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290 CHAPTER 7 Loudspeaker systems

PART XXI: SIMPLE ENCLOSURES

Loudspeaker enclosures are the subject of more controversy than any other item connected with
modern high-fidelity music reproduction. Even though the behavior of enclosures is well understood,
opinions and pseudo theories as to the effects of enclosures on loudspeaker response still persist. For
instance, the very mention of directivity is guaranteed to spark a lively debate amongst audio engi-
neers, with some favoring a wide pattern while others prefer a narrow pattern, although virtually all
agree that a constant pattern is desirable to ensure that the room reflections produced by the off-axis
sound have the correct frequency balance. Personal preferences aside, it could be that the choice
depends on the program material. A narrow pattern with fewer room reflections allows the listener to
hear the acoustics of the recording location more clearly, as well as the positions of the individual
performers on the stage. Hence we might expect a narrow pattern to favor recordings made in a natural
acoustic space such as a concert hall, church, or theatre. On the other hand, for close-miked studio
recordings, a greater sense of presence and listener envelopment may be created by employing a wide
pattern that produces many reflections around the room in order to produce some sense of a live
performance, albeit in a flawed domestic listening space. After all, unlike the majority of loudspeakers,
musical instruments do not generally fire in one direction only at higher frequencies. One thing that we
cannot control is the fact that at low frequencies, where the wavelength is much larger than the dia-
phragm, loudspeakers are invariably omnidirectional, except for a few dipole/cardioid designs. More
directive patterns at low frequencies come at the cost of reduced efficiency.

The design of an enclosure should be undertaken only with full knowledge of the characteristics of
the loudspeaker and of the amplifier available, but fortunately most reputable manufacturers now
provide the Thiele-Small parameters in their data sheets along with other useful figures such as
sensitivity, xmax, and power rating.

A large part of the difficulty of selecting a loudspeaker and its enclosure arises from the fact that the
psychoacoustic factors involved in the reproduction of speech and music are not understood. Listeners
will rank-order differently four apparently identical loudspeakers placed in four identical enclosures. It
has been remarked that if one selects his own components, builds his own enclosure, and is convinced
he has made a wise choice of design, then his own loudspeaker sounds better to him than does anyone
else’s loudspeaker. In this case, the frequency response of the loudspeaker seems to play only a minor
part in forming a person’s opinion.

Many working in the field of loudspeaker design believe that it is as much an art as a science
because it involves many choices which reflect personal preferences such as maximum loudness versus
bass extension, physical size, directivity characteristics, and so forth. In this chapter, we shall discuss
only the physics of the problem. Designers should be able to achieve, from this information, any
reasonable frequency-response curve that they may desire. Further than that, they will have to seek
information elsewhere or to decide for themselves which shape of frequency-response curve will give
greatest pleasure to themselves and to other listeners.

With the information of this chapter, the high-fidelity enthusiast should be able to calculate, if he or
she understands AC circuit theory, the frequency-response curve for his or her amplifier-loudspeaker-
baffle combination. Design graphs are presented to simplify the calculations, and three complete
examples are worked out in detail. Unfortunately, the calculations are sometimes tedious, but there is
no short cut to the answer.
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7.1 BRIEF SUMMARY OF COMMON LOUDSPEAKER SYSTEMS

In the sections that follow, information is given on the detail design of loudspeaker systems. A brief
summary of the four most common systems is given here as an aid to understanding the relative
advantages of each of those that are discussed.

Loudspeaker in closed box. 1t is not practical to mount a loudspeaker in the wall of a residence.
Alternatively, an unbaffled speaker would behave like a dipole radiator and at low frequencies would
radiate little power. To eliminate radiation from the rear side, all loudspeakers before 1950 were mounted
in a simple box. In the equivalent circuit, see Fig. 7.1a, the presence of the box appears as a series
compliance Cy,g which equals Sp>Vp/1.4P,, where Vj is the volume of the box. Its presence raises the
speaker’s resonance frequency above that if it were in an infinite baffle. Obviously, to minimize this
increase, the volume of the box must be made very large. Historically, increasing the compliance Cyg to
compensate would result in too large an excursion of the voice coil at low frequencies.

Air-suspension loudspeaker system. A unique solution to box size came with the perception that if
the suspension compliance Cy;s were made very large, the compliance of the box Cyp (i.e., its volume)
could be made much smaller, actually equaling the magnitude of the Cys of the usual loudspeaker,
A different method of suspending the cone was used and, after about 1950, box volumes were often as
small as 20 liters.

(a) B*PIR i, Mwus Rys Cus Cus
i
e Bl
R, T Rur
Zg = Generator voltage Rys = Resistance of suspension
R = Electrical voice-coil resistance Cus = Compliance of suspension
Bl = Electro-mechanical force factor Cup = Compliance of air in box
Mys = Mass of diaphragm & coil incl. radiation Ryr = Radiation resistance
(b) B**/Rg i, Mus  Rys Cus Ry Muyr
F—A\—
e Bl T
RE
Ryr = Radiation resistance of diaphragm R)r> = Radiation resistance of port

Myp = Mass of port incl. end corrections

FIG. 7.1 Low-frequency analogous circuits for (a) a closed-box loudspeaker and (b) a bass-reflex loudspeaker with
electrical quantities referred to mechanical side.

For simplicity, generator, box, leakage, and port resistances are omitted.
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Bass-reflex loudspeaker system. The bass-reflex system is a means for obtaining a greater response at
low frequencies than that from the same loudspeaker in a closed box. Actually, it is often used to boost
the output at low frequencies from a system using a relatively small box. Its special feature is a port in
the box from which sound emerges that adds to that directly radiated by the loudspeaker. The port is
a tube with a cross-section area about equal to the area of the loudspeaker cone and a length that is
chosen to give the desired resonance frequency.

The simplified equivalent circuit is shown in Fig. 7.1b. Two resonant frequencies occur: that of the
loudspeaker (wg) and that of the box/port. Usually, My;sCprs = MppChyp = 1/wyg. At wy, it approaches zero
and up becomes very large. Below wy, i, and iip are out of phase and the response is not enhanced by the
addition of the port. But, for one to two octaves above wy the response is usually enhanced by about 5 dB.
Transmission-line enclosures. A transmission-line enclosure is the result of research leading to
a small box containing a small loudspeaker and yet producing a strong bass sound. The box may have
a volume as little as 2 liters. The loudspeaker-drive unit usually has a stiff cone with a diameter
between 5 cm and 12 cm and its voice coil is capable of large excursions without generating appre-
ciable distortion. The front side of the cone radiates directly into the listening space. Connected to the
rear side is a tube whose length is 1/4th that of the lowest desired bass frequency, and the open end of
which also radiates into the listening space. A small displacement of the cone will result in a large
displacement of the air particles at the end of the tube. For strong bass at 100 Hz this means a length of
86 cm. The difficulty in the overall design of the system, is that the tube also resonates at frequencies
higher than the 100 Hz. Their strength at the opening end of the tube is diminished by tapering the tube
and filling it with a porous acoustical material of low flow resistance.

7.2 UNBAFFLED DIRECT-RADIATOR LOUDSPEAKER

A baffle is a structure for shielding the front-side radiation of a loudspeaker diaphragm from the rear-
side radiation which can potentially cancel it at low frequencies. The necessity for shielding the front
side from the rear side can be understood if we consider that an unbaffled loudspeaker at low
frequencies is the equivalent of a pair of simple spherical sources of equal strength located near each
other and pulsing out of phase (see Fig. 7.2). The rear side of the diaphragm of the loudspeaker is
equivalent to one of these sources, and the front side is equivalent to the other.

I F

FIG. 7.2 Doublet sound source equivalent at low frequencies to an unbaffled vibrating diaphragm.

The point A is located a distance rand at an angle 6 with respect to the axis of the loudspeaker.
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If we measure, as a function of frequency f, the magnitude of the rms sound pressure p at a point A,
fairly well removed from these two sources, and if we hold the volume velocity of each constant, we
find from Eq. (4.117) that

po.f? ﬁo’bﬁ
’[3‘ = — cos 0 (7.1

rc
where

|Up| is strength of each simple source in m?/s.

b is separation between the simple sources in m.

po is density of air in kg/m® (1.18 kg/m® for ordinary temperature and pressure).
r is distance in m from the sources to the point A. It is assumed that r >> b.

0 is angle shown in Fig. 7.2.

c is speed of sound in m/s (344.8 m/s, normally).

In other words, for a constant-volume velocity of the loudspeaker diaphragm, the pressure p
measured at a distance r is proportional to the square of the frequency f and to the cosine of the angle §
and is inversely proportional to 7. In terms of decibels, the sound pressure p increases at the rate of
12 dB for each octave (doubling) in frequency.

In the case of an actual unbaffled loudspeaker, below the first resonance frequency where the
system is stiffness-controlled, the velocity of the diaphragm is not constant but doubles with each
doubling of frequency. This is an increase in velocity of 6 dB per octave. Hence, the pressure p from
a loudspeaker without a baffle increases 12 4 6 = 18 dB for each octave increase in frequency. Above
the first resonance frequency, where the system is mass-controlled, the velocity of the diaphragm
decreases 6 dB for each octave in frequency. Hence, in that region, the pressure p increases
12 — 6 = 6 dB for each octave increase in frequency and we can use the curve shown in Fig. 13.22 for
an unbaffled circular piston (b = a), which turns out to be the magnitude of the radiation impedance
shown in Fig. 4.38.

The unbaffled loudspeaker has the same analogous circuit as that shown in Fig. 6.4 for
a loudspeaker in an infinite baffle except that the radiation impedance is given by Fig. 4.38 and the
on-axis pressure is proportional to the total radiation force fR as opposed to the volume acceler-
ation. The on-axis pressure is given by Eq. (13.128) if we let py = fr/Sp. Although this is an
expression for a resilient disk (uniform pressure), it will be shown in Sec. 13.10 that it is the same
as that for a rigid disk (uniform velocity) if we let py = 2Z4rUo. Hence we find that the on-axis
pressure is the same as that given by Eq. (6.31) multiplied by SpZar/(pyc). In other words, if the
diaphragm acceleration is constant, the on-axis response is simply the magnitude of the radiation
impedance shown in Fig. 4.38.

The absence of a baffle makes the loudspeaker more directional because, in the plane of the baffle,
the sound pressure tends to reduce to zero. Hence there are fewer reflections from side walls. This
figure 8 directivity pattern may be used to extend the width of the stereo “sweet spot” in a room. If the
listener moves towards one side of the listening area, he or she will move further off the main axis of
the nearest loudspeaker than that of the furthest one. Hence the sound pressure of the nearest loud-
speaker will be reduced automatically relative to that of the furthest one, which will compensate for its
proximity.
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Certain kinds of loudspeaker that have very low moving mass, such as electrostatic or planar
magnetic types, are used almost exclusively without a baffle because the extra stiffness provided
by a closed box would push the fundamental resonance frequency up too high. The problem of
low-frequency cancellation is compensated for by using a very large radiating area. Full-range elec-
trostatic or planar magnetic loudspeakers have radiating areas of at least 0.5 m”.

7.3 INFINITE BAFFLE

In the previous chapter we talked about direct-radiator loudspeakers in infinite baffles. Reference to
Fig. 6.7 reveals that with an infinite baffle, the response of a direct-radiator loudspeaker is enhanced
over that just indicated for no baffle. It was shown that if one is above the suspension resonance
frequency, but below the first diaphragm break-up mode, usually the response is flat with frequency
(unless the Bl product is very large) and that if one is below the first resonance frequency the response
decreases at the rate of 12 dB per octave instead of 18 dB per octave. Hence, the isolation of the front
side from the back side by an infinite baffle is definitely advantageous.

In practice, the equivalent of an infinite baffle is a very large enclosure, well damped by absorbing
material. One practical example is to mount the loudspeaker in one side of a closet filled with clothing,
allowing the front side of the loudspeaker to radiate into the adjoining listening room.

Design charts covering the performance of a direct-radiator loudspeaker in an infinite baffle are
identical to those for a closed box. We shall present these charts in Sec. 7.6.

7.4 FINITE-SIZED FLAT BAFFLE

The discussion above indicated that it is advisable to shield completely one side of the loud-
speaker from the other, as by mounting the loudspeaker in a closet. Another possible alternative is
to mount the loudspeaker in a flat baffle of finite size, free to stand at one end of the listening
room. The worst shape for such a baffle is circular because sound from the rear arrives at the front
at the same time whichever radial path is taken. Hence at some frequencies, where the radial path
length is a multiple of the wavelength A, the front radiation is partially canceled and we have
a comb filter effect, as shown in Fig. 13.22. The effect is considerably smeared if we use
a rectangular baffle with the drive unit offset from the center as is the case with the IEC 268-5
baffle. [38]

The performance of a loudspeaker in a free-standing flat baffle leaves much to be desired,
however. If the wavelength of a tone being radiated is greater than twice the smallest lateral
dimension of the baffle, the loudspeaker will act according to Eq. (7.1). This means that for a finite
flat baffle to act approximately like an infinite baffle at 50 Hz, its smallest lateral dimension must
be about 3.5 m (11.5 ft), which limits its use to mid-range units or above. However, even above
this frequency, sound waves traveling from behind the loudspeaker reflect off walls and meet with
those from the front and cause alternate cancellations and reinforcements of the sound as the two
waves come into phase or out of phase at particular frequencies in particular parts of the room.
Hence, the loudspeaker must be located away from walls or reflecting objects in order to minimize
this effect.
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7.5 OPEN-BACK CABINETS

An open-back cabinet is simply a box with one side missing and with the loudspeaker mounted in the
side opposite the open back. Many portable stereos are of this type. Such a cabinet performs nearly the
same as a flat baffle that provides the same path length between the front and back of the loudspeaker.
One additional effect, usually undesirable, occurs at the frequency where the depth of the box
approaches a quarter wavelength. At this frequency, the box acts as a resonant tube, and more power is
radiated from the rear side of the loudspeaker than at other frequencies. Furthermore, the sound from
the rear may combine in phase with that from the front at about this same frequency, and an abnormally
large peak in the response may be obtained.

7.6 CLOSED-BOX BAFFLE [1,2]

The most commonly used type of loudspeaker baffle is a closed box in one side of which the loud-
speaker is mounted. In this type, discussed here in considerable detail, the back side of the loudspeaker
is completely isolated from the front. A customary type of closed-box baffle is shown in Fig. 7.3. The
sides are made as rigid as possible using some material like 5-ply plywood or MDF, 0.75 to 1.0 inch
thick and braced to prevent resonance. A slow air leak must be provided in the box so that changes in
atmospheric pressure do not displace the neutral position of the diaphragm.

When selecting a loudspeaker, the first two questions that arise are how loud must it go and what
bass cut-off frequency can be tolerated? This of course will depend on the application and the radiated
sound pressure will need to be greater for an auditorium than for a domestic living room. For a cell-
phone ring tone, it must be possible to hear it in a noisy street environment. In general, the low-
frequency sound pressure is limited by the displacement limit xp,x and the high-frequency sound
pressure is limited by the power rating. In fact, at higher frequencies the situation is worse because at
least the larger low-frequency displacement pumps air through the magnetic gap, which helps to cool
the voice coil. If the suspension alone is not stiff enough to limit the full-power displacement at low

Plywood or MDF
18 to 25 mm
thick

Acoustical lining
Y 13 to 38 mm
thick

0O QO00000000000000000000000

FIG. 7.3 Typical plywood box with loudspeaker mounted off center in one side and lined with a layer of soft
ahsorbent acoustical material.




296 CHAPTER 7 Loudspeaker systems

frequencies, then part of the function of the box is to provide the extra stiffness needed to keep the
displacement in check. Otherwise, an auxiliary high-pass filter must be employed. As more stable
suspension materials have been developed, the trend has been towards more compliant suspensions so
that an ever greater proportion of the stiffness can be provided by air in the box which in turn makes the
volume of the box correspondingly smaller. This principle is known as air suspension [37].

Summary of closed-box baffle design

To determine the volume of the closed box and the — 3 dB cut-off frequency:
If the Thiele-Small parameters (Rg, Qrs, Qus, fs, Sp, and Vxs) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then Qrs = QrsQus/(Qes+ Qus).
From Table 7.2, select the frequency-response shape, taking into account that the closed-box Qr¢ value
must be higher than the infinite-baffle Qrs of the drive unit. The effect of various Qr¢c values upon
the frequency-response shape can be seen from Fig. 7.16. Further advice regarding Q¢ is given in the
paragraph following Eq. (7.56).
Estimate the volume of air in the box Vj4 using Eq. (7.61). However, if the box is filled or has a thick lining,
then the Qr¢ value will be modified. Using the manufacturer’s or measured value of flow resistance R for the
lining material, compute R4p from Eq. (7.7) and Qug from Eq. (7.58). Determine the volume Vj4 from Eg.
(7.60). The total internal volume is then Vg= V4+ Vy, where Vj, is the volume of the lining material.
Determine the closed-box resonance frequency fc from Eq. (7.28). From the value of fzqg/fcgiven in Table 7.2,
compute the cut-off frequency f3gg.

To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLp,ax is obtained from Eq. (6.34) to give

1 Znom Wmax27rfg Vaspo
rex 20 x 10-6 REQES

SPLmax = 20 IOglO( ) dBSPL@1m

where Wnax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax-

To determine the excursion limit:
The maximum peak diaphragm displacement at frequencies well below the closed-box resonance is obtained from

Eq. (7.64) to give
7 _ 1 Znom Wmax VAS
M Spe(l 4 Vas/Vag) \| ReQeswfspo

However, we see from Fig. 7.17 that at frequencies below the closed-box resonance, the displacement peaks at
a higher value in the case of Chebyshev alignments. For example, the displacement peaks at 1.4nma in the case of
the 3-dB Chebyshev alignment or 294 in the case of the 6-dB Chebyshev alignment. If this peak value is greater
than the rated xma limit of the drive unit, then it should be arranged for the box resonance frequency f¢ to be
placed below the lower limit of the frequency range of the program material to be reproduced. If this is not
possible, a high-pass filter should be employed to remove all content below the box resonance frequency. If
this is not possible either, then an alternate drive unit with a greater xmax limit should be considered.

Fig. 7.4 shows the effective diameter of a drive unit required to achieve a given sound pressure
level, with a peak displacement of 1 mm, when radiating omnidirectionally into free space from
a closed-box enclosure. This is obtained from Eq. (6.35), but adjusted by a factor of /2 for free-space
omnidirectional radiation. Hence, for loudspeakers which are to be placed near a wall, the required
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FIG. 7.4 Drive unit effective diameter required to produce a given sound pressure level, with a peak displacement
of 1 mm, when radiating omnidirectionally into free space from a closed-box enclosure.

If the peak displacement is quadrupled (say a peak displacement of 4 mm is allowed), then the required diameter
is halved.
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diameter should be divided by /2. Because the diameter has an inverse square-root relationship with
the displacement, quadrupling the peak displacement halves the required diameter. Hence there has
been a trend towards smaller drive units with greater xp,.x values, usually achieved by extending the
coil beyond the magnetic gap, although this reduces sensitivity and efficiency. Considering that the
maximum effective diameter of an individual drive unit is around 40 cm, the difficulty of producing
very low frequencies at high sound pressures is evident. For large auditoriums, the very large diameters
are made up by stacking multiple loudspeakers.

Analogous circuit. A closed box reacts on the back side of the loudspeaker diaphragm. This reaction
may be represented by an acoustic impedance which at low frequencies is a compliance operating to
stiffen the motion of the diaphragm and to raise the resonance frequency. At high frequencies, the
reaction of the box, if unlined, is that of a multiresonant circuit. This is equivalent to an impedance that
varies cyclically with frequency from zero to infinity to zero to infinity, and so on. This varying
impedance causes the frequency-response curve to have corresponding peaks and dips.

If the box is lined with a sound-absorbing material, these resonances are damped and at high
frequencies the rear side of the diaphragm is loaded with an impedance equal to that for the diaphragm
in an infinite baffle radiating into free space. The acoustical circuit for the box and radiation load on the
diaphragm is given in Fig. 7.5. The reactance and resistance of the box are X5 and R4p. The radiation
mass and resistance on the front of the diaphragm are Msg and Ry respectively.

At low frequencies, where the diaphragm vibrates as one unit so that it can be treated as a rigid
piston, a complete electro-mechano-acoustical circuit can be drawn that describes the behavior of the
box-enclosed loudspeaker. This circuit is obtained by combining Fig. 6.4(b) and Fig. 7.5. To do this,
the acoustical radiation element of the circuit labeled “2M,;,” in Fig. 6.4(b) is removed, and the circuit
of Fig. 7.5 is substituted in its place. The resulting circuit with the transformer removed and everything
referred to the acoustical side is shown in Fig. 7.6.

Some interesting facts about loudspeakers are apparent from this circuit. First, the electrical
generator (power amplifier) resistance R, and the voice-coil resistance R appear in the denominator of
one of the resistances shown. This means that if one desires a highly damped or an overdamped system,
it is possible to achieve this by using a power amplifier with very low output impedance. Second, the

Diaphragm radiation

Front of
Sp:1 diaphragm Rz AR U(‘
%% 1
]7 T Tﬁ Box
R X
Back of ~
diaphragm Uc

FIG. 7.5 Analogous acoustical circuit for a loudspeaker box. The volume velocity of the diaphragm is Uc.
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%

FIG. 7.6 Circuit diagram for a direct-radiator loudspeaker mounted in a closed-hox baffle. This circuit is valid for
frequencies helow ahout 400 Hz.

circuit is of the simple resonant type so that we can solve for the voice-coil volume velocity (equal to
the linear velocity times the effective area of the diaphragm) by the use of universal resonance curves.
Our problem becomes, therefore, one of evaluating the circuit elements and then determining the
performance by using standard theory for electrical series LRC circuits.

