Teaching STEM Math to first year college students

Keynote address: http://huichawaii.org/wp-content/uploads/2017/06/2017-STEM-Book-June-02.pdf Backup: http://jontalle.web.engr.illinois.edu/uploads/298/ProgramBook-STEM.17.pdf

Prof. Jont B Allen Elec. Comp. Eng. University of IL, Urbana, USA

http://jontalle.web.engr.illinois.edu/uploads/298/

June 8, 2017

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

June 8, 2017 1 / 37

First year college students take calculus in high school

- >30–40% advance-place (AP) out of Calc-I & II
 - Due to poor fundamentals, they struggle in engineering courses
 - Mathematics courses (Calc-III, Linear Alg., DiffEq, ...) are a mystery
- Solution: Concepts in Mathematical–Physics based & its History
 - Proven to work, and students love it:
 - "I have to wonder why it isn't the standard way of teaching mathematics to engineers."
 - "Fourier series and Laplace transforms and distributions are now understandable, even easy."
 - "Engineering courses are now 'easy' after ECE298ja"
 - "Learning complex analysis makes math less 'magical.' "
 - "Homeworks are hard, but worth the effort"
 - "ECE298ja students are #1 in their Math and Engineering classes
 - "Thank you for teaching 298: It felt like "Whoa!
 - "I can now keep up with friends at Harvard in the infamous Math 55.

- First year college students take calculus in high school
- \bullet >30–40% advance-place (AP) out of Calc-I & II
 - Due to poor fundamentals, they struggle in engineering courses
 - Mathematics courses (Calc-III, Linear Alg., DiffEq, ...) are a mystery
- Solution: Concepts in Mathematical–Physics based & its History
 - Proven to work, and students love it:
 - "I have to wonder why it isn't the standard way of teaching mathematics to engineers."
 - "Fourier series and Laplace transforms and distributions are now understandable, even easy."
 - "Engineering courses are now 'easy' after ECE298ja"
 - "Learning complex analysis makes math less 'magical.' "
 - "Homeworks are hard, but worth the effort"
 - "ECE298ja students are #1 in their Math and Engineering classes
 - "Thank you for teaching 298: It felt like "Whoa!
 - "I can now keep up with friends at Harvard in the infamous Math 55.

- First year college students take calculus in high school
- >30–40% advance-place (AP) out of Calc-I & II
 - Due to poor fundamentals, they struggle in engineering courses
 - $\bullet\,$ Mathematics courses (Calc-III, Linear Alg., DiffEq, $\ldots)$ are a mystery
- Solution: Concepts in Mathematical–Physics based & its History
 Proven to work, and students love it:
 - "I have to wonder why it isn't the standard way of teaching mathematics to engineers."
 - "Fourier series and Laplace transforms and distributions are now understandable, even easy."
 - "Engineering courses are now 'easy' after ECE298ja"
 - "Learning complex analysis makes math less 'magical.' "
 - "Homeworks are hard, but worth the effort"
 - "ECE298ja students are #1 in their Math and Engineering classes
 - "Thank you for teaching 298: It felt like "Whoa!"
 - "I can now keep up with friends at Harvard in the infamous Math 55.

- First year college students take calculus in high school
- >30–40% advance-place (AP) out of Calc-I & II
 - Due to poor fundamentals, they struggle in engineering courses
 - Mathematics courses (Calc-III, Linear Alg., DiffEq, ...) are a mystery
- Solution: Concepts in Mathematical–Physics based & its History
 - Proven to work, and students love it:
 - "I have to wonder why it isn't the standard way of teaching mathematics to engineers."
 - "Fourier series and Laplace transforms and distributions are now understandable, even easy."
 - "Engineering courses are now 'easy' after ECE298ja"
 - "Learning complex analysis makes math less 'magical.' "
 - "Homeworks are hard, but worth the effort"
 - "ECE298ja students are #1 in their Math and Engineering classes
 - "Thank you for teaching 298: It felt like "Whoa!"
 - "I can now keep up with friends at Harvard in the infamous Math 55.

June 8, 2017 2 / 37

- First year college students take calculus in high school
- >30–40% advance-place (AP) out of Calc-I & II
 - Due to poor fundamentals, they struggle in engineering courses
 - Mathematics courses (Calc-III, Linear Alg., DiffEq, ...) are a mystery
- Solution: Concepts in Mathematical-Physics based & its History
 - Proven to work, and students love it:
 - "I have to wonder why it isn't the standard way of teaching mathematics to engineers."
 - "Fourier series and Laplace transforms and distributions are now understandable, even easy."
 - "Engineering courses are now 'easy' after ECE298ja"
 - "Learning complex analysis makes math less 'magical.' "
 - "Homeworks are hard, but worth the effort"
 - "ECE298ja students are #1 in their Math and Engineering classes
 - "Thank you for teaching 298: It felt like "Whoa!"
 - "I can now keep up with friends at Harvard in the infamous Math 55.

