
The wave equation and solutions
CHAPTER
2

CHAPTER OUTLINE
21

21

22

22

24

25

27

28

28

29

29

29

30

31

37

46

47

48

51

54

54

55

59
Part III: The Wave Equation...................................................................................................................

2.1 Introduction ...................................................................................................................................

2.2 Derivation of the wave equation ......................................................................................................

2.2.1 The equation of motion ................................................................................................

2.2.2 The gas law.................................................................................................................

2.2.3 The continuity equation ...............................................................................................

2.2.4 The wave equation in rectangular coordinates ................................................................

2.2.5 The wave equation in cylindrical coordinates .................................................................

2.2.6 The wave equation in spherical coordinates ...................................................................

2.2.7 General one-dimensional wave equation (Webster’s equation) .........................................

Part IV: Solutions of the Wave Equation in One Dimension.......................................................................

2.3 General solutions of the one-dimensional wave equation ..................................................................

2.3.1 General solution ..........................................................................................................

2.3.2 Steady-state solution ...................................................................................................

2.4 Solution of wave equation for air in a tube terminated by an impedance............................................

2.5 Solution of wave equation for air in a tube filled with absorbent material ..........................................

2.6 Freely traveling plane wave ............................................................................................................

2.7 Freely traveling cylindrical wave.....................................................................................................

2.8 Freely traveling spherical wave.......................................................................................................

Part V: Solutions of the Helmholtz Wave Equation in three Dimensions.....................................................

2.9 Rectangular coordinates .................................................................................................................

2.10 Cylindrical coordinates.................................................................................................................

2.11 Spherical coordinates...................................................................................................................
PART III: THE WAVE EQUATION

2.1 INTRODUCTION
We have already outlined in a qualitative way the nature of sound propagation in a gas. In this chapter we
shall put the physical principles described earlier into the language of mathematics. The approach is in
two steps. First, we shall establish equations expressing Newton’s second law of motion, the gas law, and
the laws of conservation of mass. Second, we shall combine these equations to produce a wave equation.

The mathematical derivations are given in two ways: with and without use of vector algebra. Those
who are familiar with vector notation will appreciate the generality of the three-dimensional vector
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22 CHAPTER 2 The wave equation and solutions
approach. The two derivations are carried on in parallel; on the left sides of the pages, the one-
dimensional wave equation is derived with the use of simple differential notation; on the right sides,
the three-dimensional wave equation is derived with the use of vector notation. The simplicity of the
vector operations is revealed in the side-by-side presentation of the two derivations.
2.2 DERIVATION OF THE WAVE EQUATION

2.2.1 The equation of motion

If we write Newton’s second law for a small volume of gas located in a homogeneous medium, we
obtain the equation of motion, or the force equation as it is sometimes called. Imagine the small
volume of gas to be enclosed in a box with weightless flexible sides (Fig.2.1).
Δy

Δx

Δz

x

Area = ΔyΔz

FIG. 2.1 The very small “box” of air shown here is part of a gaseous medium in which the sound pressure increases

from left to right at a space rate of vp/vx (or, in vector notation, grad p). The sizes of the dots indicate the magnitude

of the sound pressure at each point.

One-dimensional derivation [1] Three-dimensional derivation [2]

Let us suppose that the box is situated in
a medium where the sound pressure p
increases from left to right at a space rate of
vp/vx (see Fig. 2.1).

Let us suppose that the box is situated in a medium (see
Fig. 2.1) where the sound pressure p changes in space at
a space rate of

grad p ¼ Vp ¼ i
vp

vx
þ j

vp

vy
þ k

vp

vz
;

where i, j, and k are unit vectors in the x, y, and z
directions, respectively, and p is the pressure at
a point.
Assume that the sides of the box are completely frictionless; i.e., any viscous drag between gas
particles inside the box and those outside is negligible. Thus the only forces acting on the enclosed gas
are due to the pressures at the faces of the box.

The difference between the forces acting on the two sides of our tiny box of gas is equal to the rate
at which the force changes with distance times the incremental length of the box:
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Force acting to accelerate the box in the positive
x direction

Force acting to accelerate the box in the positive
direction

¼ �
�
vp

vx
Dx

�
DyDz : (2.1a) ¼ �i

��
vp

vx
Dx

�
DyDz þ j

�
vp

vy
Dy

�
DxDz

þ k

�
vp

vz
Dz

�
DxDy

�
: (2.lb)
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V

vu

vt
¼ r0

vu
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; (2.3a)

ere u is the average velocity of the gas in the
x” in the x direction, r0 is the space average
the instantaneous density of the gas in the
, andM¼ r0V is the total mass of the gas in
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� vp

vx
¼ r0

vu

vt
: (2.4a)
Note that the positive gradient causes an acceleration of the box in the negative direction of x.
Division of both sides of the above equation by Dx
Dy Dz¼ V gives the force per unit volume acting to
accelerate the box:

Division of both sides of the equation by Dx Dy
Dz¼ V gives the force per unit volume acting to
accelerate the box:

f

V
¼ �vp

vx
: (2.2a)

f

V
¼ �Vp: (2.2b)
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By Newton’s Law, the force per unit volume (f/V) of Eq. (2.2) must be equal to the time rate of
change of the momentum per unit volume of the box. We have already assumed that our box is
a deformable packet so that the mass of the gas within it is always constant. That is,
f

V
¼ �Vp ¼ M

V

Dq

Dt
¼ r0

Dq

Dt
; (2.3b)

s the average vector velocity of the gas in the
is the average density of the gas in the box, and
s the total mass of the gas. in the box. D/Dt is not
partial derivative but represents the total rate of
e of the velocity of the particular bit of gas in the
dless of its position, i.e.,

Dq

Dt
¼ vq

vt
þ qx

vq

vx
þ qy

vq

vy
þ qz

vq

vz
;

qy , and qz are the components of the vector
elocity q.

ctor particle velocity q is small enough, the rate of
f momentum of the particles in the box can be
ated by the rate of change of momentum at a fixed
/Dtz vq/vt, and the instantaneous density r0 can
ximated by the average density r0. Then,

� Vp ¼ r0
vq

vt
: (2.4b)
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The approximations just given are generally acceptable provided the sound pressure levels being

considered are below about 110 dB re 20 mPa. Levels above 110 dB are so large as to create hearing
discomfort in many individuals.
2.2.2 The gas law

If we assume an ideal gas, the Charles–Boyle gas law applies to the box. It is

PV ¼ RT (2.5)

whereP is the total pressure in the box,V is the volume equal toDxDyDz,T is the absolute temperature
in �K, andR is a constant for the gaswhosemagnitude is dependent upon themass of gas chosen. [3]Using
this equation, we can find a relation between the sound pressure (excess pressure) and an incremental
change inV for our box.Beforewe can establish this relation, however,wemust knowhow the temperature
T varies with changes in P and V and, in particular, whether the phenomenon is adiabatic or isothermal.

At audible frequencies the wavelength of a sound is long compared with the spacing between air
molecules. For example, at 1000 Hz, thewavelength l equals 0.34 m, as comparedwith an intermolecular
spacing of 10-9 m. Now, whenever a portion of any gas is compressed rapidly, its temperature rises, and,
conversely, when it is expanded rapidly, its temperature drops. At any one point in an alternating sound
field, therefore, the temperature rises and falls relative to the ambient temperature. This variation occurs
at the same frequency as that of the sound wave and is in phase with the sound pressure.

Let us assume, for the moment, that the sound wave has only one frequency. At points separated
by one-half wavelength, the pressure and the temperature fluctuations will be l80� out of phase with
each other. Now the question arises, is there sufficient time during one-half an alternation in the
temperature for an exchange of heat to take place between these two points of maximally different
temperatures?

It has been established [4] that under normal atmospheric conditions the speed of travel of a thermal
diffusion wave at 1000 Hz is about 0.5 m/s, and at 10,000 Hz it is about 1.5 m/s. The time for one-half an
alternation of 1000 Hz is 0.0005 s. In this time, the thermal wave travels a distance of only 0.00025 m.
This number is very small compared with one-half wavelength (0.17 m) at 1000 Hz. At 10,000 Hz the
heat travels 7.5� 10-5 m, which is a small distance compared with a half wavelength (1.7� 10-2 m).
It appears safe for us to conclude, therefore, that there is negligible heat exchange in the wave in the
audible frequency range. Gaseous compressions and expansions of this type are said to be adiabatic.

For adiabatic expansions, the relation between the total pressure and the volume is known to be [5]

PVg ¼ constant; (2.6)

where g is the ratio of the specific heat of the gas at constant pressure to the specific heat at constant
volume for the gas. This equation is obtained from the gas law in the form of Eq. (2.5), assuming
adiabatic conditions. For air, hydrogen, nitrogen, and oxygen, i.e., gases with diatomic molecules,

g ¼ 1:4:

Expressing Eq. (2.6) in differential form, we have

dP

P
¼ �gdV

V
: (2.7)
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Let

P ¼ P0 þ p; V ¼ V0 þ s; (2.8)

where P0 and V0 are the undisturbed pressure and volume, respectively, and p and s are the incremental
pressure and volume, respectively, owing to the presence of the sound wave. Then, to the same
approximation as that made preceding Eq. (2.4) and because p<< P0 and s << V0,

p

P0
¼ �gs

V0
: (2.9)

The time derivative of this equation gives

1

P0

dp

dt
¼ � g

V0

ds
dt
: (2.10)

2.2.3 The continuity equation

The continuity equation is a mathematical expression stating that the total mass of gas in a deformable
“box” must remain constant. Because of this law of conservation of mass, we are able to write a unique
relation between the time rate of change of the incremental velocities at the surfaces of the box.
One-dimensional derivation Three-dimensional derivation
Refer to Fig. 2.2. If the mass of gas within the
box remains constant, the change in volume s
depends only on the difference of displacement
of the air particles on the opposite sides of the
box. Another way of saying this is that, unless
the air particles adjacent to any given side of the
box move at the same velocity as the box itself,
some will cross into or out of the box and the
mass inside will change.