Values of electrical-circuit elements. All the elements shown in Fig. 7.6 are in units that yield
acoustic impedances in N - s/m°>, which means that all elements are transformed to the acoustical side of
the circuit. This accounts for the effective area of the diaphragm Sp appearing in the electrical part of
the circuit. The quantities shown are:

e, is open-circuit voltage in V of the audio amplifier driving the loudspeaker.

B is flux density in the air gap in T (1 T =10 gauss).

[ is length of the wire wound on the voice coil in m.

R, is output electrical impedance (assumed resistive) in Q of the audio amplifier.
R is electrical resistance of the wire on the voice coil in Q.

a is effective radius in m of the diaphragm.

Sp = ma? is effective area in m* of the diaphragm.

Values of the mechanical-circuit elements. The elements for the mechanical part of the circuit differ
here from those of Part XIX in that they are transformed over to the acoustical part of the circuit so that
they yield acoustic impedances in N-s/m’.

Mup = Myp/Sp? is acoustic mass of the diaphragm and voice coil in kg/m4.
Myp is mass of the diaphragm and voice coil in kg.

Cas = CysSp? is acoustic compliance of the diaphragm suspensions in m’/N.
Cys 1s mechanical compliance in m/N.

Rus = Rys/Sp? is acoustic resistance of the suspensions in N-s/m°.

Rys is mechanical resistance of the suspensions in N-s/m.

These quantities may readily be measured with a simple setup in the laboratory, as described in
Sec. 6.10. It is helpful, however, to have typical values of loudspeaker constants available for rough
computations, and these are shown in Fig. 7.7 and Fig. 7.8. The average value of Rg for a drive unit
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FIG. 7.7 (a) Relation between effective diameter of a loudspeaker and its advertised diameter. (h) Average
resonance frequencies of direct-radiator loudspeakers when mounted in IEC 268-5 haffles [38] vs. the advertised
diameters. (c) Average effective radiating areas of loudspeakers vs. the advertised diameters. (d) Average
compliances of suspensions of loudspeakers vs. the advertised diameters, where the compliance is expressed as
an equivalent volume in liters.
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FIG. 7.8 (a) Average electrical Qs values of loudspeaker drive units vs. the advertised diameters. (b) Average
mechanical Qys values of loudspeaker drive units vs. the advertised diameters. (c) Average total @;s values of
loudspeaker drive units vs. the advertised diameters. (d) Average mass loading factors of loudspeaker drive units
vs. the advertised diameters, where the mass loading factor is the ratio of the radiation mass on both sides in an
infinite baffle (2M,,) to the total moving mass of the drive unit (Ms), where Mys = Myp + 2Myy.
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with an advertised impedance of 8 Q is around 6.3 Q. The magnitude of the air-gap flux density B
varies from 0.6 to 1.4 T depending on the cost and size of the loudspeaker.
Impedance of closed box with absorbent lining. The type of reactance function shown in Fig. 7.12
without absorbent lining is not particularly desirable because of the very high value that X4 reaches at
the first normal mode of vibration (resonance) for the box, which occurs when the depth of the box
equals one-half wavelength. A high reactance reduces the power radiated to a very small value. To
reduce the magnitude of X, p at the first normal mode of vibration, an acoustical lining is placed in the
box. This lining should be highly absorbent at the frequency of this mode of vibration and at all higher
frequencies. For normal-sized boxes, a satisfactory lining is a 25 mm-thick layer of bonded mineral
wool, bonded Fiberglass, bonded hair felt, Cellufoam (bonded wood fibers), etc. For small cabinets,
where the largest dimension is less than 0.5 m, a 12.5 mm-thick layer of absorbing material may be
satisfactory.

At low frequencies, where the thickness of the lining is less than 0.05 wavelength, the impedance of
the box presented to the rear side of the diaphragm is represented by the analogous circuit of Fig. 7.9
and equals

Zsg = Rap +jXan (7.2)
where

1

__ 7.3
& (Can + Can) 73)

Xap = wMyp —

and Cq4 and My p are the acoustic compliance and mass respectively of the air inside the box given by

Va
Cup = -2 (7.4)
YPg
B
Mpp = 22 (7.5)
m™a
ﬁc Mas Ram

Cua Cam

|

FIG. 7.9 Analogous circuit for the acoustic impedance Z,5 presented to the rear side of the diaphragm at low
frequencies where the smallest dimension of the box is less than one-sixteenth wavelength.

The volume velocity of the diaphragm = U.; Mag = acoustic mass of the air load on the rear side of diaphragm:;
Cas = acoustic compliance of the air in the box excluding the lining; Cas = acoustic compliance of the air in the
pores of the lining, R4y = acoustic resistance of the lining.
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where

V4 is volume of air in the box in m? excluding that contained within the pores of the lining material.
The volume of the loudspeaker should also be subtracted from the actual volume of the box in order
to obtain this number. To a first approximation, the volume of the speaker in m® equals 0.4 x the
fourth power of the advertised diameter in m.

v = 1.4 for air for adiabatic compressions.

Py is atmospheric pressure in Pa (about 10> on normal days).

ma = +/Spm if the loudspeaker is not circular.

B is a constant, given in Fig. 7.10 for a box of the type shown in Fig. 7.11, which is dependent upon
the ratio of the effective area of the loudspeaker diaphragm Sp to the area L* of the side of the box
in which it is mounted.

We see from Fig. 7.10 that when the diaphragm has the same area as the cross-sectional area of the
box, that is SD/L2 = 1, the box becomes a closed tube of length L/2 and the mass load on the rear of the
diaphragm is one third of the total mass in the box, so that B = +/m/6. On the other hand, when the
area of the diaphragm is very small compared to the cross-sectional area of the box, that is Sp/L* — 0,
the mass on the rear of the diaphragm is that of a piston in an infinite baffle so that B—8/(3).

It is assumed that the pressure variations in the pores of the lining material are isothermal so that the
compliance of the lining material is given by

Vm

Cam = Py (7.6)
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FIG. 7.10 End-correction factor B for the reactance term of the impedance at the rear side of the loudspeaker
diaphragm mounted in a box of the type shown in Fig. 7.11.

Mass loading factor B

The acoustic reactance of the box on the diaphragm is given by X45 = —v Po/w V4 + wBpo/ma. For a noncircular
diaphragm of area Sp, ma=+/Spm.
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FIG. 7.11 Loudspeaker mounted in a closed box with internal dimensions L x L x L/2 when unlined and a dia-
phragm of area S, = wa? at the center of the L x L face where [%/S, = 16.

When lining of thickness d = [/10 is added to the rear surface, the internal depth is increased to 0.6L. While this
type of box is convenient for analysis, the construction shown in Fig. 7.3 is more commonly used.

where V), is the total volume of the pores. Then from Fig. 7.9 the resistance is defined by

-1
1
Rup = R| | jwCas + -
(( Ram + (joCan) 1) )

Ram

(7.7)

Vi \?
1+ —2) + w’R%,C?
(1400 + Gy

where

Raym = dRy/(3Sy) is one-third of the total flow resistance of a layer of thickness d of the acoustical
material that lines the box divided by the area of the acoustical material Sy;. The units are N-s/m”.
The flow resistance equals the ratio of the pressure drop across the sample of the material to the
linear air velocity through it. For lightweight materials the flow resistance Ryis about 100 rayls
for each 25 mm of thickness. For dense materials like PF Fiberglass board or rockwool duct
liner, the flow resistance may be as high as 2000 rayls for each 25 mm of thickness of the
material. For example, if the flow resistance per 25 mm of material is 500 rayls, the thickness
75 mm, and the area 0.2m>, then Ry =1500/(3 x 0.2) = 2500 N-s/m°.

It is assumed in writing this equation that the material does not occupy more than 20% of the
volume of the box.

Sound propagation in homogeneous absorbent materials [3]. The sound propagation in fibrous or
porous acoustical materials can be described with a relatively simple analytical model if the
constituent (the solid part of the material) is assumed to be rigid [4]. A model taking into account the
flexibility of the constituent [5] would better describe behavior of the relatively low-density absorbents
used in loudspeakers, but such a model requires parameters that are quite difficult to obtain. A good
empirical description of sound propagation in absorbents has been presented by Delany and Bazley
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[6], with extensions by Miki [7]. Flow resistance is needed to compute the acoustical properties of
a porous material. It can be determined, when the porosity and the average (rms) fiber diameter are
known, by using an equation derived by Sides et al. [8]:

4

1——(1-9)
Ap  4u(l — o) P 6
R, = —£ — +—-(1-9 (7.3)
T ud or? 2—|—ln2'u(p 77( )
rpolt

where

Ry is flow resistance of material in rayls/m.

Ap is pressure difference across material in Pa.

u is flow velocity in the material in m/s.

d is thickness of the material in m.

u is viscosity coefficient. For air u = 1.86 x 107> N-s/m? at 20°C and 0.76 m Hg.
¢ is porosity of the material.

r is fiber diameter (rms average).

po is density of air in kg/m”.

As Eq. (7.8) shows, the flow resistance is a function of flow velocity. Equation (7.8) is actually the
equation of the static flow resistance, and so with sound the rms value of flow velocity should be used.
With flow velocities associated with sound pressures of interest the variation of the flow resistance is
rather small, and so this nonlinear effect can be ignored and a typical value of flow velocity can be
used; Sides et al. recommend a value of u = 0.03 m/s. If the flexibility of the constituent were taken
into account, the resistance values would be somewhat lower. The porosity ¢ is defined as the
proportion of the constituent material to the total volume the absorbent and is defined by

o =1- Pm (7.9)
Pc
where

pu is density of absorbent material in kg/m®.
pc is density of the constituent material (e.g. glass 22002900 kg/m?>).

Typical values of porosity in acoustical absorbents range from 0.95 to 0.99. When the flow resistance is
determined, then the characteristic impedance Z; can be determined by

T e R
s 0 f f ’

b; by
(e

po is density of air in kg/m°.
c is speed of sound in air in m/s.

and the wave number k by

where
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fis frequency in Hz.

w is angular frequency (27f).

« is real part of the propagation coefficient.

@ is imaginary part of the propagation coefficient.
and the coefficients a; to b4 are given in Table 7.1

The original coefficients given by Delany and Bazley give an excellent match to experimental
results when 0.01 < f/R;< 1, but the coefficients should not be used for extrapolation outside this
range; using these coefficients with low values of flow resistance and frequency (such as those
usually applied in loudspeakers) can yield negative values of attenuation. In such cases the
coefficients given by Miki should be used instead. The lower limit of validity for Miki’s equations
is fIRr>0.0005. Other conditions for validity of these equations is that the porosity is close to
unity and that the flow resistance Ry is between 20 and 800 rayls/cm. In practice the soft bulk
fibrous absorbents, like natural and synthetic organic fibers and soft glass wool, used in loud-
speakers meet these additional conditions. The more rigid absorbent sheets commonly used for
room acoustics treatment have anisotropic acoustical characteristics and these models cannot be
applied as such.

Impedance of closed box with or without absorbent lining at all frequencies. Until now we have
only dealt with low frequencies using the circuit shown in Fig. 7.9, which is valid when the
wavelength is greater than 8 times the smallest dimension of the box. In order to see the effect of
the internal standing wave modes upon the impedance or to investigate the effect of placing lining
material on the rear surface, we need a full model of the enclosed space. Such a model will be
developed in Sec. 7.18 resulting in Eq. (7.131) for the self and mutual impedances of a closed box
with two pistons in one wall and an impedance boundary condition on the opposite wall as shown
in Fig. 7.34. The second piston is intended to represent the coupling to a bass-will reflex port. The
width, length, and depth of the box are I, /,, and [/, respectively. The dimensions of the pistons are
aj x by and a x by. However, for a closed box with no bass-reflex port, we just use z;; and divide
through by afb? to obtain the acoustic impedance which is in the form of an eigenfunction
expansion:

Table 7.1 Values of coefficients used in Egs. (7.10) and (7.11) for
characteristic impedance and wave number respectively of a homogenous
absorbent material

Coefficient Delaney & Bazley Miki
as 0.0511 0.070
a 0.0768 0.107
as 0.0858 0.109
ay 0.175 0.160
b+ 0.75 0.632
bo 0.73 0.632
bz 0.70 0.618
by 0.59 0.618
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Although this expansion looks complicated, it is highly amenable to numerical computation and the
impedance can be used as part of a matrix expression for the equivalent circuit, as will be demonstrated
in Examples 7.2 and 7.3. The first term is simply that of a tube with the same depth /, as that of the box
and a termination impedance Z;. The impedance of a tube was given by Eq. (2.60). For the impedance
of the lining we set

where k,, is given by

3 jwd
where d is the thickness of the lining and we are assuming that the material is so porous that it is mainly
air. For simplicity we will let [, =L/2, [,=1,=L, ay=b;=+/Sp, and y; =L/2. In Fig. 7.12 the
specific impedance is plotted for the box of Fig. 7.11 with acoustic lining on the rear surface only to
a depth of d = L/10 in addition to the box depth of L/2. Hence the air volume is V4 = L*/2 and the
material volume Vj; = L*/10. The flow resistance of the lining is Ryd =3pgc in order maximize
absorption at high frequencies.

We see from Fig. 7.12 that at high frequencies the unlined box impedance varies dramatically with
frequency between zero reactance and very high reactance. With lining, the box resonances (normal modes
of vibration) are damped out so that Rgp has a constant value of around pyc and Xsp approaches zero. If this
behaved simply like an acoustic transformer (see Eq. (4.38)), we might expect the high-frequency value of
Rsptobe poc/16, thatis, the impedance of the lining divided by the ratio of the area of the lining to that of the
diaphragm. However the transformer model is only valid when the wavelength is large compared to
the depth L/2. Instead we see a much higher value of Rgp because, as the size of the box is increased, the
impedance seen by the diaphragm approaches that of a piston in an infinite baffle, which is pgc.

Acoustical material may also be used to enlarge effectively the volume of enclosed air. Gaseous
compressions in a sound wave are normally adiabatic. If the air space is completely filled with a soft,

Zs (7.14)
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FIG. 7.12 Normalized specific acoustic impedance (Zsg/poC = Zms/(SppoC) = ZaBSp/poc) of the closed hox
shown in Fig. 7.11.

The lining has a specific flow resistance of R¢d = 3pgc which provides optimum sound absorption at higher
frequencies. The position of the first normal mode of vibration occurs when /2 = /2, that is, it occurs at
\/Sp/2=0.25 for 1?/Sp= 16. Without the lining, Rsz=0.

lightweight material such as kapok or Cellufoam (foamed wood fibers), the compressions become
isothermal. This means that the speed of sound decreases from ¢ =344.8 m/s to ¢ =292 m/s.
Reference to Fig. 7.12 shows that this lowers the reactance at low frequencies just as does an increase
in box dimension L. This also means that in Eq. (7.4) the value of v is 1.0 instead of 1.4. In some
designs, activated carbon is used to increase the apparent volume of the box even further. The pores
within the material have a vast internal surface area on which air molecules are adsorbed when the
pressure increases. When the pressure decreases, they are released again, the effect of which is to
reduce the stiffness of the air in the box. However, the flow resistance of the material will have the
effect of reducing the Q of the closed-box resonance which may or may not be a good thing depending
on what the value was to begin with. [40,41]

Unlined closed box at low frequencies. In an unlined box, X4p is not well behaved for wavelengths
shorter than 8 times the smallest dimension of the box [9], as is seen from Fig. 7.12. If the dimension behind
the loudspeaker is less than about A/4, the reactance is negative (compliance dominated). If that dimension
is greater than A/4, the reactance is usually positive (mass dominated). When that dimension is equal to A/2,
the reactance becomes very large and the sound pressure radiated from the loudspeaker is attenuated.
However, in many applications, such as tweeters, cellphones and MP3-player docking stations, the box is
small compared to the wavelength over most of the working frequency range and so these typically have
unlined enclosures. For those frequencies where the wavelength of sound is greater than eight times the
smallest dimension of the box, the acoustic reactance presented to the rear side of the loudspeaker is
aseries mass and compliance as given by Eq. (7.3), but with C4)s = 0. For example if the depth of the box is
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2 cm, then the maximum frequency for Eq. (7.3) is 2.18 kHz and the reactance will become very large at
8.72 kHz. The impedance at all frequencies is given by Eq. (7.12), but with Z; — o, so that

kmn ZS

kpoc

+ j tan kypl;

— = —jcot kynl; (7.15)

k
14+
+]k

oo tan Ky l;
0

In order to determine the end-correction factor B used in Eq. (7.5) and for the plot of Fig. 7.10
(where for simplicity we let [, = L/2, I, =, = L, a; = by = \/Sp, and y; = L/2), we make the following
low-frequency (k — 0) approximations:

cot —=-——— (7.16)

2
Ko zj% Vm? + n? (7.17)

and

k tkm,,L kL (7.18)
—_— CO =~ — .
knn 2 27/ m? + n?

Noting that Z4p = jXap, where X,p is given by Eq. (7.3), we obtain the following expression for the
end-correction factor B:

B =

V7Sp 771/2\/3‘7 2L sin’ mrr\/_/L)
Map = 5/2 Z
Po 6L VSp

(7.19)

m2n2v/m? + n?
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which is valid for lined or unlined boxes.

Location of loudspeaker drive unit in box. The results shown in Fig. 7.12 for the reactance of the
closed box apply to a loudspeaker mounted in the center of one of the L by L sides, This location of the
loudspeaker leaves something to be desired, because waves traveling outward from the diaphragm
reach the outside edges of the box simultaneously and in combination set up a strong diffracted wave in
the listening space. To reduce the magnitude of the diffracted wave, the loudspeaker should be moved
off center by several inches—preferably in the direction of one corner. The use of rounded corners also
helps to mitigate diffraction effects.

Note that if an ideal flat drive unit occupies the whole of one wall, no modes will occur between the
adjacent walls, only between the drive unit and opposite (rear) wall. This is because the drive unit itself
and the opposite wall are both reflected in the adjacent walls which act like mirrors. Hence the drive
unit behaves like an infinite piston facing an infinite reflective surface.
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The front face of the box of Fig. 7.11 need not be square. It is possible to make the ratio of the two
front edges vary between 1 and 3 without destroying the validity of the charts, for the same total
volume. In hi-fi loudspeaker enclosures it is not unusual for all the sides to be of different lengths with
a “golden ratio” of 2'® (= 1.26) between the two smallest sides and the two largest ones so that the
largest side is 2% (= 1.6) times longer than the shortest one. The purpose of this is to interleave the
internal vibration modes so that they do not reinforce each other. It is also common to make the width
of the front panel as narrow as possible (hence there will be little in the way of modes between the side
walls) and also to extend the height of the box so that the loudspeaker is floor standing. It is advisable
to locate the drive unit at about one third of the internal height from either the top or bottom so as not to
coincide with the anti-nodes of the first or second vertical modes.

Effect of box compliance on resonance frequency and Q. Let us analyze the effect of the closed-box
baffle on the lowest resonance frequency of a direct-radiator loudspeaker. For convenience, let us
define a net compliance Cyp for a lined box:

Cap = Caa + Cam (7.20)

where Cyy, is the compliance of the air in the lining material (we assume that it is highly porous so that
it is mainly air) given by Eq. (7.6) and Cy4 is the compliance of the remaining free space given by
Eq. (7.4). Let us define an apparent box volume Vg for a lined box in terms of the volume of the lining
material Vj; and the remaining internal free space Vj4 so that

Vap = Va+vVu (7.21)

However, the total physical internal volume of the box Vg is
Vg = Va+Vu (7.22)

which is smaller than the apparent volume V4p due to the isothermal pressure fluctuations within
the lining material. For a loudspeaker mounted in an infinite baffle, the frequency for zero reactance is

1
fsp = (7.23)
2m\/Cas(Map + 2M},)

where we have assumed that the radiation reactance X4g from each side of the diaphragm equals
wM' 41 and that M’4; = 0.27po/a.

From Fig. 7.6 we see that the resonance frequency f¢ for the loudspeaker in a closed-box baffle with
a volume less than about 200 L is

1 C C
fo = — As T Cap (7.24)
27 \| CasCap(Map + May + Map)

where C4p and My p are given by Egs. (7.20) and (7.5) and My is the radiation mass of a closed-back
piston given by My, =M’ 41 = 0.2pgla.

The ratio of (7.24) to (7.23) is equal to the ratio of the resonance frequency with the box to the
resonance frequency with an infinite baffle. This ratio is

Je _ (1 +CAS) (1 4 2May = Man _MAB> (7.25)
fsB CaB Map + May + Myp
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Let us assume that M4p is approximately the radiation mass of a piston in an infinite baffle and that
M 41 = 0.043Myp so that Eq. (7.25) is approximately:

Je _ 1.01(1 +%> (7.26)

JsB 'AB

Hence the 1% difference in mass loading alone of the loudspeaker in a closed box compared to in an
infinite baffle will produce a 0.5% increase in resonance frequency.

Often, it is difficult to find an “infinite” baffle in which to determine the resonance frequency. If the
loudspeaker is held in free space without a baffle, the mass loading M”4; on the diaphragm will be
exactly one-half its value in an infinite baffle, that is, M”41 = 0.135p¢/a. Hence, the ratio of the resonance
frequency in the closed box f¢ to the resonance frequency without baffle fs4 is approximately

fe _ o7 (1 + @) (7.27)
A Cas

Ignoring the mass loading effect, the above equations for the frequency shift due to a lined box can be
conveniently expressed in terms of the Thiele-Small parameters fs, and V5 (IEC-baffle [38] resonance
frequency and equivalent suspension volume respectively), and the apparent box volume Vjp:

fc Vas
— =4 /1+——= (7.28)
fs Vag
This equation is plotted in Fig. 7.13.
3.5
3
< /
8 /
% 2.5 /
3
C
g 2
g
L | [ |
15 //
’/
//'/
/
1
0.1 1 10
Vas/Vas

FIG. 7.13 Frequency ratio f;/fs = ratio of the resonance frequency for a loudspeaker in a closed-hox baffle to the
resonance frequency for the same loudspeaker in an IEC 268-5 haffle.3®




312 CHAPTER 7 Loudspeaker systems

Values of radiation (front-side) impedance. Acoustical elements always give the newcomer to the
field of acoustics some difficulty because they are not well behaved. That is to say, the resistances vary
with frequency, and, when the wavelengths are short, so do the masses.

