 438 

 Concentration gradient (ionic), 139 –

 141, 143 

 Cone opsin 

 spectral tuning, 274 

 stability and speed, 207 

 thermal rate, 208 

 Cone photoreceptor, 207 – 210, 213 

 energy cost, 224, 394 

 information rate versus fly, 235 

 photon catch, 279 

 single-photon response cf. rod, 209 

 Cone synaptic terminal, 274 – 298. 

 See also  Synaptic ribbon 

 electrical coupling to cones, 281 – 288 

 electrical coupling to rods, 207 

 match to information capacity, 295 

 number of active zones, 207, 291 

 reducing noise, 280 – 284 

 reducing redundancy, 284 – 289 

 S/N 207, 209, 279 

 vesicle rate, 279 – 280 

 Connectivity repertoire, 379 

 Connectome, 37, 239, 242 455n10. 

 See also  Wiring diagram 

 Connexon, 177.  See also  Gap junction 

 Constraints, xvii 

 Contrast, definition, 219 

 Contrast coding, 219 – 222, 234, 236, 

241 – 244, 276, 284 – 291, 296 – 299 

 optimization, 258 – 260, 306 – 310 

 Contrast gain control, 300, 343 

 Cooperative binding, 129,146 

 and calcium sensor and vesicle release, 

270 

 and channel open probability, 140 
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 and cone synapse, 290 

 effects on I/0 functions, 129 – 131 

 implements  exp , 146 

 matches I/O function to input, 129, 

130, 260, 270, 299 

 matches synaptic transfer to function, 

238, 260, 292 

 and optimization of I/O function, 260 

 and optimization of rod response, 

201 – 204 

 sharpens timing, 161, 201 – 204, 271 –

 272, 299 

 and switch design, 130 

 Corollary discharge, 82 – 83, 100 – 101 

 Corpus callosum, 88, 386, 392, 443, 

459n.15 

 Corticocollicular pathway, 81, 348 

 Corticospinal tract, 69 – 73, 81, 386, 

443 

 Cost 

 fixed, 135 – 136, 152, 197, 223, 225 –

 228, 342 

 signaling, 135 – 136, 197, 212, 225 –

 228, 342 

 Costs.  See also  Energy costs 

 different senses, 71 – 76 

 learning, 410 

 opportunity, 44 

 speed over distance, 142, 435 – 437 

 Cricket (chirping), 100 

 Cyclic adenosine monophosphate 

(cAMP), 14 

 Cyclic guanosine monophosphate 

(cGMP).  See also  cGMP-gated 

channel 

 concentration optimizes 

phototransduction, 202 – 203, 209 

 in cone, 209 

 in rod, 196 – 204 

 Cytochrome oxidase, 194, 325, 336, 

351, 395 

 patches, 326, 336, 337, 344, 351, 390, 

391 

 stripes, 326, 351,352, 356, 390, 391, 

405, 446 

 Cytoskeleton 115, 133, 215 – 216 

 (see also  Scaffold) 

 DAG.  See  Diacylglycerol 

 Darwin, Charles, xii, xx, 319, 447n1, 

447n3 

 Data Mountain, xii, xxi, 265, 278 

 Decision 

 central complex, 96 

 design of 57, 76 

 integrated, 423 

 low-level, 71 

 perceptual and noise, 323 

 tree, 109 

 what to store, 419 

 where to look, 81 – 82 

 Deep Blue (IBM Supercomputer), xi, 

xvii, xx 

 Dendrite 

 cable properties constrain range, 

170 – 171 

 as memory module, 414 

 processes information directly, 

170 – 174 

 Dendritic arborization adapted for 

role, xix, 71 – 73, 185 – 190, 284 –

 287, 301 – 318, 346 – 349, 367 – 389, 

425 – 427,463n17 

 Dendritic spike, 172 – 173, 414 

 Dendritic spines 

 compartments for computation, 172 –

 173, 452n11 

 increase potential connectivity, 383 –

 384, 387 

 increase wiring efficiency, 366, 

375 – 376 

 involvement in learning and memory, 

410 – 419 

 Design, xxi 

 and competition, 3 

 and cost, 3 
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 Designer, xx — xxi 

 Design rule 

 build a neuron for a specific task, 180 

 compute as much as possible in a 

single cell, 33, 319 

 compute at the cheapest level, 434 

 compute at the lowest level, 319 

 compute locally, 83 

 conserve synapses, 35 

 favor analogue over pulsatile, 37 

 match sensor to signal quality, 274 

 maximize information sent by the 

array, 303 

 motorize sensors 29, 79 – 82, 92 

 neaten up, 6 – 7, 103, 224, 309 – 311 

 neurons that fire together locate 

together, 70 

 neurons that fire together wire 

together, 70, 326 

 no part is left idle, 263 

 optimize the interfaces, 235 – 264, 386 

 reduce noise before it becomes 

distorted by nonlinear processing, 

283 

 send information as slowly as possible, 

36 

 three fifths rule (wiring efficiency), 

367 

 trade between systems, 48 

 use neuromodulators to switch 

behaviors, 35 

 Design specifications, 2 

 integrating across systems, 8 

 Diacylglycerol (DAG), 215 – 216 

 Diffusion 

 impact on chemical circuits, 106, 127, 

133, 137 – 138, 435 

 impact on protein circuit, 200, 204, 

210, 216 – 218 

 impact on retinal function, 200, 204, 

210, 286, 291 – 298, 313, 321 

 impact on synaptic function, 159 – 175, 

183, 188, 286, 291 – 298, 425 

 Diffusional filtering, 291 – 296 

 Diminishing returns.  See  Law of 

diminishing returns 

 Disconnection syndromes, 358 – 360 

 Disinhibition, 98, 202,308 – 309,341, 

459n.9.  See also  Inhibition 

 Dissociation constant,  K D  , 127 – 129.  See 

also  Binding affinity 

 Division (arithmetical operation), 125, 

131 – 132, 146, 172 

 Divisive normalization, 146, 343 – 344. 

 See also  Contrast coding; Weber-

Fechner law 

 Dopamine, 30, 32, 35, 69, 287, 452n5 

 learning, 87, 100, 418 – 419 

 memory, 413 – 416 

 neuron, 69, 287, 424, 426 – 428, 

463n17 

 teaching signal, 422 – 428, 462n13 

 transporter, 429 

 Dorsal stream,  “ where, ”  356, 358 – 359, 

361 

 Driving force (on ions), 138, 162 –

 164, 309, 451n6.  See also  Reversal 

potential 

  Drosophila melanogaster  (fruit fly). xiv, 

xvii, 89 – 104, 213 – 234 

 DUM neurons, 91 

 Ecclesiastes, 22 

 Economics 

 cortical theme for neural investment, 

354 

 high rate cf. low rate channels/

pathways, 333 

 investment in axons in a tract, 397 

 phototransduction, 210 – 213, 222 – 234 

 synaptic investment, 332 – 334 

 of visual information, 296 

 Economic theory, neoclassical, 420 

 applied to choice, 420 

 applied to teaching signal 422 

 Effector clusters, arrangement 68 – 71 
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 Efference copy.  See  Corollary discharge 

 Efficiency.  See also  Energy efficiency; 