The number of undergraduate students in Electrical and Computer Engineering

- 420 ECE undergraduate students/year
- 50% electrical and 50% computer engineering
- Undergraduate enrollment: $420*4.5 \approx 1900$
- ≈ 100 ECE transfers
- Other engineering departments (Mech, Civil, MatSci) have somewhat smaller enrollment

Time-line: 5000 BCE-1650 CE

1500BCE		0CE	500	1000	1400 1650
Chinese Babylonia	Pythagorean Euclid Archim	<u>Di</u> oph	antus al-		Leonardo ra Bombelli Copernicus

Early Chinese: Gaussian elimination; quadratic formula;

- Pythagoreans, Euclid, Diophantus
- Algebra al-Khawarizmi 830 ce
- Bombelli discovers Diophantus' Arithmetica in Vatican library

Time-line: 5000 BCE-1650 CE

1500BCE		0CE	500	1000	1400 1650
Chinese Babylonia	Pythagorean Euclid Archim	<u>Di</u> oph	antus al		Leonardo ra Bombelli Copernicus

- Early Chinese: Gaussian elimination; quadratic formula;
- Pythagoreans, Euclid, Diophantus
- Algebra al-Khawarizmi 830 cE
- Bombelli discovers Diophantus' Arithmetica in Vatican library

- 4 同 6 4 日 6 4 日 6

Key concepts in math and physics

Fundamental theorems

- Integers may be factored into primes (FT Arith)
- Density of primes within integers (PNT)
- Algebra (factoring polynomials)
- Integral Calculus (Real and complex integration)
- Vector calculus (Helmholtz Theorem)

• Other key theorems:

- Complex analytic functions
- Calculus in the complex plane
- Cauchy Integral Theorem (Residue integration)
- Riemann sphere (defining the point at ∞)

Applications:

- Linear algebra
- Difference, scalar & vector differential equations
- Maxwell's vector differential equations

Key concepts in math and physics

Fundamental theorems

- Integers may be factored into primes (FT Arith)
- Density of primes within integers (PNT)
- Algebra (factoring polynomials)
- Integral Calculus (Real and complex integration)
- Vector calculus (Helmholtz Theorem)
- Other key theorems:
 - Complex analytic functions
 - Calculus in the complex plane
 - Cauchy Integral Theorem (Residue integration)
 - Riemann sphere (defining the point at ∞)
- Applications:
 - Linear algebra
 - Difference, scalar & vector differential equations
 - Maxwell's vector differential equations

- ロ ト - 4 同 ト - 4 回 ト - 4 回 ト

Key concepts in math and physics

Fundamental theorems

- Integers may be factored into primes (FT Arith)
- Density of primes within integers (PNT)
- Algebra (factoring polynomials)
- Integral Calculus (Real and complex integration)
- Vector calculus (Helmholtz Theorem)
- Other key theorems:
 - Complex analytic functions
 - Calculus in the complex plane
 - Cauchy Integral Theorem (Residue integration)
 - Riemann sphere (defining the point at ∞)
- Applications:
 - Linear algebra
 - Difference, scalar & vector differential equations
 - Maxwell's vector differential equations

< 回 > < 三 > < 三 >

The three Streams and their mathematics Stillwell [2010]

- The Pythagorean Theorem bore three streams:
- 2–3 Centuries per stream:

1) Numbers:

- $6^{th}BCE \mathbb{N}$ counting numbers, \mathbb{Q} (Rationals), \mathbb{P} Primes
- $5^{th}BCE \ \mathbb{Z}$ Common Integers, \mathbb{I} Irrationals

 $7^{th}CE$ zero $\in \mathbb{Z}$

2) **Geometry:** (e.g., lines, circles, spheres, toroids, ...,

17thCE Composition of polynomials (Descartes, Fermat) Euclid's Geometry + algebra ⇒ Analytic Geometry 18thCE Fundamental Theorem of Algebra

3) Infinity: ($\infty \rightarrow Sets$)

17-18thCE Taylor series, analytic functions, calculus (Newton) 19thCE ℝ Real, ℂ Complex 1851; Open vs. closed Sets 1874

イロト イポト イヨト イヨト

The three Streams and their mathematics Stillwell [2010]

- The Pythagorean Theorem bore three streams:
- 2–3 Centuries per stream:

1) Numbers:

- $6^{th}BCE \mathbb{N}$ counting numbers, \mathbb{Q} (Rationals), \mathbb{P} Primes
- $5^{th}BCE \mathbb{Z}$ Common Integers, \mathbb{I} Irrationals $7^{th}CE$ zero $\in \mathbb{Z}$
- 2) Geometry: (e.g., lines, circles, spheres, toroids, ...)
- 17thCE Composition of polynomials (Descartes, Fermat) Euclid's Geometry + algebra \Rightarrow Analytic Geometry 18thCE Fundamental Theorem of Algebra

3) Infinity: $(\infty \rightarrow Sets)$

17-18thCE Taylor series, analytic functions, calculus (Newton) 19thCE ℝ Real, ℂ Complex 1851; Open vs. closed Sets 1874

イロト イポト イヨト イヨト

The three Streams and their mathematics Stillwell [2010]

- The Pythagorean Theorem bore three streams:
- 2–3 Centuries per stream:

1) Numbers:

