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Chaotic Convergence of Newton’s Method
Jont B. Allen , Life Fellow, IEEE

Abstract—In 1680 Newton proposed an algorithm for finding
roots of polynomials. His method has since evolved but the core
concept remains intact. The convergence of Newton’s Method has
been widely challenged to be unstable or even chaotic. Here we
briefly review this evolution, and consider the question of stable
convergence. Newton’s method may be applied to any complex
analytic function, such as polynomials. Its derivation is based on
a Taylor series expansion in the Laplace frequency s= σ + jω.
The convergence of Newton’s method depends on the Region of
Convergence (RoC). Under certain conditions, nonlinear (NL)
limit-cycles appear, resulting in a reduced rate of convergence
to a root. Since Newton’s method is inherently complex analytic
(that is, linear and convergent), it is important to establish the
source of this NL divergence, which we show is due to violations
of the Nyquist Sampling theorem, also known as aliasing. Here
the conditions and method for uniform convergence are explored.
The source of the nonlinear limit-cycle is explained in terms of
aliasing. We numerically demonstrate that reducing the step-size
always results in a more stable convergence. The down side is
that it always results in a sub-optimal convergence. It follows
that a dynamic step-size would be ideal, by slowly increasing the
step-size until it fails, and then decreasing it in small steps until it
converges. Finding the optimal step-size is a reasonable solution.

Index Terms—Aliasing, analytic-roots, convergence, limit-
cycles, Nyquist-sampling, regions of convergence (RoC).

I. INTRODUCTION

NEWTON’S method (NM) is a venerable method for find-
ing the roots of polynomials. However its utility has been

questioned. First, and most important, does his method always
converge? From numerical experiments, it does converge for
most initial conditions. Thus the key important question is
“Does the convergence depend on this initial condition?” This
question was carefully evaluated in 1963 by Willkinson, who
studied conditions of sever divergence.1

Thus the question becomes “What are the necessary condi-
tions for convergence?” In the following discussion we assume
a monic polynomial of degree N . The fundamental theorem of
algebra states that every polynomial PN (s) of degree N has N
roots sn ∈ C.

Since Newton’s algorithm converges within the RoC for any
complex analytic function, it converges when the nearest root
sr (s ∈ C) remains inside the RoC, out to the nearest pole. This
follows because every complex-analytic point on the complex
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plan has a region of convergence [1]. We show that on the
boundaries of the RoC regions, the method becomes hyper-
sensitive to the initial condition (i.e., initial condition s0), and
becomes fractal.

We propose a complex adaptive step-size η = aejφ ∈ C

which we adaptively adjusted, greatly reducing, even remov-
ing the nonlinear effects of aliasing as η → 0. Historically the
introduction of η is known as the damped Newton’s method
[4, p. 25].

In this report we shall investigate why such a controversy
developed, and discuss how to assure convergence. In our ex-
perience, given some care, the method always converges to a
root. Under some special conditions, a minor modification in
the initial condition s0 (n= 0) can result in the n+ 1 estimate
of the root (sn+1) to cross an RoC boundary, resulting in NM to
divert its initial path to a alternate root. When this happens, the
change in the step δ = sn+1 − sn is unpredictable, and possibly
even chaotic. It is this condition that is the source of a con-
vergence instability due to aliasing, possibly leading to a limit
cycle. Such chaotic behavior is a main topic of this document.

These contiguous naturally existing regions of convergence
are defined for all s ∈ C<∞. That is, every possible s0 be-
longs to only one of the N RoC regions. Convergence naturally
happens as η → 0, since Newton’s method is complex analytic
(the step-size is the ratio of two polynomials with different
roots). The magnitude of |η|= a may also be manually reduced
to avoid crossing the boundary between two RoCs. As a is
reduced, the trajectory naturally moves away from the poles.
The smaller η, the smoother the path. For this reason, adaptively
adjusting the optimal η, can minimize the computation, while
avoiding NL aliasing.

As an alternate to reducing |η|, one can modify its angle φ,
redirecting the trajectory away from any RoC boundary, so as to
avoid crossing it. We have not yet implemented this approach.

We show that when η = 1, depending on s0, the solution can
cross an RoC boundary (i.e., diverge). In such cases the target
root will change, resulting in a chaotic trajectory. Examples
are provided. Depending critically on s0, as long as the RoC
region remains the same, every iteration rapidly converges as it
approaches the root.

Newton’s method a is a venerable algorithm for finding roots
of any complex-analytic function. Thus NM applies to polyno-
mial PN (s), where N is the degree and s= σ + ωj ∈ C is the
Laplace frequency. However the convergence properties of NM
are controversial2 [8, p. 347].