The radiation impedance for the radiation from the front side of the diaphragm is simply a way of
indicating schematically that the air has mass, that its inertia must be overcome by the movement of the
diaphragm, and that it is able to accept power from the loudspeaker. The magnitude of the front-side
radiation impedance depends on whether the box is very large so that it approaches being an infinite
baffle or whether the box has dimensions of less than about 0.6 by 0.6 by 0.6 m (7.6 ft*), in which case
the behavior is quite different.

Very large box (approximating infinite baffle)

R,y is radiation resistance for a piston in an infinite baffle in N-s/m>. This resistance is
determined from the ordinate of Fig. 4.35 multiplied by 407/Sp. If the frequency is low, so
that the effective circumference of the diaphragm (2ma) is less than A, that is, ka < 1 (where
k=2m/}), R4 may be computed from

0.159w?
Rup = % ~0.0215 2 (7.29)

X4g is radiation reactance for a piston in an infinite baffle. This reactance is determined from the
ordinate of Fig. 4.35, multiplied by 407/Sp. For ka < 1, X4 is given by

0.270wpy _2.0f
a

a

XAR = wMAl = (7308)

and

My =

2 31
0.270py _ 0.318 (7:300)
a

a

Small to medium-sized box (less than 200 L)
R4y is approximately the radiation impedance for a one-sided piston in free space. This resistance

is determined from the ordinate of Fig. 4.39 multiplied by 407/Sp. If the frequency is low so that
the effective circumference of the diaphragm (27a) is less than A, R4z may be computed from

2
Rug = ’chpo = 0.01076 12 (7.31)

X4g is approximately the radiation reactance for a one-sided piston in free space. This reactance is
determined from the ordinate of Fig. 4.39 multiplied by 407/Sp. For ka < 1, X4g is given by

©(0.2026)p, _ 1.5f
a - a

(7.32a)

Xar = wMy; =

and

~0.2026p, _ 0.239
N a - a

Al (7.32b)
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Radiation equation. At very low frequencies where the diaphragm has not yet become a direc-
tional radiator (i.e., its circumference is less than about a wavelength), the loudspeaker in
a closed-box baffle may be treated as though it were a simple spherical source of sound. We find
from Eq. (4.71) that the sound pressure a distance r away from such a source in a free field is
given by

5 —jkr
p(r) = —jfpoUec le . kR <<1 (7.33)

where

p is sound pressure in Pa at a distance r from the loudspeaker.

U. = ii.Sp is volume velocity of the diaphragm in m%/s.

po is density of air in kg/m® (about 1.18 kg/m® for normal room conditions).
r is distance from the loudspeaker in m.

fis frequency in Hz

R = (3Vy/am)'? is average dimension of the enclosure.

At higher frequencies, where the diaphragm is becoming more directional but yet is still vibrating
substantially as a rigid piston, we use Eq. (13.104) for a piston in an infinite baffle. When the
wavelength is small compared to the dimensions of the box, it acts as a large baffle so that the pressure
at a distance r in a free field is
B e*jkr
Pr) = ~ifpoUc ——  kR>>1 (7.34)

Hence there is a 6 dB lift at higher frequencies due to the baffle effect. Examples of this can be seen in
Fig. 12.24 and Fig. 13.30 which show the on-axis pressure responses of a piston in a sphere and
a closed-back circular baffle respectively. If the corners of the box are square, the rise will be
accompanied by some ripples in the on-axis response due to reflections from the corners. No exact
solution exists for this kind of problem although some useful approximations can be made [10-12].
Otherwise, if the corners are rounded, the transition will be smoother like that of a point source in
a sphere shown in Fig. 12.15. Let us now modify Eq. (7.33) by adding an on-axis directivity function
D(0) so that it covers the transition region:

—jkr
2r

The type of approximation we use for D(0) will depend on the form of the enclosure. Ifitis very rounded,
the following expression provides a reasonably good approximation to a point source on a sphere:
1 + jkR

e

p(r) = =ifpoUc ——D(0) (7.35)

where R is the radius of the sphere and k = 27f/c, so that the pressure magnitude is

frolUc| | 1+ K*R?
- 737
P(r)] 2r \|T+&2R%/4 (7.37)
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FIG. 7.14 Plot of 20log,,0 (0) for a point source in a sphere of radius R, which is used to model the baffle effect of
a loudspeaker in a rounded closed-box baffle with constant diaphragm acceleration.

The black curve shows the exact result from Eq. (12.47) and the gray curve the approximation from Eq. (7.36).

The approximation of Eq. (7.36) is plotted in Fig. 7.14 along with the exact expression for a point
source on a sphere from Eq. (12.47). For an enclosure in which the loudspeaker occupies the full width,
a closed-back piston model is more appropriate, in which case

1 — 2k*a* + j2ka

D0) = ————— 7.38
) 1 — k%2a? + jka (7.38)
where a is the radius of the piston so that the pressure magnitude is:
po|Ue|  [(1 = 2k2a2)? + 4k2a?
)| = T201% ) (7.39)

2r (1 — K2a?)* + kK2a?

The approximation of Eq. (7.38) is plotted in Fig. 7.15 along with the exact expression for a closed-
back piston in free space from Eq. (13.253). This gives a more rapid 6 dB transition than the point
source on a sphere. Since most drive units are designed to have as flat a response as possible in a flat
baffle, the only way to correct for this 6 dB lift is to include the inverse of the function D(0) in the
cross-over network as will be discussed in Sec. 7.20. At even higher frequencies, the on-axis response
starts to roll off, even if the diaphragm is rigid and perfectly well behaved, because of the cone shape,
which can be thought of as an approximate concave dome. See Fig. 12.32. The roll off is somewhat
irregular due to “cup” resonances. The directivity pattern then becomes constant with an angle of
dispersion that corresponds to the arc angle of the concave dome, as shown in Fig. 12.31.
Diaphragm volume velocity U;. We determine the volume velocity U, from Fig. 7.6:

- e.Bl
Ue = g22
l

(7.40)

Ry + RE)Sh,

SD(Rg+RE)<( + Ry +jXA>
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FIG. 7.15 Plot of 20log,oD(0) for a closed-hack piston of radius a in free space, which is used to model the baffle
effect of a loudspeaker in a narrow closed-box baffle with constant diaphragm acceleration.

Normalized on-axis response (dB)
N

The black curve shows the exact result from Eq. (13.253) and the gray curve the approximation from Eq. (7.38).
It is interesting to note that the exact on-axis response of the closed-back piston is the obtained from the sum of
the on-axis responses of a free piston and a piston in an infinite baffle, where the latter is just unity under constant
acceleration. The on-axis response of a free piston is simply the magnitude of its radiation impedance shown in
Fig. 4.38.

where, from Fig. 7.6,

Ra = Rus+ Rap + Rur (7.41)

XA = wMA - 1/(Q)CA) (742)

My = Map + May + Map (7.43)
CasCag

Ch = 720 (7.44

4 (Cas + Cag) )

The radiation mass and resistance R4z and M4 are generally given by Egs. (7.31) and (7.32) but for
very large boxes or for infinite baffles are given by Eqs. (7.29) and (7.30).

In an effort to simplify Eq. (7.40), let us define a Q¢ in the same manner as we do for electrical
circuits. First, let us set

1
VM Cy

where wc = angular resonance frequency for zero reactance. Then,

(Rg + Rg)S3,  [My
QEC - T C_A (746)

wec = 27ch = (7.45)
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I My
= )22 7.47
One = -\ ¢ (7.47)

OrcOumc

== 7.48
Qrc Orc + Omc (7:48)
so that we can write
~ Spé,
. = B 7.49
BlOrc c(f) (7.49)
where the frequency response function B¢ (f) is given by
f
't
Be(f) = — (7.50)
N
& 7 Qrc fe

This has the same form as (.(f) in Eq. (6.7) for a loudspeaker in an infinite baffle, which is plotted in
Fig. 6.5, except that the parameters have been modified by the enclosure.

Reference volume velocity and sound pressure. A reference diaphragm volume velocity is arbitrarily
defined here by the equation

eg(rms)BlSD
_ 7.51
Ue(rms) (Rg + Re)wMy (7.51)

where we have set the total mass to M4 = M,/S, Dz. This reference volume velocity is equal to the actual
volume velocity above the resonance frequency under the special condition that R4* of Eq. (7.41) is
small compared with w*M,2. This reference volume velocity is consistent with the efficiency defined
in Sec. 6.9.

The reference sound pressure at low frequencies, where it can be assumed that there is unity
directivity factor, is found from Egs. (7.33) and (7.51):

eg(rms)BlSDp()
= 7.52
Prms (Rg + Rp)MyAmr (7:52)

It is emphasized that the reference sound pressure will not be the actual sound pressure in the region
above the resonance frequency unless the motion of the diaphragm is mass-controlled and unless
the directivity factor is nearly unity. The reference pressure is, however, a convenient way of loca-
ting “zero” decibels on a relative sound-pressure-level response curve, and this is the reason for
defining it here.

Radiated sound pressure forka < 1. The radiated sound pressure in the frequency region where the
circumference of the diaphragm (2ma) is less than a wavelength (i.e., where there is negligible
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directivity) is found by inserting the volume velocity from Egs. (7.49) and (7.50) into Eq. (7.33) so
that

p(r):—(

é,BISppy ek
R, + Reg)My 47wr

ac(f), kR << 1 (7.53)

where ac(f) is a frequency-response function in the form of a 2nd-order high-pass filter which is
proportional to the acceleration of the cone. It is defined by

f2
)
ac(f) = 2 fcl 7 (7.54)
L= i
fé T Qrc fe

Notice that Eq. (7.53) is very similar to Eq. (6.32) for the sound pressure radiated from a loud-
speaker in an infinite baffle, the only difference being the factor of 4 in the denominator instead of 2.
The reason for this is that the sound pressure is doubled when radiating into half space instead of whole
space. Otherwise, there are very little difference in the reference sensitivity apart from that due to the
change in mass loading when the loudspeaker is mounted in the enclosure. However, this will be
negligible in most cases. Similarly, the sensitivity is the same as that given in Eq. (6.33) but with
a factor of 4 in the denominator:

vV Znom WE BISDPO
47rr(Rg + RE)MM x 20 x 10=6

Sensitivity = 20 loglo( > dB SPL/W/m (7.55)
Alignments for pre-determined frequency-response shapes. The normalized sound pressure level
(SPL) is plotted Fig. 7.16 using 20log;o|ac| from Eq. (7.54). Note that at the resonance frequency f¢,
the SPL is simply 20 logoQ7¢ so that it is 6 dB for Q7¢ =2, 3 dB for Qr¢ = v/2, 0 dB for Q7¢ = 1, and
so forth.

We should observe that, even in the frequency range where the diaphragm diameter is less than one-
third wavelength, the value of Qr¢ is not strictly constant because R4 increases with the square of the
frequency. In using Eq. (7.54) and Fig. 7.16, therefore, R4 in Q¢ probably ought to be calculated as
a function of w/w¢. Usually, however, the value of R4 at w( is the only case for which calculation is
necessary.

The curve for Q¢ = 1/4/2, also known as critical damping, has a Butterworth high-pass
frequency-response shape. It gives the flattest possible response down to fc- where it is 3 dB
below the pass-band level. Hence we see that we can choose a frequency-response shape and
engineer the loudspeaker accordingly. Instead of defining the shape by the Q¢ factor, which only
tells us the magnitude at the resonance frequency fc, it is more convenient to define the largest
amount of deviation from the flat level that we wish to allow, or ripple factor, in dB. Chebyshev
alignments are defined in this way, and the Q7¢ values needed for various ripple factors are given
in Table 7.2. These are calculated from the formulae given in Appendix I. Small loudspeakers are
often deliberately designed with a peak in the bass response in order to make them sound more
impressive on first hearing and thus compensate for the lack of deep bass. On the other hand, if
this is overdone, the effect of the poor transient response (see Sec. 6.17), with the resulting “one
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FIG. 7.16 Normalized sound-pressure-level (SPL) response of a loudspeaker in a closed hox at low frequencies
using 20logo|c| from Eq. (7.54).

An infinite baffle or a closed-box enclosure is assumed. Qr¢is the same as Qr¢of Eqg. (7.48) and wcis found from
Eqg. (7.45). The graph applies only to the frequency range where the wavelengths are greater than about three
times the advertised diameter of the diaphragm.

Table 7.2 Resonance frequencies and Q values for various 2nd-order frequency-response
shapes

Frequency-response shape faas/fc Qrc
Synchronous 1.5538 0.5000
Bessel 1.2720 0.5774
Butterworth 1.0000 0.7071
Chebyshev with 0.1 dB ripple 0.93682 0.76736
Chebyshev with 0.5 dB ripple 0.88602 0.86372
Chebyshev with 1.0 dB ripple 0.86234 0.9565
Chebyshev with 2.0 dB ripple 0.84461 1.1287
Chebyshev with 3.0 dB ripple 0.84090 1.3047
Chebyshev with 4.0 dB ripple 0.84312 1.4934
Chebyshev with 5.0 dB ripple 0.84842 1.6996
Chebyshev with 6.0 dB ripple 0.85544 1.9269
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note” bass, can be fatiguing. For larger loudspeakers with more extended bass, the Bessel
frequency-response shape, which has a maximally linear phase response, offers a useful
compromise between bass extension and good transient response. If the loudspeaker is to be
situated in a relatively small listening room where the low frequencies are likely to be augmented
by room modes, then a gentle roll-off is desirable, as provided by the synchronous shape, which
has two real coincident poles. In this case, a relatively small room is one in which the largest
dimension is less than 6 m.

Referring back to Eq. (6.115), we find that we suggested for satisfactory transient response that wg/
207s) > 92 s~ !. Let us see what this means in terms of Orc.

In terms of Qr¢ the suggested criterion for satisfactory transient response is

we

Orc < 184 (7.56)

As an example, if w¢ =27nfc = 2740 = 251 rad/s, then Q7c¢ should be less than 1.37. This would

mean that the peak in the response curve must be less than 2.7 dB. Methods for achieving desired Qr¢
values will be discussed as part of the example below.
Setting the value of Qrg and determination of the total box volume V1. The Q¢ of a loudspeaker in
a closed box is never the same as its free-space Qg unless the box is extremely large and empty.
However, it is the closed-box Q7¢ which determines the final frequency-response shape. Its value
obviously depends upon the inherent mechanical resistance [see Qys¢c from Eq. (7.47)] and electrical
damping [see Q¢ from Eq. (7.46)] of the drive unit, which we cannot change very easily in the case of
a passive loudspeaker design except through the choice of drive unit. However, we can control the box
volume and filling material. If we ignore the acoustic mass loading effect so that My = S% Mys, the
ratio of Q7c¢ to Qry is found from Egs. (7.48) and (6.9):

B*P?
———+R
Orc  Rg+Rg s Cas
= = 55 14+ (7.57)
Ors Bl 4 Rys+ R Cap
R—g T Rp MS MB
Let us define Qyp for the box:
1 My, poc?
Oup = = (7.58)
M Rug V Cus — RawsVas
where Ryp is calculated from Eq. (7.7). Hence
1 1
Orc Oks i Qus Vas
=Ic _ 14+ (7.59)
Ors 1 n 1 n 1 Vag
Ors  Owms QOwms
where Vip = V4 + vV), which is solved for V4 to yield
Vv
Va = Vap—7vVyu = 45 —YVu (7.60)

0 (;+;)2_1
C\Qrs * Qus
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where V), is the volume of the lining material and V4 the remaining free space. Although a value of V4
is required to calculate R4p from Eq. (7.7), a first approximation is given by letting Qyp = % so that
Vas
(Qrc/01s)” — 1 -
The total internal volume of the box is then Vg = V4 + V.

Cone displacement. The first time integral of the velocity from Egs. (7.49) and (7.50) gives the
displacement:

VA = ’YVM (7.61)

_ ¢ Uc é,
Nnc = —— = = = Y
€7 jo  joSp  wcBlQrc ¢

(f) (7.62)

where v(f) is a dimensionless frequency response function given by

1
ve(f) = 5 (7.63)
VP
& 7 0rc fe
This is plotted in Fig. 7.17. At very low frequencies we have
. ég g
My = —pi>— = ’ (7.64)

wcBIQpc  wsBIQEps(1 4+ Vas/Vap)

Hence, reducing the size of the box reduces the amount of displacement at low frequencies below w¢
and thus enables greater sound pressure to be obtained at higher frequencies above w¢ with less risk of
displacement limiting due to the low frequencies present. On the other hand, reducing the box volume
raises w¢ and therefore reduces the sound pressure at low frequencies, so a compromise has to be
reached somewhere.

7.7 MEASUREMENT OF BAFFLE CONSTANTS

The constants of the baffle may be measured after the loudspeaker constants are known. Refer to
Fig. 7.6. The quantities R4g and X4g are determined from Eqgs. (7.31) and (7.32). The electrical and
mechanical quantities are measured directly.

Measurement of Cpg. Using the same procedure as for measuring f5 and Q¢ in Sec. 6.10, determine
a new fc and Qgc, and solve for C4p from Eq. (6.71) so that

Vas

poc? (fCQEC 3 1)
0" \fsQks

Measurement of Ryg. Using the same procedure as for measuring Qgg and Qs in Sec. 6.10, determine

a new Qgc and Qyc and solve for R4p from

wc(Map + My + Map)
Omc

Cap = (7.65)

Rap = — (Ras + Rag)
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FIG. 7.17 Normalized cone displacement of a loudspeaker in a closed hox at low frequencies using |y (f)| from
Eq. (7.63). Q¢ is the same as Q¢ of Eq. (7.48) and w is found from Eq. (7.45).

where Map = Myp/Sh; My is given by Eq. (7.32b), and

Ruys + Ryr
Ras+Rap = —5——
Sp
Example 7.1. Miniature loudspeaker. A miniature loudspeaker intended for use in mobile products
has the Thiele-Small parameters given below:

Rg=72Q
Qps =2.05
Ops = 3.48
fs=476 Hz
Sp=1.40 cm?
Vys=4.81 cm®

It is assumed that the loudspeaker will be used mainly near a large flat surface such as a table.

Determine the reference sound pressure at a distance of 0.1 m for 0.5 W input.
Determine the percentage shift in the first resonance frequency of the loudspeaker from the value
for an infinite baffle if an unlined box having a volume of 1 cm? is used.
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Determine the sound pressure at the closed box resonance frequency, assuming R4qp = 0.
Determine the volume of a box that will cause a shift in infinite-baffle resonance frequency of
only 25%.

Determine the sound pressure at the closed box resonance frequency for the box of (¢).