- $6^{th}BCE \mathbb{N}$ counting numbers, \mathbb{Q} (Rationals), \mathbb{P} Primes
- 5thBCE \mathbb{Z} Common Integers, \mathbb{I} Irrationals 7thCF zero $\in \mathbb{Z}$
- 2) Geometry: (e.g., lines, circles, spheres, toroids, ...)
- 17thCE Composition of polynomials (Descartes, Fermat) Euclid's Geometry + algebra \Rightarrow Analytic Geometry 18thCE Fundamental Theorem of Algebra
- 3) Infinity: ($\infty \rightarrow Sets$)
- 17-18thCE Taylor series, analytic functions, calculus (Newton) 19thCE ℝ Real, ℂ Complex 1851; Open vs. closed Sets 1874

Fundamental theorems of:

Number systems: Stream 1

- arithmetic (FTA)
- prime number (PNT)
- Geometry: Stream 2
 - algebra
 - Bézout
- Calculus: Stream 3
 - $\bullet\,$ Leibniz \mathbb{R}^1 (area under a curve only depends on end points)
 - complex $\mathbb{C} \subset \mathbb{R}^2$ (area under a curve only depends on end points!)
 - vectors $\mathbb{R}^3, \mathbb{R}^n, \mathbb{R}^\infty$
 - Gauss' Law (Divergence theorem)
 - Stokes' Law (Curl theorem, or Green's theorem)
 - Vector calculus (Helmholtz's theorem)

Fundamental theorems of:

Number systems: Stream 1

- arithmetic (FTA)
- prime number (PNT)

Geometry: Stream 2

- algebra
- Bézout

Calculus: Stream 3

- Leibniz \mathbb{R}^1 (area under a curve only depends on end points)
- complex $\mathbb{C} \subset \mathbb{R}^2$ (area under a curve only depends on end points!)
- vectors $\mathbb{R}^3, \mathbb{R}^n, \mathbb{R}^\infty$
 - Gauss' Law (Divergence theorem)
 - Stokes' Law (Curl theorem, or Green's theorem)
 - Vector calculus (Helmholtz's theorem)

Fundamental theorems of:

Number systems: Stream 1

- arithmetic (FTA)
- prime number (PNT)

Geometry: Stream 2

- algebra
- Bézout

Calculus: Stream 3

- Leibniz \mathbb{R}^1 (area under a curve only depends on end points)
- complex $\mathbb{C} \subset \mathbb{R}^2$ (area under a curve only depends on end points!)
- vectors $\mathbb{R}^3, \mathbb{R}^n, \mathbb{R}^\infty$
 - Gauss' Law (Divergence theorem)
 - Stokes' Law (Curl theorem, or Green's theorem)
 - Vector calculus (Helmholtz's theorem)

Stream 1: WEEK 2-10, Lects 2-10

- Stream 1: Numbers (WEEK 2-3, Lects 2-10)
- Stream 2: Algebraic Equations (WEEK 4-8, Lect 11-22)
- Stream 3a: Scalar Differential Equations (WEEK 8-12, Lect 23-34)
- Stream 3b: Partial Differential Equations (WEEK 12-14, Lect 35-42)

Famous problems in number theory (Stream 1)

- Finding prime numbers using sieves
- Continued fraction algorithm (rational approximations of irrational numbers)
- Pythagorean triplets (integer solutions of $c^2 = a^2 + b^2$)

Write N integers from 2 to N-1. Set k = 1. The first element $\pi_1 = 2$ is prime. Cross out $n \cdot \pi_n$: (e.g., $n \cdot \pi_1 = 4, 8, 16, 32, \cdots$).

11 21 31 41 Set $k = 2, \pi_2 = 3.$ C	2 12 22 32 42	3 13 23 33 43	A 14 24 34 44	5 15 25 35 45	,6 16 26 36 46	7 17 27 37 47	_8 18 28 38 48	9 19 29 39 49	10 20 30 40 50

There are 15 primes less than N = 50: $\pi_k = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

Image: A math a math

Write N integers from 2 to N-1. Set k = 1. The first element $\pi_1 = 2$ is prime. Cross out $n \cdot \pi_n$: (e.g., $n \cdot \pi_1 = 4, 8, 16, 32, \cdots$).

	2	3	<u>⁄</u> 4	5	́б	7	<i>⁄</i> 8	9	10
11	12	13	14	15	16	17	18	19	20
21	<u>2</u> 2	23	24	25	26	27	28	29	,30
31	3 2	33	,34	35	3 6	37	38	39	40
41	4Ź	43	<i>4</i> 4	45	4 6	47	4 8	49	<i>5</i> 0
2 Set $k = 2, \pi_2 = 3$. C	ross oi	ut $n\pi_k$	(6,9	, 12, 1	5,21,3	33, 39	, 45,	.):	
	2	3	4	5	б	7	8	ø	10
11	12	13	14	15	16	17	18	19	20
21	<u>2</u> 2	23	24	25	26	27	<u>2</u> 8	29	,30
31	3 2	33	,34	35	,36	37	<i>3</i> 8	39	40
41	A2	43	<i>4</i> 4	45	46	47	4 8	49	,50

There are 15 primes less than N = 50: $\pi_k = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

< ロ > < 同 > < 回 > < 回 > < 回

Write N integers from 2 to N-1. Set k = 1. The first element $\pi_1 = 2$ is prime. Cross out $n \cdot \pi_n$: (e.g., $n \cdot \pi_1 = 4, 8, 16, 32, \cdots$).