2https://en.wikipedia.org/wiki/Newton’s_method#Failure_of_the_method_
to_converge_to_the_root
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Fig. 1. Left shows a plot of a thousand trajectories for a polynomial having N = 5 complex roots, as summarized in the title, starting from a random initial
condition between [0,5] and ±j1.5. Right: (b) shows the poles and zeros of the polynomial having coefficients C = [1, 0, 0, 0,−1,−1] with random starting
points, for 200 iterations of Newton’s Method. In this case the roots (o) and poles (×) are superimposed on top of the trajectories of Newton’s method. An
adaptive step-size of η = 0.1 is used to reduce the NL aliasing.

II. METHODS

Every initial condition s0 on the plane of a complex analytic
function, is uniquely associated with one of the N roots of that
function, which is associated with a unique region of conver-
gence (RoC). This follows from the complex analytic property
of a function (those that may be expanded in a complex-analytic
Taylor series).

When the trajectory jumps to a different RoC, correspond-
ing to a different root, it has been interpreted as a failure to
convergence, when in reality the target root has changed. This
can only happen when the present sn is on or near an RoC
boundary. In such cases Newton’s method develops properties
that are similar to dynamic analysis, a mathematical science
first introduced by Poincaré.3

This question of the convergence was recently explored in
[1], where no instability or limit-cycles were observed. An
explanation is due: Newton’s method was modified by apply-
ing an adaptive step-size η, [4, p. 25], a widely recognized
contemporary technique in the engineering numerical analysis
literature.4

A properly chosen adaptive step-size stabilizes the conver-
gence, by forcing the path to remain in the target RoC. Detecting
the divergence of the step is easy because it must monotonically
decrease, and may be stabilized by reducing |η|.

In this report we show that random jumps and limit-cycles
are more likely when η = 1. When the adaptive step-size η is
sufficiently small, we show that the iteration always converges.
The strategy employed here is to adaptively modify |η|, thereby
constraining the trajectory to the initial RoC.

3https://en.wikipedia.org/wiki/Dynamical_systems_theory
4https://en.wikipedia.org/wiki/Adaptive_step_size

In [1, Fig. 3.2], two examples were provided using a fixed
adaptive step-size (η = 0.5) and a random initial condition s0.
The details of the adaptive step-size used by [1] were not
discussed. One of these figures is presented in Fig. 1 (left).

While most of the curves seem to converge to a root, there is
a small percentage of cases (e.g., < 1%) where the trajectories
take huge jumps to random locations in the complex plane.
We shall show that these jumps occur when the trajectory
approaches any of the poles of Newton’s method, that is, at
the roots of P ′

N (s) = d
dsPN (s). Near a pole the step can be

arbitrarily large, depending on how close the step comes to the
pole [3]. We shall show that the poles, the cause of the NL limit
cycles, are easily detected.

In Fig. 1 (left), the five RoC regions are color coded, with
each RoC region associated with one of the N roots. Due to the
complex analytic nature of an RoCs, every point in the RoC is a
valid initial condition. However this is limited by the numerical
accuracy of the computer. Also the convergence depends on
the size of the steps, defined as sn+1 − sn, s ∈ C, n ∈ N, which
typically decreases in magnitude with n. An exception occurs
if sn+1 approaches one of the N − 1 poles of NM, causing
the step to abruptly diverge. The properties of this small subset
of initial conditions depends critically on η, which is the main
topic of this article.

For most initial conditions (s0 ∈ C) the iteration simply con-
verges to a root, independent of |η| ≤ 1. In fact for most starting
values the solution converges for |η|= 1. However for s0 values
near the RoC boundary between two roots, the dependence
is highly dependent on |η|, and can even be chaotic. This
happens when s0 defines a path that heads directly at a pole.
In these cases the trajectory will be hypersensitive to both s0
and |η|. The RoC regions are well defined non-overlapping

https://en.wikipedia.org/wiki/Dynamical_systems_theory
https://en.wikipedia.org/wiki/Adaptive_step_size
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TABLE I
PROPERTIES OF THE POLYNOMIALS FOR THE LEFT AND RIGHT PANELS

Figure PN (s) = �sr �sr

Fig. (1)a, LEFT s5 − (13 + 0.5j)s4 + (66.25 + 5j)s3 [4, 3, 3, 2, 1] [1, -2, 2, -1, 1]/2
−(164.25 + 20.125j)s2

+(195 + 38.75j)s − 87.5 − 31.25j

Fig. (1)b, RIGHT s5 − s− 1↔ [1, 0, 0, 0, -1, -1] [1.17, 0.18, 0.18, -0.76, -0.76] [ 0, 1.08 -1.08, 0.35, -0.35]

complex-valued analytic regions. When s0 is close to the RoC
boundary, the convergence of NM critically depends on the
magnitude and angle of the complex adaptive step-size η. Even
when |η| � 1, the convergence can become NL, resulting in
a chaotic path. These observations are supported by several
detailed numerical examples.