If the mass of gas within the box remains constant,
the change in incremental volume s depends only on the
divergence of the vector displacement. Another way of
saying this is that, unless the air particles adjacent to
any given side of the box move at the same velocity as
the side of the box itself, some will cross into or out of
the box and the mass inside will change; so

In a given interval of time the air particles on the
left-hand side of the box will have been displaced xx.
In this same time, the air particles on the right-hand
side will have been displaced

xx þ
vxx

vx
Dx:

The difference of the two quantities abovemultiplied

by the area DyDz gives the increment in volume s

s ¼ vxx

vx
DxDyDz (2.11a)

or

s ¼ V0 div x ¼ V0 V$x (2.11b)

s ¼ V0
vxx

vx
: (2.12)
continued on next page
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Differentiating with respect to time yields, Differentiating with respect to time yields,

vs
vt

¼ V0
vu

vx
; (2.13a)

vs
vt

¼ V0 V$q; (2.13b)
IG

r
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Δz

Volume at one 
instant equals 
Δx Δy Δz

(a)

0

.2 Change in volume of the box with change in pos

(a) and (b) it is seen that the incremental change
where u is the instantaneous particle velocity.
 where q is the instantaneous particle velocity.
Example 2.1. In the steady state, that is,

vu=vt ¼ ju~u ¼
ffiffiffi
2

p
urms;

determine mathematically how the sound pressure in a plane progressive sound wave (one-dimen-
sional case) could he determined from measurement of particle velocity alone.

Solution. From Eq. (2.4a) we find in the steady state that

� vprms
vx

¼ jur0urms:

Written in differential form,

� Dprms ¼ jur0urmsDx:

If the particle velocity is 1 cm/s, u is 1000 rad/s, and Dx is 0.5 cm, then

Dprms ¼ �j0:005� 1000� 1:18� 0:01

¼ �j0:059 Pa:

We shall have an opportunity in Chapter 5 of this text to see a practical application of these equations to
the measurement of particle velocity by a velocity microphone.
0

Δy

zyx
x

x x ΔΔΔ
∂

∂
+Δ )(

ξ

Volume at another 
instant equals 

zyx
x

x x ΔΔΔ
∂

∂
+Δ )(

ξ

(b)

ξx

Δz

ition.

in volume of the box is s¼ (vxx /vx) Dx Dy Dz.
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2.2.4 The wave equation in rectangular coordinates
q

One-dimensional derivation Three-dimensional derivation
The one-dimensional wave equation is obtained by
combining the equation of motion (2.4a), the gas law
(2.10), and the continuity equation (2.13a).
Combination of (2.10) and (2.3a) gives

The three-dimensional wave equation is obtained
by combining the equation of motion (2.4b), the
gas law (2.10), and the continuity equation
(2.13b). Combination of (2.10) and (2.13b) gives

vp

vt
¼ �gP0

vu

vx
: (2.14a)

vp

vt
¼ �gP0 V$q: (2.14b)

Differentiate (2.14a) with respect to t: Differentiate (2.14b) with respect to t:

v2p

vt2
¼ �gP0

v2u

vtvx
: (2.15a)

v2p

vt2
¼ �gP0 V$

vq

vt
: (2.15b)

Differentiate (2.4a) with respect to x: Take the divergence of each side of Eq. (2.4b):

� v2p

vx2
¼ r0

v2u

vxvt
: (2.16a) � V$ ðVpÞ ¼ r0 V$

vq

vt
: (2.16b)

Assuming interchangeability of the x and t derivatives,
and combining (2.15a) and (2.16a), we get

Replacing the V$(V p) by V2p, we get

v2p

vx2
¼ r0

gP0

v2p

vt2
: (2.18a) � V2p ¼ r0 V$

vq

vt
; (2.17)

where V2 is the operator called the Laplacian.
Combining (2.15b) and (2.17), we get

V2p ¼ r0 v2p
2
: (2.18b)
gP0 vt
Let us, by definition, set
c2 ¼ gP0

r0
: (2.19)

We shall see later that c is the speed of propagation of the sound wave in the medium. Also, the

uantity gP0 is the bulk modulus of the fluid medium.

We obtain the one-dimensional wave equation We obtain the three-dimensional wave equation

v2p

vx2
¼ 1

c2
v2p

vt2
: (2.20a) V2p ¼ 1

c2
v2p

vt2
: (2.20b)

In rectangular coordinates

V2ph
v2p

vx2
þ v2p

vy2
þ v2p

vz2
: (2.21)
continued on next page
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We could also have eliminated p and retained u, in
which case we would have

We could also have eliminated p and retained q,
in which case we would have

v2u

vx2
¼ 1

c2
v2u

vt2
: (2.22a) V2q ¼ 1

c2
v2q

vt2
; (2.22b)

where V2q ¼ VðV$qÞwhen there is no rota-

tion in the medium.
Equations (2.20) and (2.22) apply to sound waves of “small” magnitude propagating in a source-
free, homogeneous, isotropic, frictionless gas at rest.

2.2.5 The wave equation in cylindrical coordinates

The one-dimensional wave equations derived above are for plane-wave propagation along one
dimension of a rectangular coordinate system. In the case of a line source, such as a vertical stack of
loudspeakers in an auditorium, the sound spreads out radially in all directions as a cylindrical wave.
To apply the wave equation to cylindrical waves, we must replace the operators on the left side of
Eqs. (2.20) and (2.22) by operators appropriate to cylindrical coordinates. Assuming equal radiation
in all directions about the axis of symmetry, the wave equation in one-dimensional cylindrical
coordinates is

v2p

vw2
þ 1

w

vp

vw
¼ 1

c2
v2p

vt2
; (2.23)

where w is the radial distance from the axis of symmetry or source if it is a line source.

2.2.6 The wave equation in spherical coordinates

In an anechoic (echo-free) chamber or in free space, we frequently wish to express mathematically the
radiation of sound from a spherical (nondirectional) source of sound. In this case, the sound wave will
expand as it travels away from the source, and the wave front always will be a spherical surface. To
apply the wave equation to spherical waves, we must replace the operators on the left side of Eqs.
(2.20) and (2.22) by operators appropriate to spherical coordinates.

Assuming equal radiation in all directions, the wave equation in one-dimensional spherical
coordinates is

v2p

vr2
þ 2

r

vp

vr
¼ 1

c2
v2p

vt2
; (2.24)

where r is the distance from the origin of the spherical coordinate system or source if it is a point
source. Simple differentiation will show that (2.24) can also be written

v2ðprÞ
vr2

¼ 1

c2
v2ðprÞ
vt2

: (2.25)

It is interesting to note that this equation has exactly the same form as Eq. (2.20a). Hence, the same
formal solution will apply to either equation except that the dependent variable is p(x,t) in one case and
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p(r,t)r in the other case. The latter suggests that the solution for the spherical wave equation is of the
same form as that to the plane wave equation, but divided by r as will be shown further on in this text.
2.2.7 General one-dimensional wave equation (Webster’s equation) [6]

A general one-dimensional equation which is often used to describe waves in flaring ducts or horns can
be written

1

SðxÞ
v

vx

�
SðxÞvp

vx

�
¼ 1

c2
v2p

vt2
; (2.26)

which in expanded form becomes

v2p

vx2
þ 1

SðxÞ
�
vSðxÞ
vx

�
vp

vx
¼ 1

c2
v2p

vt2
; (2.27)

where S(x) is a function that describes the variation of cross-sectional area with x. The first term is the
Laplacian operator and is present in all plane wave equations. It describes the curvature of the pressure
distribution along the x ordinate. The second term describes the pressure gradient due to the variation
of cross-sectional area with x. Naturally, this term is absent in the case of a plane wave, where the
cross-sectional area is constant (and can be infinite in theoretical models). In the case of a cylindrical
wave, the area is given by S(w)¼ 2pwl, where l is the width of the wave along the axis of symmetry
(again this can be infinite). Note that x is replaced by the radial ordinate w. Substituting S(w)¼ 2pwl in
Eq. (2.27) yields Eq. (2.23), the wave equation for a cylindrical wave. Likewise, substituting S(r)¼
4pr2 in Eq. (2.27) and replacing x with r yields Eq. (2.24), the wave equation for a spherical wave.
PART IV: SOLUTIONS OF THE WAVE EQUATION IN ONE DIMENSION

2.3 GENERAL SOLUTIONS OF THE ONE-DIMENSIONAL WAVE EQUATION
The one-dimensional wave equation was derived with either sound pressure or particle velocity as
the dependent variable. Particle displacement, or the variational density, may also be used as the
dependent variable. This can be seen from Eqs. (2.4a) and (2.13a) and the conservation of mass,
which requires that the product of the density and the volume of a small box of gas remain constant.
That is,

r0V ¼ r0V0 ¼ constant (2.28)

and so

r0dV ¼ �Vdr0: (2.29)

Let

r0 ¼ r0 þ r; (2.30)
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where r is the incremental change in density. Then, approximately, from Eqs. (2.8) and (2.29),

r0s ¼ �V0r: (2.31)

Differentiating,

vs
vt

¼ �V0

r0

vr

vt

so that, from Eq. (2.13a),

vr

vt
¼ �r0

vu

vx
: (2.32)

Also, we know that the particle velocity is the time rate of change of the particle displacement.

u ¼ vxx

vx
: (2.33)

Inspection of Eqs. (2.4a), (2.13a), (2.32), and (2.33) shows that the pressure, particle velocity, particle
displacement, and variational density are related to each other by derivatives and integrals in space and
time. These operations performed on the wave equation do not change the form of the solution, as we
shall see shortly. Since the form of the solution is not changed, the samewave equation may be used for
determining density, displacement, or particle velocity as well as sound pressure by substituting p, or
xx, or u for p in Eq. (2.20a) or r, x, or q for p in Eq. (2.20b), assuming, of course, that there is no rotation
in the medium.
2.3.1 General solution

With pressure as the dependent variable, the wave equation is

v2p

vx2
¼ 1

c2
v2p

vt2
: (2.34)

The general solution to this equation is a sum of two terms,

p ¼ f1

�
t � x

c

�
þ f2

�
t þ x

c

�
; (2.35)

where f1 and f2 are arbitrary functions. We assume only that they have continuous derivatives of the
first and second order. Note that because t and x occur together, the first derivatives with respect to x
and t are exactly the same except for a factor of� c.