Information, cost and efficiency; 

Wiring efficiency 

 and brain design, xx 

 and small size, 102 – 104 

 and spike rate, 52 – 54 

 Electrical circuits 

 design basics, 138 – 154 

 constraints on, 151 – 153 

 speed over distance, 18 – 20, 147 – 151, 

155, 194 

 Electrical synapse, 177, 179, 207, 

309 – 310, 452n3.  See also  Gap 

junction 

 Electric sense, 74 – 77 

 Electronic circuits cf. protein circuits, 

126, 130 

 Electroreceptors, 74 

 Embodied computation, 26, 103 

 Endocrine glands.  See also  Pituitary 

 adrenal, 64 

 corpora allata, 89 

 corpora cardiaca, 89 

 pancreas, xiv 

 Endocrine signals, 60, 64, 68.  See also  

Wireless signaling 

 Endocytosis, 413, 425n8.  See also  

Synaptic vesicle, recycling 

 Endogenous opiate, endocannabinoid, 

endobenzodiazapine (diazepam 

binding inhibitor), 169 – 170 

 Energy capacity, matches information 

rate, 336 

 Energy cost.  See also  Energy efficiency 

 of axon, 54, 74 – 75, 63, 74, 182 

 chemical cf. electrical, 150, 162 – 164, 

210 – 213 

 of human brain, 8 

 and information rate, 53 – 54 

 of inhibition, 169, 191 – 193 

 of ion channel, 141 – 142 

 of neural circuits, 190 – 194, 393 – 395 

 of neuron, by function and 

computational stage, 190 – 194, 

393 – 396 

 of phototransduction, 210 – 213, 

223 – 231 

 of signaling protein, 122 – 123 

 of synapse, 160 – 164, 168, 175, 

191 – 194, 212, 245 – 246, 394 – 395 

 thermodynamic lower bound to, 

122 – 124 

 of tracts, 396 

 Energy costs 

 of cerebellum,190 – 194 

 of cortex, 393 – 396 

 Energy density, constrains neural 

processing, 153 – 154 

 enforces sparse coding, 342 

 Energy efficiency 

 cost per bit 54, 223, 245 

 dependence on rate 54, 223 

 and inhibition, 169, 388 – 389 

 need for, xx, 157 

 related to component size, 54, 117, 

223 

 Energy-efficient electronics employs 

neural principles, 440 

 Energy landscape, 115 – 116, 160 – 162 

 Energy production, 58.  See also  

Cytochrome oxidase; 

Mitochondria 

 Energy supply to neurons, brain 

controls, 157 – 158, 184, 277, 325, 

386, 393 

 Energy supply to organs, brain controls, 

44 – 45, 48, 58 – 64, 89 – 91 

 Engineering principles, xiii, 440 

 Entropy 

 Boltzmann ’ s (thermodynamics) 

110,114 

 Shannon ’ s (information theory), 53, 

109 – 111, 258 

 EPSC.  See  Excitatory postsynaptic 

current 



528 Index

 EPSP.  See  Excitatory postsynaptic 

potential 

 Error, reward-prediction, 100 

 Error correction, 86 – 88, 100 

 and evaluating behavior, 86 – 87 

 and intention learning, 87 

 and reward-prediction learning, 87 

 role of dopamine, 87 

  Escherichia coli , xiii, 12 – 17 

 Excitatory postsynaptic current (EPSC) 

 cost, 163, 191 

 in dendritic spines, 414 – 415 

 in ganglion cells, 312 

 in granule cell, 188 

 summation for quasi-secure synapse, 

328 – 329, 331 

 Excitatory postsynaptic potential (EPSP) 

 cost, 437 

 integration of, 172 

 passive transmission by dendrite, 171 

 regulation by network, 173 

 spine amplitude in, 452n11 

 Exocytosis.  See  Synaptic vesicle release, 

mechanism 

 Exponentiation (mathematical 

operation), 146 

 Extracellular potential, varied to 

compute, 178 – 179, 254 – 255, 286 

 Eye movements, fixation and efficiency, 

79, 81 

 Face areas.  See  Cerebral cortical areas, 

face identification 

 Faces, identification and recognition, 

85 – 86, 354 – 362 

 Feedback 24.  See also  Negative feedback; 

Positive feedback 

  “ Fight or flight, ”  46, 91 

 Filter, 125, 151.  See also  Matched filter; 

Diffusional filtering 

 Gabor, 337 – 342, 344 – 347, 353 – 354, 

361 

 Gaussian, 287, 302 – 303 

 mechanical, 268 

 spatial, 287, 302, 322, 337 – 342 

 temporal ( see  Bandwidth) 

 Filtering by single protein molecules, 

126, 129, 166, 292 – 296 

 Filters 

 cortical processing for, 337 – 361 

 mechanosensors in, 74, 83, 268 – 269, 

455n3 

 photoreceptors in, 204, 207, 217, 231 

 retinal processing for, 274 – 276, 279, 

280 – 281, 283, 285, 287, 302 – 303, 

307, 314 – 317 

 Finite state machine, 117 – 121, 124, 133, 

147, 435, 450n5 

 Fixed cost.  See  Cost, fixed 

 Fly photoreceptor, 214 – 234 

 constraints on design, 213 – 214 

 cost of energy, 224 – 225 

 cost of space, 222 – 224 

 design requirements, 214 

 economics, 222 – 231 

 gain control, 220 – 222, 225, 227, 

230 – 231 

 information capacity and efficiency, 

227 – 230 

 information rate and efficiency, 

225 – 227 

 mechanical signal processing, 216 – 218 

 noise in phototransduction circuit, 

 phototransduction circuit in 

microvillus, 216 – 219 

 potassium channels increase 

efficiency, 230 – 232 

 synapses, 235 – 264 

 Ford, Henry, 4 

 Ford, model T, 3, 6 

 Fornix, 62 – 63, 69, 88, 443 

 Fovea, 79 – 81 

 vs. camera on Mars rover, 456n1 

 like fly lovespot, 92 

 served by midget ganglion cells, 236, 

283 
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 Freud, Sigmund, 399, 428 – 429 

 Frontal eye field, 82, 449n16 

 Fruitfly.  See Drosophila melanogaster  

 GABA receptors, 159 – 160, 169, 300 

 Ganglion cell.  See  Retinal ganglion cells 

 Gap junction, 177, 281 – 285, 308 –

 310. 427, 456n7, 458n17.  See also  

Electrical synapse 

 Generalization, 220, 345 

 Genesis, 58, 306 

 Genome, 5, 17, 33, 117, 125, 151, 451. 