In Fig. 1 (left), the red region, corresponding to the root
at (2.0− 0.5j), has a long narrow “RoC stream” for initial
condition s0 east of (4.5− 1j). There is a second green narrow
neighboring related parallel stream, just north of the red stream,
for initial values s0 north of (5− 1j), which is in the RoC of
root (3 + 1j).

While it may seem obvious given Fig. 1, I am not aware
of any discussion of such natural distortion of the RoC’s. The
conditions for Fig. 1 are provided in Table I.

Fig. 1 (right) is a second example having different poles and
zeros, which more clearly demonstrates the effect of the poles
and zeros on the trajectories, which are indicated by × and o.

A. Convergence of Newton’s Method

Given the monic polynomial of degree N ∈ N PN (s) =
sN + cN−1s

N−1 + cN−2s
N−2 + · · ·+ c0, and its derivative

P ′
N (s)≡ dP (s)/ds of degree N − 1, we may express New-

ton’s method as the ratio of the two monics (the details are in
the Appendix)

sn+1 − sn =− η

N

PN (sn)

P ′
N (sn)

(II.1)

Next we define the properties of the ratio of two monic
polynomials, in terms of the step-size SN (sn)≡ Pn/P

′
N .

Equation 1 may be rewritten as

sn+1 − sn
η

=− 1

N
SN (sn).

Scaling P ′
N (s) as a monic does not alter its roots.

Taking the limit η → 0 results in the complex-analytic ex-
pression for NM

ds

dη
≡ lim

η→0

(
sn+1 − sn

η

)
=− 1

N
SN (sn). (II.2)

The right hand side SN (sn) is the reciprocal of the log-
derivative of Pn(s) expressed as monics. The left hand side is
the slope of the Laplace frequency (s= σ + jω) w.r.t. η.

B. What Is Going On?

In the limit as η goes to zero, close to the RoC boundaries
are well defined analytic regions. But for small η �= 0, no matter

Fig. 2. This is a zoomed-in chart of Fig. 1(b) (right), presented as a colorized
plot [1, p. 168] of SN (s), for P5(s) = s5 − s− 1↔[1, 0, 0, 0,−1,−1]. The
magnitude of SN (s) is coded by the brightness, and the phase (∠(LN (s)),
Eq. (III.4)) by the color (hue). The dark regions are the zeros (roots of Pn(s))
while the white regions are the poles of SN (s) (roots of P ′(s)). Two trajecto-
ries of Newton’s method are shown, as the black circles and red squares. The
initial value for both cases is s0 = 1 + 0.75j. The black circles correspond
to η = 0.1, while the red squares (η = 0.5) form a brief limit cycle. The
vertical white lines are at {-1.0, 0,1.0} and the horizontal white lines are at
{0, 1.0}. The polynomial coefficients are P5(s) = [1, 0, 0, 0,−1,−1], with
roots sr =[1.167, 0.181± 1.084j], −0.765∓ 0.3525j. The real poles (roots
of P ′

5(sr) = 0) are ±1/50.25, while the imaginary poles are at ±0.6687j.

how small, the boundaries are fractal, becoming smooth only
in the limit as η goes to zero. This fractal structure is always
present even for the smallest nonzero values of η. Insight into
how this happens is explained by the examples in Figs. 2
and 3. While the concept of a fractal is not difficult, the source
of its behavior verges on the mysterious. The source of chaos
is precisely explained by Figs. 2 and 3.

III. EXAMPLES OF NEWTON’S METHOD

a) Example 1: We start with the monic polynomial of
Example 1b, Fig. 1 (right), for N = 5,

P5(s) = s5 − s− 1. (III.1)

In this case, monic 1
5P

′(s) = s4 − 1/5 has four poles, shown
as black-bold × symbols. The five zeros are the black-bold
o symbols.

As shown in Example 1b, Fig. 1 (right), given any initial con-
dition s0 and adaptive step-size η, and n→∞, sn approaches a
unique root sr. Complex sn+1 is the n+1 estimate of the root,
given the n estimate sn, as defined by Eq. (II.1).