The ratio x/c must have the dimensions of time, so that c is a speed. From

c2 ¼ gP0=r0 ½Eq:ð2:19Þ�
we find that

c ¼
�
1:4� 105

1:18

�1=2

¼ 344:4 m=s
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in air at an ambient pressure of 105 Pa and at 22�C. This quantity is nearly the same as the experi-
mentally determined value of the speed of sound, 344.8 [see Eq. (1.8)], so that we recognize c as the
speed at which a sound wave is propagated through the air.

From the general solution to the wave equation given in Eq. (2.35) we observe two very important
facts:

The sound pressure at any point x in space can be separated into two components: an outgoing
wave, f1(t� x/c), and a backward-traveling wave, f2(tþ x/c).
Regardless of the shape of the outward-going wave (or of the backward-traveling wave), it is
propagated without change of shape. To show this, let us assume that, at t¼ t1, the sound
pressure at x¼ 0 is f1(t1). At a time tþ t1þ t2 the sound wave will have traveled a distance x
equal to t2cm. At this new time the sound pressure is equal to

p ¼ f1ðt1 þ t2 � t2cÞ ¼ f1ðt1Þ:

In other words the sound pressure has propagated without change. The same argument can be made
for the backward-traveling wave which goes in the �x direction.

It must be understood that inherent in Eqs. (2.34) and (2.35) are two assumptions. First, the wave is
a plane wave, i.e., it does not expand laterally. Thus the sound pressure is not a function of the y and z
ordinates but is a function of distance only along the x ordinate. Second, it is assumed that there are no
losses or dispersion (scattering of the wave by turbulence or temperature gradients, etc.) in the air, so
that the wave does not lose energy as it is propagated.
2.3.2 Steady-state solution

In nearly all the studies that we make in this text we are concerned with the steady state. Let us first
consider the time-dependent part of the solution at a fixed point in space so that the pressure is only
dependent upon time. As is well known from the theory of Fourier series, a steady-state periodic wave
of arbitrary shape can be represented by a linear summation of sine-wave functions, each of which is of
the form

pðtÞ ¼
XN

n¼�N

pnðtÞ; (2.36)

where

pnðtÞ ¼ cne
junt ¼ cnðcos unt þ j sin untÞ; (2.37)

where un¼ nu¼ 2p nf is the angular frequency and cn is the peak amplitude of the nth component of
the wave given by

cn ¼ 1

T

ZT
0

pðtÞe�juntdt; (2.38)
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where T¼ 1/f is the period of the wave. Taking the second time derivative of pn yields

v2

vt2
pnðtÞ ¼ v2

vt2
cne

junt ¼ �u2
ncne

junt ¼ �u2
npnðtÞ; (2.39)

which gives the identities

v

vt
¼ jun; (2.40)

v2

vt2
¼ �u2

n: (2.41)

Hence the steady-state plane-wave equation for any point in space can be written in the form�
v2

vx2
þ u2

n

c2

�
pnðx; tÞ ¼ 0: (2.42)

which is generally known as the Helmholtz wave equation. Because the wave is propagated without
change of shape, we need consider, in the steady state, only those solutions to the wave equation for
which the time dependence at each point in space is sinusoidal and which have the same angular
frequencies nu as the source. A general solution that satisfies this equation is given by

pnðx; tÞ ¼
�
pnþe�junx=c þ pn�e junx=c

�
e junt; (2.43)

where theþ and� subscripts indicate the forward and backward traveling waves respectively. In the
steady state, therefore, we may replace f1 and f2 of Eq. (2.35) by a sum of functions each having
a particular angular driving frequency un so that

pðx; tÞ ¼
XN

n¼�N

pnðx; tÞ ¼
XN

n¼�N

<
��

pnþe�junx=c þ pn�e junx=c
�
e junt

�
: (2.44)

Generally we omit writing < although it always must be remembered that the real part must be
taken when using the final expression for the sound pressure that would actually be observed, for
example, when making an animated plot of a sound field.

It is customary in texts on acoustics to define a wave-number k where

k ¼ u

c
¼ 2pf

c
¼ 2p

l
; (2.45)

which can be considered as the spatial angular frequency in rad/m. When k is multiplied by a char-
acteristic dimension such as the length of a tube or the radius of a circular radiator, it forms a useful
dimensionless parameter that is proportional to the frequency. Let us now drop < and the subscript n
for convenience. Also, we will replace the factor ejut with a tilde. Any one term of Eq. (2.44), with
these changes, becomes

~pðxÞ ¼ ~pþe
�jkx þ ~p�e

jkx: (2.46)

Equation (2.46) represents two traveling waves: one with amplitude ~pþ traveling in the positive x
direction and the other with amplitude ~p� traveling in the negative x direction, where the amplitudes
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are independent of position x. The appearance of these two solutions occurs because in solving the
wave equation we have not specified the direction of travel or any boundary conditions and so the
result simply tells us that these solutions can occur. The complex values of ~pþ and ~p� are determined
from the boundary conditions. The real parts of the forward and reverse traveling solutions are rep-
resented in Fig. 2.3 (a) and (b) respectively, which shows the waveforms in space at a snapshot in time,
whereas if the plots were animated, they would be moving in the directions of the arrows. At any fixed
point, the pressure or velocity would oscillate as the wave passed through it, with the oscillations
having the same shape versus time as versus distance. This is a property of plane waves where the
waves propagate without changing shape. Similarly, the solution to Eq. (2.22a) for velocity, assuming
steady-state conditions is

~uðxÞ ¼ ~uþe�jkx þ ~u�e jkx: (2.47)

A similar expression for the velocity can also be obtained from the expression for the pressure by
applying Eq. (2.4a) to Eq. (2.46):

~uðxÞ ¼ 1

�jur0

v

vx
~pðxÞ

¼ 1

r0c

�
~pþe�jkx � ~p�e jkx

�
;

(2.48)
( )jkxep −
+ℜ ~+p

~  direction of travel 

x

x

( ))/(~)(~
0cepxu jkx ρ−

+ℜ=

−p
~  direction of travel ( )jkxep−ℜ ~

( ))/(~)(~
0cepxu jkx ρ−−ℜ=

(a)

(b)

FIG. 2.3 Solutions to the steady-state one-dimensional wave equation.

Forward and reverse traveling waves.
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the real part of which is also shown in Fig. 2.3. The wave equation (2.48) for velocity is similar to
equation (2.46) for pressure except for one important difference, which is the minus sign preceding ~p�.
The reason for this is fairly simple. During a positive pressure half-cycle, the resulting velocity is always
in the direction of travel. Therefore, in the case of the wave with amplitude ~pþ traveling in the positive x
direction, positive pressure produces positive velocity because it is in the positive x direction, as shown
by the dashed arrows in Fig. 2.3a. However, in the case of the wave with amplitude ~p� traveling in the
negative x direction, positive pressure produces negative velocity because it is in the negative x direction,
as shown by the dashed arrows in Fig. 2.3b. Of course, the converse applies during a negative pressure
half cycle. The ratio of pressure to particle velocity is the specific acoustic impedance Zs of the medium,
which is obtained by dividing the pressure from Eq. (2.46) by the velocity from Eq. (2.48) to give

Zs ¼ ~pðxÞ
~uðxÞ ¼ r0c: (2.49)

It is worth noting that in the case of freely traveling waves, which are also known as progressive
waves, the pressure and particle velocity are in phase and hence the impedance has a real value. This is
very much a characteristic of traveling longitudinal waves, a class that includes sound pressure waves
because the particles oscillate in the direction of propagation as opposed to transverse waves whereby
the medium oscillates in a direction at right angles to the direction of propagation. An example of the
latter is the wave motion of a plucked string.

Example 2.2. Determine the power flow in a freely traveling wave at a fixed point as a function of
time.

Answer:
pðtÞ ¼ Kcosut

uðtÞ ¼ pðtÞ=rc
Power flow ¼ p�u ¼ ðK2=rcÞcos2ut ¼ ðK2=rcÞð1� sin2utÞ

Thus the power flows by a point in a freely traveling wave like a series of “sausages”. This is explained
by referring back to Fig. 1.1. The vibrating surface sends power into the wave when it is moving either
to the right or the left. At the instant whenever the surface changes direction, the power drops to zero.

Example 2.3. Assume that for the steady state, at a point x¼ 0, the sound pressure in a one-
dimensional outward-traveling wave has the recurrent form shown by the dotted curve in Fig. Ex. 2.3a.
This wave form is given by the real part of the equation

pð0; tÞ ¼ 4e j628t þ 2e j1884t:

(a) What are the particle velocity and the particle displacement as a function of time at x¼ 5 m? (b)
What are the rms values of these two quantities? (c) Are the rms values dependent upon x?