 See also  Parts, catalogue or list 

 Gestalt (grouping principle), 352, 354 

 Glegg, Gordon L., 447n1 

 Glia.  See  Glial cells; Synapse, glomerular 

 Glial cells 

 astrocytes, 183 – 184 

 Bergman, 156, 190 

 and electrical inhibition, 178 – 179 

 epithelial, 239, 242, 257 

 mitochondria in, 181 

 oligodendrocytes, 181 

 and predictive coding, 254 – 255 

 role in neural design, 181 – 184, 190 

 synapses onto, 239, 242, 255 

 volume and number cf. neurons, 181 

 Gliotransmitters, 184 

 Glomerular synapse.  See  Synapse, 

glomerular 

 Glomeruli, olfactory and optic, 90, 

93 – 95 

 Glutamate receptors.  See also  NMDA 

receptor 

 AMPA, 164 – 168, 172, 179, 286, 295, 

330 

 distribution in circuit, 270 

 family of, 165, 168 

 and memory, 412 

 mGluR, 168 

 segregate parallel channels, 291 – 298 

 temporal filtering by, 164 – 168, 293 

 tuned for function, 286 

 Glutamate transporters, 166, 168, 281, 

330 

 Golgi cell, 156, 184, 186, 188, 190 

 GPCR.  See  G-protein-coupled receptor 

 G protein, 117 – 123, 126, 141 – 142. 

 See also  G-protein-coupled receptor 

 trades gain for rate/bandwidth, 202, 

209 

 G-protein-coupled receptor (GPCR), 

117 – 123.  See also  G protein; Opsin; 

Metabotropic receptor 

 amplification by, 120 

 energy efficiency, 122 – 123, 141 – 142. 

 Grandmother cell, 357 

 Granule cell (of cerebellum), 184, 371, 

374 – 375 

 design for efficient wiring, 374 – 375 

 parallel fiber, 165, 177, 184 – 185, 189, 

190, 192, 373 – 376, 384, 460n6, 

460n9, 461n11 

 synapse to Purkinje cell, 189 – 190 

 Gray matter, 154, 158, 182 – 183, 396, 

400, 436, 443 

 Grouping statistics, 352 

 GTP.  See  Guanosine triphosphate 

 Guanosine triphosphate (GTP), 119 –

 122, 126, 202 

 Hair cell, 268 – 274 

 specialized synapse, 268 – 274 

 Haldane, J. B. S., 104 

 Happiness and unhappiness, 399 

 Hartline, H. K., 454n6 

 Hebb, D. O., 418 

 Hebbian synapse and learning, 411, 

417 – 418 

 Hemispheric specialization, 392 

 Heuristics, 103 – 104 

 Hillel, Rabbi, xvii 

 Hippocampus, 42 – 43, 62 – 63, 86, 88, 

357, 400 – 401, 419, 423 

 Homeostasis, xiv, 45, 477n2.  See also  

Synaptic homeostasis 
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  Homo sapiens , xiv 

 Homunculus, 79 

 Honeybee, 43, 92, 102 – 103, 399, 404, 

427 

 Horizontal cell.  See  Retinal horizontal 

cells 

 Hormones, 60, 64 – 69, 89, 448n1, 

450n1.  See also  Wireless signaling 

 Hyperbolic I/O function 

 computation by, 127 – 130, 145 – 146 

 and contrast coding, 219 – 220 

 and Weber-Fechner law, 128 

 Hypothalamus.  See also  Pattern 

generators 

 accessing information, 62 

 anticipating needs, 61 

 behavioral sequencing, 61 

 calling brain hormones, 65 

 commanding low-level pattern 

generators, 61 – 63 

 coupling clock to behavior, 61 – 63 

 evolutionary origin, 89 

 and high-level pattern generators, 

60 – 63 

 hypothalamic circuits, 60 – 64 

 location, 43, 60, 69, 88 

 and motivation, 61 

 proximity to effector clusters, 68 

 retinal input to, 324 

 role in behavioral repetition, 418, 

425 

 volume, 70, 449n9 

 Image processing in V1, 335 – 353 

 INAD, scaffolding protein (fly 

photoreceptor), 216 

 Inductance.  See  Analogue circuit 

elements 

 Inferior colliculus, 69, 74, 363, 449n15 

 Inferior olive, 348 

 Information, 51 

 concentration of, 169, 192, 300, 303, 

304 – 306, 331, 334, 357 

 cost and efficiency, 52 – 54, 122 – 124, 

135 – 136, 174, 222 – 224, 245, 320 

 and laws governing brain design, 50 

 Information capacity 

 analogue signal cf. pulsatile signal, 

51 – 53, 110 – 112, 174 

 constraints on, 51 – 54, 110 – 113, 

152 – 153, 174, 223, 227 – 228 

 matched to supply, 228 – 230, 248 

 measured values, 225, 245 

 percentage filled, 266 

 storage, 15, 85 – 86, 410 – 412 

 theory, 51 – 53, 107 – 114 

 Information processing 

 by allostery, 117 – 122 

 by chemical circuit, 105, 117 – 138 

 by electrical circuit, 138 – 154 

 by protein molecule, 105, 114 – 124 

 Information rate 

 and axon diameter, 53 – 54, 321 – 322 

 measured values, 53, 223, 245, 296, 

299, 320, 328 

 Inhibition 

 cross-, 28, 70, 71 ( see also  Inhibition, 

reciprocal) 

 crossover, 309, 313 

 electrical, 178 – 179 

 energy cost, 191 – 193 

 feedforward sharpens timing 

precision, 331 

 reciprocal, 26, 70, 73 

 Inhibitory neurons 

 contributions to coding efficiency 

388 – 389 

 contributions to cortical circuits, 

387 – 389 

 Initial segment.  See  Axon, initial 

segment 

 Inositol triphosphate (IP 3 ), 196, 215 – 218 

 Input patterns 

 collection, 71 – 83 

 linkage to motor commands, 96 – 97 

 processing and storage, 83 – 86, 93 – 96 
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 Input/output function, 125, 269, 

404, 439.  See also  Hyperbolic I/O 

function; Adapt and match, I/O 

function 

 computes in protein circuits, 127 – 131, 

144 – 146 

 key role circuits, protein and 

electronic, 125 – 126 

 optimizes coding, 258 – 260 

 Insect brain, xviii, 41 – 43, 89 – 105, 235 –

 264, 448n2 

 Insulin, 32, 46, 65, 66, 68 

 Interface, xiii, 4, 65, 235 – 264, 384 – 386 

 Interhemispheric tract.  See  Corpus 

callosum 

 Internal milieu, xiv, xv, 11, 15, 44, 45, 

89, 104 

 Internal physiology, 70 

 Inverting signal, molecular mechanism, 

296 – 298 

 Investment.  See also  Costs; Economics; 

Diminishing returns 

 in brain, xii, 22, 71, 76 

 within cortex, 333, 342, 354 – 357, 362, 

396 

 limits on returns, 283 – 284, 442 

 in sensors and senses, 58, 91, 235, 

283 – 284, 333 

 strategies, 9, 91 – 92, 135 

 in tracts, 397 

 I/O function.  See  Input/output function 

 Ion channels.  See also  Calcium channel; 

Chloride Channel; CNG channel; 

Potassium channel; Sodium channel; 

TRP channel 

 and conductance, 142 – 143, 201, 213 

 enable electrical circuits, 138 – 151 

 energetics, 141 

 ligand gated ( see  Acetylcholine 

receptor; GABA receptors; Glutamate 

receptors) 

 power transistors and, 141 – 142 

 response speed and, 141 

 single-channel conductance, 141 – 142, 

201, 213 

 single-channel current, 141 

 structure and function, 139 – 142 

 voltage sensitive/gated, xvii, 18, 38, 

130, 147 – 151 ( see also  Calcium 

channel; Potassium channel; Sodium 

channel) 