The example shown in Fig. 2 is a zoomed-in version of
Example 1b, Fig. 1 (right). To study the convergence and limit-
cycles it is helpful to vary both η and s0.
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Fig. 3. This numerical experiment for polynomial coefficients
[1, 0, 0, 0,−1,−1] (the same polynomial as shown on the right panel
of Fig. 1) having an adaptive step-size of 0.1), reveals the inner workings of
Newton’s method. We number the roots counter-clockwise from 1-5, with
s1 = 1.2, s2 = 0.18123 + 1.08395j and its conjugate s5 = s∗2 . Seventeen
different starting values have been carefully chosen, to determine the root the
path converges to. All the starting values are of the form s0 = 1 + jβ. Each
β and its converged root are indexed in Table II. The scattering angle is
determined by the residue of the scattering pole. Each curve is labeled twice,
once at the starting point and at a second point on the path. This carefully
evaluated case is for starting points between 1 + 0.62j and 1 + 0.5999j,
which converge to dramatically different RoCs, due to the trajectory squarely
hitting the positive real pole at s0 = 1± 0.001 + j 0.6.

TABLE II
TABLE OF STARTING VALUES s0 = 1 + βj USE IN FIG. 3,

ALONG WITH THE ROC TARGETED ROOT INDEX, DEFINED AS

#1 FOR THE REAL ROOT AT 0.21/4. ROOT #1 CONVERGES

FROM s0 = 0 + 1.25j, ROOT #2 IS DEFINED BY COUNTING

COUNTER-CLOCKWISE FROM #1, AT 0.18 + 1.08j, STARTING

FROM s0 = 1 + 0.69j. ROOT #3 ALSO CONVERGES FROM

THREE VALUES OF β. ROOT #5 IS THE MOST CAREFULLY

EXPLORED, STARTING FROM 1 + βj. IT IS SHOWN TO

CONVERGE TO ROOTS 1, 3, 4, 5, BUT NOT 2, WHICH IS

REACHABLE FROM VERY SELECTIVE VALUES OF β. FOR

OTHER CHOICES OF β0, ALL 5 ROOTS CAN BE REACHED, AS

SHOWN IN FIG. 3 FOR η = 1

β root
0.25, 0.4 #1
0.95, 0.99, 1.1 #2
0.69, 0.92, 0.93 #3
0.65, 0.632 #4
0.63, 0.631 #5

A. Discussion of Fig. 2

Fig. 2 shows two paths with the same initial condition s0 =
1 + 0.75j with different adaptive step-sizes. The utility of the
reduced adaptive step-size is clear from the figure.

The black circles show a smooth analytic trajectory, while the
red-squares are chaotic. For the larger step-size of 0.5 it takes
additional steps to limit-cycle, recover and finally converge.
Once near a zero, fewer than 10 steps typically give double-
precision floating-point machine accuracy. In a small neighbor-
hood around any pole, every point in C is present [3].

As discussed in the figure caption, if sn is close to a root sr
of P ′

N (i.e., a pole), the recursion dramatically fails, because the
step becomes arbitrarily large, forcing the next trial to a random
location in the s plane, denoting s̃r. In such cases the solution
typically converges to a different root (RoC). It is not difficult
to detect these large random steps by monitoring |sn+1 − sn|,
which must monotonically decrease.

As shown by the black circles, as the adaptive step-size η
is reduced from 0.5 to 0.1, the path approaches the pole, it
moves away, avoiding the limit-cycle. With step-sizes of 0.2
and 0.3 it also becomes captured by the pole. With the adaptive
step-size of 0.9 (not shown), the trajectory is similar to that
of 0.5. After 5 steps it is well within a different RoC, corre-
sponding to the zero at −.8− .3j, where it quickly converts to
that root.

In summary, given a larger step-size it still converges, but
much more slowly, since the NL becomes greater. Thus the con-
vergence time seems a crude metric of the NL. The smoothness
of the trajectory may be more appropriate. This NL result is due
to the reduced sample step-size, also known as aliasing.

a) Example 2: This example (not shown) is for P3(x) =
x3 − x+ 1 (C = [1, 0,−1, 1]), an example where Newton’s
method appears to fail. This example has two imaginary roots,
0.66236± 0.56228j, and a real root -1.32472. If the initial
condition is taken to be s0 = 1, the recursion proceeds using
real arithmetic (Matlab and Octave). Due to the restriction that
the computation is real, the solution is forced to the real line,
where it limit cycles between 1.155 and 0.694. The iteration
cannot converge if sr ∈ R and s0 ∈ C [1].