Solution. a. We have for the solution of the wave equation giving both x and [see Eq. (2.46)]

pðx; tÞ ¼ 4e j628ðt�x=cÞ þ 2e j1884ðt�x=cÞ:

From Eq. (2.4a) we see that

uðx; tÞ ¼ � 1

jur0

vpðx; tÞ
vx
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or

uðx; tÞ ¼ 1

r0c
pðx; tÞ:

And from Eq. (2.33) we have

xðx; tÞ ¼ 1

jr0c

�
4

628
e j628ðt�x=cÞ þ 2

1884
e j1884ðt�x=cÞ

�
:

At x¼ 5 m, x/c¼ 5/344.8¼ 0.0145 s,

uð5; tÞ ¼ 1

407

�
4e j628ðt�0:0145Þ þ 2e j1884ðt�0:0145Þ

�
and

xð5; tÞ ¼ 1

407

�
4

628
e j½628ðt�0:0145Þ�ðp=2Þ� þ 2

1884
e j½1884ðt�0:0145Þ�ðp=2Þ�

�
:

Taking the real parts of the two preceding equations,

uð5; tÞ ¼ 1

407
ð4 cosð628t � 9:1Þ þ 2 cosð1884t � 27:3ÞÞ

xð5; tÞ ¼ 1

407

�
4

628
sinð628t � 9:1Þ þ 2

1884
sinð1884t � 27:3Þ

�
:

Note that each term in the particle displacement is 90� out of time phase with the velocity and that the
wave shape is different. As might be expected, integration diminishes the higher frequencies. These
equations are plotted in Fig. Ex. 2.3b.

b. The rms magnitude of a sine wave is equal to its peak amplitude divided by
ffiffiffi
2

p
. This may be

verified by squaring the sine wave and finding the average value over one cycle and then taking the
square root of the result. If two sine waves of different frequencies are present at one time, the rms
value of the combination is equal to the square root of the sums of the squares of the individual peak
amplitudes divided by

ffiffiffi
2

p
, so that

p ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 22

p
¼ 3:16 Pa;

u ¼ 1

407
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 22

p
¼ 7:77� 10�3 m=s;

xx ¼ 1

407
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

4

628

�2

þ
�

2

1884

�2
s

¼ 1:12� 10�5 m:

c. The rms values of u and xx are independent of x for a plane progressive sound wave.
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2.4 SOLUTION OF WAVE EQUATION FOR AIR IN A TUBE TERMINATED BY AN
IMPEDANCE
For this example of wave propagation, we shall consider a hollow cylindrical tube, terminated at one
end (x¼ 0) by an impedance ZT and at the other (x¼ l) end by a flat vibrating piston (see Fig. 2.4).
Alternatively, we could have interchanged the positions of the piston and termination impedance, but
the arrangement shown has been chosen because it simplifies the equations. For example, in the case of
a rigid termination the particle velocity is shown to be proportional to sin x as opposed to sin (l� x).
However, care needs to be taken when calculating the impedance where the velocity has to be taken as
that in the negative x direction. The angular frequency of vibration of the piston is u, and its rms
velocity is ~u0 at x¼ l. We shall assume that the diameter of the tube is sufficiently small so that the
waves travel down the tube with plane wave fronts. In order for this be true, the ratio of the wavelength
of the sound wave to the diameter of the tube must be greater than about 6.
Particle velocity. The form of solution we shall select is Eq. (2.48). If l is the length of the tube, then at
x¼ l the particle velocity must be equal to the velocity ~u0 of the piston. The boundary conditions are:

At x ¼ l; ~uðlÞ ¼ ~u0; so that

~uðlÞ ¼ ~pþe�jkl � ~p�e jkl

r0c
¼ ~u0: (2.50)

At x¼ 0,

~pð0Þ=ð�~uð0ÞÞ ¼ Zsð0Þ ¼ ZT ;

where the pressure is taken from Eq. (2.46). Note that velocity is negative here because it is in the
reverse x direction. Hence

~pð0Þ
�~uð0Þ ¼ ~pþ þ ~p�

~p� � ~pþ
r0c ¼ ZT : (2.51)
Driving piston 
Hollow cylindrical tube 

Impedance termination ZT

0 l
S = cross-sectional area 

)~(),( 0utlu ℜ=
x

FIG. 2.4 Tube with rigid side walls and termination impedance ZT.

The velocity at x¼ 0 has a value of u0 cos ut m/s.
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Transmitted and reflected pressures. Eliminating ~p� between Eqs. (2.50) and (2.51) yields

~pþ ¼
�
r0c� ZT

�
r0c~u0

r0cðe jkl þ e�jklÞ þ ZTðe jkl � e�jklÞ : (2.52)

Similarly, eliminating ~pþ between Eqs. (2.50) and (2.51) yields

~p� ¼ �ðr0cþ ZTÞr0c~u0
r0cðe jkl þ e�jklÞ þ ZTðe jkl � e�jklÞ : (2.53)

Remember that

sin y ¼ ðe jy � e�jyÞ=ð2jÞ and cos y ¼ ðe jy þ e�jyÞ=2:
Hence

~pþ ¼ ðr0c� ZTÞr0c~u0
2ðr0c cos klþ jZs sin klÞ (2.54)

and

~p� ¼ �ðr0cþ ZTÞr0c~u0
2ðr0c cos klþ jZs sin klÞ ; (2.55)

where ~p� is the transmitted pressure magnitude and ~pþ is reflected pressure magnitude. The amount of
sound reflected depends on how the tube is terminated. The reflection coefficient G is given by

G ¼ ~p�
~pþ

¼ ZT � r0c

ZT þ r0c
: (2.56)

In some places along the tube, the reflected wave will interfere constructively with the transmitted
wave, thus producing a pressure maximum, and at others it will interfere destructively causing
a pressureminimum. If the reflection is 100%, these maxima and minima become anti-nodes and nodes
respectively. We shall examine these in greater detail in the next paragraph which describes the case of
a rigid termination. The ratio of maximum to minimum pressure along the tube is given by the
Standing Wave Ratio or SWR where

SWR ¼ ZT
r0c

¼ 1þ G

1� G
: (2.57)

Of particular interest are the cases where (1) the pressure is zero at the termination (resilient termi-
nation), (2) the termination impedance is equal to the characteristic impedance of the tube (anechoic
termination), and (3) the velocity is zero at the termination (rigid termination). All three cases are
summarized in Table 2.1. The first case produces maximum negative reflection (that is, with reversed
phase), the second zero reflection, and the third maximum positive reflection.
Sound proofing materials are often defined by the absorption coefficient a, which is given by

a ¼ 1� G ¼ 2r0c=ðr0cþ ZTÞ:
Impedance. Inserting Eqs. (2.54) and (2.55) into Eqs. (2.46) and (2.48) gives us

~pðxÞ ¼ �ZTcos kxþ jr0c sin kx

r0c cos klþ jZT sin kl
r0c~u0; (2.58)



Table 2.1 Termination Impedances, Standing Wave Ratios, and Reflection Coefficients for
Three Types of Tube Termination

Quantity
Resilient
termination

Anechoic
termination

Rigid
termination

Termination impedance (ZT) 0 r0c N

Standing wave ratio (SWR) 0 1 N

Reflection coefficient (G) �1 0 1

Absorption coefficient (a) 2 1 0
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~uðxÞ ¼ r0c cos kxþ jZT sin kx

r0c cos klþ jZT sin kl
~u0: (2.59)

The specific acoustic impedance Zs along the tube is then given by the ratio of pressure to velocity:

ZsðxÞ ¼ ~pðxÞ
�~uðxÞ ¼

ZT
r0c

þ j tan kx

1þ j
ZT
r0c

tan kx
r0c: (2.60)

Let us now recast this equation into two series impedances, as seen at the piston:

ZsðlÞ ¼
�

1

ZT
þ j

1

r0c
tan kl

��1

þ
 

ZT

r20c
2
� j

cot kl

r0c

!�1

; (2.61)

the equivalent circuit for which is shown in Fig. 2.5.
Amazingly, a tube with any termination impedance ZT can be represented by the impedance of

a blocked tube (with ZT ¼N) in series with an open tube (with ZT¼ 0) and two external impedances
connected across them, which are related to the termination impedance ZT and characteristic imped-
ance r0c. However, this makes more sense when we consider that when the impedance of the open tube
is zero, the impedance of the blocked tube is infinite and vice versa. Hence the impedance seen
between the input terminals simply alternates between ZT and (r0c)

2/ZT as we sweep the piston
generator frequency, which is entirely consistent with the standing wave ratio. When ZT¼ r0c, the two
)(~ lp

ZT

TZ

c22

0ρ

− jρ0c cot kl
(blocked tube) 

jρ0c tan kl
(open tube) 

0
~u

0
~u

FIG. 2.5 Equivalent electrical circuit for a tube with a termination impedance ZT, in which the single tube is

represented by two tube impedances, each in parallel with an external impedance.

The piston is represented by a current generator. The reason for this will become clearer in the next chapter.
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series impedances are the complex conjugates of each other and we just see the characteristic
impedance r0c at the input terminals. We shall use equivalent circuits extensively in this text. Also, it
will be shown in Figs. 10.6 and 10.7 how the impedances of a blocked tube and open tube respectively
may be represented by arrays of electrical circuit elements.
Impedance measurement. If we place two probe microphones in the tube, with one at x¼ l1 and the
other at x¼ l2, then the ratio of the pressures ~pðl1Þ and ~pðl2Þ is given by

~pðl1Þ
~pðl2Þ ¼ ZTcos kl1 þ jr0c sin kl1

ZTcos kl2 þ jr0c sin kl2
; (2.62)

which is independent of ~u0. The termination impedance is then given by

ZT
r0c

¼ �j
sin kl1 � ðsin kl2Þ~pðl1Þ=~pðl2Þ
cos kl1 � ðcos kl2Þ~pðl1Þ=~pðl2Þ ; (2.63)

which is the principle of an impedance tubewhich is used for measuring samples of material for which
the impedance is unknown. An elegant feature of the method is that the measurement is independent of
the piston velocity or actual magnitudes of the pressures. Only the relative pressure ratio is needed to
calculate the impedance. However, when the impedance is a large multiple (or small fraction) of r0c,
the calibration of the microphones becomes very critical, as does the accuracy of the distances l1 and l2
between them and the sample.
Rigid termination (infinite impedance). If we let ZT¼N in Eq. (2.59), the tube is terminated with
a rigid wall, which gives us

~uðxÞ ¼ ~u0
sin kx

sin kl
(2.64)

or

uðx; tÞ ¼ u0e
ju tsin kx

sin kl
: (2.65)

Refer to Fig. 2.6. If the length l and the frequency are held constant, the particle velocity will vary
from a value of zero at x¼ 0 to a maximum at x¼ l/4, that is, at x equal to one-fourth wavelength. In
the entire length of the tube the particle velocity varies according to a sine function.
x = 0 x = l

x

4
λ

4
λ

)(~ bu  = 0)(~ au  = max

a b

)0(~u  = 0

FIG. 2.6 Portion of the tube with a rigid termination showing the direction and magnitude of movement of the air

particles as a function of x.