Solution, 1. In order to calculate the maximum SPL, we first obtain Cyss, Mys, and Bl from Eqgs.
(6.27), (6.28), and (6.30) respectively:

481 x 10°°
Cus = . = 1.75 mm/N
(1.40 x 10-4)* x 1.18 x 3452

1
M s = = 64 m
M2 % 3.14 x 476)% % 0.00175 £

72
b= \/2 314 x 476 x 2.05 x 000175 _ 82 T'm

From Eq. (6.33) we obtain the reference sound pressure:

01 V8 x0.5x0.82 x 1.401 x 107% x 1.18
OB10{ 35314 x 0.1 x 7.2 x 64 x 10-6 x 20 x 10-6

) = 93.4dB SPL

Solution, 2. From Eq. (7.28) we obtain the closed-box resonance frequency:

vV 481
fe :fS\/1+ViS — 476 x ,/1+—1 — 1147 Hz
B

Solution, 3. The sound pressure at resonance is simply increased by a factor of Q¢ compared to the
reference level. From Eq. (6.10), O7s = 2.05 x 3.48/(2.05 + 3.48) = 1.29. At resonance,

fe 1147

== = ——x 129 = 3.11
Orc 7 Ors 176~

Then the sound pressure is simply 93.4 + 20log;3.11 = 103.3 dB SPL.
Solution, 4. We rearrange the equation of part 2 of the solution to obtain

V,
Vg = +
(fe/fs)” =1
so that for a 25% shift in resonance frequency, where fc/fs = 1.25 or fc =595 Hz, we have
4.81
Vg = ———— = 8.55cm?
BT 1251 o

which is too large a volume for most mobile products and, in any case, the diaphragm displacement
becomes unacceptably large because of the greater compliance of air in the larger box.
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Solution, 5. Using the same procedure as in part 3 of the solution, we obtain the sound pressure at
the new resonance frequency of 595 Hz:

595
93.4 420 logy, (ﬁ x 1.29) = 97.6dB SPL

Example 7.2. Low-frequency loudspeaker (woofer). Design a loudspeaker to be used with a 600 Hz
crossover network and which is intended for use in a small to medium sized room where the bass
response will be augmented by room modes. A maximum sound pressure of 99 dB SPL will be
sufficient. Let us choose the Bandor type 100DW/8A drive unit which has a 6-inch diameter aluminum
cone that is free from resonances until well above the cross-over frequency. The Thiele—Small
parameters are:

Rp=627Q
Ops = 0.55
Omus=2.2
fs=39 Hz
Sp=120 cm?
Vas=21.6 L

which gives a Qg value of

Ors — OrsQus
7 Qs+ Ous

For a small listening room we desire a smooth low-frequency roll-off, so we choose the Butter-
worth alignment from Table 7.2, which returns a Q¢ value of 1/ V2 and gives a good transient
response without ringing. The frequency response shape for this value is shown in Fig. 7.16. However,
in order to reuse this design with a bass-reflex port in a future example, we set Qpc = 0.7, which is
close enough. Also, we will not fill the box completely with lining material because this would kill the
bass-reflex resonance when the port is added. Therefore we set the volume of the lining material to be
one third of that of the remaining free space or one quarter of the total volume. That is, Vy; = V4/
3 = Vpl/4 because Vp = V4 + V). We estimate V, from Eq. (7.61):

Vas 21.6
va (14+7/3)(Q3-/0% — 1)  (1+1.4/3)(0.72/0.442 — 1) 9oL

and V3, =9.6/3 =3.2 L, which we use to compute Rsp from Eq. (7.7), where Cqq = Va/(vPy). First
though, we have to calculate Ryy = Ryd/(3Syy), where Ryis the flow resistance of the lining material
chosen such that Rrd/3 = poc =412 rayl, which is the impedance of free space and thus provides
optimum sound absorption at higher frequencies. Also, Sy, is the area of the lining material, which in
this case is the area of the back panel given by Sy = Ixly =0.15 x 0.3175 = 0.04763 m?, so that
Ray = 412/0.047625 = 8651 N-s/m>. We just need to find the internal depth Iz from the volume after
computing the following from Eq. (7.7)

=044

8651
Rup = — 871 N-s/m’

3\? 0.7 2 0.0096 >
1+— 2x314x —x3 8651% x | ——~
< +1.4> +< XA X oaa 9) % % (1.4><105>
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Then from Eq. (7.58) the box Q is determined:

B 1.18 x 3457 B
T 871 x 2 x3.14 x 39 x0.0216

Owms 30.5

so that after inserting this into Eq. (7.60) we obtain the air volume:

Vas _ 21.6 _915L

B Y 1 1\? 1.4 1 1\?
(1+§){Q%C(%+%> —1} (HT){O'ﬁ(mJFR) —1}

from which Vy; =9.15/3=3.05L, V=9.15+3.05=122L,and V43 =9.15 4 (1.4 x 3.05) =13.42
L. The internal depth is then Iz = V4/Sy; = 0.00915/0.04763 = 0.192 m. The box is shown in Fig. 7.18.
The internal width x is 15 cm, which is the smallest width that will accommodate the drive unit. The
acoustic center of the drive unit is about one third of the internal height from the bottom so as not
to coincide with the anti-nodes of the first or second vertical modes. The box contains one 31.8
by 15 by 6.4 cm piece of lining material. From Eq. (7.28) we obtain the closed-box resonance
frequency:

21.6

mx39:63HZ

fo =1+

From Table 7.2 we see that the cut-off frequency is f3gg = 1 X 63 =63 Hz. From Eq. (6.48) we can
calculate the reference efficiency, noting that a loudspeaker in a box is half as efficient as one radiating
from both sides in an infinite baffle:

8 x 3.14% x 0.0216 x 393
B = O 055 xaass P

In order to calculate the maximum SPL, we first obtain Cyss, M5, and Bl from Egs. (6.27), (6.28), and
(6.30) respectively:

0.0216
Cus = = 1.07mm/N
MS = 00122 x 1.18 x 3452 mm/

Acoustical lining —| [&3 T
d = 6.4 cm thick i i
Plywood 19 mm — ilx _ i
thick A= i 15 om i

v 11.5¢cm <>

FIG. 7.18 Example of closed-hox enclosure design.
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1
My = — 00156k
M (2% 3.14 x 39)% % 0.00107 s
627
Bl = — 6.59T-
\/2 X 3.14 % 39 x 0.55 x 0.00107 m

Knowing that the power rating W, is 100W, we obtain from Eq. (6.33)

SPL — 201 627 x 100 x 6.59 x 0.012 x 1.18
max = “V0210\ 15374 % 6.27 x 0.0156 x 20 x 10-6

) =99.6dBSPL @ I m

where a drive unit in a box produces the half the pressure of one in an infinite baffle. Next use Eq.
(7.64) to check the peak displacement at low frequencies at full power:

B V2 % 627 x 100
Mmax = 37X 314 % 39 x 6.59 x 0.55 x (1 + 21.6/13.42)

= 15.3 mm

but at the resonance frequency fr=63 Hz, the maximum displacement is Q7cNmax=
0.7 x 15.3 = 10.7 mm. It turns out that the x,,,x value of the drive unit is 14 mm, so there should be no
problems with this design as most program material is above this frequency.

Let us now create a semi-analytical simulation model of the design of Fig. 7.18 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.19. Although it is based on the circuit of Fig. 7.6, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current i~g from which we obtain the electrical impedance. We are ignoring the generator impedance R,
since in the experimental setup this is negligible compared to Rg. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. From the schematic we create the
transmission matrices required to represent each 2-port network as follows.

1. Coil.
ég _ 1 Zg
| |0 1
where Zr = Rg + jwLg

2. Electro-mechanical transduction.

el

i

3. Diaphragm.
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Diaphragm
Coil E-M Diaphragm M-A radiation
?ERE Lg iZiBliﬁzi Mwp Ry CMSE“sES 15174 Za 175=Nc
—>— AT > T W] : — o X
A Taipdiln: A=V .
AR R O 25 B S R I o
Box
0. =0, 7. =0
X0 O
15 | [za|]7
YO 8 O

FIG. 7.19 Semi-analytical model of example closed-box enclosure design shown in Fig. 7.18, using transmission
matrices.

The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones.

where Zyp = joMyp + Rys + 1/(jwCys). We must exclude the radiation mass from the diaphragm so
that Myp = Mys — 16pga’/3, where a = \/Sp/=.
4. Mechano-acoustical transduction.

f. S 01 [p] 7
f3| _ |°p AP o | P
i 0 Sp'| | U4 Uy
5. Diaphragm Radiation.
pa]l 1 Za] _ [ ps| £l 75
04 0 1 05 05

where Z4 is the acoustic radiation impedance of the diaphragm given by Eqgs. (13.116), (13.117), and

(13.118) with a = /Sp/m.
6. Box.
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where Z,p is given by Eq. (7.12) and
_ Red Py

Zs 3

jod

327

where the value of the lining flow resistance Rris chosen such that Ryd/3 = poc = 412 rayl, which is the
impedance of free space and thus provides optimum sound absorption at higher frequencies. The

dimensions are given in Fig. 7.18 except for a; = b; = +/Sp.
First we evaluate pg at the end of the chain:

A =CEDMFB-= l

:

lg

Pé
0

where

ar a2

|

azy a4

a

o

1
(@)

‘?

\5\

N
o

N
o

Measured
— = = Calculated

Normalized on-axis response (dB)

10 100 1000

Frequency (Hz)

10000

FIG. 7.20 Graphs of the on-axis sound pressure level produced by the closed-box enclosure design shown in

Fig. 7.18. The dashed curves are calculated from 20 Iog10|(lc/(l,ef|. Solid curves are measured.
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35 ’
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g/ rl
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0
10 100 1000 10000

Frequency (Hz)

FIG. 7.21 Graphs of the electrical input impedance of the closed-box enclosure design shown in Fig. 7.18.

The dashed curves are calculated from Zg= |€g/ig| = a11/a21. Solid curves are measured.

Hence pg = €g/ai1. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure which, according to Eq. (7.33), is a function of
U. = Us. This procedure is fairly straightforward and does not involve any matrix inversion. From
the box matrix (6), we obtain the diaphragm volume velocity:

U. = Us = pg/Zap

In order to plot the normalized far-field on-axis pressure, we simply divide U, by a reference volume
velocity

-~ e,BISp
T oMysRE

and plot 20 log,|U./ ﬁref| as shown in Fig. 7.20. The output from the diaphragm is fairly
smooth apart from one small feature at 430 Hz, which is due to the fundamental vertical mode
of the box. Finally, we can obtain the input impedance from e, /fg where fg = az1pe and from
above pg = €g/aj. Therefore the input impedance is simply Zg=aji/az;, as plotted in
Fig. 7.21.
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Box with compliance
Cyp and mass Mz

Diaphragm

Loudspeaker

\ =

~—Area = Sp
Tube of length [~ with mass
M ,p and resistance Ryp

FIG. 7.22 Bass-reflex baffle.

The port has an area Sy, and the diaphragm has an area Sp. The inner end correction for the tube is included in
the magnitude of Myp.

PART XXII: BASS-REFLEX ENCLOSURES

7.8 GENERAL DESCRIPTION

The bass-reflex enclosure is a closed box in which an opening, usually called the port, has been
made [13-22]. The area of the port is commonly made equal to or smaller than the effective area of
the diaphragm of the drive unit. A common construction of this type of loudspeaker is shown in
Fig. 7.22. When the diaphragm vibrates, part of its displacement compresses the air inside the box
and the remainder of its displacement moves air outward through the port. Thus the port is a second
“diaphragm,” driven by the back side of the loudspeaker diaphragm. The port is, at low
frequencies, equivalent to a short length of tube with an acoustic mass reactance and a series
acoustic resistance. This tube has an end correction on the inner end and a radiation impedance on
the outer, or radiating, end.

We shall assume for the remainder of this analysis that ka < 0.5. In other words, we are restricting
ourselves to the very low frequency region where the radiation from both the port and the loudspeaker
is nondirectional.

7.9 ACOUSTICAL CIRCUIT

The acoustical circuit for the box and the port is given in Fig. 7.23. The series radiation mass and
resistance on the front side of the diaphragm are, respectively, M4 and Rsg;. The mass loading
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Diaphragm radiation

Front of ~
., diaphragm My R ri U
Spil A ——
Tﬁ Box Port Port radiation
e A N A N A
Myp Mar  Rp U, Mu Ryp

Back of
diaphragm

FIG. 7.23 Analogous acoustical circuit for a loudspeaker hox with a port.

The volume velocity of the diaphragm is Ug, that of the portis Up, that of the box is Ug, and that due toleakage is U, .

on the back side of the diaphragm is M. The resistance due to leakage through the walls of the
box, or even through a woven dust cap or gasket, is R4;. The compliance and resistance of
the lined box are C4p and R4p. The mass and resistance of the air in the port that penetrates the
side of the box, including the inner end correction, are Mp and Ryp, respectively. Finally, the
series radiation mass and resistance from the front side of the port are, respectively, M4, and
R4r>. The values of these quantities are Myp as in Eq. (7.5); Rap as in Eq. (7.7); C4p as in Eq.
(7.20); My, as in Eq. (7.32), but with a; instead of a, that is, My, = O.64a2p0/(7m%); R4r> as in
Eq. (7.31); and

My is acoustic-radiation mass for the front side of the loudspeaker diaphragm = 0.2026py/a kg/
m*. Note that we assume the loudspeaker unit is equivalent to a piston radiating from one side
only in free space.

Ryri = 0.01075f 2 is acoustic-radiation resistance for the front side of the loudspeaker diaphragm
in N-s/m’ (see Fig. 4.39 for ka > 1.0).

Myp = (t + 0.64a2)po/(ma3) is acoustic mass of the air in the port in kg/m4. This quantity includes
the inner end correction.

Rapis acoustic resistance of the air in the portin N- s/m’. [See Eq. (4.23). Use the number (1) in the
parentheses. ]

po is density of air in kg/m® (normally about 1.18 kg/m?).

aj is effective radius in m of the port in the vented enclosure. If the port is not circular, then let
a=+/S,/m, where S, is the effective area of the opening in m?.

S, = a3 is effective area of the port in m?.

t is length of the tube or the thickness of the wall of the enclosure in which the port is cut in m.

In case the port is composed of a number of identical small openings or tubes, the following

procedure is followed.
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Let N equal the number of such openings in the enclosure. For each opening the acoustic mass and
resistance including M4, and Rg, are:

My = (t + 1.7a3)po/(wa3) kg/m* [see Eq. (4.26)]
R, is acoustic resistance of each opening in N-s/m” [see Eq. (4.25)]
az is effective radius of each opening in m.

The total acoustic mass and resistance for the N identical openings are:

Myr + Map = Mu/IN kg/m4
Raro + Rap = R4/N N-s/m’.

The directivity factor for a group of holes is about equal to that for a piston with an area equal to the
area within a line circumscribing the entire group of holes.

7.10 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT

The complete circuit for a loudspeaker in a bass-reflex enclosure is obtained by combining Fig. 6.4(b)
and Fig. 7.23. To do this, the acoustical radiation element of the circuit labeled “2Mj;,” in Fig. 6.4(b) is
removed, and the circuit of Fig. 7.23 is substituted in its place. The resulting circuit with the trans-
former removed and everything referred to the acoustical side is shown in Fig. 7.24.

If the port is closed off so that Up, the volume velocity of the air in the port, equals zero, then
Fig. 7.24 essentially reduces to Fig. 7.6. At very low frequencies the mass of air moving out of the
lower opening is nearly equal to that moving into the upper opening at all instants. In other words, at
very low frequencies, the volume velocities at the two openings are nearly equal in magnitude and
opposite in phase.

Mechanical part Diaphragm Port
Electrical of loudspeaker radiation Box Port radiation
A A A A
B*? = N7 N N N~
U. M R, Cus My Ry Mg Msp Ry U,

(R, +R;)Sp =

L
(Rg + R[:')S[)

FIG. 7.24 Complete electro-mechano-acoustical circuit for a bass-reflex loudspeaker.

The total force produced at the voice coil~ by the electric currept is pSp, where Sp i~s the area of the diaphragm.
TNhe volume velocity of the diaphragm is Ug, that of the port is Up, that of the box is Ug, and that due to leakage is
U, . Note that M,p includes the inner mass loading for the port.
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Summary of bass-reflex design

To determine the cut-off frequency, frequency response and the volume of the box:
If the Thiele-Small parameters (Rg, Qes, Qus, fs, Sp, and Vys) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then Qrs = QrsQus/(Qes + Qus).
From Table 7.4, select the frequency-response shape for which the Qrs value is closest to that of the chosen
drive unit (or choose a drive unit whose Qrs value is closest to that of the desired frequency-response shape).
From the values of fzqg/fs, fg/fs, and Vag/Vss given in the table, compute the cut-off frequency f3qg, box
resonance frequency fg, and apparent box volume Vg respectively from the Thiele-Small parameters fsand Vjs.
The frequency-response shape below the first diaphragm break-up mode is shown in Fig. 7.26.

Electrical Mechanical Acoustic
A A
Y R o ~
SM . Bl
B’ SR,
Bl ~ Bl ~
BI? o M, <UYUr U, B~ Bl
- B PCyys = 28 S —U —C
Ry R I 2 TS, s

FIG. 7.25 Simplification of the circuit of Fig. 7.24, where the mechanical and acoustical quantities are referred to

the electrical side using the admittance type analogy.

0
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FIG. 7.26 On-axis frequency responses of 4th-order bass-reflex alignments generated from Table 7.4 by taking 20

times the logarithm of Eq. (7.73).
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To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLa at a distance r is obtained from
Eq. (6.34) to give

1 \/Znom Wmax277fg Vaspo

SPLmax = 20 logio (rc x 20 x 10-6 ReQEs

)dBSPL@lm

where Wi ax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax-

To determine the excursion limit:
The maximum peak diaphragm displacement at frequencies well below the box resonance is obtained from Eq.

(7.101) to give
_ L Znom Wmax VAS
Spc\| ReQesmfspg

However, we see from Fig. 7.27 that at frequencies above the box resonance, the displacement peaks at a
smaller value. For example, the displacement peaks at 0.5nmax in the case of the 0.25 dB Chebyshev
alignment or 0.25nmax in the case of the Butterworth alignment. If this peak value is greater than the rated

Mmax

| ‘ 1 —
1 ——
OSONN
= 0.8 j;
; —N\
3 } - Cheby 0.5 dB
%_ 0.6 — Butterworth r - Cheby 0.25 dB
o - Bessel =~ -~ _~Cheby 0.1 dB
E 0.4 |-Synchronous |-~ Cheby 0.01 dB
= %
£ 7 N\
[e) e\
Z 0.2 [/
v/ N
S \
0 i | \
0.1 1 10

J
s

FIG. 7.27 Plots of normalized displacement 7 /7 for the 4th-order bass-reflex alignments of Table 7.4.

For simplicity, we assume that Qus>> Qes S0 that Qrs = Qrs.
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Xmax limit of the drive unit, then an alternate drive unit with a greater xyax limit should be considered. If however
the sub-resonance nmax value is greater than the rated xmax limit of the drive unit, it should be arranged for the
box resonance frequency to be placed at the lower limit of the frequency range of the program material to be
reproduced. If this is not possible, a high-pass filter should be employed to remove all content below the
box resonance frequency. Best results are obtained when the filter is designed as part of the overall
system.[161121LI221 £ this s not possible either, then an alternate drive unit with a greater xmax limit should
be considered.
To determine the port dimensions:
The maximum peak pressure pmax in Pa is obtained from SPLya using

(SPLmax{))
Pmax = 2V2 x 10\ 20 P

Determine the peak volume displacement V. required to produce pmayx at the box resonance frequency fg,
which is obtained from Eq. (13.104) to yield

Viax = "Pmax 3
2wfg2pg

Choose the volume of the port Vp to be several times larger than Vinax but within a reasonable limit. Then
calculate the approximate length t of the port using Eq. (7.97) and the approximate cross-sectional area
Sp= Vp/t. Either choose a convenient area Sp and calculate the exact length t using Eq. (7.98) or choose
a convenient length t and calculate the exact area Sp using Eq. (7.99).

Study Secs. 7.16 and 7.17 (pages 342-343) for construction, adjustment, and performance.

The quantities not listed in the previous paragraph are

€, is open-circuit voltage in V of the audio amplifier.

B is flux density in the air gap in T (1 T = 10* gauss).

! is length in m of voice-coil wire.

R, is output electrical resistance in Q of the audio amplifier.

Ry is electrical resistance in Q of the voice coil.

a is effective radius of the diaphragm in m.

Mup= MMD/SD2 is acoustic mass of the diaphragm and the voice coil in kg/m4.
Cas = CysSh is acoustic compliance of the diaphragm suspension in m>/N.
Ras = Rys/S} is acoustic resistance of the diaphragm suspension in N-s/m°.

7.11 RADIATED SOUND

The port in the box of a bass-reflex baffle is generally effective only at fairly low frequencies. At those
frequencies its dimensions are generally so small it can be treated as though it were a simple source.
The loudspeaker diaphragm can also be treated as a simple source because its area is often nearly the
same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure a distance r away from the bass-reflex
loudspeaker is

~ ~ ~ ~ .(1) 7 —Jjkr 7 —jkr: 7 —jkr:
P =pi+pr+py = ﬁ(we ik _ e — e f’”) (7.66)
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where

P1> P2, and p; are complex sound pressures, respectively, from the diaphragm, port, and leakage
outlet at distance r.

r is average distance of the point of observation from the diaphragm and the port. Note that r is
large compared with the diaphragm and port radii.

r1, 12, and r3 are actual distances, respectively, of the point of observation from the diaphragm, port,
and leakage outlet.

U, is complex volume velocity of the diaphragm.

Up is complex volume velocity of the port. Note that the negative sign is used for Up because,
except for phase shift introduced by Csp and Myup, the air from the port moves outward when
the air from the diaphragm moves inward.

U, is complex volume velocity of the leakage path.

Also, the complex volume velocity necessary to compress and expand the air in the box is
Ug = U.—Up—1Uy (7.67)

If we now let r; = r, = r3 = r by confining our attention to a particular point in space in front of the
loudspeaker where this is true, we get

= _ Jwpo

d7r ([J‘ - UP n UL)e_jkr (7.68)

Since UC — Up— U, = Ug, we have simply that

pr‘UB‘
2r

’ ﬁ‘ = (7.69)
Amazing as it seems, the sound pressure produced at faraway points equidistant from cone and port of
a bass-reflex loudspeaker is directly proportional to the volume velocity necessary to compress and
expand the air inside the box!

At very low frequencies, where the reactance of Cp is very high, U, becomes nearly equal to Up,
and U; becomes insignificant so that the pressure, measured at points r = r| = r, = r3 approaches zero.
In fact, the two sources U, and Up behave like a dipole so that the radiated sound pressure decreases by
a factor of 4 for each halving of frequency. In addition, if we are below the lowest resonance frequency
of the circuit of Fig. 7.24, the diaphragm velocity U, halves for each halving of frequency. Hence, in
this very low frequency region, the sound pressure decreases by a factor of 16, which is 24 dB, for each
halving of frequency. In other words, the slope is 4th order. Note that this decrease is greater than that
for a loudspeaker in a closed box or in an infinite baffle.