If x0 = j, the solution converges in 3 steps to the upper
complex root. If one starts the iteration with an imaginary com-
ponent at 1 + j10−6, the iteration converges to the imaginary
root in 13 steps.

Roots sr ∈ C may be found by a recursion that denotes a se-
quence sn → sr ∈ C, n ∈ N, such that PN (sn)→ 0 as n→∞.
As shown in Fig. 2, solving for sn+1 using Eq. (II.1) always
gives one of the roots, due to the analytic behavior of the
complex logarithmic derivative P ′

N/PN = d ln(Pn(s)).
b) In Summary: When there are no limit cycles, each step

(sn+1) is always closer to the root. As sn approaches the root,
the linearity assumption becomes more accurate, resulting in a
faster convergence.

Even for cases where fractional derivatives are involved,
Newton’s method will converge, since the log-derivative lin-
earizes the equation [1, p. 197, #5].

B. Discussion of Fig. 3

In Fig. 3 an infinitesimal change in s0 leads to large jumps
into a different RoC. This is best shown by two starting values
at s0 = 1 + βj for β just above 0.5 and again just below 1.0.
The effect occurs only when the trajectory heads directly at a
pole. Any starting value s0 that goes directly at one of the poles
can jump to a random RoC.

Given this mapping, infinitesimal changes in the starting
points which head directly at a pole, are reassigned to a random
RoC, due to this analytic mapping.
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We have defined η as the adaptive step-size, because we can
set η to modify the step-size SN . This result follows from a
mathematical property cited by [3], that the entire plane may
be found in the neighborhood of every pole.

a) In Summary: Determining the RoCs for NM by an-
alytic methods seems difficult, since the function SN (sn) has
poles, confounding the locations of the RoC boundaries. Based
on Fig. 1, the RoC are complicated. If sn approaches one of
these the poles, the update can become arbitrarily large, depend-
ing on how close sn is to the pole. If the adaptive step-size is
within the RoC, this will not occur. When the value of sn+1

falls outside the RoC there can be an arbitrary increase in step-
size. Normally this will not happen, since when sn approaches
a pole sn+1 is naturally “pushed” away from the pole, as may
be seen in Fig. 2 (black circles).

If we start the iteration with the larger step-size, the path
develops into a NL limit-cycle near a pole. It is a combination
of the large steps and the proximity to the real pole that results
in the nonlinear limit-cycle. On the 10th step sn comes out
of the limit cycle, and after 10 more steps, has converged to
the root.

C. Newton’s Method Applied to Functions Other Than
Polynomials

a) Example 2: Example of Plank’s formula for Black
Body radiation.

Planks famous BB radiation formula is [1], [6]

S(ν) =
ν3

ehν/kT − 1
. (III.2)

In this historically important example, because the function is
real (it is not complex analytic), the spectrum only has one
pole, at ν = 0. This formula is known to match the experi-
mental data of the smoothed (non-analytic) black-body power
spectrum [5].

If we replace the real frequency ν with the negative Laplace
frequency −s=−σ − ωj, Eq. (III.2) becomes

S(−s) =
−s3

e−�s/kT − 1
, (III.3)

which is complex analytic, thus has a causal inverse Laplace
transform. To use Newton’s method we must compute a NM up-
date L(sn), defined as the reciprocal of the logarithmic deriva-
tive (see derivation in the Appendix). Taking the log followed
by its derivative w.r.t. s ∈ C, gives

1

L(s)
≡ d

ds
lnS(−s)

=
d

ds
[−3 ln s+ ln(e−�s/kT − 1)],

=−3

s
− �

kT
· e−�s/kT

e−�s/kT − 1
. (III.4)

Thus there is a first order pole at s= 0 and poles at
hνn/kT = 2πn for n ∈ N. The discrete frequencies account for
the eigen-modes in the black-body radiation, as discussed by

Kuhn, Plank and Einstein [5]. Eq. (III.3) and thus Eq. (III.4)
are causal, since it has the causal inverse $LT$ [1, p. 321]

− 1

L(s)
↔ 3u(t) +

�

kT

∞∑
n=1

δ

(
t− n

�

kT

)
(III.5)

The application of NM to Plank’s famous formula can be
used to make it complex analytic, by replace ν with the Laplace
frequency s= 2πνnj and h by �. It is well established that
complex analytic functions of the Laplace frequency s are
causal (zero for negative time) [1, p. 158]. In the case of Eq.
(III.2), S(−s) is causal, due to the Laplace transform relation of
the exponent

δ(t− τo)↔ e−sτo .