At position a, the particle velocity and displacement are a maximum. At position b, they are zero.
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Between the end of the tube and the l/4 point, the oscillatory motions are in phase. In other words,
there is no progressive phase shift with x. This type of wave is called a standing wave [5] because, in
the equation, x and ct do not occur as a difference or a sum in the argument of the exponential function.
Hence the wave is not propagated. In cases where there are absolutely no losses, the term stationary
wave [5] is also used, although this can only be approximated in practice.

In the region between x¼ l/4 and x¼ l/2, the particle velocity still has the same phase except that
its amplitude decreases sinusoidally. At x¼ l/2, the particle velocity is zero. In the region between
x¼ l/2 and x¼ l the particle velocity varies with x according to a sine function, but the particles move
180� out of phase with those between 0 and l/2. This is seen from Eq. (2.64), wherein the sines of
arguments greater than p are negative.

If we fix our position at some particular value of x and assume constant l, then, as we vary
frequency, both the numerator and denominator of Eq. (2.64) will vary. When kl is some multiple of p,
the particle velocity will become very large, except at x¼ l or at points where kx is a multiple of p, that
is, at points where x equals multiples of l/2. Then for kl¼ np

lj~u¼N ¼ nl

2
n ¼ 1; 2; 3; : : : (2.66)

Equation (2.64) would indicate an infinite velocity under this condition. In reality, the presence of
some dissipation in the tube, which was neglected in the derivation of the wave equation, will keep the
particle velocity finite, though large.

The particle velocity ~uðxÞwill be zero at those parts of the tube where kx¼ np and n is an integer or
zero. [7] That is,

xj~u¼0
¼ l

2
n n ¼ 1; 2; 3; : : : (2.67)

In other words, there will be planes of zero particle velocity at points along the length of the tube
whenever l is greater than l/2.

Some examples of the particle velocity for l slightly greater than various multiples of l/2 are shown in
Fig. 2.7. Two things in particular are apparent from inspection of these graphs. First, the quantity n
determines the approximate number of half wavelengths that exist between the two ends of the tube.
Secondly, for a fixed ~u0, themaximumvelocity of thewave in the tubewill dependonwhich part of the sine
wave falls at x¼ l. For example, if l� nl/2¼ l/4, the maximum amplitude in the tubewill be the same as
that at the piston. If l� nl/2 is very near zero, the maximum velocity in the tube will become very large.

Let us choose a frequency such that n¼ 2 as shown. Two factors determine the amplitude of the sine
function in the tube. First, at x¼ l the sine curvemust pass through the point u0. Second, at x¼ 0 the sine
curvemust pass through zero. It is obvious that one and only one sinewavemeeting these conditions can
be drawn so that the amplitude is determined. Similarly, we could have chosen a frequency such that
n¼ 2, but where the length of the tube is slightly less than two half wavelengths. If this case had been
asked for, the sine wave would have ended with a negative instead of a positive slope at x¼ l.
Sound pressure. The sound pressure in the tube may be found from the velocity with the aid of the
equation of motion [Eq. (2.4a)], which, in the steady state, becomes

~pðxÞ ¼ �jur0

Z
~uðxÞ dx: (2.68)
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FIG. 2.7 Variation of the particle velocity u (x,t) for t[ 0, as a function of the distance along the tube of Fig. 2.4 for

three frequencies, i.e., for three wavelengths.

At x¼ l, the rms particle velocity is u0, and at x¼ 0, the particle velocity is zero. The period T¼ 1/f.
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The constant of integration in Eq. (2.68), resulting from the integration of Eq. (2.4a), must be
independent of x because we integrated with respect to x. The constant then represents an
increment to the ambient pressure of the entire medium through which the wave is passing. Such
an increment does not exist in our tube, so that in Eq. (2.68) we have set the constant of inte-
gration equal to zero. Integration of Eq. (2.68), after we have replaced ~uðxÞ by its value from Eq.
(2.64), yields

~pðxÞ ¼ jr0c~u0
cos kx

sin kl
(2.69)

or

pðx; tÞ ¼ jr0cu0e
ju tcos kx

sin kl
: (2.70)

This result could alternatively have been obtained by setting ZT¼N in Eq. (2.58). The pressure
~p will be zero at those points of the tube where kx¼ npþ p/2 (where n is an integer or zero),

xj~p¼0
¼ l

2

�
nþ 1

2

�
: (2.71)

The pressure will equal zero at one or more planes in the tube whenever l is greater than l/4. Some
examples are shown in Fig. 2.8. Here again, quantity n is equal to an approximate number of half
wavelengths in the tube.

Refer once more to Fig. 2.7 which is drawn for t¼ 0. The instantaneous particle velocity is at its
maximum (as a function of time). By comparison, in Fig. 2.8 at t¼ 0, the instantaneous sound pressure
is zero. At a later time t¼ T/4¼ 1/(4f), the instantaneous particle velocity has become zero and the
instantaneous sound pressure has reached its maximum. Equations (2.64) and (2.69) say that whenever
kx is a small number the sound pressure leads by one-fourth period behind the particle velocity. At
some other places in the tube, for example when x lies between l/4 and l/2, the sound pressure lags the
particle velocity by one-fourth period.

To see the relation between p and umore clearly, refer to Fig. 2.7 and Fig. 2.8, for the case of n¼ 2.
In Fig. 2.7, the particle motion is to the right whenever u is positive and to the left when it is negative.
Hence, at x¼ l/2, the particles on either side are moving toward each other, so that one-fourth period
later the sound pressure will have built up to a maximum, as can be seen from Fig. 2.8. At the 2l/2
point, the particles are moving apart, so that the pressure is dropping to below barometric as can be
seen from Fig. 2.8.

Fig. 2.7 and Fig. 2.8 also reveal that, wherever along the tube the magnitude of the velocity is zero, the
magnitude of the pressure is amaximum, and viceversa.Hence, formaximumpressure, Eq. (2.67) applies.
Specific acoustic impedance. It still remains for us to solve for the specific acoustic impedance Zs, at
any plane x, in the tube. Taking the ratio of Eq. (2.69) to Eq. (2.64) or setting ZT¼N in Eq. (2.60)
yields

Zs ¼ ~pðl0Þ
�~uðl0Þ ¼ �jr0c cot kl

0 ¼ jXs; (2.72)
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FIG. 2.8 Variation of the sound pressure p (x,t) as a function of the distance along the tube for three frequencies,

i.e., for three wavelengths.

At x¼ l, the rms particle velocity is u0, and at x¼ 0, it is zero. The period T equals 1/f.
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FIG. 2.9 The specific acoustic reactance (prms /urms) along the tube of Fig. 2.4 for a particular frequency, i.e.,

a particular wavelength where 3(l/2) is a little less than the tube length l.

For this case, the number of zeros is three, and the number of poles is four.
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where Xs is the reactance, and where we have set

x ¼ l0: (2.73)

That is, l0 is the distance between any plane x in Fig. 2.4 and the rigid end of the tube at 0. The �j
indicates that at low frequencies where cot kl0 z 1/kl0 the particle velocity leads the pressure in time by
90� and the reactance Xs is negative. At all frequencies the impedance is reactive and either leads or
lags the pressure by exactly 90� depending, respectively, on whether Xs is negative or positive. The
reactance Xs varies as shown in Fig. 2.9. If the value of kl

0 is small, we may approximate the cotangent
by the first two terms of a series

cot kl0z
1

kl0
� kl0

3
: (2.74)

This approximation is valid whenever the product of frequency times the distance from the rigid end of
the tube to the point of measurement is very small. If the second term is very small, then it may be
neglected with respect to the first.

Let us see how small the ratio of the distance l0 to the wavelength l must be if the second term of
Eq. (2.74) is to be 3% or less of the first term. That is, let us solve for l0/l from

2pl0

3l
� 0:03

l

2pl0
; (2.75)

which gives us

l0

l
� 0:05: (2.76)

In other words, if cot kl0 is to be replaced within an accuracy of 3% by the first term of its series
expansion, l0 must be less than one-twentieth wavelength in magnitude.
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Assuming l0 < l/20, Eq. (2.72) becomes

Zs ¼ jXs ¼ �j
r0c

kl0
¼ 1

juðl0=r0c2Þ
h

1

juCs
rayls: (2.77)

Hence, the specific acoustic impedance of a short length of tube can be represented as a “capacitance”
called specific acoustic compliance, of magnitude Cs¼ l0/r0c2. Note also that Cs¼ l0/gP0, because of
Eq. (2.19).

The acoustic impedance is of the same type, except that an area factor appears so that

ZA¼ ep
Seu ¼ 1

juðV=r0c2Þ
h

1

juCA
N$s=m5; (2.78)

where V¼ l0S is the volume and S is the area of cross section of the tube. CA is called the acoustic
compliance and equals V/r0c

2. Note also that CA¼V/gP0, from Eq. (2.19).
Example 2.3. A cylindrical tube is to be used in an acoustic device as an impedance element.

(a) The impedance desired is that of a compliance. What length should it have to yield a reactance of
1.4� 103 rayls at an angular frequency of 1000 rad/s? (b) What is the relative magnitude of the first
and second terms of Eq. (2.74) for this case?