 Ion pumps and exchangers.  See  Calcium 

pumps and exchangers; Chloride 

pumps; Sodium-potassium pump 

 Ions.  See also  Calcium ions; Chloride 

ions; Potassium ions; Sodium ions 

 and electrical signaling, 8, 18, 106, 

138 – 154 

 IP 3 .  See  Inositol triphosphate 

 Kasparov, Garry, xi 

  k B T,  (Boltzmann ’ s constant  ×  absolute 

temperature), 122 

  K d  .  See  Dissociation constant 

 Kenyon cell (mushroom body), 94 – 95 

 Kidney, xiv, 47 – 49, 60, 64, 67, 70, 393 

 Kinase 

 finite state machine, role in, 118 

 inactivate adrenergic receptor, 121 

 inactivate rhodopsin, 202, 209, 210 

 insect phototransduction, role in, 215, 

217 

 isoforms, 462n11 

 memory and learning, role in, 32, 132, 

412 – 413 

 Purkinje neuron, role in, 418 

 regulate glutamate receptors, 

412 – 413 

 regulated by dopamine, 287 

 role in electrical coupling, 287 

 Lac operon ( Escherichia coli ), 12 – 14 

 Lactose, 12 – 16 

 Lagged cell, 331 – 335, 345 458n2 

 Lamina (insect visual system), 90, 94, 

235 – 264 
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 Language network, temporofrontal, 

407 – 410 

 Large monopolar cell (LMC), 140, 

236 – 264 

 LGN.  See  Lateral geniculate nucleus 

 Lateral geniculate nucleus, 325 – 331 

 axon arbors sculpted by experience, 

405 

 cortical projections to, 348, 349 

 diameter of relay axons to cortex, 

461n18 

 eye clusters separate but interleaved, 

361 

 main computational task, 327 

 lagged cell ( see  Lagged cell) 

 parallel streams, 325 – 327 

 private lines preserve acuity, 328 

 projection to cortex, 333 – 334, 336, 

340 

 role of quasi-secure synapse, 328 – 331 

 reduces redundancy and concentrates 

information, 327 – 328 

 six reasons for, 334 – 336 

 as a thalamic relay, 327 

 use of synaptic resources, 

332 – 33,458n2 

 where located, 88, 324 

 Lateral inhibition, 249 – 250, 329, 434, 

440, 454n5, n6, 455n10 

 Law of diminishing returns 

 governs investment in information 

and S/N, xvii, 52 – 54, 91, 134 – 136, 

199, 245 – 246, 302 

 overarching constraint on design, xvii, 

xix, 89, 105, 433, 442 

 and wiring efficiency, xix, 54, 302, 

365, 442 

 Laws of conservation.  See  Cajal ’ s laws of 

conservation 

 Learn and forget, 430 

 Learning, 96 

 by  C. elegans , 32 

 circuits for, 406 – 410 

 constraints on, 401 

 defined, 401 

 and emptying the trash, 408 – 410 

 motor ( see  Motor, learning) 

 and mushroom body, 102 

 to read, 406 – 410 

 role of NMDA receptor, 167 

 Learning, design principles, 401 – 410 

 sculpt circuits to match stable 

statistics, 405 

 store and retrieve without adding 

wire, 404 

 store for as long as needed, 402 – 404 

 store only what is needed, 402 

 Length constant, passive electrical 

transmission, 170 

 Level detector, chemical circuit, 132 

 LGN.  See  lateral geniculate nucleus 

 LMC.  See  Large monopolar cell 

 Locomotion 

  C. elegans,  22 – 27 

  E. coli , 15 

 Fly, 97 

  Paramecium , 17 – 20 

 Logarithm (mathematical operation), 

128, 146, 172 

 Long-term potentiation (LTP), 159, 405, 

413 – 416, 452n3 

 early, 413 – 415, 418 

 late, 414 – 415 

 Lovespot, 92 

 LTP.  See  Long-term potentiation 

  Make neural components irreducibly small  

234, 436 

 Maps, 43, 70, 73, 79, 81 

 advantages, 389 – 392 

 of body surface, 378 – 380 

 in cerebral cortex, 350 – 351, 364 

 motor, in colliculus, 81 

 of orientation and place, 96 – 97, 400, 

419 

 reorganization of, 402, 405 
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 in visual systems, 93 – 94, 236 – 238, 

326 – 327, 350 – 351, 364 

 and wiring efficiency, 389 – 392, 439 

 Matched filter, 231, 257 – 258 

 Mathematical operations in circuits, 

117, 125, 127 – 131, 145 – 146, 287 –

 288, 301 – 302, 339 – 341 

 Mechanosensor, 27 – 28, 30, 74, 81, 83, 

92, 265 – 269, 455n3 

 Membrane 

 capacitance, 8, 138, 143 ( see also  

Analogue circuit elements) 

 potential, 142, 162 

 resistance, 8, 144, 166, 170 – 171, 185, 

230 – 231, 255 ( see also  Analogue 

circuit elements) 

 supports RC circuit, 142 – 143, 172, 

204 

 time constant, 8, 138, 144, 230 

 Memory, xv 

 in  E. coli , 15 – 17 

 genetic cf. population, 17 

 match to lifespan and lifestyle, 16, 21, 

38 – 39 

 molecular design for long term, 

413 – 417 

 molecular design for short term, 

412 

 Memristor.  See  Analogue circuit 

elements 

 Metabotropic receptor, 168 

 mGluR receptor, 168 

 Microtubules, 175, 176, 185, 213,291, 

295, 374 

 Microvillus (compartment for 

phototransduction) 196, 215 – 222, 

225, 227 – 228, 453n8, 453n10 

 Mindful practice, importance of, 87, 

432 

 Miniature postsynaptic current (MPSC), 

160 

  Minimize wire , 88, 105, 238, 396, 414, 

438 

 Mitochondria 

 constrain rates and efficiency, 54, 

152 – 153, 157, 436 

 distribution and demand, 393 – 394, 

396, 397.  See also  Cytochrome 

oxidase 

 generate ATP, 152 

 in glia, 181 

 Mitochondria and the cost of space and 

materials 

 in axons, 54, 182,185, 374, 377, 397 

 in photoreceptors, 200, 212, 222 

 in tracts and nerves, 396 – 397 

 Mobile telephone, 9, 112 

 Molecular motors, 175 

 Mormyrid fish, 76 – 77 

 Mossy fiber, 184, 186 – 189, 372 

 Moth, bat detection, 92 

 Motion (visual), 214, 344 

 Motor control, 34, 68 

 Motor errors, 44 

 Motorize sensors, 29, 79 – 82, 92 

 Motor learning, 44, 100 

 Motor maps.  See  Maps, motor 

 Motor neurons 

  C. elegans , 13, 224 – 28, 31, 34, 36 – 37 

 columns, dendritic overlap, 70 – 73 

 inhibitory and excitatory, 24 

 insect, 98 

 mammal, 51, 60, 66, 68, 70, 425, 

431 

 Motor pattern 

 distribution 98 

 generator, 98 

 Motor system 

  E.coli  15 – 17 

  C. elegans , 22 – 29, 34, 36 

 insect, 96 – 104 

 mammal, 68 – 73, 79 – 84, 86 – 87 

 Movement, design for integration and 

coordination 18 – 21, 22 – 31, 61 – 73, 

79 – 85, 98 – 101, 325, 425 

 Multicellularity, 20 
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 Multiplication (arithmetical operation), 