7.12 ALIGNMENTS FOR PREDETERMINED FREQUENCY-RESPONSE SHAPES

As with the loudspeaker in a closed-box enclosure, we can choose a predetermined frequency-response
shape and engineer the loudspeaker accordingly using an alignment table, which we shall generate in
this section. In the interest of simplifying our analysis, let us redraw Fig. 7.24 to be as shown in
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Fig. 7.25, referring the mechanical and acoustical quantities to the electrical side. Furthermore, we
have assumed that at low frequencies we can ignore Rz and R4z, and that the effects of the box and
port resistances, Rsp and Ryp respectively, can be accounted for by adjusting the value of Ry;. It has
been found in practice that Rs; is the dominant source of damping of the box resonance."” The new
quantities shown on that circuit are defined as follows:

Mys = Myp + Sh(May + Mag) (7.70)
M1 = Mas> +Map (7.71)

This circuit is exactly that which appears across the generator, which makes it easier to evaluate the
electrical input impedance. Also, it looks more like an electrical filter network. The electrical and
mechanical sections form a 1st-order band-pass filter, which in conjunction with the 1st-order time
derivative in Eq. (7.69) given by the frequency term f, produces a net 2nd-order high-pass filter. The
acoustical section forms a second 2nd-order high-pass filter so that the overall response is 4th-order.
However, these two 2nd-order filters do not operate in isolation but are coupled to a degree which
depends upon their relative resonance frequencies and the size of the box. Hence we shall introduce
a coupling factor V5/Vap during the following analysis, commonly known as the compliance ratio.
As the volume of the box V4p is increased relative to the suspension equivalent volume Vyg, the
amount of coupling is weakened. Deriving the transfer function for such a complicated circuit as that
shown in Fig. 7.25 can be very laborious, but in Chapter 14, a computer method is presented which
can be applied using a mathematical software tool with symbolic computation, such as Maple or
Mathematica. The circuit of Fig. 7.25 is used as the first worked example and it is shown in Eq.
(14.79) that

é,BIS —Jkr
2ODP0 € T () (1.72)

pr) = (Rq + Rp)Mys Amr

where the frequency-response function G(s) is given by

4
s
G(s) = 7.73
(5) s% + P3s3 4 Pys? + Pis + Py ( )
and the coefficients of the denominator polynomial in s = jw are given by

wg wp
3 = —+— (7.74)

Ors QL
Py = <1+E> Pt w8 (7.75)

Vag) P 0rs0L

2 2

Py = 8¢ | USYB (7.76)

Py = wld (1.77)
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where wyg is the angular suspension resonant-frequency in an infinite baffle given by
1

ws = m (7.78)
QOgs is the electrical Q factor
Ops = ws 18 +I;EMMS (1.79)
(BI)
Qs is the mechanical Q factor
Oms = ws RLMMS (7.80)
MS
QOrs is the total Q factor
QrsQus
015 = 505 1 O (7.81)
wp is the angular resonant-frequency of the box and port (including end corrections) given by
1
WB = ﬁm (7.82)
Oy is the acoustical Q factor due to box and port losses
01 = wRa1.Cxp (7.83)

Vap is the apparent box volume, including the lining, which is related to the acoustic compliance by
Vag = poc*Cas (7.84)

and Vyg is the suspension equivalent volume
Vas = Shpoc®Cus (7.85)

In order to solve Eqgs. (7.74) to (7.77) for wg, wpg, Ors, and Vas/Vap, we first eliminate Qrs from Eqs.
(7.74) and (7.76) and insert w3 = P4{1w12; from Eq. (7.77), which gives

—= — P3wp + Piwp—— =0 (7.86)
o, VB T o

which is a quartic equation that has to be solved for wp. Although there are four roots to the
polynomial, only one produces a full set of parameters (wp, ws, Ors, and V45/Vap) which are pos-
itive and real. Then from Eqs. (7.77), (7.74), and (7.75) respectively we obtain the other three
quantities:

VvPo

ws — (7.87)
wp

OLws

Ors = >—————
s P301 — wp

(7.88)
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v P, — w}
ras _ 1 za%._ “B (7.89)
Vag w5 OrsQLws
Let a pre-defined 4th-order frequency-response function be given by
4
G(s) = s (7.90)

w1 2 2, W2 2
22+ —s+w >(v +—5 4+ w >
( 01 ! 0> 2

which has a value of 1/ V2 or — 3 dB when w = 1. The values of w1, wy, Q;, and Q, for a number of
frequency response shapes are given in Table 7.3, which are calculated from the formulas given in
Appendix 1. Because the suspension and box resonance frequencies are the same in the Butterworth
alignment, the two complex-conjugate pole pairs lie on a semicircle in the complex plane with angles
of 1v/4 between them. We shall see in Sec. 7.15 that these coincident resonance frequencies are useful
when it comes to evaluating Q;. We may create a range of sub-Butterworth alignments with such
coincident resonance frequencies by multiplying the angles between the poles and the negative real
axis by a scaling factor B, which has values between 0 and 1. When B = 0, we have the synchronous
alignment in which all four poles are coincident and real. These sub-Butterworth alignments are
generated by solving the quartic equation o+ 2(a+ b)Q3 +2(1+ 2ab)§22 +2(a+b)Q — 1 =0 for Q,
where a = cosBm/4 and b = cos3Bw/4. Although there are four solutions for Q, only one is real and
positive. Then w| = wy = VQ, 0) = 0.5secBt/8, and Q) = 0.5sec3BT/8.

Equating the denominator of Eq. (7.90) with that of Eq. (7.73) gives

w1 w7
P = —+— (7.91)
01 O
wW1W?2
Py = o + 3+ (7.92)
P00,
2 2
W1W wWTW
P = 2 1122 (7.93)
01 10))
Py = w%w% (7.94)
Table 7.3 Resonance frequencies and Qvalues for various 4th-order frequency-response shapes
Frequency-response shape w1 Q wo Q,
Synchronous (B = 0) 0.4350 0.5000 0.4350 0.5000
Sub-Butterworth (B = 0.6) 0.5634 0.5142 0.5634 0.6575
Bessel (close to B = 0.77) 0.6992 0.5219 0.6237 0.8055
Sub-Butterworth (B = 0.9) 0.8482 0.5329 0.8482 1.0233
Butterworth (B = 1) 1.0000 0.5412 1.0000 1.3066
Chebyshev with 0.01 dB ripple 1.2870 0.5746 1.0356 1.7237
Chebyshev with 0.1 dB ripple 1.5370 0.6188 1.0519 2.1829
Chebyshev with 0.25 dB ripple 1.6900 0.6573 1.0574 2.5361
Chebyshev with 0.5 dB ripple 1.8310 0.7051 1.0600 2.9406
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Table 7.4 4th-order alignments for bass-reflex enclosures for Q, =7

Frequency-response

shape f3dB/ fs VAB/ VAS QTS f, 5/ fs
Synchronous (B = 0) 2.2990 0.2899 0.2593 1.0000
Sub-Butterworth (B = 0.6) 1.7748 0.4028 0.3010 1.0000
Bessel (close to B = 0.77) 1.4941 0.5242 0.3312 0.9735
Sub-Butterworth (B = 0.9) 1.1790 0.6914 0.3689 1.0000
Butterworth (B = 1) 1.0000 0.9422 0.4048 1.0000
Chebyshev with 0.01 dB 0.8143 1.5511 0.4572 0.8838
ripple

Chebyshev with 0.1 dB 0.6963 2.3308 0.5120 0.7839
ripple

Chebyshev with 0.25 dB 0.6374 2.9747 0.5553 0.7259
ripple

Chebyshev with 0.5 dB 0.5894 3.7464 0.6073 0.6742
ripple

Then after inserting these values for Py to P3 into Eqgs. (7.86) to (7.89), we can generate the alignments
given in Table 7.4.

Shown in Fig. 7.26 are frequency responses generated from Table 7.4 using Eq. (7.73). The
frequency scale is normalized using fs as the reference point because this is a fixed parameter of the
loudspeaker drive unit. We see that the Chebyshev alignments give greater low-frequency extension at
the cost of increased box size.

7.13 PORT DIMENSIONS

Knowing the Thiele-Small parameters of the drive unit (Rg, Ogs, Oumss fs, Sp, and Vy5) we choose
a suitable alignment from Table 7.4, which gives us the required box volume Vg and resonance
frequency fp. The total acoustic mass of the port including end corrections and assuming that it behaves
as a flanged tube at one end only is given by

Map = 20 (r+ 0.84\/S_P) (7.95)
Sp

Otherwise, if it is flanged at both ends, the correction factor is changed from 0.84 to 0.96, or to
0.72 if unflanged at both ends. The volume of air in the port Vp, which is simply the product of its
cross-sectional area Sp and its length ¢, should be chosen to be several times greater than the
amount of air it has to displace in order to produce the maximum sound pressure at full power.
Hence

Sp = Vp/t (7.96)
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Inserting Eqgs. (7.84), (7.95), and (7.96) into Eq. (7.82) but ignoring the end-correction factor yields the
following approximate equation for the port length #:
V
~ < | (7.97)
wp V Vap

in which case the approximate cross-sectional area Sp is given by Eq. (7.96). However, we may wish to
choose a more convenient area Sp and readjust the length ¢ accordingly using the following exact
formula:

S 2
1= 2P 0.84y/5p (7.98)
VAB(JJB

or we may wish to choose a length ¢ and calculate the exact area Sp using

2

0.842V3 0} 4c%t
Sp =~ TABEB( 4y 7.99
i 4ct T 088Vl (7:99)

7.14 DIAPHRAGM DISPLACEMENT

From the circuit of Fig. 7.25 we can derive the diaphragm volume velocity U, from which we obtain
the diaphragm displacement:

7 = Uc/(joSp)

 ws, < 2+ (05/01)s + 0} > (7.100)

© BIQgs \s* + P3s® + Pys> + Pis+ Py

At very low frequencies, the loudspeaker is virtually open at the back because the acoustic impedances
of the box and port present very little opposition. Hence the low-frequency displacement 7, is
determined purely by the mechanical compliance Cys of the suspension:

. g

— 5 = — e , % _ 7
N,mo = M0 = BiOpsos CMSBIR—E (i.e. Hooke’s law where BIR—E =f) (7.101)

This makes a useful reference point with which to normalize the displacement curves which are shown
in Fig. 7.27 for the alignments of Table 7.4. We see that the Chebyshev alignments, which give greater
low-frequency extension, not only require a larger box size, but also require a loudspeaker drive unit
with a greater excursion limit xp,y.

7.15 ELECTRICAL INPUT IMPEDANCE AND EVALUATION OF Q,

Also from the circuit of Fig. 7.25 we can derive the electrical input impedance Zg as seen across the
loudspeaker terminals:
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é,Rg
€g — BlUC/SD
(7.102)
wss s2 + (wp/0L)s + w5
= Rgq1+—
QOps \s* + E3s3 + Eps? + E1s + Ey
where the denominator polynomial coefficients are given by
ws | wWB
Ey = —+— (7.103)
Oms  OL
E — <1 +E>w§+w§+ WSwB (7.104)
Vag OmsQL
2 2
wWsWpy Wgwp
E, = + (7.105)
Owms Or
Ey = wiwp (7.106)

The coefficients Ey to E3 differ from the coefficients Py to P3 of Eqgs. (7.74) to (7.77) respectively in
that Qrg is replaced by Qys. Normalized impedance curves are plotted in Fig. 7.28 for the alignments
of Table 7.4. When comparing these curves with the impedance of a loudspeaker in an infinite baffle,
as shown in Fig. 6.8, we see that the peak at fg due to the parallel resonance of Mg with Cys has been
split into two peaks with a minima in between at fg due to the series resonance of M 7with Cyp. For the
Synchronous, Bessel, and Butterworth alignments where fz = fs, the two peaks are symmetrical either
side of fg. However, in the case of the Chebyshev alignments the peaks are asymmetrical with the
smaller peak occurring below fp which indicates that the low-frequency response is extended at the
cost of extra power.

The minima at f3 is particularly useful for checking the tuning of the port. Furthermore, in the case
of alignments where fp =fs, (e.g. Synchronous, Bessel, and Butterworth) we can simplify Eq. (7.102)
at f=fp to give the impedance at the box resonance dip:

1

ZE‘ = Zup = Re| 14 2BQL (7.107)

W=wy=wg m 1

Vap  OmsOL
from which we obtain
Vap 1 1

0 = A8 ( ——) (7.108)

7 Vs Ors((Zes/Re) — 1) Qus

which enables us to measure the Q; value for the box and port resonance. See Sec. 7.17.
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FIG. 7.28 Plots of normalized electrical impedance magnitude |Zg/Rg| for the 4th-order bass-reflex alignments of
Tahle 7.4.

We let QMSZ 9Qrs so that QESZ 112507’5

7.16 PERFORMANCE

With the formulas and charts just given, it is possible to calculate the response of the loudspeaker in
a bass-reflex enclosure. A complete example is given after Sec. 7.17.

From Fig. 7.25, we see that for frequencies below wp, radiation from the port (proportional to
—Up) is out of phase with the radiation from the diaphragm (proportional to U,). As a result, the
response at very low frequencies is usually not enhanced by the addition of the port. Above the
resonance frequency wp, radiation from the port is in phase with that from the diaphragm, with
a resulting enhancement over the closed-baffle response. The amount of the increase in response
generally averages about 3 dB over a frequency range of one to two octaves.

An important reason for using a bass-reflex enclosure is that the loudspeaker produces less
distortion at frequencies of around wp for a given acoustic power radiated than would be the case if the
box were closed. The assumption on which this statement is made is that the motion of the air in the
port is distortionless even though the amplitude of vibration is large. This is true generally because
there is no suspension or magnetic circuit in the port in which nonlinear effects can occur. However, in
order to avoid turbulence, the port should be as smooth as possible with filleted edges at each end.
A large loudspeaker diaphragm usually is superior to a small one because the amplitude of its motion is
less, thereby reducing nonlinear distortion.
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One disadvantage of a bass-reflex enclosure is that the port can produce pipe modes at higher
frequencies and these cannot be damped using absorbent material without negating the benefit of the port.
However, their effect can be mitigated by locating the mouth of the port on the rear of the box so that they
are less audible at the front. At the box resonance, the wavelength is usually very large compared to the
box dimensions, so the small resulting phase difference between the outputs of the port and diaphragm
will have little effect on the performance. [39]

An advantage of a bass-reflex enclosed loudspeaker is that, where room space is a factor, a properly
tuned bass-reflex system helps to offset the effect of the small box volume.

7.17 CONSTRUCTION AND ADJUSTMENT NOTES

Bear in mind that many drive units nowadays are designed for use in “air-suspension” closed-box
enclosures and can be identified by their very low resonance frequencies. In a bass-reflex design the
high compliance of their suspensions could lead to excessive diaphragm excursion below the box
resonance frequency.

The box should be very rigid in order to resist vibration. The joints should be tight-glued and the
larger panels should be braced by gluing reinforcing strips to them. The access side should be screwed
on securely with strips of sealing material such as neoprene. Most drive units are now supplied with
sealing gaskets.

When the cabinet has been completed and the loudspeaker has been installed, the correctness of
the tuning may be determined by connecting an audio oscillator with an output impedance about 100
times that of the loudspeaker to the electrical terminals. Next, connect a voltmeter across the
loudspeaker terminals. Then vary the frequency of the oscillator in order to find the minimum
reading between the two peaks (see Fig. 7.28). This should occur at the calculated frequency wp if
the design is correct. The ratio of the voltage reading at this frequency to that at some very low
frequency, where it reaches an absolute minimum, gives the ratio Zgp/Rg from which we can
calculate Q; using Eq. (7.108).

The resonance frequency wpg of the enclosure can be adjusted by varying the length of the port.
A typical value of Qy is around 7. If it is much lower than this, there is probably a problem with leakage
caused by a poor seal. In order to find the source of leakage, block the port and drive the loudspeaker
(with minimum source impedance) at a very low frequency and listen around the box for any turbulent
“hissing” sounds.

Example 7.3. Bass-reflex enclosure design. In the previous part we discussed in detail the design
of a closed-box baffle for a low-frequency (woofer) loudspeaker. We presented methods for the
determination of its physical constants, and we showed a comparison between measurements and
calculations.

In this part we shall use the same loudspeaker drive unit as part of a pair with double the box
volume, so that each unit “sees” the same volume as before. If a pair of 8 Q drive units is used, this
provides a choice of 4 Q or 16 Q loads for parallel or series combinations respectively. A port will be
introduced into the box that resonates with the box compliance to the same frequency as the
mechanical or driver part of the circuit of Fig. 7.25, that is,

ws = 1/\/MMSCMS~



344 CHAPTER 7 Loudspeaker systems

Your brief is to design a compact floor-standing loudspeaker that can produce 105 dB SPL @ 1 m so
that it will be suitable for a medium to large listening area. In other words, the low frequencies will not
be augmented by room modes. Therefore the frequency response should be a flat as possible down to 41
Hz, the lowest note on a bass guitar. In order to give the widest possible dispersion and for cosmetic
reasons, the drive unit should not be too large. A suitable drive unit is the Bandor type 100DW/8A used
in the previous closed-box example. In order to reach the required SPL we will need to use two of these,
one above the other, which doubles the radiating area without increasing the width and therefore
maintains the horizontal directivity pattern. From actual measurements (see Sec 6.10) the Thiele-Small
parameters are:

RE=627Q
Qps=0.522
Ous=1.9
fs=37THz
Sp =120 cm®
Vas=24 L

If we re-use the same volume per drive unit as the closed-box design, then V45 = 13.42 L. Hence V4p/
Vas = 13.42/24 = 0.56, which from Table 7.4 would suggest the use of a Bessel alignment where V,p/
Vas = 0.52 and the frequency response is plotted in Fig. 7.26. At fg = 37 Hz, the response is - 7.4 dB
with the - 3 dB point at 1.49fg = 55 Hz. However, The Qrg value of

~ OrsQus
Ors = ~—— —
Qks + Owms
is somewhat higher than the optimum value of 0.33 given by Table 7.4 for a Bessel alignment. This
may be corrected by using an amplifier with a negative output impedance of R, = -1.45 Q (due to

positive current feedback [42]). However, for the purpose of this analysis, we shall proceed with an
"underdamped" Bessel alignment by setting R, = 0.

Vap = 2x0.5242 x24 = 252 L

= 041

From Eq. (6.48) we can calculate the reference efficiency, noting that on one hand a loudspeaker in
a box is half as efficient as one radiating from both sides in an infinite baffle, but on the other, this is
compensated for by having two of them:

8 x 3.142 x 0.024 x 373
Ex = 100 = 0.448%
# 0.522 x 3453 ?

In order to calculate the maximum SPL, we first obtain Cys, Mys, and Bl from Eqs. (6.27), (6.28), and
(6.30) respectively

0.024
Crre — — 1.19 mm/N
MS = 50122 x 1.18 x 3452 mm/
1
Mys = — 0.0156 kg

(2 x 3.14 x 37)* x 0.00119
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627
Bl = \/2 X314 x 37 x 0522 x 0.00119 ~ X Tm

Knowing that the power rating Wy« is 100W, we obtain from Eq. (6.33)

v6.27 x 100 x 6.59 x 0.012 x 1.18
2 x 3.14 x 6.27 x 0.0156 x 20 x 10~

SPL max = 20 logm( ) = 105.6dB SPL @ 1 m

where two drive units in a box produce the same pressure as a single one in an infinite baffle. Next use
Eq. (7.101) to check the peak displacement at low frequencies at full power:

V2 x6.27 x 100

Tmax = 650 % 0502 x 2 x 3.4 x 37 3 mm

but from Fig. 7.27 we see that for the Bessel alignment the maximum above fs frequency is 0.126 times
this value, or 5.6 mm. It turns out that the x,,x value of the drive unit is 14 mm, with a linear limit of 4.5
mm, so there should be no problems with this design. Now we turn to the port dimensions, but first we
must calculate the volume displacement Vi.x required from the maximum pressure ppmax (See
“Summary of Bass-reflex Design”, p. 334).

105.6-7.4

Pmax = 2% 1.414x 10" 5 > =23Pa

so that from Eq. (6.35)
1x23
Vinax = = 023L
M 2 % 3.14 x 372 x 1.18

Let the volume of the port be ten times the maximum volume displacement, or Vp = 10V, =2.3 L.
From Table 7.4, the box resonance frequency is fg = 0.9735f5 = 36 Hz. The approximate length of the
port excluding end effects is obtained from Eq. (7.97):

345 23
S 314x36\ 250 ~ d0-lem

so that the approximate cross-sectional area is

Sp = Vp/t = 0.0023/0.461 = 50 cm?, say 15 cm x 3.4 cm = 51 cm?
Then the actual length is calculated from Eq. (7.98):

. 0.0051 x 3452
0.0252 x (2 x 3.14 x 36)*

—0.84 x v/0.0051 = 41.1 cm

We let the lining material occupy one quarter of the total box volume so that Vy; = Vp/4 = V4/3
because Vp = V4 + V. We already know that Vap = V4 + vV = 25.2 L where v = 1.4. Hence

25.2

=% —172L
1+1.4/3

Va
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FIG. 7.29 Example of bass-reflex enclosure design.

and Vy;=17.2/3=5.7L so that Vg = 17.2 + 5.7 = 22.9 L. Hence the compliance of the air in the box is
Cas =Val(yPy) =0.0172/(1.4 x 10°) = 1.23 x 10”7 and the lining material Cppy= Vy/Po= 0.0061/
10°=6.1x10"% so that the apparent compliance is Cap= Cpq+ YCapy= 123 X 1077+
6.1 x 10 % =1.84 x 10~". The box and port dimensions are shown in Fig. 7.29. The internal width Wis
15 cm, which is the smallest width that will accommodate the drive units. The acoustic center of the two
drive units is about one third of the internal height from the top so as not to coincide with the anti-nodes
of the first or second vertical modes. The box contains one 63.5 by 15 by 6.4 cm piece of lining material.
Let us now calculate the box and port losses. If the flow resistance is Ry= 200 rayl/cm, then acoustic
resistance of the lining material with a depth of 6.4 cm becomes

6.4 x 200

Ray = ———————— = 4480 N-s/m’
AM = 3750.635 x 0.15 s/m
so that the box resistance from Eq. (7.7) is
4480
Rap = 72 2 = 492 N-s/m’
(1 +m—m) +(2 % 3.14 x 36 x 4480 x 1.23 x 10-7)?

from which we obtain Q4 due to absorption within the box:

1 1
wpRiApCap 2 X 3.14 X 36 x 492 x 1.84 x 107

Oq =
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The resistance of the port is given by Eq. (4.23):

Ryp

V4 x3.14 x 36 x 1.18 x 1.86 x 10— 0.411
= +2| = 238N-s/m’
0.15 x 0.034 V/0.15 x 0.034/3.14 /

from which we obtain Q), of the port:

1 1

wpRApCap 2 x 3.14 x 36 x 238 x 1.84 x 107

Qp:

These Q values are very high, which supports the commonly held view that leakage losses dominate.
Unfortunately, the effect of leakage cannot be determined until the loudspeaker and its enclosure are
assembled and measured. A common value of Q; due to all losses is around 7.