Solution. The reactance of such a tube is

ðaÞ Xs ¼ 1:4� 103 ¼ gP0

ul0
¼ 1:4� 105

103l0
:

Hence, l0 ¼ 0.1 m.

ðbÞ kl0

3
O

1

kl0
¼ k2l02

3
¼ u2l02

3c2
¼ 106 � 10�2

ð3Þð344:8Þ2 ¼ 0:028:

Hence, the second term is about 3% of the first term.
2.5 SOLUTION OF WAVE EQUATION FOR AIR IN A TUBE FILLED WITH
ABSORBENT MATERIAL
Ducts and tubes are often filled with absorbent material in order to minimize standing waves, such as in
transmission-line loudspeaker enclosures or exhaust-pipe mufflers, for example. Let us now modify
the one-dimensional wave equation in rectangular coordinates, Eq. (2.34), taking into account the
thermal and viscous losses in the material�

P0
v2

vx2
� juRf þ u2r0

�
~p ¼ 0; (2.79)

where in the steady state we have let v2=vt2 ¼ �u2 and Rf is the specific flow resistance per unit
length of the absorptive material in rayls/m. For simplicity we are assuming that the resistance is
constant for all frequencies. A more comprehensive treatment of sound in absorbent materials will be
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given in Sec. 6.6. Notice too that we have omitted the specific heat ratio g because we are assuming
that the heat conduction within the material is such that the pressure fluctuations are isothermal. We
define a complex density by

r ¼ r0 þ
Rf

ju
; (2.80)

so that the wave equation simplifies to �
v2

vx2
þ u2

c2

�
~p ¼ 0; (2.81)

where

c ¼
ffiffiffiffiffi
P0

r

r
: (2.82)

Hence the solution is

~pðxÞ ¼ ~pþe
�jkx þ ~p�e

jkx; (2.83)

where the complex wave number is given by

k ¼ u

c
¼ u

ffiffiffiffiffi
r

P0

r
; (2.84)

and the characteristic impedance of the tube is

Zs ¼
ffiffiffiffiffiffiffiffiffi
r P0

p
: (2.85)

In general, viscous or flow losses are dynamic and therefore associated with a change in the density of
the medium whereas thermal conduction is static and therefore associated with a change in the bulk
modulus. Viscous and thermal losses also occur in narrow unfilled tubes and these will be treated in
some detail in Secs. 3.22 and 3.23.
2.6 FREELY TRAVELING PLANE WAVE
Sound pressure. If the rigid termination of Fig. 2.4 is replaced by a perfectly absorbing termination,
a backward-traveling wave will not occur. Hence, Eq. (2.46) becomes

~pðxÞ ¼ ~pþe
�jkx; (2.86)

where ~pþ is the complex amplitude of the wave. This equation also applies to a plane wave traveling in
free space.
Particle velocity. From Eq. (2.4a) in the steady state, we have

~uðxÞ ¼ � 1

jkr0c

v

vx
~pðxÞ: (2.87)
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Hence,

~uðxÞ ¼ ~pþ
r0c

e�jkx ¼ ~pðxÞ
r0c

: (2.88)

The particle velocity and the sound pressure are in phase. This is mathematical proof of the statement
made in connection with the qualitative discussion of the wave propagated from a vibrating wall in
Chapter 1 and Fig. 1.1.
Specific acoustic impedance. The specific acoustic impedance is

Zs ¼ ~pðxÞ
~uðxÞ ¼ r0c rayls: (2.89)

This equation says that in a plane freely traveling wave the specific acoustic impedance is purely
resistive and is equal to the product of the average density of the gas and the speed of sound. This
particular quantity is generally called the characteristic impedance of the gas because its magnitude
depends on the properties of the gas alone. It is a quantity that is analogous to the surge impedance of
an infinite electrical line. For air at 22�C and a barometric pressure of 105 Pa, its magnitude is
407 rayls.

2.7 FREELY TRAVELING CYLINDRICAL WAVE
Sound pressure. A solution to the cylindrical wave equation (2.23) is

~pðwÞ ¼ ~pþH
ð2Þ
0 ðkwÞ þ ~p�H

ð1Þ
0 ðkwÞ; (2.90)

where ~pþ is the amplitude of the sound pressure in the outgoing wave at unit distance from the axis
of symmetry and ~p� is the same for the reflected wave. H0

(1)(x) and H0
(2)(x) are Hankel functions

defined by

H
ð1Þ
0 ðxÞ ¼ J0ðxÞ þ jY0ðxÞ; (2.91)

H
ð2Þ
0 ðxÞ ¼ J0ðxÞ � jY0ðxÞ; (2.92)

where J0(x) and Y0(x) are Bessel functions of the first and second kind respectively, as plotted in
Fig. 2.10. The “2” in parentheses denotes an outgoing cylindrical wave and the “1” denotes an
incoming one. In the far field

~pðwÞ		
w/N

¼
ffiffiffiffiffiffiffiffiffi
2

pkw

r �
~pþe

�jðkw�p=4Þ þ ~p�e
jðkw�p=4Þ

�
: (2.93)

We can see from Fig. 2.10 that cylindrical waves, which are essentially two-dimensional due to the
lack of axial dependency, differ from plane ones in two respects: Firstly the radial wavelength is longer
nearer the axis of symmetry than in the far field. Secondly they decay in amplitude as they spread out,
adopting an inverse square-root law in the far field. The latter makes sense when we consider that the
area of the wave front is proportional to the radial distance w. The radiated power is the intensity



FIG. 2.10 Bessel functions of the first (black curve) and second (gray curve) kind.
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multiplied by the area, where the intensity is given by Eq. (1.12). The intensity, in turn, is proportional
to the square of the pressure and therefore inversely proportional to the radial distance. Hence the
power remains constant. The same kind of wave deformation can be seen if you drop a pebble in
a pond. Note the singularity in the Y(x) function when x¼ 0. If there are no reflecting surfaces in the
medium, only the first term of Eq. (2.90) is needed, i.e.,

~pðwÞ ¼ ~pþH
ð2Þ
0 ðkwÞ: (2.94)

Particle velocity. With the aid of Eq. (2.4b), we solve for the particle velocity in the w direction:

~uðwÞ ¼ � 1

jkr0c

v

vw
~pðwÞ

¼ �j
~pþ
r0c

H
ð2Þ
1 ðkwÞ:

(2.95)

In the far field

~uðwÞ ¼ �j
~pþ
r0c

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e�jðkw�3p=4Þ ¼ ~pþ

r0c

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e�jðkw�p=4Þ: (2.96)

Specific acoustic impedance. The specific acoustic impedance is found from Eq. (2.94) divided by
Eq. (2.95):

Zs ¼ ~pðwÞ
~uðwÞ ¼ jr0c

H
ð2Þ
0 ðkwÞ

H
ð2Þ
1 ðkwÞ

rayls: (2.97)

Plots of the magnitude and phase angle of the impedance as a function of kw are given in Fig. 2.11 and
Fig. 2.12 respectively.
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FIG. 2.11 Plot of the magnitude of the specific acoustic-impedance ratio jZsj/(r0c) in a cylindrical freely traveling
wave as a function of kw, where k is the wave-number equal to u/c or 2p/l and w is the distance from the axis of

symmetry.

jZsj is the magnitude of the ratio of pressure to particle velocity in a cylindrical free-traveling wave, and r0c is the

characteristic impedance of air.
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FIG. 2.12 Plot of the phase angle, in degrees, of the specific acoustic-impedance ratio jZsj/r0c in a cylindrical

wave as a function of kw, where k is the wave-number u/c or 2p/l and w is the distance from the axis of symmetry.
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For large values of kw, that is, for large distances or for high frequencies, Eq. (2.97) becomes,
approximately,
Zsz r0c rayls: (2.98)

The impedance here is nearly purely resistive and approximately equal to the characteristic impedance
for a plane freely traveling wave. In other words, the specific acoustic impedance a large distance from
a cylindrical source in free space is nearly equal to that in a tube in which no reflections occur from the
end opposite the source.
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2.8 FREELY TRAVELING SPHERICAL WAVE
Sound pressure. A solution to the spherical wave equation (2.25) is

~pðrÞ ¼ ~Aþ
e�jkr

r
þ ~A�

e jkr

r
; (2.99)

where ~Aþ is the amplitude of the sound pressure in the outgoing wave at unit distance from the center
of the sphere and ~A� is the same for the reflected wave. This equation can also be written in terms of
spherical Hankel functions h0

(1)(x) and h0
(2)(x)

~pðrÞ ¼ �jk
�
~Aþh

ð2Þ
0 ðkrÞ � ~A�h

ð1Þ
0 ðkrÞ

�
; (2.100)

which are also known as Hankel functions of fractional order, as defined by

h
ð1Þ
0 ðxÞ ¼ j0ðxÞ þ jy0ðxÞ; (2.101)

h
ð2Þ
0 ðxÞ ¼ j0ðxÞ � jy0ðxÞ; (2.102)

j0ðxÞ ¼ sin x

x
; (2.103)

y0ðxÞ ¼ �cos x

x
; (2.104)

where j0(x) and y0(x) are spherical Bessel functions of the first and second kind respectively, as plotted
in Fig. 2.13. The “2” in parentheses denotes an outgoing spherical wave and the “1” denotes an
incoming one. These spherical Bessel functions are related to the cylindrical Bessel functions of half-
integer order J1

2
ðxÞ and Y1

2
ðxÞ by
-1.5

-1

-0.5

0

0.5
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x
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y0(x)

FIG. 2.13 Spherical Bessel functions of the first (black curve) and second (gray curve) kind.
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j0ðxÞ ¼
ffiffiffiffiffi
p

2x

r
J1
2
ðxÞ; (2.105)

y0ðxÞ ¼
ffiffiffiffiffi
p

2x

r
Y1

2
ðxÞ: (2.106)

We can see that spherical waves differ from cylindrical ones in two respects: First, the radial
wavelength remains constant as they progress, as is the case with plane waves. Second, although
they decay in amplitude as they spread out, they adopt a direct inverse law in the far field. The
latter makes sense when we consider that the area of the wave front is proportional to the square of
the radial distance r. The radiated power is the intensity multiplied by the area, where the intensity
is given by Eq. (1.12). The intensity, in turn, is proportional to the square of the pressure and
therefore inversely proportional to the square of the radial distance. Hence the power remains
constant.