Here the time delay τo = �/kT °= (6.63/2πk) · 10−11 s, (6,280
GHz), λ≈ π

2 10
−11 m, or π

20 Å, and T °K is the temperature.
Newton’s method uses the reciprocal of L(s) (Eq. (III.4)) to

find sr (S(sr) =∞), given by

Nd(sr) = 1− e−�sr/kT = 0. (III.6)

There are an infinite number of such roots, since the roots are
�sr/kT ≈ 2πj. These poles are the missing discrete spectral
lines (atomic resonances), required by quantum mechanics.

Applying Newton’s method gives

xn+1 = xn − exn − 2

exn
= sn − (1− 2e−sn).

Since ex is entire, there are no convergence issues.5 Since x ∈
C, the imaginary part quickly decays to zero, and depending on
the starting condition, approaches one of the infinite number of
solutions, within a few steps.

D. Example 3

The impact of s0 is shown in greater detail in Example 3,
as shown in Fig. 3. When the value to s0 is finely tuned, such
that the trajectory intercepts a pole, a host of NL limit-cycles
are exposed.

The Gauss-Lucas theorem6 comes into play at this point
[1, p. 81]. This theorem says that the convex hull of the roots
of a polynomial bound the roots of its derivative. This theorem
is relevant to the convergence of Newton’s method. [4] has 75
relevant citations, many citing the same problems addressed
here. The key to avoiding the troublesome limit-cycles is to
detect them, and then reduce the adaptive step-size.

The following quote is from [4, p. 39]:
The possibility that a small change in s0 can cause a drastic

change in convergence indicates the nasty nature of the con-
vergence problem. The set of divergence points of the Newton
method is best described for real polynomials.

As demonstrated in Fig. 3, we agree with Galántai’s first
point. His second seems vague: Is a “real polynomial” one with
real coefficients, real roots, or both?

For the example in Fig. 1, the red “stream” corresponding
to the root near (2− 0.5j) has a long narrow “RoC-stream,”

5https://www.quantamagazine.org/how-mathematicians-make-sense-of-
chaos-20220302/

6https://en.wikipedia.org/wiki/Gauss-Lucas_theorem

https://www.quantamagazine.org/how-mathematicians-make-sense-of-chaos-20220302/
https://www.quantamagazine.org/how-mathematicians-make-sense-of-chaos-20220302/
https://en.wikipedia.org/wiki/Gauss-Lucas_theorem
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converging from the lower-right quadrant, first seen at (4.5−
1j). There is a second green RoC-stream just north of the red
stream, first seen near (4.5− 0.9j). Thus a small change in the
starting value s0 robustly converges to a totally different root.

I am not aware of any discussion in the literature of this
distortion of the RoC regions, bound to Newton’s method.
Presently I know of no way to predict the conformal remapping
of the RoC regions for NM, other than tracking them, as done
here. It seems likely that methods for doing must exist using
modern analysis techniques (see Appendix).

In the example of Fig. 3,

sn+1 = sn − 0.1

5
· s

5
n − sn − 1

s4n − 1/5
,

for 17 carefully chosen initial condition s0 ∈ C. For readability,
each trajectory is color-coded either red or blue.

a) Nonlinear Limit Cycles: It is well documented that
limit cycles are nonlinear. Newton’s method on the other hand
is a linear recursion equation, with poles and zeros in the
complex plane. The obvious research question is “Why does
the complex-analytic linear equation become nonlinear?” We
show how the these NL limit-cycles may be easily avoided by
removing (linearizing) the NL recursion once it is detected.

The suggested procedure will result in a net convergence
speed-up, because the NL limit-cycle adds meandering NL
steps to the recursion. If you experience a slowdown, try chang-
ing the adaptive step-size angle. This may be a panacea, since
this is a ‘local’ modification that deals directly with the main
problem of being on a RoC boundary. If you find an angle
that reduces the chaos, then your moving in the right direction,
away from the RoC boundary. This method seems obvious,
yet unexplored. On the fractal boundary, movement can lead
to chaos.

b) Ratios of Monics as NM: It can be notationally
useful to define the adaptive step-size SN (s) as the ratio of
monic polynomials

sNn + cN−1s
N−1
n + · · ·+ c0

sN−1
n + N−1

N cN−1s
N−2
n . . .+ 1

N c1
=

1

N

PN (sn)

P ′
N (sn)

. (III.7)

Using this trick we can absorb the factor of N into the defi-
nition of η ≡ 1

N eφj. Increasing N from 1 to 0.1 dramatically
improves the convergence, while the poles (and zeros) of SN (s)
are unmodified.