Let us now create a semi-analytical simulation model of the design of Fig. 7.29 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.30. Although it is based on the circuit of Fig. 7.24, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current i;, from which we obtain the electrical impedance. We are ignoring the generator impedance R,

Diaphragm
Coll E-M Diaphragm M-A radiation
L 1VRe Vle L% p i | 2Mup 2RysV:Cus) T 52SD:15 U, zu | U;=0,
: ] : : ; : ! : —3 o X
AICH Jaibdilz: 123E0% (5
A A T R S e 5 oY
Port
Leak Box Port radiation
U, =(7C§ VU, =0.-0, U, U,=U, U, =0
X O ; : o)
_ PRuS g _ ~ ~
Tps ; ;Tp(, Tm Tpg [z qu
DOy
o O 7 8 5 ©

FIG. 7.30 Semi-analytical model of example bass-reflex enclosure design shown in Fig. 7.29 using transmission
matrices.

The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones. Here the two
drive units are connected in parallel so that the net coil resistance R¢is halved. If the drive units are connected in
series, replace YR, ¥2Lg, and Bl with 2Rg, 2L, and 2BI.
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since in the experimental setup this is negligible compared to Rg. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. Here the two drive units are connected
in parallel so that the net coil resistance R is halved. If the drive units are connected in series, replace
YaRg, V2Lg, and Bl with 2Rg, 2Lg, and 2BI. From the schematic we create the transmission matrices
required to represent each 2-port network as follows.

1. Coil.
é 1 ! Z e e
e _ S 2E ~1 —C 71
lg 0 1 1 11
where Zg = Rg + jwLg.
2. Electro-mechanical transduction.
el _ 0 Bl . f 2 E- f 2
i BN 0| | i
3. Diaphragm.
f2 _ 1 2Zup . f 3 — p. f 3
) 0 1 i3 us

where Zyp = joMyp + Rys + 1/(jwCuys). We must exclude the radiation mass from the diaphragm so
that My;p = Myss — 16poa’/3, where a = /Sp /.
4. Mechano-acoustical transduction.

fs| _ |20 0 Pa| _ap | P
ii 0 (2Sp)~'| | U4 U,
5. Diaphragm radiation.
Pa| _ |1 Za| | Ps | o | Ps
U, 0 1 Us Us

where Z, is the acoustic radiation impedance of the diaphragm, taking into account the mutual
radiation impedance, given by Egs. (13.334) and (13.339) where Z4 = (Z;; + Z12)/Sp and
a = SD / .

6. Leak.
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where the leakage resistance is given by
Rar = Or/(2nfaCag) = 7/(2 x 3.14 x 36 x 1.84 x 1077) = 168,200 N-s/m°.

7. Box.
p7
U;

D6
Us

1z
Uy

=B

by by

[bll b2

The mechanical z-parameters of the 2-port network for the bass-reflex enclosure are given by
Eq. (7.131) in Sec. 7.18. We obtain the acoustical z-parameters by dividing through by a,a,b,b,
to yield

Z
= 4 jtan kl,

1 _poc 8Ly
Zpg = PoC\ 7~ 3
Ly 1 +]— tan kI, ™bpbylx
Kon +]tank l
©  k b b Onts
X D0 cos <n7lryp> cos (mlryq) sin <n;l p) sin <n;l q> kpock —
n=1M""Kon y y y y 1+ tan ko,
prC
kmOZS

+ j tan ky0l;

zzlx i 2k sin (mm”> sin <m7mq) kpock oZs
mrapagly = m* ko L Lx 14 tan kyol,
kpoc "

Po
16,1, g k . (mmay\ . (mma, mmyp
T Payaghyby ”; ; 1212k Sm( I ) sm( I ) COS( I,
kmnZ.
b b ];""S—l—]tankm,,l
x cos (4 ) gin (222 ) gin (1174 Poc
l 21, 21 . kimnZs
Y Y Y 145 oo tan k[,
Poc
where
2 2
o =0~ (227) - (21)
x y
and
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where the value of the lining flow resistance Ryis chosen such that Rxd/3 = poc = 412 rayl, which is the
impedance of free space and thus provides optimum sound absorption at higher frequencies. Then the
transmission-matrix parameters for the box are given by b1 = z11/221, b12 = (211222 — 212221)/221,
by1 = 1/zp1, and byy = 720/721. The dimensions are given in Fig. 7.29 except for a; = b; = +/Sp.

8. Port.
Pg
Us

where the port wave number kp and characteristic impedance Zp are obtained from Eqgs. (4.215) and
(4.217) respectively. The port is assumed to be large enough to ignore boundary slip and thermal
conduction so that we only consider the viscous flow losses to obtain kp = wé/c = 2nfé/c, Zp = pock/Sp,
and Sp =apb, where

Po
Us

)z
Uy

l cos kpt JZp sin kpt

ij_1 sin kpt  cos kyt

kvap.]() (kvap)’

2J1(kya ;
s¢1———ﬁliﬂ— ay = \ahy/m, and ky = \/—jm2fpy/n

where u=1.86 x 107> m?/s is the viscosity coefficient for air at 20°C.
9. Port radiation.
1 0
oz

In this case, the port outlet is rectangular and close to the floor so that Z4, may be given by the
impedance of a rectangular piston in an infinite baffle using Eqgs. (13.326) and (13.327), where
Zpar = Ry + jX)/(azby).

First we evaluate pg at the end of the chain:

-+

A =C-E-D-M-F-L:B-P-R =

pPg

Us

P9
Us

Do
Ug

where

ari 6112]

azy  ax

Hence py = e, /ai1. Then we work backwards to obtain the volume velocities we wish to evaluate. In

particular, we are interested in the far-field pressure, which according to Eq. (7.69) is a function of
U = Ue— Uy — U, = U — Us.

This procedure is fairly straightforward and does not involve any matrix inversion. From the port
radiation matrix (9), we obtain

Up = Us = po/Zn>
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and working back further to the box matrix (7) we obtain

Iiﬁ - N Dy

Usg 0
nip N2
nap N2

U.— UL = Us = mpy

where

so that

and therefore

Ug = U.—Up—Up = Ug— Usg = (na1 — 1/Za2)é,/an
The port volume velocity is given by
Up = Ug = &y/(a11Z42)
and the diaphragm volume velocity by

Uc —

(@)

L = Us = naég/an

In order to plot the normalized far-field on-axis pressure, we simply divide U by a reference volume
velocity

- 2&.BISp
ref O)MMsRE

and plot 20 log,o|Ug/ Ijref| as shown in Fig. 7.31. The port and diaphragm volume velocities,

20 IOg]O‘Up/Uref

and 20 1Oglo’([]c_ UL)/Uref )

respectively, are plotted separately in Fig. 7.32. Although the effects of box and port modes are clearly
seen in the calculated response of Fig. 7.31, most of the irregularities are emanating from the mouth of
the port as is seen from Fig. 7.32. By contrast, the output from the diaphragm is fairly smooth apart
from one small feature at 220 Hz, which is due to the fundamental vertical mode of the box. At 375,
750, and 1125 Hz we see the 1st, 2nd, and 3rd port modes respectively. The effect of these will be
mitigated somewhat by mounting the port on the rear of the enclosure as is seen from the measured
response of Fig. 7.31. Finally, we can obtain the input impedance from é,/ i~g where i~g = az1py and
from above py = &, /ai1. Therefore the input impedance is simply Zg=aji/as;, as plotted in
Fig. 7.33.
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FIG. 7.31 Graphs of the on-axis sound pressure level produced by the bass-reflex enclosure design shown in
Fig. 7.29.

The dashed curves are calculated from 20 Ioglo\UB/U,efL Solid curves are measured.

PART XXIll: 2-PORT NETWORK FOR SMALL ENCLOSURES

In this part we shall use the 2-port network theory, introduced in Sec. 3.10 and Fig. 4.43, to create
a z-parameter matrix that describes a bass-reflex enclosure in which the rear of the loudspeaker dia-
phragm connects to one port and the bass-reflex port connects to the other. Absorbent lining material is
located on the internal wall opposite the diaphragm and bass-reflex port. This matrix is valid for all
wavelengths since it is based on eigenfunction expansions of the internal modes.

For a closed-box enclosure, we simply set the velocity at the bass-reflex port to zero so that we are
left with 1-port network or impedance at the rear of the diaphragm, which is given by the first element
of the matrix zjj.

7.18 2-PORT NETWORK FOR A BASS-REFLEX ENCLOSURE

A sketch of the bass-reflex enclosure is shown in Fig. 7.34. In order to make the problem solvable, we
assume that the loudspeaker and port apertures, represented by piston 1 and piston 2, are rectangular
and planar, which should give a reasonable approximation when they are circular, in which case their
radii are given by
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FIG. 7.32 Graphs of the on-axis sound pressure level produced by port and diaphragm of the bass-reflex enclosure
design shown in Fig. 7.29.

The dashed curves are calculated from 20 log;o|Up/ U,ef| and 20 logyo|(Ue — U,)/ U,er| for the port and
diaphragm respectively. Solid curves are measured.

ry = \/albl/ﬂ’ and rn = \/azbz/ﬂ’.

To further simplify the problem, we have acoustic lining only on the rear surface of the enclosure. For
a bass-reflex enclosure it is not desirable to have too much lining because that will produce excessive
losses as the air passes through it and thus negate the advantage of having a port. If the force and
velocity at piston 1 are given by F and ii; respectively and the force and velocity at piston 2 by F, and

iy, then
z z i
_ | N1 (7.109)
21 222 || U2

where the mechanical self impedance z;; of piston 1 is the ratio of the force to velocity at piston 1 with
piston 2 blocked:

(7.110)
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FIG. 7.33 Graphs of the electrical input impedance of the bass-reflex enclosure design shown in Fig. 7.29, where
the two drive units are connected in parallel.

The dashed curves are calculated from Zg= |ég/7g\ = aj1/a0. Solid curves are measured.

a1

~_"Piston 1 b7
V<

Piston 2
gbz /
A Termination

P /
)2
o
impedance ly

L Zeatz=0
za )
L2

a
>

< A >

FIG. 7.34 Sketch of the bass-reflex enclosure as a 2-port network.
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Similarly the mechanical self impedance z; of piston 2 is the ratio of the force to velocity at piston 2
with piston 1 blocked:

Py

22 = =

753

(7.111)

=0

which is obtained by interchanging “1” and “2” in the expression for z;;. In a passive network such as
this, the mutual impedances z1> and z; are equal and given by

Fy
12 = = = 221 = =

. _ (7.112)
u2 li; =0 up

i =0
If for simplicity we let u;y = u» = ug, the pressure field inside the enclosure due to an applied
velocity i at either piston is given by

®© ©

p(x,y,2) = pocilp Z (A,,,,le*jk"'”Z + B,,mejk'"”z) cos(mmx/l, ) cos (nmy/ly ) (7.113)
0

m=0n=

where

mm 2 nm 2
kpn = K2 — | —] —(— (7.114)
I I

The boundary condition of zero pressure gradient at the perfectly rigid side walls (x =0, x=1,,
y=0, y=1,) is accounted for by the cosine expansions in m and n. In other words, only standing
waves whose wavelengths are integer or half-integer divisions of /, and /, can exist in the x and y
directions respectively. The term with the coefficient B,,, represents plane waves traveling from the
pistons in the negative z direction, and the term with the coefficient A,,, represents reflected plane
waves traveling in the positive z direction. The strengths of the reflections depend on the value of
the specific impedance Z; in the plane z = 0. The unknown expansion coefficients A,,, and B, are
found by applying the boundary conditions at the pistons in the front baffle (z=1,) and at the
rear wall (z=0), which is terminated in a specific impedance Z;. The velocity in the z direction is
given by

Lo
—jkpoc 9z P

ﬁz(x,y,z) = (x,y,z)

(7.115)

3
Il
<}
3
Il
=}

Atz=0,

p(x,y,0) = —Zsiiz(x,y,0) (7.116)
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so that

kngS + prC

By, = s T T00
" kngS - prC

A (7.117)

In order to evaluate the pressure field due to a velocity i at piston 1, we set the following boundary
conditions at z =1,

- Ly al< <lx+a1 <y < +
uop, ) 27X72 27 Y1 Sy
i L) = L _ai L a <1 118
“z(x7y7z)— 07 0§x<5_73 E+7<x—x (7. )
by
0, 0<y<y > y1+7y§l)

After inserting Eq. (7.117) into Eq. (7.115), we then multiply through by cos(pmx/l,) and cos(gmy/l,)
and integrate over x and y as follows:

2 k Konnlz + flonnZs Si kppnl
ﬁz(x,y, lz) = z ﬁO Z kanAmn PoC COS Kmn ~+‘] mnss SIN Kyl

=0 n=0 kpoc — kpnZs
I, I,
X /cos (mmx/ly) cos (pmx/l)dx /cos (nmy/ly) cos (gmy/ly)dy (7.119)
0 0
(Ie+ay)/2 yi+bi/2
= lip / cos (pmx/ly)dx / cos (gmy/ly)dy
(Lh—ar)/2 b1=b1)/2

Using the property of orthogonality such that only terms with p = m and ¢ = n are non-zero, together
with the integral solutions

I,
Ly, m=
/cos (mmx/l)dx = (7.120)
lx/27 mzlaza“'
0
I,
ly) by 1= 7.121
/COS (ny/1y) L/2, n=1.2-- (7.12D)
0

(Litar)/2 ap, m=0

/ cos (mmx/l;)dx = { 21, (m7r> . (m‘;ra]> (7.122)
——cos| — | sin , o m=1,2,---
(l—ar)/2 mm 2 21,
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i+b1)/2 by, n=20
cos (nmx/ly)dy = < 21, nwy1\ . (nwb (7.123)
’ —= Cos sin , n=12---
(1=b1)/2 nm Ly 2Ly
we obtain
ayb; poC — Zs
Agy = 7.124
%7 20,1y poc cos ki, + jZgsin Ky (7.124)
2a1k nmwy1\ . ([nmwby kpoc — konZs
Ap, = 7.125
o= ko ( I, ) s ( 21, ) kpoc €08 konly + jkonZs Sin Konls (7.125)
2b1k mmw mma kpoc — kmoZ.
o = 1 S (_) . 1 Po 'mO s (7.126)
mlykino 2 21, kpoc cos kiol; + jkmoZs sin kol
A 8k (mn) . [(mma nmyr\ . (nmwb
= ———— cos [—]sin cos sin
" w2 mnk, 2 21, I 21,
(7.127)
% kpoc — kynZy
kpgc cos kil + jkunZs sin kypl,
The mechanical self impedances are given by
(Lta) /2 yotbi /2
1
e— [ eyt 7.128)
—ily
(lx_al>/2 )‘1—171/2
(Ltaz) /2 yotby /2
1
Zn = L [ sty todas (7.129)
iy

(Li—a2)/2 y2=b2/2
and the mechanical mutual impedance by
(Lta) /2 yatba/2
Zip =7y = —Lﬁo / / p(x, v, 1;)dydx (7.130)
(L—a2) /2 y,—by)2
Both of these are found using the integral solutions of Egs. (7.122) and (7.123), where we note that

cos(mm/2) = 0 for odd values of m and therefore replace m with 2m. Furthermore all of the impedances
211, 212, 221, and oo can be expressed by the single equation
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Zs
ayagbyby poc — +j tan kl, 8ayal,
Zog = Poc) T 1 A + =
Yo 14— tankl, x
poc
konZs
+ j tan ko, [s
© k b b
X > —,— cos (n?ryp) cos (nﬂ'yq) sin (nﬂ' p) sin (mr q) kpoc —
n=1M k()n ly ly Zly Zly 1+ On S tan konl
kpoc
km() s
2pble I~ k. (mma,\ . (mma,\ kpoc + j tan kol (7.131)
+ 3 Z % sin ] sin 7 >
™y m:1m 'm0 x * 1+ ]:;;J ” tankmol
0C

161x * & . (mma,\ . (mma, Ry
P ; ( ” )s( 7 ) cos (“F
kinZs
+ j tan kypl;

b b
X COS <n7lryq) sin (n;rl p) sin (n;rl q) kpoc 7
Y Y O e

kpoc

2ma\?  [(nm)?
kpn = /K2 — ; -\ (7.132)

PART XXIV: TRANSMISSION-LINE ENCLOSURES

where

7.19 TRANSMISSION-LINE ENCLOSURES
7.19.1 General Description

A transmission-line enclosure has a duct or tube between the back of the loudspeaker diaphragm and
the outside world, which is usually folded in order to save space. There are two approaches as shown in
Fig. 7.35a and Fig. 7.35b. In the first, the duct has a uniform cross-sectional area over much of its
length and is usually designed to enhance the bass response around its fundamental resonance
frequency rather like a bass-reflex enclosure. Unlike a bass-reflex enclosure where the dimensions of
the enclosure and port are usually small compared to the wavelength, the transmission line is long
enough for there to be significant phase shift between the diaphragm and outlet at low frequencies.
Hence, when the wavelength is four times the length of the transmission line, there is a 90° phase shift
within it which leads to maximum air displacement at the opening (resonance anti-node) but minimum
displacement at the loudspeaker diaphragm (resonance node). This leads to a significant enhancement
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FIG. 7.35 Transmission-line enclosures: (a) Substantially “Straight” transmission line, except for some flaring
near the drive unit, as used in the Bose Wave® music system. Courtesy of Bose Corporation. (b) “Tapered”
transmission line.

As the name suggests, the Bowers & Wilkins Nautilus™ loudspeaker uses a tapered transmission line folded into
a spiral. The diaphragm has an area Sp.

of the bass performance in the region of the quarter-wavelength resonance frequency. The problem,
however, is how to attenuate the output of the transmission line at frequencies where it cancels the
sound from the front of the loudspeaker diaphragm even if the standing waves within it are well
damped using absorbent filling material. However, many products now contain a digital signal
processor which can be used to equalize the resulting lumpy frequency response.

Summary of transmission-line design

To determine the cutoff frequency, frequency response, and the volume of the box:
If the Thiele-Small parameters (R, Qes, Qus, fs, Sp, and Vys) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then Qrs = QesQus/(Qes + Qus).
If we assume that the drive unit will behave more or less as if it were mounted in an infinite baffle, we can select
the frequency-response shape from Table 7.2 for which the Qr¢ value is closest to the Qrs value of the chosen
drive unit (or choose a drive unit whose Qrs value is closest to that of the desired frequency-response shape).
From the value of f34g/fc in the table, compute the cutoff frequency f3gg assuming that fo = fs.
The frequency-response shape below the first diaphragm break-up mode but above the transmission-line cut-off
frequency fris shown in Fig. 7.16. Below fr, the roll-of increases from 2nd-order (12 dB/octave) to 3rd-order
(18 dB/octave).

To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLax at a distance r is obtained from
Eqg. (6.34) to give

1 Znom Wma><27|'f3 Vas po 5
SPLmax = 20logio (rc x 20 x 106\/ REQESS 9B SPL@ Im

where W ax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax-
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To determine the excursion limit:
The maximum peak diaphragm displacement at frequencies well below the suspension resonance is obtained

from Eq. (7.101) to give
n _ L Znom Winax VAS
M Spe \| ReQestfs po

If this value is greater than the rated xmax limit of the drive unit, then a high-pass filter should be employed to
remove all content below the suspension resonance frequency. If this is not possible, then an alternate drive
unit with a greater xmnax limit should be considered

To determine the transmission-line dimensions and filling material:
Determine the flow velocity v from Eqg. (7.137) and the flow resistance of the filling material from Eq. (7.8).
Calculate the length /7 of the transmission-line using Eq. (7.138). Choose a convenient mouth area Sy to fit
around the back of the drive unit and choose a throat area Sy which is about 4-8 times smaller. The volume
of the transmission line Vris then given by Eq. (7.139).
Calculate the specific acoustic resistance Rsrof the filling material from Eq. (7.140) and the transmission-line
cut-off frequency from Eq. (7.141).
The cut-off frequency should be less than one half of the suspension resonance frequency fs. If it is not, then
consider a different filling material with a higher flow resistance Ry Alternatively, increase the length /7 of the
transmission line or reduce the throat area Sy or both.

If we wish to design a stand-alone loudspeaker with a smooth frequency response, the tapered
transmission line shown in Fig. 7.35b is preferable. Although a horn is commonly used as a high-pass
filter because it increases the radiated volume velocity above its cut-off frequency, here we have an
inverted parabolic horn which, as we shall see, acts as a high-pass filter because it attenuates the
volume velocity radiated from its outlet or throat. In order to obtain the smoothest possible response, it
is tuned to roll-off well below the fundamental resonance frequency of the drive unit, which in turn
behaves as though it is mounted in large sealed enclosure except that the filling material may damp the
fundamental resonance slightly. The low-frequency roll-off of a loudspeaker with a transmission-line
enclosure has a 2nd-order slope initially, increasing to 3rd-order below the transmission-line cut-off
frequency.

We shall assume for the remainder of this analysis that ka < 0.5. In other words, we are restricting
ourselves to the very low frequency region where the radiation from both the port and the loudspeaker
is nondirectional. Hence we can draw the simplified model of Fig. 7.36.

7.19.1.1 Acoustical circuit

The acoustical circuit for the transmission line and radiation is given in Fig. 7.36. The series radiation
mass and resistance on the front side of the diaphragm are, respectively, M4 and R4g;. Unlike with the
bass-reflex enclosure, we omit leakage losses as we shall assume that the losses within the lining
material will dominate over all others. Finally, the series radiation mass and resistance from the throat
of the transmission line are, respectively, M4, and Rag,. The values of these quantities are M4, as in
Eq. (7.32), but with a7 instead of a, that is,

MA2 = 0.2026/)0/(1T;
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FIG. 7.36 Analogous acoustical circuit for a loudspeaker hox with a transmission line, which is a reverse
finite horn and may he modelled using the transmission-parameter matrices given in Section 9.13. In the case of
Fig. 7.35 (b) it is parabolic.

The volume velocity of the diaphragm is U, and that of the transmission-line throat outlet is UT.