If there are no reflecting surfaces in the medium, only the first term of this equation is
needed, i.e.,

~pðrÞ ¼ ~Aþ
e�jkr

r
: (2.107)

Particle velocity. With the aid of Eq. (2.4b), solve for the particle velocity in the r direction:

~uðrÞ ¼ 1

�jkr0c

v

vr
~pðrÞ

¼
~Aþ
r0c

�
1þ 1

jkr

�
e�jkr

r
:

(2.108)

Specific acoustic impedance. The specific acoustic impedance is found from Eq. (2.107) divided by
Eq. (2.108),

Zs ¼ ~pðrÞ
~uðrÞ ¼ r0c

jkr

1þ jkr
¼ r0ckrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2r2
p =90� � tan�1 kr rayls: (2.109)

Plots of the magnitude and phase angle of the impedance as a function of kr are given in Fig. 2.14
and Fig. 2.15 respectively.

For large values of kr, that is, for large distances or for high frequencies, this equation becomes,
approximately,

Zsz r0c rayls: (2.110)

The impedance here is nearly purely resistive and approximately equal to the characteristic impedance
for a plane freely traveling wave. In other words, the specific acoustic impedance a large distance from
a spherical source in free space is nearly equal to that in a tube in which no reflections occur from the
end opposite the source.

The important steady-state relations derived in this chapter are summarized in Table 2.2.
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FIG. 2.15 Plot of the phase angle, in degrees, of the specific acoustic-impedance ratio jZsj/r0c in a spherical wave
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FIG. 2.14 Plot of the magnitude of the specific acoustic-impedance ratio jZsj/(r0c) in a spherical freely traveling

wave as a function of kr, where k is the wave-number equal to u/c or 2p/l and r is the distance from the center of

the spherical source.

jZsj is the magnitude of ratio of pressure to particle velocity in a spherical free-traveling wave, and r0c is the

characteristic impedance of air.
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Table 2.2 General and Steady-state Relations for Small-signal Sound Propagation in Gases

Name General equation Steady-state equation

Wave equation in p or u v2ð Þ
vx2

¼ 1

c2
v2ð Þ
vt2

V2ð Þ ¼ 1

c2
v2ð Þ
vt2

v2ðprÞ
vr2

¼ 1

c2
v2ðprÞ
vt2

v2ð Þ
vx2

¼ �u2

c2
ð Þ

V2ð Þ ¼ �u2

c2
ð Þ

V2ðprÞ ¼ �u2

c2
ðprÞ

Equation of motion
vp

vx
¼ �r0

vu

vt

grad p ¼ �r0
vq

vt

u ¼ �1

jur0

vp

vx

p ¼ �jur0
R
u dx

grad p ¼ �jur0q

Displacement x ¼ R
u dt

x ¼ R
q dt

x ¼ u

ju

x ¼ q

ju

Incremental density r ¼ r0

gP0
p ¼ p

c2

vr

vt
¼ �r0

vu

vx

r ¼ r0

gP0
p ¼ p

c2

r ¼ �r0

ju

vu

vx

Incremental temperature DT ¼ T0
P0

g� 1

g
p DT ¼ T0

P0

g� 1

g
p
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PART V: SOLUTIONS OF THE HELMHOLTZ WAVE EQUATION IN THREE
DIMENSIONS

2.9 RECTANGULAR COORDINATES
In the steady state, Eq. (2.20b) for the three-dimensional wave equation in rectangular coordinates can
be written

ðV2 þ k2Þ~pðx; y; zÞ ¼ 0; (2.111)

where the Laplace operator is given by

V2 ¼ v2

vx2
þ v2

vy2
þ v2

vz2
(2.112)

and k¼u/c¼ 2p/l. Let the solution to Eq. (2.111) be of the form

~pðx; y; zÞ ¼ ~p0XðxÞYðyÞZðzÞ: (2.113)
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Substituting this in Eq. (2.111) and dividing through by X(x)Y(y)Z(z) yields�
1

X

v2X

vx2
þ k2x

�
þ
�
1

Y

v2Y

vy2
þ k2y

�
þ
�
1

Z

v2Z

vz2
þ k2z

�
¼ 0; (2.114)

where

k2 ¼ k2x þ k2y þ k2z : (2.115)

For example, in the case of a plane wave with a direction of travel in the zx plane at an angle q to the z
axis, we have kz¼ k cos q, kx¼ k sin q, and ky¼ 0. The first bracketed term of Eq. (2.114) depends
upon x only, while the second term depends upon y only and the third term z only. However, they must
all add up to zero which means that either they all have constant values, the combination of which is
zero, or they are all zero. We shall assume the latter, in which case Eq. (2.114) can be separated into
three equations for each ordinate as follows.

The plane wave equation in x. �
v2

vx2
þ k2x

�
X ¼ 0: (2.116)

The plane wave equation in y. �
v2

vy2
þ k2y

�
Y ¼ 0: (2.117)

The plane wave equation in z. �
v2

vz2
þ k2z

�
Z ¼ 0: (2.118)

The solutions to Eqs. (2.116), (2.117), and (2.118) are

XðxÞ ¼ Xþe�jkxx þ X�e jkxx;

YðyÞ ¼ Yþe�jkyy þ Y�e jkyy; and

ZðzÞ ¼ Zþe�jkzz þ Z�e jkzz

respectively so that the solution to Eq. (2.111) is

~pðx; y; zÞ ¼ ~pþe
�jðkxxþkyyþkzzÞ þ ~p�e

jðkxxþkyyþkzzÞ: (2.119)

2.10 CYLINDRICAL COORDINATES
In problems where there is axial symmetry, cylindrical coordinates are often useful, as shown in
Fig. 2.16. We shall use these for planar circular radiators. In the xy plane of the rectangular coordinate
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FIG. 2.16 Cylindrical coordinates.
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system, the x and y ordinates are replaced by polar ordinates w and f where the radial ordinate w is
given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(2.120)

and the azimuthal ordinate f is given by

f ¼ arctanð y=xÞ: (2.121)

Conversely

x ¼ w cos f; (2.122)

y ¼ w sin f: (2.123)

The rectangular z ordinate simply becomes the axial cylindrical ordinate. The three-dimensional wave
equation in cylindrical coordinates is

ðV2 þ k2Þ~pðw;f; zÞ ¼ 0; (2.124)

where the Laplace operator is given by

V2 ¼ v2

vw2
þ 1

w

v

vw
þ 1

w2

v2

vf2
þ v2

vz2
; (2.125)

which is often written in the following short form:

V2 ¼ 1

w

v

vw

�
w

v

vw

�
þ 1

w2

v2

vf2
þ v2

vz2
: (2.126)

Let the solution to Eq. (2.124) be of the form

~pðw;f; zÞ ¼
XN
n¼ 0

~pnWnðwÞFnðfÞZðzÞ: (2.127)
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Substituting this in Eq. (2.124), multiplying through by w2, and dividing through by Wn(w)F(f)Z(z)
yields

w2

Wn

v2Wn

vw2
þ w

Wn

vWn

vw
þ k2ww

2 ¼ � 1

Fn

v2Fn

vf2
� w2

Z

v2Z

vz2
� k2z w

2; (2.128)

where
k2 ¼ k2w þ k2z : (2.129)

If both sides of Eq. (2.128) are equated to a constant of separation n2, then Eq. (2.128) can then be
separated into three equations for each ordinate as follows.
The radial equation in w. �

v2

vw2
þ 1

w

v

vw
þ k2w � n2

w2

�
WnðwÞ ¼ 0: (2.130)

The solution to this equation is of the form

WnðwÞ ¼ WnþHð2Þ
n ðkwwÞ þWn�Hð1Þ

n ðkwwÞ; (2.131)

where Hn
(1)(x) and Hn

(2)(x) are Hankel functions defined by

Hð1Þ
n ðxÞ ¼ JnðxÞ þ jYnðxÞ; (2.132)

Hð2Þ
n ðxÞ ¼ JnðxÞ � jYnðxÞ; (2.133)

where Jn(x) and Yn(x) are Bessel functions of the first and second kind respectively, as plotted in
Fig. 2.17 and Fig. 2.18. The “2” in parentheses denotes an outgoing cylindrical wave and the “1”
denotes an incoming one.
FIG. 2.17 Bessel functions of the first kind.