	2	3	<u>⁄</u> 4	5	́б	7	<i>⁄</i> 8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	,30
31	32	33	,34	35	,36	37	<i>3</i> 8	39	40
41	4 2	43	<i>4</i> 4	45	4 6	47	4 8	49	<i>5</i> 0
2 Set $k = 2, \pi_2 = 3$. C	ross oi	ut $n\pi_k$	(6,9	, 12, 1	5,21,3	33, 39	, 45,	.):	
	2	3	<u>⁄</u> 4	5	́б	7	<i>⁄</i> 8	ø	10
11	12	13	14	15	16	17	18	19	20
21	<u>2</u> 2	23	24	25	26	27	28	29	<i>,</i> 30
31	3 2	33	,34	35	,36	37	<i>,</i> 38	3 9	40
41	A 2	43	<i>4</i> 4	45	46	47	<i>4</i> 8	49	,50
3 Set $k = 3, \pi_3 = 5$. cr	oss ou	t $n\pi_3$.	(Cro	ss out	25, 3	5).			
	2	3	<u>⁄</u> 4	5	́б	7	<i>⁄</i> 8	Ś	10
11	12	13	14	JS	16	17	J8	19	2Ó
21	22	23	24	25	26	21	28	29	,30
31	3 2	33	,34	35	,36	37	,38	,39	ЯÓ
41	4Ź	43	4 4	45	4 6	47	48	49	<i>5</i> 0

I Finally let $k = 4, \pi_4 = 7$. Remove $n\pi_4$: (Cross out 49).

There are 15 primes less than N = 50: $\pi_k = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

・ロト ・聞ト ・ヨト ・ヨト

Write N integers from 2 to N-1. Set k = 1. The first element $\pi_1 = 2$ is prime. Cross out $n \cdot \pi_n$: (e.g., $n \cdot \pi_1 = 4, 8, 16, 32, \cdots$).

		2	3	<u>⁄</u> 4	5	Л	7	<i>/</i> 8	9	10
1	.1	12	13	14	15	16	17	18	19	20
2	21	<u>2</u> 2	23	24	25	26	27	<u>2</u> 8	29	,30
3	31	32 Z	33	,34	35	3 6	37	3 8	39	4 0
4	1	42	43	<i>4</i> 4	45	4 6	47	4 8	49	<i>5</i> 0
2 Set $k = 2, \pi_2 = 3$.	Cro	ss out	$n\pi_k$	(6,9,	12, 15	, 21, 33	3, 39,	45,):	
		2	3	<u>⁄</u> 4	5	Л	7	<i>/</i> 8	ø	10
1	.1	12	13	14	15	16	17	18 I	19	20
2	1	<u>2</u> 2	23	24	25	26	27	2 8	29	<i>3</i> 0
3	31	32	3 3	,34	35	3 6	37	3 8	<mark>3</mark> 9	40
4	1	A2	43	<i>4</i> 4	45	46	47	4 8	49	,50
3 Set $k = 3, \pi_3 = 5$.	cros	s out	$n\pi_3$.	(Cros	s out 2	25, 35).			
		2	3	<u>⁄</u> 4	5	<u>́б</u>	7	<i>⁄</i> 8	Ś	10
1	1	12	13	J4	JS	16	17	J8	19	20
2	Υſ	<u>2</u> 2	23	24	25	26	21	2 8	29	<i>3</i> 0
3	1	32	3 3	<i>3</i> 4	35	36	37	<i>3</i> 8	,39	<i>4</i> 0
4	1	4Ź	43	<i>4</i> 4	45	4 6	47	4 8	49	<i>5</i> 0
I Einally let $k = 4.\pi$	a = 1	7 Rei	nove	$n\pi_{4}$.	(Cross	sout 4	9)			

Inally let $k = 4, \pi_4 = 7$. Remove $n\pi_4$: (Cross out 49).

There are 15 primes less than N = 50: $\pi_k = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

E nar

イロト イポト イヨト イヨト

Continued fraction algorithm (CFA)

Given an irrational number $x \in I$, n/m = CFA(x) finds a rational approximation $n/m \in \mathbb{Q}$, to any desired accuracy.

Examples:

$$\widehat{\pi}_1 \approx 3 + rac{1}{7 + 0.0625 \dots} \approx 3 + rac{1}{7} = rac{22}{7}$$

$$\widehat{\pi}_2 \approx 3 + 1/(7 + 1/16) = 3 + 16/113 = 355/113$$

$$\widehat{e}_{_5} = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7))))) - 1.753610^{-6}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Pythagorean triplets & Euclid's formula

Find $a, b, c \in \mathbb{N}$ such that

$$c^2 = a^2 + b^2.$$

Solution: Set $p > q \in \mathbb{N}$. Then (Euclid's formula)

 $c = p^2 + q^2,$ $a = p^2 - q^2,$ b = 2pq.