R4gy as in Eq. (7.31); and

My, is acoustic-radiation mass for the front side of the loudspeaker diaphragm = 0.2026p¢/a
kg/m*. Note that we assume the loudspeaker unit is equivalent to a piston radiating from one
side only in free space.

Ryr1 = 0.01075f 2 is acoustic-radiation resistance for the front side of the loudspeaker diaphragm
in N-s/m> (see Fig. 4.39 for ka > 1.0).

po is density of air in kg/m® (normally about 1.18 kg/m?).

aris effective radius in m of the transmission-line throat. If it is not circular, then let ar = +/S7/,
where S7is the effective area of the throat opening in m”.

Sy = waiy is effective cross-sectional area of the transmission-line mouth in m?.

Sy = a7 is effective cross-sectional area of transmission-line throat outlet in m?.
I71s length of the transmission line in m.

7.19.1.2 Electro-mechano-acoustical circuit

The complete circuit for a loudspeaker with a transmission-line enclosure is obtained by
combining Fig. 6.4(b) and Fig. 7.36. To do this, the acoustical radiation element of the circuit
labeled “2My” in Fig. 6.4(b) is removed, and the circuit of Fig. 7.36 is substituted in its place.
The resulting circuit with the transformer removed and everything referred to the acoustical side is
shown in Fig. 7.37.
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Electrical of loudspeaker radiation Transmission line radiation
N A A
B? (_Hr = ~N7 N \rN_H
U, Mip Ry Cas Ma1_ Runi 1

(R, +R,)S}

(R, i}él)su TC) T’N’v > M
o

FIG. 7.37 Complete electro-mechano-acoustical circuit for a transmission-line loudspeaker.

Rar>

The total force produced at the voice coll tgy the electric currentis p.Sp, where Spis the area oj the diaphragm.
The volume velocity of the diaphragm is U, and that of the transmission-line throat outlet is Ur.

The quantities not listed in the previous paragraph are

e, is open-circuit voltage in V of the audio amplifier.

B is flux density in the air gap in T (1 T = 10" gauss).

[ is length in m of voice-coil wire.

R, is output electrical resistance in Q of the audio amplifier.

Rg is electrical resistance in Q of the voice coil.

a is effective radius of the diaphragm in m.

Myp = Myp/Sh is acoustic mass of the diaphragm and the voice coil in kg/m4.
Cas = CuysS3 is acoustic compliance of the diaphragm suspension in m°/N.
Ras= RMS/S%) is acoustic resistance of the diaphragm suspension in N-s/m°.

If the outlet of the transmission line is closed off so that U equals zero, then Fig. 7.37 essentially
reduces to Fig. 7.6. At very low frequencies the mass of air moving out of the lower opening is nearly
equal to that moving into the upper opening at all instants. In other words, at very low frequencies, the
volume velocities at the two openings are nearly equal in magnitude and opposite in phase.

7.19.1.3 Radiated sound

The outlet in the box of a transmission-line baffle is generally effective only at fairly low frequencies.
At those frequencies its dimensions are generally so small it can be treated as though it were a simple
source. The loudspeaker diaphragm can also be treated as a simple source because its area is often
nearly the same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure a distance r away from the transmission-
line loudspeaker is

(,l)p T ~—]i 7 —7 15}
B+ o ~]47;)(Uce ke _ {peikry, (7.133)

"Br

where

p; and p, are complex sound pressures, respectively from the diaphragm and transmission-line
outlet at distance r.
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r is average distance of the point of observation from the diaphragm and the transmission-line
outlet. Note that r is large compared with the diaphragm and port radii.

ri and rp are actual distances, respectively of the point of observation from the diaphragm and
transmission-line outlet.

U, is complex volume velocity of the diaphragm.

U+ is complex volume velocity of the transmission-line outlet. Note that the negative sign is used
for Uy because, except for phase shift introduced by the transmission line, the air from its throat
outlet moves outward when the air from the diaphragm moves inward.

Also, the complex volume velocity necessary to compress and expand the air inside the transmission-
line is

Up = U.—Ur. (7.134)

If we now let r{ =r, =r by confining our attention to a particular point in space in front of the
loudspeaker where this is true, we get

() ~
5 :%(Uc — Ug)e . (7.135)

Since UC — UT =U B, we have simply that

fpo ’ U B‘

‘ﬁ‘ <7 (7.136)
2r

As with the bass-reflex enclosure, the sound pressure produced at faraway points equidistant from cone

and outlet of a transmission-line loudspeaker is directly proportional to the volume velocity necessary

to compress and expand the air inside the transmission-line.

At very low frequencies, where the wavelength is much greater than the length /7 of the trans-
mission line, U, becomes nearly equal to Ur, and the pressure, measured at points r=rj = ry
approaches zero. In fact, the two sources behave like a dipole so that the radiated sound pressure
decreases by a factor of 2 for each halving of frequency. In addition, if we are below the lowest
resonance frequency of the circuit of Fig. 7.37, the diaphragm velocity U, halves for each halving of
frequency. Hence, in this very low frequency region, the sound pressure decreases by a factor of 8,
which is 18 dB, for each halving of frequency. In other words, the slope is 3rd order. Note that this
decrease is greater than that for a loudspeaker in a closed box or in an infinite baffle (which is 2nd-
order) but less than that for a loudspeaker in a vented box (which is 4th-order). The effect is
somewhat similar to mounting the loudspeaker in a very large flat open-baffle (which is also 3rd-
order).

The flow resistance Ry of the filling material, given by Eq. (7.8) is dependent upon the flow velocity
u and is therefore nonlinear. The problem is that the flow velocity varies with frequency and with
position along the tapered transmission line. This could lead to a very complicated analysis, but if we
make sure that there is enough attenuation within the transmission line for the radiation from the throat
outlet not to interfere too much with the direct radiation from the diaphragm, we need not worry too
much about the accuracy of the model. The flow resistance will mainly affect the damping of the



364 CHAPTER 7 Loudspeaker systems

fundamental resonance of the drive unit over a relatively small range of frequencies. Therefore we set
the rms velocity value to that of the diaphragm at resonance at its maximum displacement:

WgXmax
u= . 7.137
/2 ( )
We then obtain the flow resistance Ryfrom Eq. (7.8). Usually, we set the length /7 to be one quarter of
the wavelength at the suspension resonance frequency fs so that

- <
4f,

This rather naive formula assumes the free-space speed of sound ¢ whereas in the lossy filling material
it is somewhat slower [see Egs. (2.80) and (2.82) for the speed of sound in a material with flow
resistance Ry]. However, this is largely compensated for by the fact that the resonance in a tapered duct
is not a true quarter-wavelength one, but rather occurs when I = aA/(2m), where Jo(a) =0, or Ip = A/
2.61274 (assuming St << Sy7). The volume occupied by the transmission line is

St +Su
a 2

Iy (7.138)

Vr Ir. (7.139)

By examining the asymptotic low-frequency behavior of the tapered transmission line, we find that its
specific resistance Rgp, as seen from the mouth, is

Sm Sm
Rst = ———IrRfIn —. 7.140
ST = g s R g ( )

If the filling material has ample overall specific resistance (> 400 rayls) we can use the following

empirical formula for the transmission-line cut-off frequency
2Py

3Rsrlr

fr= (7.141)

7.19.1.4 Performance

With the information just given, it is possible to calculate the response of the loudspeaker in
a transmission-line enclosure. A complete example is given in the next section.

From Fig. 7.37, we see that, for frequencies below wp, radiation from the transmission-line outlet
(proportional to —Uy) is out of phase with the radiation from the diaphragm (proportional to U,). As
a result, the response at very low frequencies is usually not enhanced by the transmission-line. Above
the cut-off frequency wy; radiation from the throat is in phase with that from the diaphragm at some
frequencies but out of phase at others. However, because the radiation from the throat is attenuated, it
has relatively little influence on the overall response. Consequently, a transmission line enclosure
behaves somewhat like a large open baffle, and the need for a reasonably stiff suspension is even
greater than in the case of a bass-reflex enclosure. A large loudspeaker diaphragm usually is superior to
a small one because the amplitude of its motion is less, thereby reducing nonlinear distortion.

At low-frequencies, the wavelength is usually very large compared to the box dimensions if the
transmission line is folded, so the small resulting phase difference between the outputs of the trans-
mission line and diaphragm will have little effect on the performance.
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An advantage of a transmission-line loaded loudspeaker is that the build-up of pressure inside the
enclosure is much less than inside a closed-box or even a bass-reflex enclosure above the box reso-
nance. Therefore, pressure waves from the rear of the diaphragm are less likely to couple to the walls of
the enclosure and cause unwanted vibrations.

Example 7.4. Transmission-line enclosure design. In the previous part we discussed in detail the
design of a bass-reflex baffle for a low-frequency (woofer) loudspeaker. We presented methods for the
determination of its physical constants, and we showed a comparison between measurements and
calculations.

In this part we shall use a single full-range unit loaded at the rear with a transmission line. The brief
here is to design a compact loudspeaker for domestic use with extended bass response at moderate
listening levels in an enclosure no larger than 2%2 liters. We aim to produce 86 dB SPL @ 1 m using just
2 W of input power, or 92 dB SPL from a stereo pair. We wish to extend the frequency response down to
140 Hz. We assume that the loudspeaker will be placed near a wall in order to support the low frequencies.

A suitable drive unit is the Peerless 2Y2-inch “Tymphany” type 830985. The Thiele—Small
parameters are:

Rp=37Q

Ops = 0.83

Ous = 3.46

fs=140 Hz

Sp=22 cm”

Vig=0.472 L
Then

OresOwms
= — = 0.67.
Ors Qks + Qus

From Eq. (6.48) we can calculate the reference efficiency

8 x 3.14% x 472 x 107° x 1403
0.83 x 344.83

Ey = 100 ~ 0.3%.

In order to calculate the maximum SPL, we first obtain Cyss, Mys, and Bl from Eqgs. (6.27), (6.28), and
(6.30) respectively:

472 x 1070
Cure — — 0.695 mm/N
MS = 0.00222 x 1.18 x 344.82 mm/N,
Myys — ! — 00019k
M X314 x 140)7 x 695 x 106 &
Bl = \/ 3.7 =27T-m.
2 x 3.14 x 140 x 0.83 x 695 x 10~
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We obtain from Eq. (6.33)

V3.7 x2x2.7x0.0022 x 1.18
2 x 3.14 x 3.7 x 0.0019 x 20 x 10~°

SPLow = 20 log]()( ) = 86.7dB SPL @ 1 m.

Next we use Eq. (6.35) to check the peak displacement at fg for 86 dB SPL:

86
B Va3 x 1% 102679 g
Mpeak = 775 1407 % 1.18 x 0.0022 0

However, O75=0.66 so that at resonance the actual displacement is 0.66 x 1.8 = 1.2 mm and the
sound pressure is 86 + 20log;90.66 = 82.4 dB SPL. It turns out that the x,,x value of the drive unit is
2 mm, so there should be no problems with this design provided that the input power is limited to just
2 W at low frequencies. For the purpose of evaluating the flow resistance of the filling material, we take
the flow velocity u from Eq. (7.137) as follows:

27140 x 0.0012
=
V2

Suppose that our filling material, which in this case is lamb’s wool, has a porosity ¢ = 0.98 and an
average fiber diameter of 50 um. From Eq. (7.8) we obtain the flow resistance:

= 0.75m/s.

4
4% 1.86 x 1075 x 0.02 1-—x0.02
0.98 x 502 x 10—12 1.86 x 107> x 0.98
2+ In
2 x50 %1076 x 1.18 x 0.75

6
Ry — += % 0.02
™

= 1433 rayls/m.

Now we turn to the transmission-line dimensions. Let us make the length /7 equal to one quarter
wavelength at fg from Eq. (7.138), so that

344.8
Ir = %140 — 0.62 m.

For convenience, we make the mouth area a square large enough to fit the diameter of the drive unit:

Sy = 7em x 7cm = 49 cm?

and
Sy = Sy /4 = = 12.25 cm?,

which from Eq. (7.139) makes the total volume

12.25 +49) x 1074
Vi = ( +2) x062=19%x103m?or1.9L.
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From Eq. (7.140) this gives a specific resistance value of

49 49
= m x 0.62 x 1433 x In ﬁ = 1642 rayls.

Now from Eq. (7.141) we can calculate the cut-off frequency

Rst

2 x 10°

1= 3 1642 < 0.62

= 65.5 Hz,
which is well below the suspension resonance frequency fs of the drive unit.

Let us now create a semi-analytical simulation model of the design of Fig. 7.38 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.39. Although it is based on the circuit of Fig. 7.37, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current fg from which we obtain the electrical impedance. We are ignoring the generator impedance R,
since in the experimental setup this is negligible compared to Rg. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. From the schematic we create the
transmission matrices required to represent each 2-port network as follows.

1. Coil.
eg B 1 Zg . 2 _c
Ig 0 1 i
where Zg = Rg + jwLg.

2. Electro-mechanical transduction.

el _ 0 Bi . fz — E. fz

i1 B (31)71 0 Uy B Uy
7cm 7cm
|e—>| [«<—>|

1K

9 cm:[ 19 cm
T r 445 cm -
“Throat™—
i/
AbsorbentJ
lining N
3.5cm

35 cm%‘ <« /T

FIG. 7.38 Example of transmission-line enclosure design.
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0,-0. g, -7, i, =0
X O—>— > > O
Tﬁs Tﬁé I:IZAZ Tﬁ7
Y O——— 6 3 O

FIG. 7.39 Semi-analytical model of example transmission-line enclosure design shown in Fig. 7.38 using trans-
mission matrices. The matrix for the transmission line is given in Eq. (9.65) for a reverse parabolic horn.

The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones.

) 17
u3
where Zyp = joMyp + Rys + 1/(jwCys). We must exclude the radiation mass from the diaphragm so

that Myp = Mys — 16pga’/3, where a = \/Sp/=.
4. Mechano-acoustical transduction.

3. Diaphragm.

1
0

Zyup
1

f

U

:

us

f Sp O D D

B[S 0] Z ]

i3 0 Sp Uy Uy
5. Diaphragm radiation.

Pa| |1 Zar| |Ps| _ D. ps

U, 0 1 Us Us
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where Z, is the acoustic radiation impedance of the diaphragm given by Eqgs. (13.116), (13.117), and

(13.118) with a = +/Sp/.

6. Transmission line. Distributed parameter model:

ps | 1 an an| | Pe | _ T Pe
Us ajlaxp —apaz |ay  ay Us Us
where
T
aj = — 5 kxM(J()(kxT)Yl (kxM) —Ji (kxM)Yo(kxT))
st
app = ]EE kxM(Jo(kxT)Yo(kxM) — Jo(kxM)Yo(kxT))
. ST e
a = Jo—= kxM(11 (kxT)Y1 (kxM) — J1 (kxM)Y1 (kxT))
ST ™
ay) = 55 kxys (J1 (k) Yo (kxpg ) — Jo(kxpg) Yy (kxr))
where

XT = STIT/(SM — ST) and XM — SMlT/(SM — ST)

For Zsrand k, we use Egs. (7.10) and (7.11) respectively. The ratio of the throat volume velocity to the
mouth volume velocity

UT/le = 06/05 = 1/6111

is plotted in Fig. 7.40, assuming that the pressure at the throat is virtually zero. We see that the volume
velocity rolls off smoothly above fr=65.5 Hz.
7. Throat radiation.

143

Us

1 0
Zo 1

P7
Us

Uy

In this case, the throat outlet is rectangular and close to a large planar surface so that Z4, may be given
by the impedance of a rectangular piston in an infinite baffle using Eqgs. (13.326) and (13.327), where

ZA2 - (Rs +JXS')/ST

First we evaluate p; at the end of the chain:
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o

|
(4, ]

3
/

/V

N
o
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o
/

10 100 1000 10000

Frequency (Hz)

FIG. 7.40 Graph of the volume velocity attenuNatiorj produced by the transmission-line enclosure design shown in
Fig. 7.38. Curve is calculated from 20 log4|Ut/Uc|.

where

A =C-E-DM-F-T-R =

air  ap
ary ax
Hence p; = é;/a11. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure, which according to Eq. (7.136) is a function of

Up = U.—Ur = Us — Us.
This procedure is fairly straightforward and does not involve any matrix inversion. From the outlet
radiation matrix (7), we obtain
Ur = Us = p7/Zn2
and working back further to the transmission-line matrix (6) we obtain
ps
Us

P71
0

where

n n
N_TR- |™ ™
npp Ny
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so that

= Us = ny1py
and therefore

U.—Ur

(i)

Up = =

s —Us = (n21 — 1/Zan)é/an
The throat volume velocity is given by

Ur = Us = &/(a11Z42)
and the diaphragm volume velocity by

Us = Us = myég/an
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In order to plot the normalized far-field on-axis pressure, we simply divide Up by a reference volume

velocity

ref —

&,BISp
wMysRE

and plot 20 log,o|Ug/Us| as shown in Fig. 7.41. The throat and diaphragm v

20 loglo‘ﬁT/l?ref and 20 logo|Uc/U,er

olume velocities,

~~L
—-"

= U

Measured
= = = Calculated

Normalized on-axis response (dB)

e AN

INEE NN

—

100 1000

Frequency (Hz)

FIG. 7.41 Graphs of the on-axis sound pressure level produced by the transmission-line en
Fig. 7.38.

10000

closure design shown in

The dashed curves are calculated from 20 Iog10|UB/U,ef|. Solid curves are measured.
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FIG. 7.42 Graphs of the on-axis sound pressure level produced by throat and diaphragm of the transmission-line

enclosure design shown in Fig. 7.38.

The dashed curves are calculated from 20 logyo|U7/U,er| and 20 logio| U/ Uyef| for the transmission-line
outlet and diaphragm respectively. Solid curves are measured.

Electrical impedance (Q)
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71—\
I
1
J
|
I
\
\
A \Y
\ =
Measured
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FIG. 7.43 Graphs of the electrical input impedance of the transmission-line enclosure design shown in Fig. 7.38.

The dashed curves are calculated from Zg= |€g/ig| = a11/a21. Solid curves are measured.
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respectively, are plotted separately in Fig. 7.42. Individually, the outputs from the diaphragm and
throat are very smooth, but their combined output shown in Fig. 7.41 does exhibit some very small 1
dB ripples which will be hardly audible. Finally, we can obtain the input impedance from ¢ / i;, where
i, = azip7 and from above p; = é,/ay;. Therefore the input impedance is simply Zg = ayi/ay;, as
plotted in Fig. 7.43.

PART XXV: MULTIPLE DRIVE UNITS

7.20 CROSSOVER FILTERS

Many high-fidelity sound systems employ two or more loudspeaker drive units. One, called a woofer
covers the low-frequency range while the other, called a tweeter, covers the high frequency range.
Sometimes, a third unit or squawker is included to cover the midrange. An electrical network, called
a crossover network, is used to divide the output energy from the amplifier into the different frequency
regions covered by the multiple drive units. Here we shall concentrate on two-way crossovers as the
same rules can be applied when designing loudspeakers with three or more drive units.

Classical crossover filters. Fig. 7.44 shows an outline schematic of a 2-way loudspeaker with
a classical crossover network. The woofer is fed via a nth-order low-pass filter and the tweeter via
a nth-order high-pass filter. The transfer functions of the low-pass and high-pass filters are L, (s) and
H,(s) respectively where s =jw is the complex frequency. These filters are designed such that when
their outputs are summed, they form all-pass filters F,(s) = L, (s) + H,(s), that is |F,(s)| =1 at all
frequencies, although the phase varies except in the case of n = 1. Furthermore, the input impedance is
R at all frequencies, so that the power dissipation is uniform. Low-pass filter circuits of orders n =1 to
6 are shown in Fig. 7.45 along with their transfer functions. The complementary high-pass filter
circuits and transfer functions are shown in Fig. 7.46. The filters in these figures are labeled B1, B12,
and so forth, where the B stands for Butterworth and the superscript denotes the number of cascaded
sections. The even-order filters are commonly referred to as Linkwitz—Riley [23, 24] and are often
favored because the woofer and tweeter are in phase at the crossover frequency, whereas in the case of
odd-order filters they are 90° out of phase, as is seen from the Nyquist plots of Fig. 7.47. This is cited as
reducing the chances of off-axis nulls occurring in the directivity pattern around the cross-over

Tweeter

n™-order

high-pass :I:I:I
— filter H,(s)
Woofer
o n"-order

low-pass :I:I:I

O filter L,(s)

FIG. 7.44 Outline schematic of a 2-way loudspeaker with a classical crossover network.
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FIG. 7.45 Classical low-pass crossover filters: (a) 1st-order; (b) 2nd-order; (c) 3rd-order; (d) 4th-order; (e) 5th-
order; (f) 6th-order.

Li(s)=

Ly(s)=

(s +@oys+ @) (s +@,)

In each case, the inductor and capacitor values are given by L= R/wg and C= 1/(woR) respectively, where
wo = 27fy is the crossover frequency and R is the coil resistance of the woofer. The labels B1, B3? and so forth
are the names of the transfer functions where B stands for Butterworth and the number is the order of the
function. Note that the square in B3? means that it is equivalent to two cascaded 3rd-order Butterworth filters,
making a net 6th-order filter.

frequency [25], although this also largely depends upon the ratio of the wavelength to drive unit
spacing. Obviously, the drive unit spacing should be as small as possible.

On the other hand, odd-order filters have a constant power response [26], regardless of drive unit
spacing, and the coil inductance of the woofer can be included as part of the last inductor in the filter,
thus eliminating the need for a Zobel network for correcting the load impedance as well as giving
greater accuracy. All-pass filters need not be symmetrical [27-29]. If we include the low-frequency
roll-off of the tweeter in its high-pass filter transfer function, the overall order of the filter is increased
by 2. It would be making the low-pass filter to the woofer unnecessarily complicated to increase its
order by the same amount.