132, 146, 172 

 Multivesicular release, 163, 168 

 Muscle 

 brain saves energy used by, 9 

 control of energy production, 91 

 coordination of, 61, 70 – 73 

 cost of, 48 – 49, 137 

 part of oscillator, 22 – 26, 34, 103 

 sculpting of, 401 

 sensors of, 84 

 signals to, 60, 64 – 68 

 Mushroom body, 43, 90, 94 – 95, 

100 – 102 

 Music 

 social and personal benefits, xvi, 11, 

76, 92, 403, 429, 431, 462n3 

 specializations for, 76, 359 – 360, 392, 

403, 431, 463n16 

 Myelinated axons, 63, 68, 71, 87 – 88, 

374, 385, 389, 392 

 Myelinated tracts, 42 – 43, 443 

 Myelination 

 benefits of, 57, 181 – 183 

 costs, 181 – 182, 397, 443 

 Naming, disconnection syndrome, 360 

 Nanodomain, 150 

 Nanofy, xvii 

 Natural scenes and images, power 

spectra 229, 261 – 262, 314, 337 

 Natural scene and image statistics, 198, 

208, 229, 236, 259, 302, 314, 337, 

339, 342, 351.  See also  Adapt and 

match; Predictive coding; Receptive 

field 

 Natural selection, xiv, 36, 58, 76, 155, 

201, 405, 447n1, 447n3 

 can it do better? 441 – 444 

 design and designer, xx — xxi, 5 

 Natural statistics 352, 357.  See also  

Natural scene and image statistics 

 Navigation, 96 – 98, 400 – 401, 419, 458n4 

 Neatening up, 6 – 7, 103, 224, 309 – 311 

 Negative feedback, 149, 216 299 

 Nernst equation, 140 

 Neural superposition, 237 – 258 

 Neuromodulators, 30 – 32, 35, 38, 89, 

231 – 233, 287.  See also  Dopamine; 

Octopamine; Serotonin 

 sculpt neurons and circuits, 31 – 32, 35, 

231 – 233, 287 

 switch behaviors, 32 

 Neuron, 21, 155 – 194 

 basic structure and function, 156 – 157 

 build for particular task, 180 

 design for local processing, 179 – 180 

 design for speed over distance, 

155 – 194 

 design serves a larger circuit, 

184 – 190 

 efficiency, need for, 157 

 energy budget 190, 191 – 193 

 generic, 190 

 identified, 36 

 as key innovation, 38 

 as shape-shifter, 176 – 194 

 Neuronal array, 95 – 96, 236, 249 – 252. 

 See also  Wiring efficiency, designs for 

connection of neuronal arrays 

 matched to natural statistics, 306 – 309 

 maximizes transmitted information, 

249 – 252, 303 

 Neurons, numbers in given species, 22, 

41, 76 – 77, 86, 102,448n3 

 Neuropeptide, 89, 388, 448n1 

 Neuroscience, field of endeavor, vii —

 xiii, xxi, 1, 5, 439, 444 

 Neurosecretory clusters.  See  Endocrine 

glands 

 Neurotransmitter, 129, 139, 140, 146, 

158, 183, 169, 427, 452n5 

 NMDA receptor, 165 – 168, 330, 417 

 as coincidence detector, 167, 172, 189 

 role in learning and memory, 167, 

412 – 413, 417 – 418 
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 Noise, 111.  See also  Signal-to-noise ratio 

(S/N) 

 and information, 111 – 114 

 in protein circuit, 133 – 137, 151 – 152 

 Noise reduction mechanisms 

 in axon, 174 – 175, 255 – 258 

 in photoreceptors, 206, 218 

 in protein circuits, 133 – 137, 

152 – 153, 

 in retinal circuits, 280 – 284, 309 

 Noise sources 

 axon, 174 – 175 

 diffusion, 133 

 ion channels, 151 – 152, 185 

 photons, 198 

 signaling molecules, 117, 120 

 synapses, 161 – 164 

 thermal, 33, 114, 120, 122, 137 – 138, 

151, 185 ( see also  Brownian noise; 

Opsin, dark noise and thermal 

activation) 

 Nyquist limit, 79, 92, 303, 337 

 Object identification, 356 

 Occam ’ s razor, 6 

 Octopamine, 35, 91, 101, 426 

 Ocular dominance, 344, 390 – 391, 405 

 Olfactory systems, 33 – 36, 43, 46, 64, 84, 

92 – 95 

 architecture of, 84, 92 – 96, 253, 267 –

 269, 274, 454n5 

 investment in, 33 – 34, 58, 73 – 75, 92 

 Oligodendrocyte.  See  Glial cells 

 ON and OFF, parallel visual pathways, 

291 – 322, 306 – 309 

 Operon, lac 12 

 Opsin 

 cone photoreceptor, 210 

 dark noise and thermal activation, 

198 – 199, 207 – 209, 213 – 214 

 fly photoreceptor, 213 – 214 

 rod photoreceptor, 196 – 204 

 trade stability for rate, 207 – 209, 213 

 Optic nerve, 7, 63, 69 75 

 astrocytes in, 181 

 bit rate, 85 

 connection to central targets, 323 – 325 

 distribution of axon diameters, 63, 321 

 information bottleneck, 320 – 322 

 myelination, 182 

 number of axons, 267 

 space and energy, 182, 397 

 spike rates in, 74, 320 – 322 

 Orexin, 64 

 Oscillator 

 chemical circuits for, 59, 130 – 132, 

449n1 24, 103 

 circadian, 59, 61, 449n1 

 neuromechanical, 24 – 27, 103 

 Output patterns, distribution to 

effectors 64 – 70 

 Paddington Station, 419 – 420 

 Pain receptors, 71 

 Parallel array.  See also  Sensor array; 

Neuronal array; Synaptic array 

 efficiency optimized, 135 – 137 

 noise reducer of last resort, 134 

 Parallel channels.  See also  ON and OFF 

 formed by synaptic mechanisms, 

291 – 322 

 increase efficiency by reducing rates, 

291 – 311 

 Parallel fiber (cerebellar).  See  Granule 

cell 

 Parallel pathways, 84, 322, 325, 335, 

434 

  Paramecium  xiii, 13, 17 – 21, 38 

 Parasympathetic nervous system. 