This result may be directly verified

$$[p^{2} + q^{2}]^{2} = [p^{2} - q^{2}]^{2} + [2pq]^{2}$$

or

$$p^4 + q^4 + 2p^2q^2 = p^4 + q^4 - 2p^2q^2 + 4p^2q^2$$

Deriving Euclid's formula (Eq. 1) is obviously more difficult

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

イロト イポト イヨト イヨト

Pythagorean triplets & Euclid's formula

Find $a, b, c \in \mathbb{N}$ such that

$$c^2 = a^2 + b^2.$$

Solution: Set $p > q \in \mathbb{N}$. Then (Euclid's formula)

 $c = p^2 + q^2,$ $a = p^2 - q^2,$ b = 2pq. (1)

This result may be directly verified

$$[p^{2} + q^{2}]^{2} = [p^{2} - q^{2}]^{2} + [2pq]^{2}$$

or

$$p^4 + q^4 + 2p^2q^2 = p^4 + q^4 - 2p^2q^2 + 4p^2q^2$$

Deriving Euclid's formula (Eq. 1) is obviously more difficult

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

- ロ ト - 4 同 ト - 4 回 ト - 4 回 ト

Pythagorean triplets & Euclid's formula

Find $a, b, c \in \mathbb{N}$ such that

$$c^2 = a^2 + b^2.$$

Solution: Set $p > q \in \mathbb{N}$. Then (Euclid's formula)

$$c = p^2 + q^2,$$
 $a = p^2 - q^2,$ $b = 2pq.$ (1)

This result may be directly verified

$$[p^2 + q^2]^2 = [p^2 - q^2]^2 + [2pq]^2$$

or

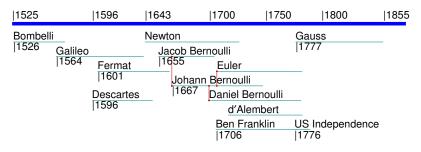
$$p^{4} + q^{4} + 2p^{2}q^{2} = p^{4} + q^{4} - 2p^{2}q^{2} + 4p^{2}q^{2}$$

Deriving Euclid's formula (Eq. 1) is obviously more difficult.

Stream 2: WEEK 4, Lects 11-22

- Stream 1: Numbers (WEEK 2-3, Lect 2-10)
- Stream 2: Algebraic Equations (WEEK 4-8, Lect 11-22)
- Stream 3a: Scalar Differential Equations (WEEK 8-12, Lects 23-34)
- Stream 3b: Partial Differential Equations (WEEK 12-14, Lect 35-42)

Time-line: Bombelli-Gauss 16-18 centuries

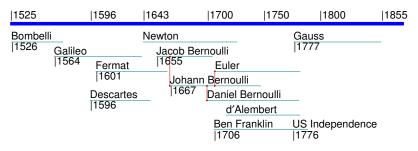


- Newton, Bernoulli family, Euler, d'Alembert and Gauss
- Johann teaches mathematics to Euler and Daniel
- Euler's technique dominates mathematics for 200 years (examples)
- d'Alembert proposes:
 - general solution to scalar wave equation
 - fundamental theorem of algebra (FTA
- Gauss had great conceptual depth (PNT, Least squares, FFT)

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

ヘロト 不得下 不足下 不足下

Time-line: Bombelli-Gauss 16-18 centuries



- Newton, Bernoulli family, Euler, d'Alembert and Gauss
- Johann teaches mathematics to Euler and Daniel
- Euler's technique dominates mathematics for 200 years (examples)
- d'Alembert proposes:
 - general solution to scalar wave equation
 - fundamental theorem of algebra (FTA)
- Gauss had great conceptual depth (PNT, Least squares, FFT)

Analytic functions and Taylor series (Newton)

An *analytic function* is one that may be expanded in a power seriesGeometric series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

This is easily seen to be correct by cross-multiplying

$$1 = (1 - x) \sum x^{n} = \sum_{n=0}^{\infty} x^{n} - \sum_{n=1}^{\infty} x^{n} = 1$$

• The *Taylor series* is much more powerful

$$f(x) = \sum_{n} \underbrace{\frac{1}{n!} \frac{d^{n}}{dx^{n}} f(x)}_{a_{n}} \bigg|_{x=0} x'$$

Analytic functions and Taylor series (Newton)

An *analytic function* is one that may be expanded in a power seriesGeometric series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

• This is easily seen to be correct by cross-multiplying

$$1 = (1 - x) \sum x^{n} = \sum_{n=0}^{\infty} x^{n} - \sum_{n=1}^{\infty} x^{n} = 1$$

• The *Taylor series* is much more powerful

Analytic functions and Taylor series (Newton)

An *analytic function* is one that may be expanded in a power seriesGeometric series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

• This is easily seen to be correct by cross-multiplying

$$1 = (1 - x) \sum x^{n} = \sum_{n=0}^{\infty} x^{n} - \sum_{n=1}^{\infty} x^{n} = 1$$