Fig. 4 quantifies the effect of reducing the step by up to
1/N (|η|= [1, 1/2, 1/5, 1/10]). For the largest step-size, the
trajectory of red squares in Fig. 2 limit cycle. This natural
reduction in step-size by N , due to expressing the step-size
as the ratio of monics, is dramatic. Given sn, everything on
the right is known; thus when sn is within the RoC, sn+1 will
converge to a unique root of PN (s) as n→∞. For sufficiently
small step-size, the roots of Eq. (III.7) are the solution to a linear
difference equation, the simplest example being [4]

sn+1 = sn − η

N
SN (sn). (III.8)

Introducing the adaptive step-size (|η|< 1 ∈ C) linearizes the
iteration when sn is in the neighborhood of a pole.

The step-size |SN (sn)| can become arbitrary large near any
pole, introducing aliasing (the source of the nonlinear) into
the iteration.

IV. SUMMARY AND DISCUSSION

a) The Role of the Adaptive Step-Size: In the derivation
of NM we modified Eq. (II.1) with the adaptive step-size η < 1,
to obtain Eq. (II.1). The effect of the reduced adaptive step-size
is to force the trajectory to be more sensitive to the influence
of the poles, rather than stepping over them. The modification
of the step-size SN by η is an important modification to New-
ton’s method. The smaller adaptive step-size can eliminate the
nonlinear limit-cycles, as seen in the example of Fig. 4.

When the initial value for the iteration s0 is close to the cross-
over of two RoCs, sn → sn+1 can cross over an RoC boundary,
changing the limit point (root it converges to). A limit cycle can
happen when sn comes close to one of the poles of SN (sn). At
a pole, the value of SN can become arbitrary large, causing the
unmodified (η = 1) update SN = sn+1 − sn to fail to satisfy
the required RoC convergence condition (Eq. (A.6)).

One strategy for detecting the pole is to look at the magnitude
of the step (|η|). If |ŝn+1 − sn|> 1, the RoC condition has
failed. The step must then be reverted back to sn, and the
adaptive step-size reduced, and sn+1 recomputed. This then
repeated until the RoC condition (|sn|> |sn+1|), thus avoiding
a possible limit cycle.

Based on our numerical results, the addition of the conver-
gence factor η seems unnecessary when the initial value is well
within the RoC, as required by Eq. (A.6). The main question
is when (and why) the limit-cycles are created with Newton’s
method. This question is at least partial explored in the example
of Fig. 2. As long as the RoC condition is maintained, each step
will progress closer to a root, and in the limit, as n→∞,

PN (sn)

P ′
N (sn)

→ 0, (IV.1)

since sn → sr as n→∞.
We don’t understand many observations in science (math

and physics). But with some basic analysis, they are eventually
explained. Einstein’s 1905 analysis is the best known example.
It is the reductionist method in science, and explains the success
of the scientific method. This might be viewed as a form of
evolution: success begets more success, while failure eventually
dies off, perhaps slowly.

The process of systematically exploring these seemingly tiny
discrepancy, almost always leads to new knowledge. Seeking
out these idiosyncratic inconsistencies and trying to explain
them is at the heart of the scientific method. When a problem
is longstanding and considered fundamental, its resolution can
even lead to a paradigm shift. Not surprisingly such deep in-
sights are rarely welcomed by the scientific community, rather
they are viewed with great skepticism. This can be good when
if doesn’t go on for 50 years.

The problem of finding roots using Newton’s method is an
excellent example. It is a case that can be explained only after
careful thought and iterative analysis. I feel we are either close
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Fig. 4. Four colorized plots for PN = [1, 0, 0, 0,−1,−1] showing the N = 5 regions of convergence and two trajectories, for s0 = 1.8− 1.5j and
−1.95− 0.1j. The four adaptive step-sizes are η = {1.0, 0.5, 0.2, 0.1} (note that the imaginary axis is reversed). The fractal regions reside on the RoC
boundaries, the sizes of which depend on the adaptive step-size, with the adaptive step-size of η = 1.0 (Upper-Left) resulting in large fractal regions. Reducing
the adaptive step-size to η = 1/2 dramatically reduces the fractal regions. For η = 0.1 they almost disappear, except at 0.5 + 0j. In the dark RoC (purple)
corresponding to root −0.76− 0.352j, two trajectories are shown. For the adaptive step-size of 1, a limit cycle is seen, for both trajectories. For the other
adaptive step-sizes [0.5, 0.2, 0.1], there are no limit cycles. As the trajectories approach the negative real pole, labeled as the red ×, they head for the root
at −0.76− .352j. In summary: 1) limit cycles are wasted steps, easily fixed by reducing the adaptive step-size. 2) Given a smaller adaptive step-size, the
fractal regions shrink, but never totally disappear. 3) Detecting a limit cycle is easy because the path reverses (oscillates). An obvious method for avoiding
limit cycles is to detect that the boundary has been crossed, corresponding to a different root, and restart with a reduced adaptive step-size, at step sn or
sn−1.

to that understanding, or it has been explained clearly enough
that the debate can be stopped, and final conclusions may be
reached. However, realize that there is no “final.”