7.20 Crossover filters 375

c 1c
o—] R o—] _
K Cl)o _A2
B1 R H/(s)= B1? R H,(9)=—
S+, C:L (s +aw,)
R +

(c) (d) 3

2C 2C 2=C 2C
o— o—
B3 3L R B2? %L 2\/§L R
O 53 O s4
H,(s)=— H,(s)=

() (5> + @5 + 02 (s + @) (205 + @)

(e) N ®

5 7C 0 (Ssenc FICE 1o XS
o—}f il | o—j _
B5 (F+) " SLAEL R B3? 2L 187, 4L SR
o o *

S5 *SG

Hy(s)= Hq(s)=

(s*+ WS + wg)z(s+ a)o)2

2 2 2 2
(57 + 77008 + @05 )(s™ + 7708 + 0y ) (s + @)

FIG. 7.46 Classical high-pass crossover filters: (a) 1st-order; (b) 2nd-order; (c) 3rd-order; (d) 4th-order; (e) 5th-
order; (f) 6th-order.

In each case, the inductor and capacitor values are given by L = R/wg and C= 1/(wgR) respectively, where
wg = 2wlyis the crossover frequency and R is the coil resistance of the tweeter. Note that in the case of the 2nd-
and 6th-order functions, the tweeter terminals must be reversed. The labels B1, B3 and so forth are the
names of the transfer functions where B stands for Butterworth and the number is the order of the function.
Note that the square in B32 means that it is equivalent to two cascaded 3rd-order Butterworth filters, making
a net 6th-order filter.

High-pass crossover filters which take into account the native response of the tweeter. Classical
crossover filters make two assumptions about the loudspeaker drive units. First, they assume that
the load impedance is a constant resistance at all frequencies. Second, they assume that the
frequency responses of the drive units are flat with zero phase shift in the crossover frequency
range. If we were to select drive units and crossover frequencies such that these assumptions were
approximately true, we would end up with more drive units than necessary in a complicated and
expensive design, because each unit would be working over only part of its usable frequency
range.
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3rd-order high-pass filter with a series capacitor. The simplest high-pass filter is just a series
capacitor, as shown in Fig. 7.48. Using the same methodology as in Secs. 7.6 and 7.12, we can write the
following expression for the radiated sound:

é,BISppy e
(Rg + RE)MMS 47r

plr) = (s) (7.142)

where the 3rd-order frequency-response function G(s) is given by

3

s
G(s) = 7.143
(S) S3+P2S2+P1S—|—P0 ( )

and the coefficients of the denominator polynomial in s = jw are given by
Py = € 1 g (7.144)
Orc
Py = <wc+—wE )wc (7.145)
Omc

Py = w%wE (7.146)

where w¢ is the angular resonant-frequency of the tweeter in its closed-box enclosure, Q¢ is its
mechanical Q factor, Qrc is its total Q factor, and wg is the cut-off frequency of the electrical filter
comprising the external capacitor C and coil resistance Rg:

1
= — 7.147
WE = pC ( )
The electrical Q factor is given by
OmcOrc
Opc = ——m——— (7.148)
Omc — Orc

The transfer function of a 3rd-order Butterworth high-pass filter is shown in Fig. 7.46(c) so that

Py = 2wy (7.149)

FIG. 7.47 Nyquist plots for classical crossover filters in the complex plane: (a) 1st-order; (b) 2nd-order;
(c) 3rd-order; (d) 4th-order; (e) 5th-order; (f) 6th-order.

Black solid curves show the low-pass transfer functions L,(s), gray solid curves the high-pass transfer functions
H,(s), and black dotted curves the resultant all-pass transfer functions F,(s) = L(s) + H,(s), where s= jw

is the complex frequency and n is the order of the crossover. Note that for the 1st-order crossover, there is no
dotted curve because the resultant is always + 1, marked by a pentagram. Black dots indicate the crossover
frequencies at which w = wg and arrows show the direction of increasing frequency. The maximum phase shift of
FA(s)isOforn=1, wfor n=2, 2w for n=3, 4, 5, and 37 for n=6.
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C

- I Tweeter

FIG. 7.48 3rd-order high-pass filter in which the native response of tweeter provides the 2nd-order part of the
transfer function and the series capacitor provides the 1st-order part.

Py = 20} (7.150)

Py = wy (7.151)

where wy is the angular crossover frequency. Equating Eqs. (7.144) to (7.146) with Eqgs. (7.149) to
(7.151) and solving for wy, wg, and Qpc gives

Wy — 20mcwcwd + Omcwz = 0 (7.152)

which has to be solved for wq. Then

wp = 20 (7.153)
we
and
w
Orc = 53—~ < (7.154)
Wy — WE

Numerical values for these solutions are given in Table 7.5. A tweeter unit should be chosen which has
Omc and Qpc values that match, as closely as possible, those in one of the rows of the table,

Table 7.5 Parameters for 3rd-order Butterworth high-pass crossover filter using a series
capacitor

Quic Qec Qrc folfc felfc
1.0 00 1.0000 1.0000 1.0000
1.2 4.1510 0.9309 0.8921 0.7099
1.5 2.3729 0.9191 0.8318 0.5754
2.0 1.7039 0.9201 0.7892 0.4916
3.0 1.83392 0.9259 0.7564 0.4327
4.0 1.2112 0.9297 0.7424 0.4091
5.0 1.1457 0.9322 0.7346 0.3964
10 1.0343 0.9374 0.7202 0.3735
o0 0.9428 0.9428 0.7071 0.3535




7.20 Crossover filters 379

remembering that the Q¢ value will be modified by any series resistance added to match the sensi-
tivity of the tweeter to that of the woofer. Then the crossover frequency fy is given as a multiple of fc.
For example, if the Qyc and Qgc values are 2 and 1.7 respectively and the resonance frequency is
fc =2 kHz, we use the 4th row of Table 7.5 to arrive at a crossover frequency of

fo = 0.7892 x 2 = 1.56 kHz
and an electrical cut-off frequency of
fe = 04916 x 2 = 0.98 kHz

If the coil resistance is 6 €, the value of the capacitor is then given by

1 1
© 2@feRE 2% 3.14 x 980 x 6

= 27 uF

Unfortunately, choosing a tweeter to use with this type of filter is not so easy, as few manufacturers
provide much information about their tweeters, which is strange considering that woofers now come
with a full set of Thiele—Small parameters practically as standard (Thiele-Small parameters are dis-
cussed in Sec. 6.5). Let this be considered as a plea to manufacturers to rectify the situation and
provide all the data necessary to design the crossover filter.

Note that for higher values of Qyc, the crossover frequency fj is about half an octave below the
resonance frequency fc. Hence the working range of the tweeter is extended. In fact many commercial
closed-box loudspeakers have a capacitor in series with the woofer in order to augment the bass
response [30]. However, this advantage is reduced as Qysc approaches unity.
4th-order high-pass filter with a series capacitor and shunt inductor. The 4th-order high-pass filter
is shown in Fig. 7.49. Using the same methodology as in Secs. 7.6 and 7.12, we can write the following
expression for the radiated sound:

é,BISppy eI
(Rg +RE)MMS 47r

p(r) =

G(s) (7.155)

where the 4th-order frequency-response function G(s) is given by

4
N
G(s) = 7.156
(s) s+ P3s3 + Pys? + Pis+ Py ( )
‘ T t
I weeter

FIG. 7.49 4th-order high-pass filter in which the native response of tweeter provides one 2nd-order part of the
transfer function and the series capacitor and shunt inductor provide the other.
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and the coefficients of the denominator polynomial in s = jw are given by

wc WE

Py = — 4= (7.157)
7 0rc ' Ok
WCWE
Py = Wi+ wh+ (7.158)
€ E T OmcQk
WE wc
Pl = |—+— |wcw (7.159)
' <QTC QE> vE
Py = wiw?k (7.160)

where w¢ is the angular resonant-frequency of the tweeter in its closed-box enclosure, Qyc is its
mechanical Q factor, Qyc is its total Q factor, and wg is the cut-off frequency of the electrical filter
comprising the external capacitor C and inductor L:

1

= — 7.161
WE = 75 ( )
The electrical Q factor of the filter is given by
Or = wgRgC (7.162)
The electrical Q factor of the tweeter is given by
OumcQrc
Opc = ——M———— (7.163)
s Omc — Qrc
The transfer function of a 4th-order Linkwitz-Riley or B2? high-pass filter is shown in Fig. 7.46(d),
so that
P3 = 2V 2wy (7.164)
P, = 4&)% (7.165)
Py = 2v2u} (7.166)
Py = wg (7.167)

where wy is the angular crossover frequency. Equating Eqgs. (7.157) to (7.160) with Egs. (7.164) to
(7.167) and solving for wg, wg, and Qpc gives

33
6 _ 3,2 2+2\/_‘*)c‘*)0

Wy — 3w 2 — 30t + 0wl =0 (7.168)
0 Cc*0 QMC c™0 C .



which has to be solved for wgy. Then

and

Ok

Orc

2,2
WoWe
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= 2,2 2
Omc(dwgws — wg

Qpwz

)

w0(2V2Qpwc — wp)
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(7.169)

(7.170)

(7.171)

Numerical values for these solutions are given in Tables 7.6 and 7.7. In Table 7.6, the crossover
frequency fj if below the tweeter’s resonance frequency fc and in Table 7.7 f; is above fc. The latter is

Quc

1/y2
1.0
2.0
3.0
4.0
5.0
10

o]

Qec

e}
3.2743
1.3924
1.1604
1.0703
1.0224
0.9380
0.8660

Qrc

0.7071
0.7660
0.8209
0.8368
0.8444
0.8489
0.8576
0.8660

folfc

1.0000
0.6666
0.5712
0.5506
0.5415
0.5363
0.5266
0.5176

felfc

1.0000
0.4444
0.3263
0.3031
0.2932
0.2876
0.2773
0.2679

Table 7.6 Solution 1 parameters for 4th-order Linkwitz—Riley (B22) high-pass crossover filter
using a series capacitor and shunt inductor

Qe

0.7071
0.7660
0.8209
0.8368
0.8444
0.8489
0.8576
0.8660

In this solution the crossover frequency fq is below the tweeter resonance frequency fc.

Quc

1/y2
1.0
2.0
3.0
4.0
5.0
10

[ee)

Qec

oo
3.2743
1.3924
1.1604
1.0703
1.0224
0.9380
0.8660

Qrc

0.7071
0.7660
0.8209
0.8368
0.8444
0.8489
0.8576
0.8660

folfc

1.0000
1.5001
1.7506
1.8161
1.8468
1.8646
1.8989
1.9318

felfc

1.0000
2.2502
3.0646
3.2985
3.4107
3.4767
3.6061
3.7321

Table 7.7 Solution 2 parameters for 4th-order Linkwitz—Riley (B22) high-pass crossover filter
using a series capacitor and shunt inductor

Qe

0.7071
0.7660
0.8209
0.8368
0.8444
0.8489
0.8576
0.8660

In this solution the crossover frequency fq is above the tweeter resonance frequency fc.
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a safer solution as it is less likely to lead to excessive diaphragm excursion or a dip in the input
impedance. A tweeter unit should be chosen which has Qysc and Qg¢ values that match, as closely as
possible, those in one of the rows of the table, remembering that the Qg value will be modified by any
series resistance added to match the sensitivity of the tweeter to that of the woofer. Then the crossover
frequency fp is given as a multiple of fc. For example, if the Opc and Qpc values are 3 and 1.2
respectively and the resonance frequency is fc =2 kHz, we use the 4th row of Table 7.7 to arrive at
a crossover frequency of

fo = 1.8161 x 2 = 3.63 kHz
and an electrical cut-off frequency of

fe = 3.2985 x 2 = 6.60 kHz

If the coil resistance is 6 Q, the value of the capacitor is then given by

c— Or _ 1
2nfeRE | 2 % 3.14 x 6600 % 6

= 3.9 uF

and the value of the inductor is given by

1 1
L= = 5 = 150 uH
2afs)’C (2 x 3.14 x 6600)> x 3.9 x 106

Effect of phase delay of 2nd-order crossover on time-domain response to square waves. Although
we have already discounted the use of a 2nd-order crossover when taking into account the frequency
response of the tweeter, this serves as a relatively simple example of what the phase delay of
a crossover does to the shape of a square wave. Obviously, the effects will only be more pronounced in
higher order crossover filters. A square wave W(f) can be described by an infinite series of sinusoidal
waves:

i t
PP (7.172)

where w, = (2n + 1)w are odd harmonics. According to Table 6.2, the Laplace transform of the square
wave is

W(s) = % 3 n (7.173)

Thus the frequency domain response of the 2nd-order filter to a square wave is

G(s) = (La(s) + Ha(s)) - W(s)
(7.174)

wi—s? 4 Wy
= Fz(s)-W(S) = 4(0)24_5,)2 ;nz::o(zn—i_ 1)(s2+w%)
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In other words, G(s) is the sum of the outputs of the low-pass and high-pass filters and thus constitutes
an all-pass filter. Taking the inverse Laplace transform then gives us the time-domain response to
a square wave:

" L 7700 o e ﬂ i 20wy (e—wot _ cosw,,t) + (w% — w%)sinwnt (7.175)
T ) TV TR 4 (2n +1) (w3 + w2) '
y—j®

The distortion of a square wave produced by the phase delay of a 2nd-order all-pass crossover filter is
shown in Fig. 7.50, where the square wave frequency is f = 1 kHz and the crossover frequency is fy = 4
kHz. Clearly, the output waveform is radically different from the input one.

What we have is an imperfect time delay filter. If it were ideal, the phase would increase linearly
with frequency in Fig. 7.47 so that it would keep wrapping round indefinitely, whereas in reality it
stops at w for n = 2, 2w for n = 3, 4, 5 and 37 for n = 6. Hence the time delay t decreases above the
crossover frequency according to

LF>(s) 2 w
T = = ——arctan—
w © wo

The effect of this is to delay the low frequencies relative to the high ones so that the sound from the
tweeter arrives at the listener before that from the woofer.

The audibility of phase distortion has provoked a lively debate over the years [31-35], but why not

design the loudspeaker correctly in the first place so that there need not be any doubt about its
accuracy? As we shall see in the next section, the solution to this problem need not be complicated if
we approach it holistically and take into account all the factors that affect the response of the loud-
speaker, including the baffle effect.
Crossover filters with zero phase shift. In the previous section we studied the waveform distortion
produced by classical crossover networks. We also saw that the simplest high-pass filter H(s) is a series
capacitor (see Fig. 7.48). Let us now take its transfer function and deduce what low-pass filter L(s)
when summed with it will produce an output which is real and constant at all frequencies, that is,
simply unity:

L(s)+H(s) = 1 (7.176)

where

$3

Hs) = (s + wo) (52 + wos + w3) (7.177)

Hence

L(s) = 1 — H(s) = —2 257 4 205 + 0 (7.178)
s+wy 52+ wos + W
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FIG. 7.50 Distortion of a square wave produced by the phase delay of a 2nd-order all-pass crossover filter, where
the output voltage is the sum of the output voltages of the low-pass and high-pass filters.

The square wave frequency is 1 kHz and the crossover frequency is 4 kHz.

The first part of this transfer function is just simple 1lst-order low-pass filter. The second part is
a shelf with a 6 dB boost at frequencies above the crossover frequency wg. As it happens, such
a boost is provided by the baffle effect whereby the woofer acts as a point source when the
wavelength is large compared with the dimensions of the box but behaves like a piston in an
infinite baffle when the wavelength is small. Comparing Eq. (7.178) with Eq. (7.38) for the on-
axis response of a closed-back piston in free space, we deduce that the ideal crossover
frequency is

fo = ¢/(2ma) (7.179)
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It should be noted that the methods developed in this chapter are by no means perfect, because of the
assumptions we have made about the baffle effect and the drive units behaving as perfectly rigid flat
pistons. However, computer algorithms have been developed [36] which can optimize the crossover
component values taking into account the measured responses of the drivers.

Example 7.4. Crossover for woofer of Example 7.2. In this example we shall implement a 3rd-order
Butterworth high-pass filter using a series capacitor. Because the tweeter will be mounted in a sphere,
we shall design a network to compensate for the 6 dB lift associated with a point source in a sphere (see
Fig. 7.14). The low-pass section will be designed to give an all-pass overall response with zero phase
shift, as discussed in the previous section. Hence the low-pass section will use just a series inductor
together with the 6 dB lift due to the baffle effect, using a closed-back piston as a model (see Fig. 7.15).
Since the woofer occupies almost the full width of the box, we will take a as 9.4 cm which, using Eq.
(7.179), gives us a crossover frequency of

fo = 344.8/(2 x 3.14 x 0.094) = 584 Hz

Hence the value of the series inductance needed is

Rg 6.27

L = =
DT 2nfy T 2% 3.14 x 584

= 1.71mH

However, the coil inductance is 0.71 mH, so to make up the difference we will use an inductor with
a value of 1.71 — 0.71 = 1.0 mH. Next we need to choose a tweeter suitable for a crossover frequency
of 584 Hz. The SEAS model 27TTFNC/GW has a resonance frequency of fc = 750 Hz and its 27 mm
titanium dome has a very high stiffness to mass ratio, which gives an extended flat frequency response.
The effective area of the dome is Sp = 7 cm?. The maximum sound pressure of the woofer has already
been specified as 99 dB SPL at a distance of » = 1 m. At the crossover frequency fy, the sound pressure
produced by the tweeter is 3 dB less than this, that is 96 dB SPL, and decreases at a rate of
18 dB/octave below fy. The peak displacement at f; is obtained from Eq. (6.35), except that here we
double the result because at f; the tweeter is radiating omnidirectionally rather than into half-space
from an infinite baffle

C2V2rx 10 S 2% 1414 x1x10% 3

— = = 2
peak 2poSo 314 %5842 x 118 x 7 x 104 _ ~"™

Although this is stretching the tweeter to its absolute limit, this limit is unlikely to be reached under
normal listening conditions as, at frequencies above and below f, the displacement is reduced. Using
the method described in Sec. 6.10 for measuring the Thiele-Small parameters, we estimate the Q
factors from the manufacturer’s impedance curve to be

Qpc = 1.2

Omc = 2.1

Also, the quoted sensitivity is 91.5 dB SPL in a baffle at 1 m with an input voltage of 2.83 Vrms or 85.5
dB SPL in free space. However, the woofer has a sensitivity of 80.2 dB SPL in free space, so the
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tweeter needs a series resistance to match its sensitivity to that of the woofer. If Rg =4.9 Q, then the
series resistor value is

R, = RE(lo(Tweeter Senitivity—Woofer Sensitivity) /20 __ 1)
= 4.9 x (10855-802/20 _ 1) = 41Q =39Q
This will modify the value of Qgc as follows:

R 3.9
= (14+— =(1+— 1.2 =22
Okc < +RE)QEC ( +4.9> X

The values of Q¢ and Q' are close enough to those of the 4th row of Table 7.5 for us to establish the
optimum crossover and electrical cut-off frequencies f; and fr respectively:

fo = 0.789 x fc = 0.789 x 750 = 592 Hz

Je = 0492 x fc = 0.492 x 750 = 369 Hz

from which we determine the series capacitor value:

1 1

C = =
" T 2nfp(RE+R1) 2 x3.14 % 369 x (49 +3.9)

= 49 uF = 47 uF

Happily, the value of f; practically coincides with that which we determined from Eq. (7.179) at
the beginning of this example. Finally, we need to correct for the 6 dB lift in the response of the
tweeter due to the baffle effect. We will simplify this by mounting the tweeter on a wooden
sphere so that we can model it as a point source on a sphere of radius R=7.5 cm. We then
equalize the 6 dB lift using the shelf filter involving L; in parallel with R,. In order to produce a 6
dB cut, we set

Ry =R +Rg =39+49 =88Q=82Q

Then the transfer function of the point source on a sphere (producing a 6 dB lift) is the inverse of the
transfer function of the shelf filter:

2 Ry/L
D(0) = s+ Ry /Ly
s+ Ry/Ly

Comparing this with Eq. (7.36) for the point source on a sphere yields

R:R 82 x0.075

Ay ) H = 1mH
e T 2x3aag  0%m m

L, =
Thus the 6 dB transition takes place between f| = Ry/(2wL;) = 1.3 kHz and f, = Ry/(wLy) =2.6
kHz, which is far enough above the crossover frequency of fy =592 Hz for this network not to

interfere significantly with the operation of the crossover network. The network is shown in
Fig. 7.51.
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C
R, R ! Tweeter

L
F\O/\O/LO,-\ Woofer

FIG. 7.51 Crossover network of Example 7.4 with a crossover frequency of fy = 592 Hz.

The values of the crossover circuit elements are R; =3.9Q (25 W), R, =82 Q (15W), 1 =L,=1 mH, and
Cy =50 pF. The woofer is a Bandor type 100DW/8A mounted in a closed-box baffle as described in Example 7.2
and shown Fig. 7.18. The tweeter is a SEAS type 27TTFNC/GW mounted in a 15 cm diameter sphere.

FIG. 7.52 Section view of a Blade UniQ two-way drive unit.

The tweeter is located at the center of the woofer behind a “tangerine” phase plug and has its own independent
voice coil. Note that the woofer diaphragm is driven half way along its radius in order to eliminate the first radial

mode together with its odd-order harmonics.
Courtesy of KEF.
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7.21 DUAL CONCENTRIC DRIVE UNITS

A difficulty with mounting a woofer and tweeter side by side or one above the other is that the path that
the sound has to travel from each of the loudspeakers to a listener will be different in different parts of
the listening room. Hence, in the vicinity of the crossover frequencies, cancellation of the sound will
result at some parts of the room, and addition will occur at others.

To avoid this effect, the loudspeakers are sometimes mounted concentrically i.e., the tweeter is
placed behind and on the axis of the woofer (see Fig. 7.52). In this arrangement, the diaphragm of the
woofer acts as a horn and the tweeter usually has a phase plug in front of it. Horn loudspeakers will be
discussed in greater detail in Chapter 9.
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