 See  Autonomic system 

 Parts, catalogue or list, 5, 35, 125, 155, 

169.  See also  Choosing or selecting 

components; Genome 

 Pattern generators 

 central, 24, 26 – 27, 92, 96, 98, 101 

 high-level ( see  Hypothalamus) 
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 intermediate-level, 82 

 motor ( see  Motor, pattern generator) 

 Pattern generators, low-level 60, 61 – 62, 

64 

 coordination by corticospinal tract, 

69 – 70 

 for eye and ear movements, 81 – 82, 83 

 for flexion and extension, 83 – 84 

 manage autonomic effectors, 68 

 manage motor neurons for skeletal 

muscle, 68 

 regulate posture, 68 

 retinal input to, 316 

 space for, 70 

 where located 68, 72 – 73 

 Pattern recognition, 29, 34, 43, 86 – 87, 

102, 167, 343 

 Pavlov, Ivan xiv, 11, 46 

 PDE.  See  Phosphodiesterase 

 Phosphodiesterase (PDE), 196, 201 – 204, 

209 

 Perception 

 pathways to, 325, 342, 344, 353 

 threshold for, 20, 27 – 28, 199, 279, 

323, 443 

 Pheromones, 30, 91 

 Phosphatidyl inositol biphosphate 

(PIP 2 ), 215 – 218, 224 

 Phospholipase C (PLC), 196, 215 – 218 

 Photon noise, 219, 229, 231, 252, 260 –

 263, 280, 313 

 Photoreceptors, xviii, 7, 73 – 74.  See 

also  Cone photoreceptor; Fly 

photoreceptor; Rod photoreceptor 

 common coding strategies, 218 – 222 

 common physical constraints on 

design, 213 – 214 

 counterintuitive design, 195 – 197, 234 

 of drone bee as mate detector, 

231 – 233 

 of fruit fly  Drosophila  cf. killer fly, 

 Coenosia , 91 

 gain and gain control, 120, 147 

 of housefly lovespot, 92 

 of locust, 231 – 232 

 Photoreisomerization, 214 

 Phototransduction, xviii.  See also  Cone 

photoreceptor; Fly photoreceptor; 

Rod photoreceptor 195 – 234 

 Piano tuners, 400 – 401 

 PIP 2 .  See  Phosphatidyl inositol 

biphosphate 

 Pituitary gland, 60, 64 – 67, 69, 89 

 PLC.  See  Phospholipase C 

 Pleasure, xvi 

 Ponzi scheme, 283 – 284 

 Portal vessel, 67 

 Positive feedback, 18, 147 – 149, 216 –

 218, 222 – 224 

 Postural hypotension, 47 

 Potassium channels, 140 

 increase efficiency, 230 – 234 

 in myelinated axon, 182 – 183 

 role in action potential, 141, 147 – 149 

 role in basic circuit, 142 – 147 

 role in dendrites, 170, 172, 414 

 role in gain control, 212, 222, 230 

 tune membrane bandwidth, 227 – 234 

 Potassium conductance 

 role in gain control, 145 – 146, 222 

 and shunting inhibition, 145 – 146, 

169 

 Potassium ions 140 – 142, 147.  See also  

Sodium-potassium pump 

 driving force, 138, 141, 143, 149, 162 

 Potential synapses or connections, 

269, 371, 382 – 387, 442.  See also  

Connectivity repertoire 

 Prediction, 13, 401, 439 

 Predictive coding, 248 – 252,284 

 matching to image statistics, 

251 – 252 

 matching to S/N, 252 

 Predictive regulation, digestive system, 

blood pressure, kidney, 46 – 48 

Pattern generators (cont.)
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 Presynaptic subtraction.  See  Subtraction 

 Protein circuit 

 for bandwidth and S/N, 206 – 210 

 for high gain, 197 – 204, 206 – 210 

 gain control in, 206 

 trades gain for speed, 216 

 Protein diversity, 5, 33, 35, 125, 155, 

164, 169, 210, 234, 451n5 

 Protein molecule.  See also  Allostery; 

Energy landscape 

 ability to process information, 

105 – 107, 114 – 12 

 binding specificity, 115, 121 

 computes in circuit, 114 – 124, 

127 – 131 

 energy efficiency, 122 – 124, 141 

 fixed cost, 135 

 size, 105, 114, 116 

 Protons, as chemical messenger, 216 

 Purkinje cell, 184, 371, 376 

 Push-pull circuit, 308 – 309, 341 

 Quantal rates, step down, 280 

 Quantizing cone signal, 287 – 291 

 Quantum, unit signal at chemical 

synapse, 163 

 Quasi-secure synapse.  See  Synapse, 

quasi-secure 

 Ram ó n y Cajal, Santiago, 265, 363, 399, 

447n3, 456n7, 462n4 

 Receptive field 

 adapt and match to input statistics, 

251 – 252, 287, 303 – 305 

 computation by local circuit, 288, 302 

 optimal overlap, 303 – 305 

 Receptor (protein molecule), 12, 33 

117 – 123 

 Receptor cluster, size range at synapses 

163 – 165 

 Reciprocal inhibition.  See  Inhibition, 

reciprocal.  See also  Inhibition, cross 

 Recoding, 265 – 276, 279 

 Rectification, 276, 296 – 298, 322. 

 See also  ON and OFF parallel visual 

pathways 

 Redundancy 

 and amplification, 120 

 definition, 107,111 – 112 

 and information capacity, 53, 

111 – 112 

 and S/N, 111, 134 – 135, 303 – 306, 334 

 and sparse coding, 341 – 343 

 Redundancy reduction, 84, 93 – 95, 270, 

327 – 328, 334, 386 – 387, 404 

 summary of, 433 – 434  (see also Send 

only what is needed)  

 Redundancy reduction mechanisms. 

 See also  Predictive coding; Lateral 

Inhibition 

 adjust response waveform, 261 – 263 

 inhibition, 111, 169, 192 

 ion channels, 168, 231 

 subtraction of mean, 248 – 255, 270 

 synapstic, 252 – 255, 270 – 272, 279, 

287, 411 

 Reflexes, 84 

 Repackage signals, 327 

 Resistance.  See  Membrane; Analogue 

circuit elements 

 Response dynamics, tuned to optimize 

efficiency, 260 – 263 

 Resurrection, 63 – 64 

 Retina 

 insect, 90, 94 

 mammal, 277 – 322, 365, 369 

 Retinal amacrine cells 

 AII, 308 – 310, 313, 458n17 

 polyaxonal, 179 – 180 

 starburst, 179 – 180, 313, 317 – 318, 

370 

 Retinal bipolar cells, 205 – 207, 258 – 259, 

278, 296 

 enhance timing precision, 300 

 sparsify and rectify, 280, 291 – 298 

 step down rates, 279 – 281 
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 Retinal ganglion cells, 278 

 core computational task, 300 

 function and evolution of different 

types, 311 – 319 

 maximize information sent by array, 

303 – 307, 434 

 optimize summation, 300 – 303 

 Retinal horizontal cells 

 connection to cone synapse, 281, 

292 – 293, 295 

 energy costs, 393 – 394 

 location in retina, 278, 280 

 minimize wire, 287 

 network function and design, 284 – 287 

 role in color coding, 337 

 role in computing difference-of-

Gaussians, 288 – 289 

 types of, 287 

 Retinal, 11-cis and all trans.  See  

Chromophore 

 Reversal potential, 143, 162.  See also  

Driving force 

 Reverse engineering, xiii, 1, 9, 278, 311 

 Reversible computation, 122 

 Reward prediction, 44, 422 – 428 

 brain region ( see  Ventral tegmental 

area) 

 error, 100, 102, 422, 427 – 430 

 learning, 87, 422 – 425 

 theory of, 422 

 Reward signal, 418 

 Rod photoreceptor (mammal) 

 compared to other photoreceptors, 

199 – 200, 212, 225, 453n1 

 costs, energy and space, 196, 212 225 

 dimensions, 199 

 role in starlight, 197 – 207 

 role in twilight and daylight, 206 – 207, 

212 

 single-photon response, optimization 

and transmission, 199, 201 – 206 

 synapse, 204 – 207 

 working with cones, 207, 210 

 Salt appetite, 47 

 Satisfaction, episodic, 399, 428 

 Scaffold, 133, 215 – 217, 410.  See also  

Cytoskeleton 

 SCN.  See  Suprachiasmatic nucleus 

 Scythe of Saturn, 57 – 59, 89 

 Sebald, W.G., 57 

 Second messenger, 65, 68, 168, 

214.  See also  Cyclic adenosine 

monophosphate, (cAMP); Cyclic 

guanosine monophosphate (cGMP); 