Limit cycles do exist in Newton’s method, but in my view,
they are due to under-sampling the complex plane. This is an
example of aliasing, in the Nyquist sense, [1, p. 153, 262].
An under-sampled process becomes nonlinear when the “high
frequencies” alias into the “base-band” frequencies. This non-
linear effect is easily removed by increasing the sampling rate
above the Nyquist sampling frequency, defined as twice the
highest frequency in the signal. While that concept is not clear
in the context of Newton’s method, it can explain limit-cycles,
and slightly (2x-3x) increasing the computation, by decreasing
the adaptive step-size (η), the aliasing may be brought under

control, and the problem becomes linear and well behaved. The
onset of aliasing is easily detected. This leads to a well know
method in signal processing called the adaptive step-size, which
has been successfully applied in many engineering problems.
It is, I believe, well understood and characterized in terms of
aliasing [2], [7, Sec. V, p. 126].

b) The Linear Prediction Algorithm: An interesting alter-
native to stabilize NM is to use the linear prediction method,
a causal recursion method invented in the 1940’s [9]. It seems
likely to me that the use of Linear Prediction (LP) could greatly
improve the convergence properties of NM. The down side is
that the LP method assume the step-size only has poles, which
in our case is clearly not true. The zeros of PN (s) bias the esti-
mate in a negative manner. However when the trajectory steps
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near a pole, the LP algorithm should fit the data extremely well,
thus removing the influence of the pole. This approach could
be especially effective if there are several poles in proximity.

APPENDIX

Consider the monic polynomial PN (s), with s, sr, cn ∈ C

and n, k,N ∈ N:

PN (s) = (s− sr)
N +

N∑
k=1

cN−k(s− sr)
N−k, (A.1)

where Taylor’s formula is used to determine the coefficient
vector C = [cN , cN−1, · · · c0]TN×1

ck =
1

k!

dk

dsk
PN (s)

∣∣∣∣
s=sr

. (A.2)

Here s= σ + jω is called the Laplace frequency, as defined by
the Laplace transform [1]. Depending on physical considera-
tions, the coefficients ck may be real or complex.

Assuming our initial estimate for the root s0 is within the
RoC (close to root sr, we replace sr with s1 and s with s0,
since |(s1 − s0)

k| � |(sr − s0)| for k ≥ 2 ∈ N. Here we have
assumed that within the RoC, the higher order terms may be
ignored.

Iterating we increase n by 1. Thus s0 → s1 and s1 → s2, so
the truncated Taylor series becomes

PN (s2)≈ (s2 − s1)
d

ds
PN (s)

∣∣∣∣
s2

+ PN (s2). (A.3)

Generalizing this for n� 1 we find replace find |(sn+1 −
sn)

k| � |(s1 − s0)| for k ≥ n ∈ N, (i.e., εn = s1 − s0 is within
its RoC), thus we may truncate Eq. (A.1) to its linear term
n= 1, resulting in the approximation Thus for large n→∞,
sn+1 → sr, resulting in

������0
PN (sn+1) = (sn+1 − sn)

N +
N∑

k=1

c′k(sn+1)
N−k (A.4)

Here c′n+1 is shorthand for dPN (sn+1)/ds.
Solving for sn+1 gives Newton’s method:

sn+1 = sn − PN (sn)

P ′
N (sn)

. (A.5)

Importantly, if sn approaches a root of P ′(s), the denomi-
nator can become arbitrarily large, resulting in a restart of the
entire procedure.

On the other hand, if any estimate of the root sn is close to a
root of (i.e., PN (sr ± ε)≈ 0) then for n≥ 2 ∈ N, ε= sn − sr
is within the RoC. Namely for all k ∈ N+ 1

|(sn − sr)
k| � |(sn − sr)|. (A.6)

This complex analytic linearization step is the key to New-
ton’s method. It will only be true if the difference equation
remains linear, which requires Eq. (A.6).

In summary: Newton’s method is a linear approximation that
critically depends on the RoC condition (Eq. (A.6)).
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