• The Taylor series is much more powerful

$$f(x) = \sum_{n} \underbrace{\frac{1}{n!} \frac{d^{n}}{dx^{n}} f(x)}_{a_{n}} \bigg|_{x=0} x^{n}$$

1

Jakob Bernoulli #1 (1654-1705)

Figure 13.10: Portrait of Jakob Bernoulli by Nicholas Bernoulli

Johann Bernoulli (#2) 10^{th} child; Euler's advisor

Figure 13.11: Johann Bernoulli

Leonhard Euler, most prolific of all mathematicians

Figure 10.4: Leonhard Euler

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

June 8, 2017 18 / 37

Euler's sieve and the zeta function: $\zeta(s)$

The Euler's zeta function is an algebraic replica of Eratosthenes sieve

$$\zeta(s) \equiv \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} n^{-s} \quad \text{for } \Re s = \sigma > 0.$$
 (2)

Multiplying $\zeta(s)$ by the factor $1/2^s$, and subtracting from $\zeta(s)$, removes all the even terms $\propto 1/(2n)^s$ (e.g., $1/2^s + 1/4^s + 1/6^s + 1/8^s + \cdots$)

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s) = 1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}\cdots-\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\cdots\right),$$
(3)

results in

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\cdots.$$
 (4)

イロト イポト イヨト イヨト

Likewise

$$\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right)\zeta(s) = 1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{17^{s}}+\frac{1}{19^{s}}\cdots$$

Euler's sieve and the zeta function: $\zeta(s)$

The Euler's zeta function is an algebraic replica of Eratosthenes sieve

$$\zeta(s) \equiv \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} n^{-s} \quad \text{for } \Re s = \sigma > 0.$$
 (2)

Multiplying $\zeta(s)$ by the factor $1/2^s$, and subtracting from $\zeta(s)$, removes all the even terms $\propto 1/(2n)^s$ (e.g., $1/2^s + 1/4^s + 1/6^s + 1/8^s + \cdots$)

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}\cdots-\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\cdots\right),\quad(3)$$

results in

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\cdots.$$
 (4)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

19 / 37

Likewise

$$\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right)\zeta(s) = 1 + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \frac{1}{19^{s}} \cdots$$

Euler's sieve and the zeta function: $\zeta(s)$

The Euler's zeta function is an algebraic replica of Eratosthenes sieve

$$\zeta(s) \equiv \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} n^{-s} \quad \text{for } \Re s = \sigma > 0.$$
 (2)

Multiplying $\zeta(s)$ by the factor $1/2^s$, and subtracting from $\zeta(s)$, removes all the even terms $\propto 1/(2n)^s$ (e.g., $1/2^s + 1/4^s + 1/6^s + 1/8^s + \cdots$)

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}\cdots-\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\cdots\right),\quad(3)$$

results in

$$\left(1-\frac{1}{2^{s}}\right)\zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\cdots.$$
 (4)

Likewise

$$\left(1-rac{1}{3^{s}}
ight)\left(1-rac{1}{2^{s}}
ight)\zeta(s)=1+rac{1}{5^{s}}+rac{1}{7^{s}}+rac{1}{11^{s}}+rac{1}{13^{s}}+rac{1}{17^{s}}+rac{1}{19^{s}}\cdots$$

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

E Sac

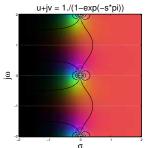
イロト 人間ト イヨト イヨト

Euler's sieve gives Euler's product formula of $\zeta(s)$

$$\zeta(s) = \prod_{\pi_k \in \mathbb{P}} \frac{1}{1 - \pi_k^{-s}} = \prod_{\pi_k \in \mathbb{P}} \zeta_k(s), \tag{5}$$

where π_k represents the k^{th} prime. The above defines each prime factor

$$\zeta_k(s) = \frac{1}{1 - \pi_k^{-s}} = \frac{1}{1 - e^{-s \ln \pi_k}} \tag{6}$$

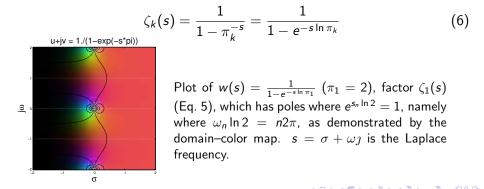


Plot of $w(s) = \frac{1}{1-e^{-s\ln \pi_1}} (\pi_1 = 2)$, factor $\zeta_1(s)$ (Eq. 5), which has poles where $e^{s_n \ln 2} = 1$, namely where $\omega_n \ln 2 = n2\pi$, as demonstrated by the domain-color map. $s = \sigma + \omega_j$ is the Laplace frequency.