Calcium ions, as chemical 

messenger 

 Self-shunting, 143, 260 

  Send at the lowest acceptable rate , 88, 105, 

123, 234 

  Send only what is needed , 88, 105, 111, 

133, 175, 263, 348 – 349, 434 

 Sensor arrays, 76 – 82, 92, 212 – 213, 268 –

 274, 280 – 296 

 Sensors, motorized, 29, 79 – 82 

 Sensory patterns, collection of, 71 – 83, 

96 

 Serotonin, 31, 35, 184, 231 – 233, 

452n5 

 Shannon, Claude E., 9, 50, 52, 106 – 113, 

123 – 124, 247, 450n3 

 Shunting inhibition, 169, 299, 343 

 Signal attenuation 

 by diffusion, 127, 159, 200, 295 

 by passive electrical transmission, 

170 – 171, 255 – 258 ( see also  Adapt 

and match, electrical coupling to 

input statistics) 

 Signaling cost.  See  Cost, signaling 

 Signaling protein, 114 

 Signaling complex, 12, 15, 133 – 134, 

137 – 138, 159 – 163, 202, 209, 234, 

435 

 Signal-to-noise ratio (S/N).  See also  

Adapt and match array to input S/N; 

Bandwidth, trade for energy, S/N; 

Law of diminishing returns, governs 
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investment in information and 

S/N; Noise reduction mechanisms; 

Redundancy, and S/N; Synapse 

designed for, high S/N 

 constrains information, 111 – 114, 135 –

 137, 226, 241 – 245, 248 

 improved by transmitting via parallel 

arrays of components, 134 – 137 

 increases according to square root law, 

134 

 of input determines efficient 

investment, 134 – 137 

 Simple cell (V1), 338, 343 – 344.  See also  

Gabor filter 

 adapts to improve efficiency, 

343 – 344 

 advantages of sparse coding by, 

341 – 343 

 circuit for Gabor filter, 339 – 341 

 distribution of outputs, 345 – 359 

 insecure synapse, 338 – 339 

 motion coding by, 344 – 345 

 and optimal coding, 337 – 338 

 Single photon response.  See  Fly 

photoreceptor; Rod photoreceptor 

 Sky compass, 96 – 97 

 Sleep, 91 

 S/N.  See  Signal-to-noise ratio 

 SNARE complex (for synaptic vesicle 

release), 160 

 Social behavior, xvi, 30 – 31, 76, 82, 91 

 and brain size, 86, 102, 401 

 and specialization of brains within 

community, 431 

 Sodium channel, 18, 38, 140 – 141 

 and action potential, 147 – 150 

 in basic electrical circuit, 141 – 147 

 cost of, 152 – 153 

 in dendrites, 172, 304 

 in myelinated axon, 182 – 183 

 specialized for task, 270, 438, 456n6 

 subthreshold amplification by, 172, 

231 – 233 

 Sodium ions, 18, 152, 163, 166, 168. 

 See also  Sodium-potassium pump 

 in basic electrical circuit, 140 – 142, 

144, 149 

 driving force, 138, 141, 143,147,162 

 Sodium-potassium pump, xvii, 7 – 8, 

138, 141 – 143 

 constrains rates, 152 – 153, 435 – 436 

 energy cost, 174, 212, 224, 245 – 246, 

393 – 394 435 – 436 

 location, 183, 200, 212, 222, 393 – 394, 

396 

 Sparse coding, 153 – 154, 185, 188, 192, 

276 

 in cerebral cortex, 341 – 343, 353, 359, 

411 

  Sparsify , 188, 280, 298 – 300, 322, 339, 

438 

 Specialization, 34, 104, 225 

 Specialize, 234, 354, 438 

 Speech, 408 

 frequencies of, 76 – 78 

 Speed over distance, xviii, 18 – 20, 138 –

 142, 147 – 151, 155, 194, 234, 435 

 Spillover, 188 – 190, 281, 330, 377 

 Spine.  See  Dendritic spines 

 Square root law, 279 – 280, 283 

 Starburst amacrine.  See  Retinal amacrine 

cells 

 Starlight image and its capture, 198 – 200 

 Star-nosed mole, 79 – 81 

 Stellate cell (cerebellum), 156, 184, 186, 

189, 190 

 Stereopsis, 344 

 Stick and carrot, 30 – 31 

 Stress, 30, 35, 91 

 Striatum, 43, 60, 69, 84, 87 – 88, 377 –

 378, 418 – 419, 425 

 Subfornical organ, 65, 67, 69, 448n1 

 Subtraction (arithmetical operation), 

128, 145, 172, 253 – 256, 284 

 efficient implementation, 253 

 presynaptic, 253 – 256, 286 – 287 
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 Summation, optimized, 300 – 304 

 Superior colliculus 

 function, 79 – 82, 84, 177, 324 – 325, 

347 – 348, 351, 450n18 

 location, 60, 69, 324 

 Superior olivary nucleus, 74 

 Suprachiasmatic nucleus (SCN), 59 – 64, 

323 – 324 

 Switches, 125, 132, 161 

 Symmorphosis, 13, 137, 151, 160, 230, 

263 

 Sympathetic nervous system.  See  

Autonomic nervous system 

 Synapse 

 active zone,158, 186 – 187, 207, 212, 

291 – 297, 328 

 axo-axonic, 178 – 179 

 basic structure and function, 157 – 154 

 chemical, 159 – 174 

 dendro-dendritic, 176 – 179 

 electrical, 158, 178 – 179 

 energy cost, 160 – 164, 168, 175, 191 –

 194, 212, 245 – 246, 394 – 395 

 gain control, 299 – 300 

 glomerular, 95, 186 – 188, 328 – 355, 

377 

 inhibitory, 169 – 170, 178 – 179 

 insecure, 338 

 matched to signal, 161, 166, 186, 248, 

259 – 260, 290 – 292, 295 

 postsynaptic electrical response, 

163 – 164 

 quantal pulse, 163 – 164, 295, 299 – 300, 

306 

 quasi-secure, 328 – 331,333, 335, 338 

 reciprocal, 299 

 structure and function, 157 – 174 

 tetradic increases efficiency, 239, 242, 

247 – 248, 263 

 trade-offs in design, 164 

 Synapse designed for 

 coincidence detection, 167 – 168, 172, 

189, 418 – 419 

 concentration of information, 

328 – 332 

 high rate, 186 – 188, 204 – 207, 225, 

241, 245 – 247, 279 – 291, 299 

 high S/N, 187 – 188, 204 – 207, 245 – 247, 

260, 279 – 291, 299 

 local computation, 176 – 179 

 noise reduction, 204 – 206 

 reduction of redundancy, 168, 248 –

 263, 279 – 283 

 separating timescales/bandwidth, 164 –

 168, 291 – 296 

 stepping down rate, 186 – 188 

 Synaptic amplification, optimization of, 

258 – 260 

 Synaptic array 

 cost and performance, 245 – 248 

 match capacity to input, 248 

 Synaptic cleft, 158 – 160 

 optimization of width, 160 

 Synaptic homeostasis, 162, 411 – 412 

 Synaptic noise.  See  Noise sources, 

synapses 

 Synaptic plasticity, short term, 404. 