FIG. 2.18 Bessel functions of the second kind.
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The azimuthal equation in f. �
v2

vf2
þ n2

�
FnðfÞ ¼ 0: (2.134)

The solution to this equation is of the form

FnðfÞ ¼ AncosðnfÞ þ BnsinðnfÞ: (2.135)

It can be seen that the integer n denotes the nth harmonic of the azimuthal modes of vibration where
f¼ 2p represents a full rotation about the z axis. The values of An and Bn depend on where the nodes
and antinodes lie on the circumference. For example, setting Bn¼ 0 would place the nodes at f¼ 0, p,
and 2p.
The axial equation in z. �

v2

vz2
þ k2z

�
ZðzÞ ¼ 0: (2.136)

The solution to this plane wave equation is of the form

ZðzÞ ¼ Zþe�jkzz þ Z�e jkzz; (2.137)

where theþ sign denotes a forward traveling wave and the� sign a reverse one. From Eq. (2.129) we
observe that

kz ¼

8><>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

p
; k 	 kw$

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

p
; k < kw

; (2.138)

Hence for k< kw the forward traveling term becomes an evanescent decaying one. Evanescent waves
typically occur close to sound sources in the form of non-propagating standing waves.
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2.11 SPHERICAL COORDINATES
So far, we have only considered the one-dimensional spherical wave equation and its solution. In many
problems where there are spherical surfaces but no axial or rotational symmetry, it is necessary to use
spherical coordinates as shown in Fig. 2.19. The x, y, and z ordinates are replaced by spherical
ordinates r, f, and q, where the radial ordinate r is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; (2.139)

the inclination angle q is given by

q ¼ arccot
�
z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
; (2.140)

and the azimuth angle f is given by

f ¼ arctanðy=xÞ: (2.141)

Conversely

x ¼ rsinq cos f; (2.142)

y ¼ rsinq sin f; (2.143)

z ¼ rcosq: (2.144)

The three-dimensional wave equation in spherical coordinates is

ðV2 þ k2Þ~pðr; q;fÞ ¼ 0; (2.145)

where the Laplace operator is given by

V2 ¼ v2

vr2
þ 2

r

v

vr
þ 1

r2
v2

vq2
þ 1

r2tan q

v

vq
þ 1

r2sin2 q

v2

vf2
; (2.146)
z

y

x

r
r cos 

φ

φ

θ

θ

θ

θ
0

r sin 

P(r, , )

FIG. 2.19 Spherical coordinates.
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which is often written in the following short form:

V2 ¼ 1

r2
v

vr

�
r2

v

vr

�
þ 1

r2 sin q

v

vq

�
sin q

v

vq

�
þ 1

r2 sin2 q

v2

vf2
: (2.147)

Let the solution to Eq. (2.145) be of the form

~pðr; q;fÞ ¼
XN
n¼ 0

Xn
m¼ 0

~pmnRnðrÞZmnðqÞFmðfÞ: (2.148)

Substituting this in Eq. (2.145), multiplying through by r2, and dividing through by Rn(r) Zmn(q)Fn(f)
yields

r2

Rn

v2Rn

vr2
þ 2r

Rn

vRn

vr
þ k2r2 ¼ � 1

Zmn

v2Zmn

vq2
� 1

Zmntan q

vZmn
vq

� 1

Fmsin
2q

v2Fm

vf2
: (2.149)

If both sides of Eq. (2.149) are equated to a constant of separation n(nþ 1), then Eq. (2.149) can then
be separated into three equations for each ordinate as follows.
The radial equation in r. After equating the left hand side of Eq. (2.149) to n(nþ 1), we have�

v2

vr2
þ 2

r

v

vr
þ k2 � nðnþ 1Þ

r2

�
RnðrÞ ¼ 0: (2.150)

The solution to this equation is of the form

RnðrÞ ¼ Rnþhð2Þn ðkrÞ þ Rn�hð1Þn ðkrÞ; (2.151)

where hn
(1)(x) and hn

(2)(x) are spherical Hankel functions, which are also known as Hankel functions of
fractional order, as defined by

hð1Þn ðxÞ ¼ jnðxÞ þ jynðxÞ; (2.152)

hð2Þn ðxÞ ¼ jnðxÞ � jynðxÞ; (2.153)

where jn(x) and yn(x) are spherical Bessel functions of the first and second kind respectively, as plotted
in Fig. 2.20 and Fig. 2.21. The “2” in parentheses denotes an outgoing spherical wave and the “1”
denotes an incoming one. These spherical Bessel functions are related to the cylindrical Bessel
functions of integer order Jnþ1

2
ðxÞ and Ynþ 1

2
ðxÞ by

jnðxÞ ¼
ffiffiffiffiffi
p

2x

r
Jnþ 1

2
ðxÞ; (2.154)

ynðxÞ ¼
ffiffiffiffiffi
p

2x

r
Ynþ 1

2
ðxÞ: (2.155)



FIG. 2.20 Spherical Bessel functions of the first kind.

FIG. 2.21 Spherical Bessel functions of the second kind.
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The inclination equation in q. After equating the right hand side of Eq. (2.149) to n(nþ 1), we have

1

Zmn

v2Zmn

vq2
þ 1

Zmntan q

vZmn
vq

þ nþ 1 ¼ � 1

Fmsin
2q

v2Fm

vf2
: (2.156)

Equating the left hand side of Eq. (2.156) to another constant of separation m2/sin2 q yields�
v2

vq2
þ 1

tan q

v

vq
þ nðnþ 1Þ � m2

sin2q

�
ZmnðqÞ ¼ 0: (2.157)

After substituting z¼ cos q, the inclination equation becomes��
1� z2

�
v2

vz2
� 2z

v

vz
þ nðnþ 1Þ � m2

1� z2

��
ZmnðzÞ ¼ 0: (2.158)
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The solution to this equation is of the form

ZmnðzÞ ¼ QmnP
m
n ðzÞ (2.159)

or

ZmnðqÞ ¼ QmnP
m
n ðcos qÞ; (2.160)

where Pn
m(cos q) is the associated Legendre function. In the case of axisymmetry, where m¼ 0, it

reduces to the Legendre function (or Legendre polynomial) denoted byPn(cos q), as plotted in Fig. 2.22.
The azimuth equation in f. Equating the right hand side of Eq. (2.156) to the constant of separation
m2/sin2 q yields �

v2

vf2
þ m2

�
FmðfÞ ¼ 0: (2.161)

The solution to this equation is of the form

FmðfÞ ¼ AmcosðmfÞ þ BmsinðmfÞ: (2.162)

It can be seen that the integer m denotes the mth harmonic of the azimuthal modes of vibration where
f¼ 2p represents a full rotation about the z axis. The values of Am and Bm depend on where the nodes
and antinodes lie on the circumference. For example, setting Bm¼ 0 would place the nodes at f¼ 0, p,
and 2p. Now the complete solution to Eq. (2.145) may be written as

~pðr; q;fÞ ¼ PN
n¼ 0

Pn
m¼ 0

~pmn

�
Rnþh

ð1Þ
n ðkrÞ þ Rn�h

ð2Þ
n ðkrÞ

�
�Pm

n ðcos qÞðAmcosðmfÞ þ BmsinðmfÞÞ:
(2.163)

which in the case of axial symmetry (m¼ 0) simplifies to

~pðr; qÞ ¼
XN
n¼ 0

~pn

�
Rnþhð1Þn ðkrÞ þ Rn�hð2Þn ðkrÞ

�
Pnðcos qÞ: (2.164)
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FIG. 2.22 Legendre functions.
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Notes
[1] Nonvector derivations of the wave equation are given in Rayleigh, Theory of Sound, Vol. 2, pp. 1–15,

(Dover, 1945); P.M. Morse, Vibration and Sound, 2nd ed. (Acoustical Society of America, New York,
1981), pp. 217–225; L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics,
4th ed. (John Wiley & Sons, Inc., New York, 2000), pp. 113–213; and other places.

[2] A vector derivation of the wave equation is given in two papers that must be read together: W.J. Cun-
ningham, Application of Vector Analysis to the Wave Equation, J Acoust Soc Am 1950; 22:61 and R.V.L.
Hartley, Note on Application of Vector Analysis to the Wave Equation, J Acoust Soc Am 1950;22:511.

[3] If a mass of gas is chosen so that its weight in grams is equal to its molecular weight (known to chemists as
the gram-molecular weight, or the mole), then the volume of this mass at 0�C and 0.76 m Hg is the same for
all gases and equals 0.02242 m3. Then R¼ 8.314 watt-sec per degree centigrade per gram-molecular
weight. If the mass of gas chosen is n times its molecular weight, then R¼ 8.314 n.

[4] Beranek See LL. Acoustic Measurements. New York: Acoustical Society of America; 1988. p. 49.
[5] Serway RA, Jewett JW. Principles of Physics: A Calculus-Based Text. 4th ed. Calif: Thomson Brooks/Cole,

Belmont; 2006. ISBN 053449143X, p. 550.
[6] Webster AG. Acoustical Impedance, and the Theory of Horns and of the Phonograph. Proc Natl Acad Sci

USA 1919;5:275–82.
[7] For the type of source we have assumed and no dissipation, this case breaks down for kl¼ np.


	2. The wave equation and solutions
	Part III: The Wave Equation
	2.1 Introduction
	2.2 Derivation of the wave equation
	2.2.1 The equation of motion
	2.2.2 The gas law
	2.2.3 The continuity equation
	2.2.4 The wave equation in rectangular coordinates
	2.2.5 The wave equation in cylindrical coordinates
	2.2.6 The wave equation in spherical coordinates
	2.2.7 General one-dimensional wave equation (Webster’s equation) [6]

	Part IV: Solutions of the Wave Equation in One Dimension
	2.3 General solutions of the one-dimensional wave equation
	2.3.1 General solution
	2.3.2 Steady-state solution

	2.4 Solution of wave equation for air in a tube terminated by an impedance
	Particle velocity
	Transmitted and reflected pressures
	Impedance
	Impedance measurement
	Rigid termination (infinite impedance)
	Sound pressure
	Specific acoustic impedance

	2.5 Solution of wave equation for air in a tube filled with absorbent material
	2.6 Freely traveling plane wave
	Sound pressure
	Particle velocity
	Specific acoustic impedance

	2.7 Freely traveling cylindrical wave
	Sound pressure
	Particle velocity
	Specific acoustic impedance

	2.8 Freely traveling spherical wave
	Sound pressure
	Particle velocity
	Specific acoustic impedance

	Part V: Solutions of the Helmholtz Wave Equation in three Dimensions
	2.9 Rectangular coordinates
	The plane wave equation in x
	The plane wave equation in y
	The plane wave equation in z

	2.10 Cylindrical coordinates
	The radial equation in w
	The azimuthal equation in φ
	The axial equation in z

	2.11 Spherical coordinates
	The radial equation in r
	The inclination equation in θ
	The azimuth equation in φ

	Notes