Euler's sieve gives Euler's product formula of $\zeta(s)$

$$\zeta(s) = \prod_{\pi_k \in \mathbb{P}} \frac{1}{1 - \pi_k^{-s}} = \prod_{\pi_k \in \mathbb{P}} \zeta_k(s),$$
(5)

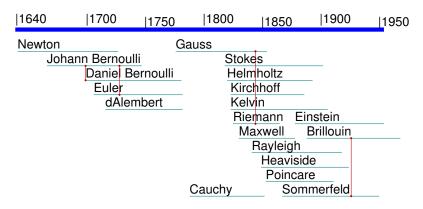
where π_k represents the k^{th} prime. The above defines each prime factor



Stream 3a: WEEK 8-12, Lects 23-34

- Stream 1: Numbers (WEEK 2, Lects 1-10, Lects 2-10)
- Stream 2: Algebraic Equations (WEEK 4-8, Lect 11-22)
- Stream 3a: Scalar Differential Equations (WEEK 8-12, Lect 23-34)
- Stream 3b: Partial Differential Equations (WEEK 12-14, Lect 35-42)

Time-line Newton-Einstein 1640-1950



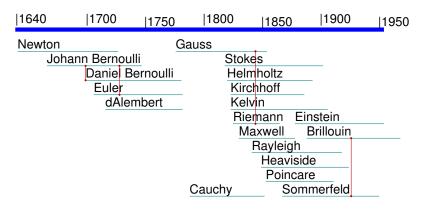
Notes:

- Gaussian gap: Euler \Rightarrow Helmholtz
- Connection between Gauss & Riemann
- Heritage: Stokes & Helmholtz ⇒ Sommerfeld & Einstein

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

June 8, 2017 22 / 37

Time-line Newton-Einstein 1640-1950



Notes:

- Gaussian gap: Euler \Rightarrow Helmholtz
- Connection between Gauss & Riemann
- Heritage: Stokes & Helmholtz \Rightarrow Sommerfeld & Einstein

Complex Analytic functions and Taylor series

An *analytic function* is one that may be expanded in a complex power series. Replace $x \in \mathbb{R}$ with $z = x + iy \in \mathbb{C}$

Geometric series

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n$$

Cross-multiplying shows this series is correct

$$1 = (1 - z) \sum x^{n} = \sum_{n=0}^{\infty} z^{n} - \sum_{n=1}^{\infty} z^{n} = 1$$

• However the more general Taylor series has a problem: $z,F(z)\in\mathbb{C}$

$$F(z) = \sum_{n} \underbrace{\frac{1}{n!} \frac{d^{n}}{dz^{n}} f(z)}_{c_{n}} \bigg|_{x=0} z^{n}$$

What does it mean to differentiate wrt $z \in \mathbb{C}$?

$$\frac{d}{dz}F(z) = \frac{d}{d(x+yj)}F(x+yj) \quad ???$$

Complex Analytic functions and Taylor series

An *analytic function* is one that may be expanded in a complex power series. Replace $x \in \mathbb{R}$ with $z = x + iy \in \mathbb{C}$

Geometric series

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n$$

Cross-multiplying shows this series is correct

$$1 = (1 - z) \sum x^{n} = \sum_{n=0}^{\infty} z^{n} - \sum_{n=1}^{\infty} z^{n} = 1$$

• However the more general Taylor series has a problem: $z, F(z) \in \mathbb{C}$

$$F(z) = \sum_{n} \underbrace{\frac{1}{n!} \frac{d^{n}}{dz^{n}} f(z)}_{c_{n}} \bigg|_{x=0} z^{n}$$

L

What does it mean to differentiate wrt $z \in \mathbb{C}$?

$$\frac{d}{dz}F(z) = \frac{d}{d(x+yj)}F(x+yj) \quad ???$$

Complex Analytic functions and Taylor series

An *analytic function* is one that may be expanded in a complex power series. Replace $x \in \mathbb{R}$ with $z = x + iy \in \mathbb{C}$

Geometric series

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n$$

Cross-multiplying shows this series is correct

$$1 = (1 - z) \sum x^{n} = \sum_{n=0}^{\infty} z^{n} - \sum_{n=1}^{\infty} z^{n} = 1$$

• However the more general Taylor series has a problem: $z, F(z) \in \mathbb{C}$

$$F(z) = \sum_{n} \underbrace{\frac{1}{n!} \frac{d^{n}}{dz^{n}} f(z)}_{c_{n}} \bigg|_{x=0} z^{n}$$

I.

What does it mean to differentiate wrt $z \in \mathbb{C}$?

$$\frac{d}{dz}F(z) = \frac{d}{d(x+yj)}F(x+yj) \quad ???$$

Complex analytic functions to solve difference equations

Define Laplace frequency s = σ + ω_j
If

$$e^{st} = \sum_{n=1}^{\infty} \frac{1}{n!} (st)^n$$

then

$$\frac{d}{dt}e^{st} = se^{st}$$

• e^{st} is an *eigenvector* of $\frac{d}{dt}$

d'Alembert: Creative, prolific & respected

Mapping the multi-valued square root of $w = \pm \sqrt{x + iy}$

• This provides a deep (essential) analytic insight.

15.3 Branch Points

303

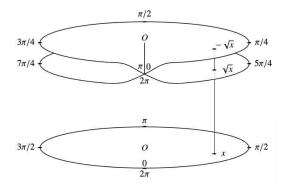


Figure 15.6: Branch point for the square root

The Riemann Surface of the cubic y² = x(x - a)(x - b) has Genis 1 (torus) (p. 307). *Elliptic functions* naturally follow.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

June 8, 2017 26 / 37

Mapping the multi-valued square root of $w = \pm \sqrt{x + iy}$

• This provides a deep (essential) analytic insight.