S ee also  Calcium ions, and synaptic 

plasticity and memory; Long-term 

potentiation; Synaptic weight 

 Synaptic resource allocation, 248, 

332 – 334 

 Synaptic ribbon 

 bipolar cell, 299 – 300, 457,n9 

 cone, 275, 292 – 293, 295, 455n5 

 hair cell, 270 – 271 

 Synaptic vesicle 

 diameter and performance, 164, 270, 

290, 296 

 recycling, 162 – 163, 193 

 structure and function, 158 – 164 

 Synaptic vesicle release 

 energy storage and cost, 161, 163 

 mechanism, 159 – 162 

 rate and performance, 186, 204 – 207, 

225, 245 – 247, 260, 290, 299 
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 temporal precision and bandwidth, 

161, 270, 272 

 tonic, 197, 241, 308 

 Synaptic weight, 162, 286, 301 – 303 

 and memory, 404, 410 – 417 

 Synaptotagmin, 130, 160 – 161 

 Taxi drivers, 400 – 402 

 Teaching neurons 

 mammal, 425 – 427 

 worker honeybee, 426 

 Teaching signal, 401, 419, 422, 424 –

 425, 427 – 428 

 Telephone, mobile, 9 

 Temperature sensors, 32 – 33, 73, 74, 83, 

84, 449n11 

 Temporal difference model, 422 

 Tetradic synapse.  See  Synapse, tetradic 

 Thalamic relay 

 design of, 325 – 327 

 six reasons for, 334 – 335 

 striatal and cerebellar inputs to, 87 

 why and how concentrates 

information, 327 – 329 

 Thalamus 

 function (concentrate information), 84 

 location in brain, 60, 69, 88 

 Thermal noise.  See  Noise sources, 

thermal 

 Thermodynamic 

 entropy (s ee  Entropy, Boltzmann ’ s 

thermodynamic) 

 fluctuations and noise, 133 – 134, 151 

 limits, xvii, 122 – 124, 131, 134, 137, 

142, 435 

 Thermodynamics, 3, 122 – 124, 441 

 Three fifths rule (optimal volume 

fraction of synapses), 367, 375 

 Threshold.  See also  Decision, behavioral 

and noise 

 action potential, 148 – 149, 162 

 behavioral 199, 241, 279, 323 

 and cooperativity, 130 

 and decision making, 20 

 in fly phototransduction, 218, 222 

 reduces information rates, 332 – 333 

 reduces noise, 130, 134, 206, 306, 309, 

322, 437 

 Time constant.  See  Membrane time 

constant 

 Tracts, 41, 89 

 axon diameters ( see  Axon diameter; 

Axon diameter distribution) 

 economical design, 63 

 Trade-off, 8, 48 – 49 

 Tranquilizers, 169 

 Transmitter molecule, 106.  See also  

Hormones; Neuromodulators; 

Neurotransmitter; Gliotransmitters; 

Second messenger; Wireless signaling 

 Transporter proteins, xviii, 8, 12, 15, 

29.  See also  Dopamine transporter; 

Glutamate transporters; Ion pumps 

and exchangers 

 at cone synapses, 281, 296 

 energy consumed by, 163, 168, 

191 – 192 

 function in glomerular synapses, 188, 

330 

 function in other synapses, 158, 161, 

163, 164, 452n5, 461n19 

 glial, 183 

 and synaptic timescale/bandwidth, 

166 – 169 

 TRP channel, 215 – 218 

 as AND gate, 218 

 mechanical gating of, 216 

 reduces dark noise, 218 

 Tu-4 (Tupulov), 1 

 Uncertainty and information, 51, 105, 

107 – 111, 133 

 V1 (primary visual cortex), 325, 335 –

 353.  See also  Complex cell; Simple 

cell 
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 V2 (secondary visual cortex), 351 – 353 

 Ventral stream,  “ what, ”  93, 356, 358 

356 – 359, 361 

 Ventral tegmental area, 60, 69, 427 

 Vesicle.  See  Synaptic vesicle 

 Vestibular axon, 75, 267, 274 – 275, 377 

 Vision, xxi, 4, 9, 58, 74, 79, 456n4, 

449n14 

 and central mechanisms, 319, 324 –

 325, 391 

 color, 284, 319 

 high speed, 235 – 264 

 and photoreceptors, 195, 199, 214, 

220, 225, 231 

 Voltage sensitive channel.  See  Ion 

channels, voltage sensitive/gated 

 VWFA (visual word form area), 406 –

 410, 419 

 Wakefulness, 58 – 59 

 Weber-Fechner law, 128 

 Weighting function, optimal, 337, 340, 

352 – 354 

 White matter, 57, 71, 73, 88, 443 

 benefits, 181 – 183 

 cellular composition, 181 

 in cerebellum, 371 – 373, 379, 395 

 in cerebral cortex, 346 – 347, 381 – 387, 

395, 400 

 costs and efficiency, 181 – 182, 395 

 Wireless signaling 

 in brain, 42, 64 – 67, 69, 89 – 90, 

425 – 428 

 and efficiency, 131, 137, 363, 435 

 in protein circuit, 117, 119, 120 

 Wireless regulation, 67 

 Wires (axons and dendrites) 

 need for, 67 – 68 

 total length in human nervous 

system, 460n1 

 Wiring costs, minimization, 36 – 37 

 Wiring diagram, lamina cartridge, 239, 

242 

 Wiring efficiency, xix, 363 – 398.  See  also 

Component placement; Three fifths 

rule 

 biophysical constraints on, 365 – 367 

 in cerebellum, 185 – 190, 369 – 389 

 in cerebral cortex, 379 – 389 

 and connection of neuronal arrays, 

367, 369, 379 

 and folding, 378 – 379 

 improved by matching meshworks, 

368, 370 – 371 

 increased by subdividing areas, 

389 – 392 

 in lamina cartridge, 238 – 241 

 and potential contacts, 366, 371, 379, 

382 – 387 

 in retina, 367 – 370 

 Wiring efficiency, axonal and dendritic 

branching, xix, 71 – 73, 173, 363 – 368 

 cerebellum,185 – 190, 370 – 380 

 cerebral cortex, 380 – 384, 387 – 389 

 retina, 367 – 380,457n15 

 spines, 366, 371, 375 – 377, 379, 383, 

387 – 388 

 Wiring efficiently for integrated 

movement, 72 – 73 

 Wiring preserves information, 236 – 241 

 Working memory, 358 

 Worm.  See Caenorhabditis elegans  

 Zen, 16 
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