15.3 Branch Points

303

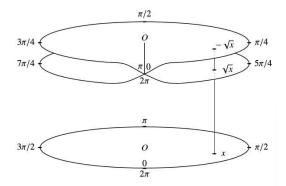


Figure 15.6: Branch point for the square root

The Riemann Surface of the cubic y² = x(x - a)(x - b) has Genis 1 (torus) (p. 307). *Elliptic functions* naturally follow.

Mapping complex analytic function

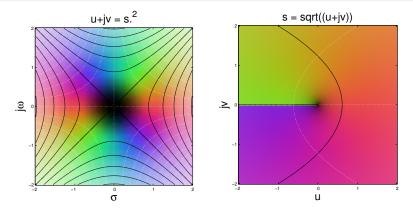


Figure: Here the Cartesian coordinate map between $s = \sigma + \omega j$ and w = u + v j. LEFT: This shows the mapping $w(s) = s^2$. RIGHT: This shows the lower branch of the inverse $s(w) = \sqrt{w}$.

June 8, 2017 27 / 37

Mapping complex analytic function

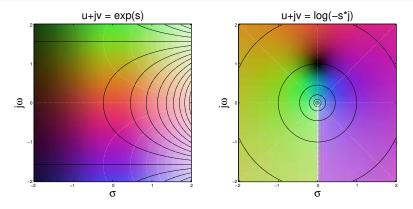
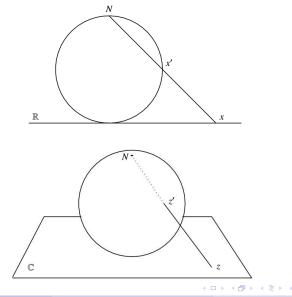


Figure: Plots in the complex z = x + yj: Left: e^{-sj} Right: $\log(-sj)$, the inverse of the periodic $e^{-sj} = \cosh(-sj) + \sinh(-sj)$, thus it has a branch cut, and a zero at $s = \pi j$ (i.e., $\log(\pi j = 0)$.

June 8, 2017 28 / 37

Riemann projection closes point $|z| ightarrow \infty$ (i.e., z' ightarrow N)



Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st

June 8, 2017 29 / 37

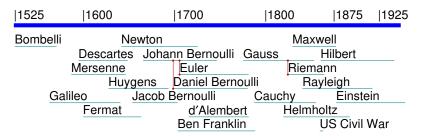
History of Acoustics, Music, Speech

- BC Pythagoras; Aristotle
- 16th Mersenne, Marin 1588-1647; *Harmonie Universelle 1636*, *Father of acoustics*; Galilei, Galileo, 1564-1642; *Frequency Equivalence 1638*
- 17th Newton, Hooke, Boyle
- 18th Euler; d'Alembert; Gauss
- 19th Fourier; Helmholtz; Kirchhoff; AG Bell; Lord Rayleigh

Stream 3b: WEEK 12-14, Lects 35-42

- Stream 1: Numbers (WEEK 2, Lects 1-10)
- Stream 2: Algebraic Equations (WEEK 4-8, Lect 11-22)
- Stream 3a: Scalar Differential Equations (WEEK 8-12, Lect 23-34)
- Stream 3b: Partial Differential Equations (WEEK 12-14, Lect 35-42)

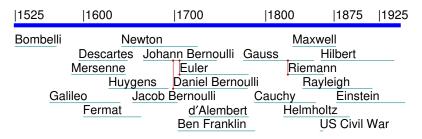
Time-line: Bombelli-Einstein, 16-20 centuries



Bombelli discovers Diophantus' Arithmetica in Vatican library

- \Rightarrow Galileo, Descartes, Newton, Fermat, Bernoulli, Gauss, . .
- Johann teaches mathematics to Euler and Daniel
- Euler technique dominates mathematics for 200 years (examples)
- Gauss a close second: conceptual depth

Time-line: Bombelli-Einstein, 16-20 centuries



• Bombelli discovers Diophantus' Arithmetica in Vatican library

- $\bullet\,\Rightarrow$ Galileo, Descartes, Newton, Fermat, Bernoulli, Gauss, \ldots
- Johann teaches mathematics to Euler and Daniel
- Euler technique dominates mathematics for 200 years (examples)
- Gauss a close second: conceptual depth

Acoustics, Vector calculus and circuit theory

- Helmholtz Theorem: Vector field $F = -\nabla \Phi + \nabla \times A$
- Kirchhoff's Laws of circuit theory (similar to Newton's Laws)

von Helmholtz

Gustav Kirchhoff

Bibliography

John Stillwell. Mathematics and its history; Undergraduate texts in Mathematics; 3d edition. Springer, New York, 2010.

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st June 8, 2017 35 / 37

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st June 8, 2017 36 / 37

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Prof. Jont B Allen Elec. Comp. Eng. Univer Teaching STEM Math to first year college st June 8, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで