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4.1 INTRODUCTION
We have attempted to present the material in different parts of this text in three ways. First, in a form
where acoustical phenomena can be visualized and thought of in terms, say as an example, of analogous
electrical circuits. This form is found in the first three chapters. Second, where straight-forward math-
ematical analysis leads to results that are commonly encountered in engineering practice. This form is
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120 CHAPTER 4 Acoustic components
found in Chapter 7, where ready-made formulas and tables for loudspeaker systems are presented. Third,
where advanced mathematical analysis is necessary to handle complex acoustical problems. This form is
found in Chapter 14 where a program for speeding up the derivation of transfer functions is described.
The advantage of mathematical analysis is that the formulas can be reused indefinitely.

In this chapter wewill start with the acoustical and mechanical elements that are used to form electro-
mechano-acoustic circuits which, in turn, are used to calculate the performance of loudspeakers,
microphones, and acoustic filters. One obvious acoustical element is the air into which the sound is
radiated. Others are air cavities, tubes, slots, and porous screens both behind and in front of actively
vibratingdiaphragms.Thesevarious elements have acoustic impedances associatedwith them,which can,
in some frequency ranges, be represented as simple lumped elements. In other frequency ranges,
distributed elements, analogous to electric lines, must be used in explaining the performance of the
devices.This text does not pretend to advance the science of acoustic components to anything approaching
a state of completion.Much research remains to be done. Non-linearities that occur at higher sound levels,
such as shockwaves and turbulence, are not covered here. It does attempt to interpret the available theories
in such a way that the reader can construct and understand the performance of common acoustic devices.
PART X: ACOUSTIC ELEMENTS

4.2 ACOUSTIC MASS (INERTANCE)
A tube open at both ends and with rigid walls behaves as an acoustic mass if it is short enough so that
the air in it moves as a whole without appreciable compression. In setting up the boundary condition,
the assumption is made that the sound pressure at the open end opposite the source is nearly zero. This
assumption would be true if it were not for the radiation impedance of the open end, which acts very
much like a piston radiating into open air. However, this radiation impedance is small for a tube of
small diameter and acts only to increase the apparent length of the tube slightly. Therefore, the
radiation impedance will be added as a correction factor later.
Tube of medium diameter. In order to be able to neglect viscous losses inside the tube, the radius of
the tube a in meters must not be too small. Also, in order to be able to neglect transverse resonances in
the tube, the radius must not be too large. The equations which follow are valid for a radius in meters
greater than about 0:05=

ffiffiffi
f

p
and less than about 10/f.

To demonstrate acoustic mass, take a tube of length [0. Let us designate the boundary acoustic
impedance at one end as ZA¼ 0, i.e., ~p¼ 0. At the other end the acoustic impedance looking into the
tube, using the solution of the one-dimensional wave Eq. (2.60), is

ZA ¼ j
r0c

pa2
tan k[0 (4.1)

where

r0 is density of the gas in kg/m3

c is speed of sound in m/s
a is radius of tube in m
k is wave-number¼u/c in m�1.
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For small values of k[0,

tan k[0 ¼ k[0 þ ðk[0Þ3
3

(4.2)

If [0 <16, the second term will be less than 5% as large as the first, so

ZA ¼ ju
r0[

0

pa2
¼ juMA N$s=m5 (4.3)

MA ¼ r0[
0

pa2
acoustic mass with units kg=m4 (4.4)

End corrections. Most acoustic masses are tubes that terminate at one end or the other, or both, in open
air or at the boundary of a large cavity. The air particles at the end of a tube do not instantaneously
disperse from their organized status inside the tube so that their behavior at the end is equivalent to
a short extension of the tube, i.e., an end correction. In what follows, we will simply give the end
corrections, and later in the chapter will derive them.

End correction [00 if the open end of the tube terminates in a wall—called an infinite baffle or flanged
tube If a< l/25 the end correction [00 for this case is,

[00 ¼ MA1pa
2

r0
¼ 8a

3p
z 0:85a m (4.5)

The total mass MA of Eq. (4.4) now becomes

MA ¼ r0ð[0 þ [00Þ
pa2

¼ r0[

pa2
kg=m4 (4.6)

If both ends terminate in a flange,

MA ¼ r0ð[0 þ 2[00Þ
pa2

¼ r0[

pa2
kg=m4 (4.7)

End correction [00 if the open end of the tube terminates in open air—called an unflanged
tube If a< l/25 the end correction in this case is again like a mass but because the organized state of
the gas particles drops off faster than in the flanged tube case, the size of MA1 is smaller. Hence,

[00 ¼ MA1pa
2

r0
¼ 2a

p
z 0:64a m (4.8)

Equations (4.6) and (4.7) are valid in either case, except [00 must be properly chosen.
4.3 ACOUSTIC COMPLIANCES
In Eq. (2.72) we showed that a length of tube, rigidly closed on one end ([¼ 0), with a radius in meters
greater than 0:05=

ffiffiffi
f

p
(so that the sidewall friction can be neglected) and less than 10/f (so lateral

standing waves are not present) has an input acoustic impedance at the open end equal to
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ZA ¼ �jr0c

pa2
cot k[0 (4.9)

where ZA ¼ Zs=ðpa2Þ
r0 is density of the gas in kg/m3

c is speed of sound in m/s
a is radius of tube in m
k is wave-number¼u/c in m�1

[0 is length of the tube in m.

For values of k that are not too large, the cotangent may be replaced by

cot k[0 ¼ 1

k[0
� k[0

3
(4.10)

Thus

ZA ¼ �j
1

uðV=r0c2Þ
þ ju

l0r0
3pa2

þ $ $ $ (4.11)

For [0 < l/10, Eq. (4.9) becomes

ZA ¼ �j
1

uCA
(4.12a)

The acoustic compliance obviously is:

CA ¼ V

r0c
2
¼ V

gP0
with units m5=N (4.13)

Limitations on an acoustic compliance. An acoustic compliance obtained by compressing air in
a closed volume can be represented by a two-terminal device, but one terminal must always be at
“ground potential.” That is to say, one terminal is outside of the enclosure V, which is at atmospheric
pressure, i.e., a sound pressure of 0. Therefore, it is never possible to insert an acoustic compliance
between acoustic masses or acoustic resistances.
Series acoustic compliance. To obtain a series acoustic compliance a diaphragm or stretched
membrane must be used. Of course, diaphragms and stretched membranes resonate at various
frequencies. The range where they act as compliances is restricted to that region well below the lowest
frequency of resonance. A combination of a series acoustic compliance, an acoustic mass, and an
acoustic resistance is shown in Fig. 4.1.
p~

CA

U
~

RA
MALow resistance 

Stiffness
controlled
diaphragm   

Mass of air in
which little com –
pression occurs 

(a) (b)

FIG. 4.1 (a) Example of a series acoustic compliance obtained with a stiffness-controlled diaphragm. (b) Analo-

gous circuit.



(a) (b)

(c) (d)

(e)

FIG. 4.2 Approximate analogous circuits for a short tube of medium diameter.

(a) and (b) Circuits used when ~p2=
~U2 is very small (open end). (c) and (d) Circuits used when ~p2=

~U2 is very large

(closed end). (e) Circuit used for any value of ~p2=
~U2. Circuits (a) and (c) yield the impedance within about 5% for

a tube length l 0 that is less than l/16. Circuits (b), (d), and (e) yield the impedance within about 5% for l 0 < l/8.
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Analogous circuits for acoustic masses and compliances are shown in Fig. 4.2. The circuits in (a)
and (c) are for cases where [0 < l/16 and involve CA and MA alone. When l/16> [0 > l/8 the second
terms in Eqs. (4.2) and (4.10) cannot be neglected and this leads to the added elements CA/3 in (b),
MA/3 in (d), and the more complicated symmetric circuit of (e).

If the tube is not round, we may replace a by
ffiffiffiffiffiffiffiffi
S=p

p
, where S is the cross-sectional area of the tube.

Example 4.1. The old-fashioned jug of Fig. 4.3 is used in a country dance band as a musical
instrument. You are asked to analyze its performance acoustically, If the inside dimensions of the jug
2.5 cm 

25 cm

3.75 cm 

20 cm 

FIG. 4.3 Sketch of a musical jug.
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are diameter¼ 20 cm and air-cavity height¼ 25 cm, give the analogous circuit, the element sizes, and
the acoustic impedance for the air-cavity portion of the jug at 50, 100, and 300 Hz. Assume T¼ 22�C
and P0¼ 105 Pa. (Note: The neck portion will be discussed later in this part.)

Solution. The speed of sound at 22�C is about 345 m/s. Hence,

l50¼ 6.9 m
l100¼ 3.45 m
l300¼ 1.15 m

The length l of the jug is 0.25 m. Hence,

l ¼ l50

27:6
¼ l100

13:8
¼ l300

4:6
¼ 0:25 m

At 50 Hz, where l/l¼ 1/28, the cavity portion of the jug may be represented by an acoustic
compliance:

CA ¼ V

gP0
¼ 7:85� 10�3

1:4� 105
¼ 5:61� 10�8 m5=N

ZA ¼ �j
108

314� 5:61
¼ �j5:7� 104 N$s=m5

At 100 Hz, where l/l¼ 1/14, the cavity portion of the jug may be represented by a series acoustic mass
and acoustic compliance:

MA ¼ lr0
3pa2

¼ 0:25� 1:19

3pð0:1Þ2 ¼ 3:2 kg=m4

CA ¼ 5:61� 10�8 m5=N

ZA ¼ j

�
628� 3:2� 108

628� 5:61

�
¼ �j2:6� 104

At 300 Hz, where l/l¼ 1/5, the acoustic impedance of the cavity portion of the jug must be solved
directly from Eq. (4.9):

ZA ¼ �jr0c

pa2
cot kl

¼ �jð1:19� 345Þ
pð0:1Þ2 cot

2p� 300� 0:25

345

ZA ¼ �j2:7� 103 N$s=m5

Example 4.2. The jug of Example 4.1 has a neck with a diameter of 2.5 cm and a length of 3.75 cm
(see Fig. 4.3). At what frequency will the jug resonate?
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Solution. First, let us assume that the frequency of resonance is so low that the length of the neck
l0 is small compared with l/16. Then, because the air in it is not constrained, it will be an acoustic mass:

MA ¼ r0ðl0 þ 0:85aþ 0:61aÞ
pa2

¼ 1:19

 
0:0375þ 1:46� 0:0125

pð0:0125Þ2
!

¼ 135 kg=m4

The volume velocity through the neck of the jug is the same as that entering the air cavity inside.
Hence, the two elements are in series and will resonate at

f ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p ¼ 104

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135� 5:61

p

¼ 58 Hz

4.4 ACOUSTIC RESISTANCES
Any device in which the flow of gas occurs in phase with and directly proportional to the applied
pressure may be represented as a pure acoustic resistance. In other words, there is no stored (reactive)
energy associated with the flow. Four principal forms of acoustic resistance are commonly employed in
acoustic devices: fine-meshed screens made of metal or cloth, small-bore tubes, narrow slits, and
porous acoustical materials.

Screens are often used in acoustic transducers because of their low cost, ease of selection and
control in manufacture, satisfactory stability, and relative freedom from inductive reactance. Slits are
often used where an adjustable resistance is desired. This is accomplished by changing the width of the
slit. Tubes have the disadvantage that unless their diameter is very small, which in turn results in a high
resistance, there is usually appreciable inductive reactance associated with them. However, if
a combination of resistance and inductance is desired, they are useful. Such combinations will be
treated later in this part. Fibrous or porous acoustic materials, porous ceramics, and sintered metals are
often used in industrial applications and are mixtures of mass and resistance. In all four forms of
acoustic resistance, the frictional effects producing the resistance occur in the same manner.

In Fig. 4.4, we see the opposite sides 1 and 2 of a slit, or tube, or of one mesh of screen. An
alternating pressure difference ð~p1 � ~p2Þ causes a motion of the air molecules in the space between the
sides 1 and 2. At 1 and 2 the air particles in contact with the sides must remain at rest. Halfway between
the sides, the maximum amplitude of motion will occur. Frictional losses occur in a gas whenever
adjacent layers of molecules move over each other with different velocities. Hence frictional losses
occur in the example of Fig. 4.4 near each of the walls as marked by the letter (a). In any tube, slit,
mesh, or interstice the losses become appreciable when the regions in which adjacent layers differ in
velocity extend over the entire space.



(a) Regions in which viscous losses occur

1

2

1
~p 2

~p

(a)

(a)

FIG. 4.4 Sketch showing the diminution of the amplitude of vibration of air particles in a sound wave near

a surface.

The letters (a) show the regions in which viscous losses occur.
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Screens. The specific acoustic resistances of a variety of dust screen sizes are shown in Table 4.1. The
acoustic resistance is obtained by dividing the values of Rs in this table by the area of screen being
considered.
Table 4.1 Specific acoustic resistances of dust screens

Type
RS, rayls,
N$s/m3

Mesh
opening, mm

No. holes/
cm2

Open
area, %

Thickness,
mm

Weight,
g/m2

Acoustex 003
Acoustex 006
Acoustex 010
Acoustex 020
Acoustex 032
Acoustex 047
Acoustex 075
Acoustex 090
Acoustex 145
Acoustex 160
Acoustex 260

3
6
10
20
32
47
75
90
145
160
260

285
105
120
68
38
38
25
41
27
21
18

529
4761
3025
8100
22500
19600
32400
8100
19600
36100
40000

43%
52%
44%
38%
32%
28%
20%
14%
14%
16%
13%

255
63
105
62
48
48
52
125
70
58
60

110
25
51
32
25
31
33
86
52
45
48

Courtesy of Saati Spa—data based on existing product range
Care should be taken that a screen is tensioned before it is fitted. Otherwise it will not behave as
a pure resistance, but more like a membrane with compliance. If it is too slack, its motion will be
nonlinear. The acoustic resistances of screens are generally determined by test and not by calculations.
Tube of small diameter [0.0005

ffiffi
l

p
< radius a ( in meters)< 0.002/

ffiffiffi
f

p
]. As derived in Par. 4.22, the

acoustic impedance of a tube of very small diameter, neglecting the end corrections, is

ZA ¼ RA þ juMA N$s=m5 (4.14)

where

RA ¼ 8ml

ð1þ 4BuÞpa4 N$s=m5 (4.15)
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MA ¼ 4ð1þ 3BuÞr0 l

3ð1þ 4BuÞpa2 kg=m4 (4.16)

m is viscosity coefficient. For air m¼ 1.86� 10�5 N$s/m2 at 20�C and 0.76 m Hg. This quantity
varies with temperature, that is, m f T0.7, where T is in �K.
l is length of tube in m.
a is radius of tube in m.
MA is acoustic mass of air in tube in kg/m4.
r is density of gas in kg/m3.

and the boundary slip factor Bu is given by

Bu ¼ ð2a�1
u � 1ÞKn

�
x 0 for a > 6mm

�
; (4.17)

where au is the accommodation coefficient, which is assumed to have a value of 0.9, and Kn is the
(dimensionless) Knudsen number given by

Kn ¼ lm=a; (4.18)

where lm¼ 60 nm is the molecular mean free path length between collisions.
The mechanical impedance of a very small tube is found by multiplying Eq. (4.14) by (pa2)2,

which yields

ZM ¼ 8pm lþ j
4

3
MMu (4.19)

where MM¼ r0pa
2l¼mass of air in the tube in kilograms.

Narrow slit[1] [t (in meters)< 0.003/
ffiffiffi
f

p
]. The acoustic impedance of a very narrow slit, neglecting

end corrections, is

ZA ¼ 12m l

t3w
þ j

6r0lu

5wt
N$s=m5 (4.20)

where

l is length of slit in m in direction in which the sound wave is traveling (see Fig. 4.5),
w is width of slit in m as viewed from the direction from which the wave is coming (see Fig. 4.5),
t is thickness of slit in m (see Fig. 4.5).
w

t

l

Direction of
travel of

sound wave 

FIG. 4.5 Dimension of a narrow slit.
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The mechanical impedance of a very narrow slit is given by multiplying Eq. (4.20) by t2w2:

ZM ¼ 12m lw

t
þ j

6

5
MMu (4.21)

where MM¼ r0lwt ¼ mass of air in the slit in kg.
Example 4.3. An acoustic resistance of 1 MN$s/m5 is desired as the damping element in an earphone.
Select a screen and the diameter of hole necessary to achieve this resistance.

Solution. As the resistance is needed for an earphone, it should be quite small. If we select an 020
mesh screen (see Table 4.1), the specific acoustic resistance is 20 rayls. For an acoustic resistance of
106 N$s/m5, an area S is needed of

S ¼ 20

106
¼ 20 mm2

The diameter d of the hole required for this area is

d ¼ 2a ¼ 2

ffiffiffi
S

p

r
¼ 5:05 mm

4.5 CAVITY WITH HOLES ON OPPOSITE SIDES—MIXED
MASS-COMPLIANCE ELEMENT
A special case of an element that is frequently encountered in acoustical devices and that has often led
to confusion in analysis is that shown in Fig. 4.6. Imagine this to be a doughnut-shaped element, each
side of which has a hole of radius a bored in it. When a flow of air with a volume velocity ~U1 enters
opening 1, all the air particles in the vicinity of the opening will move with a volume velocity ~U1. Part
of this velocity goes to compress the air in the cylindrical space 3, and part of it appears as a movement
of air that is not appreciably compressed. It was pointed out earlier that a portion of a gas that
compresses without appreciable motion of the particles is to be treated as an acoustic compliance.

By inspection of Fig. 4.6 we see that the portion enclosed approximately by the dotted lines moves

without appreciable compression and, hence, is an acoustic mass. That lying outside the dotted lines is

l

a

b

3

3

21

FIG. 4.6 Example of a mixed mass-compliance element made from a cavity with holes on opposite sides.
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an acoustic compliance. The analogous circuit for this acoustic device is given in Fig. 4.7. The
volume velocity ~U1 entering opening 1 divides into two parts, one to compress the air ( ~U3) and the
other ( ~U2) to leave opening 2. By judicious estimation we arrive at values for MA. If the length l of
the cylinder is fairly long and the volume 3 is large,MA is merely the end correction l00 of Eq. (4.5). If
the volume 3 is small, thenMA becomes nearly the acoustic mass of a tube of radius a and length l/2.
The acoustic compliance is determined by the volume of air lying outside of the estimated dotted

lines of Fig. 4.6.

CA

2

~
UMA

1

~
U MA

3

~
U

FIG. 4.7 Analogous circuit for the device of Fig. 4.6.
4.6 INTERMEDIATE-SIZED TUBE—MIXED MASS-RESISTANCE ELEMENT [a
(in meters) > 0.01/

ffiffiffi
f

p
and a < 10/f ] [2]

The acoustic impedance for a tube with a radius a (in meters) that is less than 0.002/
ffiffiffi
f

p
was given

by Eqs. (4.14) and (4.16). Here we shall give the acoustic impedance for a tube whose radius (in
meters) is greater than 0.01/

ffiffiffi
f

p
but still less than 10/f. For a tube whose radius lies between 0.002/ffiffiffi

f
p

and 0.01/
ffiffiffi
f

p
interpolation must be used. The acoustic impedance of the intermediate-sized

tube is equal to

ZA ¼ RA þ juMA (4.22)

where

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
pa2

�
l0

a
þ ð2Þ

�
N$s=m5 (4.23)

MA ¼ r0ðl0 þ ð2Þl00Þ
pa2

kg=m2 (4.24)

a is radius of tube in m.
r0 is density of air in kg/m3.
m is viscosity coefficient. For air m¼ 1.86� 10�5 N$s/m2 at 20�C and 0.76 m Hg. This quantity
varies with temperature, that is, m f T0.7, where T is in �K.
l0 is actual length of the tube.
l00 is end correction for the tube. It is given by Eq. (4.5) if the tube is flanged or Eq. (4.8) if the tube
is unflanged. The numbers (2) in parentheses in Eqs. (4.23) and (4.24) must be used if both ends of
the tube are being considered. If only one end is being considered, replace the number (2) with the
number 1.

u is angular frequency in rad/s.
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4.7 PERFORATED SHEET—MIXED MASS-RESISTANCE ELEMENT
[a (in meters) > 0.01/

ffiffiffi
f

p
and a < 10/f ] [2]

Many times, in acoustics, perforated sheets are used as mixed acoustical elements. We shall assume
a perforated sheet with the dimensions shown in Fig. 4.8 and holes whose centers are spaced more
than one diameter apart. For this case the acoustic impedance for each area b2, that is, each hole, is
given by

ZA ¼ RA þ juMA

where

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
pa2

�
t

a
þ 2

�
1� Ah

Ab

��
kg$s=m5 (4.25)

MA ¼ r0

pa2

�
t þ 1:7a

�
1� 2:1a

b

��
kg=m4 (4.26)

Ah¼ pa2 is area of hole in m2,
Ab¼ b2 is area of a square around each hole in m2,
t is thickness of the sheet in m.

If there are n holes, the acoustic impedance is approximately equal to 1/n times that for one hole.
Definition of Q. If this mass-resistance element is used with a compliance to form a resonant circuit,
we are often interested in the ratio of the angular frequency of resonance u0 to the angular bandwidthu
(rad/s) measured at the half-power points. This ratio is called the “Q” of the circuit and is a measure of
the sharpness of the resonance curve.

The “QA” of a perforated sheet when used with a compliance of such size as to produce resonance
at angular frequency u0 is

QA ¼ u0MA

RA
¼

ffiffiffiffiffiffiffiffiffiffi
u0r0

2m

r
a

t þ 1:7að1� ða=bÞÞ
t þ 2að1� ðpa2=b2ÞÞ (4.27)

TheQA is independent of the number of holes in the perforated sheet. We repeat that these formulas are
limited to cases where the centers of the holes are spaced more than a diameter apart.
Holes with
radius a

b

b

t

FIG. 4.8 Thin perforated sheet with holes of radius a, and length l, spaced a distance b on centers.
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4.8 ACOUSTIC TRANSFORMERS
As for the other acoustical elements, there is no configuration of materials that will act as a “lumped”
transformer over a wide frequency range. Also, what may appear to be an acoustic transformer when
impedances are written as mechanical impedances may not appear to be one when written as acoustic
impedances, and vice versa. As an example of this situation, let us investigate the case of a simple
discontinuity in a pipe carrying an acoustic wave.
Junction of two pipes of different areas. A junction of two pipes of different areas is equivalent to
a discontinuity in the area of a single pipe (see Fig. 4.9a).

If we assume that the diameter of the larger pipe is less than l/16, then we may write the following
two equations relating the pressure and volume velocities at the junction:

~p1 ¼ ~p2 (4.28)

~U1 ¼ ~U2 (4.29)

Equation (4.28) says that the sound pressure on both sides of the junction is the same. Equation (4.29)
says that the volume of air leaving one pipe in an interval of time equals that entering the other pipe in
the same interval of time. The transformation ratio for acoustic impedances is unity so that no
transformer is needed.

For the case of a circuit using lumped mechanical elements the discontinuity appears to be
a transformer with a turns ratio of S1: S2 because, from Eq. (4.28),

~f 1
S1

¼
~f 2
S2

(4.30)

and, from Eq. (4.29),

~u1S1 ¼ ~u2S2 (4.31)

where ~f 1 and ~f 2 are the forces on the two sides of the junction and ~u1 and ~u2 are the average particle
velocities over the areas S1 and S2. We have

~f 1 ¼
S1
S2

~f 2 (4.32)
1

~
U

S1 1
~p

(a) (b) (c)

2
~p

1:1 2

~
U

S2

1
~u

1

~
f 2

~
f

S1:S2 2
~u

FIG. 4.9 (a) Simple discontinuity between two pipes. (b) Acoustic-impedance transducer representation of (a);

because the transformation ratio is unity, no transformer is required. (c) Mechanical impedance transducer

representation of (a).



132 CHAPTER 4 Acoustic components
and

~u2 ¼ S1
S2
~u1 (4.33)

so that

ZM1 ¼
~f 1
~u1

¼
�
S1
S2

�2 ~f 2
~u2

¼
�
S1
S2

�2

ZM2 (4.34)

A transformer is needed in this case and is drawn as shown in Fig. 4.9c.
It must be noted that a reflected wave will be sent back toward the source by the simple discon-

tinuity. We saw in Part IV that, in order that there be no reflected wave, the specific acoustic impedance
in the second tube ð~p2=~u2Þmust equal that in the first tube ð~p1=~u1Þ. This is possible only if S1¼ S2, that
is, if there is no discontinuity.

To find the magnitude and phase of the reflected wave in the first tube resulting from the
discontinuity, we shall use material from Part IV. Assume that the discontinuity exists at x¼ 0. The
specific acoustic impedance in the first tube is

ZS1 ¼ ~p1
~u1

(4.35)

If the second tube is infinitely long, the specific acoustic impedance for it at the junction will be

ZS2 ¼ ~p2
~u2

¼ r0c (4.36)

[see Eq. (2.89)]. The impedance ZS1 at the junction is, from Eqs. (4.28) and (4.33),

ZS1 ¼ ~p1
S2~u2
S1

¼ ~p2
S2~u2
S1

(4.37)

From Eqs. (4.36) and (4.37),

ZS1 ¼ S1
S2
r0c (4.38)

Using Eqs. (2.46) and (2.87), setting x¼ 0, we may solve for the reflected wave ~p� in terms of the
incident wave ~pþ.

~p1 ¼ ~pþ � ~p� (4.39)

~u1 ¼ 1

r0c
ð~pþ � ~p�Þ (4.40)

~p1
~u1

¼ S1
S2
r0c ¼ r0c

~pþ þ ~p�
~pþ � ~p�

(4.41)
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~p� ¼ S1 � S2
S1 þ S2

~pþ (4.42)

The sound pressure ~pT of the transmitted wave in the second tube at the junction point must equal the
sound pressure in the first tube at that point,

~pT ¼ ~pþ þ ~p� (4.43)

so that

~pT ¼ 2S1
S1 þ S2

~pþ (4.44)

If S1 equals S2, there is no reflected wave ~p� and then ~pþ ¼ ~pT .
Note also that if S2 becomes vanishingly small, this case corresponds to the case of a rigid

termination at the junction. For this case,

~p� ¼ ~pþ (4.45)

and

~pþ þ ~p� ¼ 2~pþ (4.46)

This equation illustrates the often-mentioned case of pressure doubling. That is to say, when
a plane sound wave reflects from a plane rigid surface, the sound pressure at the surface is double that
of the incident wave.
Two pipes of different areas joined by an exponential connector [3]. An exponential connector may
be used to join two pipes of different areas. Such a connector (see Fig. 4.10) acts as a simple
discontinuity when its length is short compared with a wavelength and as a transformer for acoustic
impedances when its length is greater than a half wavelength.
1

~
U

S1

1
~p

(a)

(b)

(c)

2
~p

2

~
U

S2

1
~u

1

~
f 2

~
f

2
~u

x = 0 

x

x = l

S(x) = S1e
mx

exponential connector 

21 : SS

12 : SS

FIG. 4.10 (a) Exponential connector between two pipes. (b) high-frequency representation of (a) using acoustic-

impedance transducer. (c) high-frequency representation of (a) using mechanical-impedance transducer.
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If the second tube is infinitely long, then at x¼ l (see Fig. 4.10),

~p2
~u2

¼ r0c (4.47)

If the cross-sectional area of the exponential connector is given by

SðxÞ ¼ S1e
mx (4.48)

and the length of the connector is l, then the specific acoustic impedance at x¼ 0 is

ZS1 ¼ ~p1
~u1

¼ r0c
cos ðblþ qÞ þ j sin ðblÞ
cosðbl� qÞ þ j sinðblÞ (4.49)

where

b ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4u2=c2Þ � m2

q
in m�1

m is flare constant in m�1 [see Eq. (4.48)]
q¼ tan�1 (m/2b)
c is speed of sound in m/s
l is length of the exponential connector in m
r0 is density of air in kg/m3.

At low frequencies (b imaginary and l/l large),

~p1
~U1

¼ ~p2
~U2

or ZA1 ¼ ZA2 (4.50)

At high frequencies (b real and l/l> 1),

~p1
~u1

¼ ~p2
~u2

(4.51)

or

ZA1 ¼ S2
S1
ZA2 (4.52)

At intermediate frequencies the transformer introduces a phase shift, and the transformation ratio
varies between the limits set by the two equations above.

The transformation ratio for acoustic impedance at high frequencies is seen from Eq. (4.52) to beffiffiffiffiffiffiffiffiffiffiffiffi
S2=S1

p
(see Fig. 4.10b). That is to say,

ZA1 ¼
� ffiffiffiffiffi

S2
S1

r �2

ZA2 (4.53)

For mechanical impedance at high frequencies the transformation ratio is seen from Eq. (4.52) to beffiffiffiffiffiffiffiffiffiffiffiffi
S1=S2

p
(see Fig. 4.10c). That is to say,
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ZM1 ¼
� ffiffiffiffiffi

S1
S2

r �2

ZM2

Example 4.4. It is desired to resonate the cavity in front of the diaphragm of a call loudspeaker,
such as that found in a cellphone, to 3 kHz using an array of laser drilled sound outlet holes. The cavity
has a volume of 0.4 cm3 and a wall thickness of 1 mm. Determine the size and number of holes needed,
assuming a QA¼ 1.5 and a ratio of hole diameter to on-center spacing of 0.5.

Solution. From Eq. (4.27) we see that, approximately,

QAz
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:18u0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:86� 10�5

p

a ¼ 1:5� 0:00397� ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:28� 3000

p ¼ 61:3 mm

The diameter of the hole is 123 mm.
The reactance of the cavity at resonance equals

XB ¼ 1

u0CA
¼ gP0

18840� V
¼ 1:4� 1011

18840� 0:4
¼ 18:6� 106 N$s=m5

The desired acoustic mass of the holes is

MA ¼ XB

u0
¼ 18:6� 106

18840
¼ 985 kg=m4

If there are n holes, the acoustic mass for each hole equals

nMA ¼ nð985Þ kg=m4

From Eq. (4.26),

nð985Þ ¼ 1:18

pð61:32 � 1012Þ ð0:001þ ð1:7� 18:6� 10�6Þð0:75ÞÞ

n ¼ ð1:18Þð1:024� 10�3Þ
pð985Þð3:76� 10�9Þz 104 holes

Example 4.5.Design a single-section T low-pass wave filter, as shown in Fig. 4.6 and Fig. 4.7, with
a cutoff frequency of 100 Hz andQ value of 1=

ffiffiffi
2

p
for critical damping. The filter is driven by a piston at

the entrance on the left and terminated with an impedance of R0 ¼ 103 N$s/m5 at the exit on the right.
Solution. Because the filter is driven by a piston with a defined velocity, it can be regarded as having

a source impedance that is very large in comparison with the acoustic mass on the left of Fig. 4.7. We
can therefore ignore that element. The filter is thus reduced to a second-order type with a cutoff
frequency of

f0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p
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The design Q is equal to

Q ¼ 1

R0

ffiffiffiffiffiffiffi
MA

CA

r

From these two equations we can solve for CA and MA.

MA ¼ 1

4p2f 20CA

¼ R0Q

2p f0

So

CA ¼ 1

2p f0R0Q

¼
ffiffiffi
2

p

2p� 100� 103
¼ 2:25� 10�6 m5=N

MA ¼ 103

2p� 100� ffiffiffi
2

p ¼ 1:125 kg=m4

From Sec. 4.6 and Eq. (4.24), with l0 equal to zero, we get the size of the hole in the device of Fig. 4.6.

MA ¼ r0ð0:85aÞ
pa2

ð1:18Þð0:85Þ
pa

¼ 1:125

a ¼ 28:4 cm

The diameter of the hole is 0.57 m. The volume of the cavity is

V ¼ CAgP0 ¼ 1:4� 2:25� 10�6 � 105

¼ 0:315 m3

The elements for the T section are thereby determined.
PART XI: ELEMENTARY REFLECTION AND RADIATION OF SOUND

In order fully to specify a source of sound, we need to know, in addition to other properties, its
directivity characteristics at all frequencies of interest. Some sources are non-directional, that is to say,
they radiate sound equally in all directions and as such are called spherical radiators. Others may be
highly directional, either because their size is naturally large compared to a wavelength or because of
special design. In particular, we shall examine how the shape of the radiator influences its directivity.
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The most elementary radiator of sound is a spherical source whose radius is small compared to one-
sixth of a wavelength. Such a radiator is called a simple source or a point source. Its properties are
specified by the magnitude of the velocity of its surface and by its phase relative to some reference.
More complicated sources such as plane or curved radiators may be treated analytically by applying
boundary conditions or as a combination of simple sources, each with its own surface velocity and
phase, and these will be covered in Chapters 12 and 13.

A particularly important consideration in the design of loudspeakers and horns is their directivity
characteristics. This chapter serves as an important basis for later chapters dealing with loudspeakers,
baffles, and horns.

The basic concepts governing radiation of sound must be grasped thoroughly at the outset. It is then
possible to reason from those concepts in deducing the performance of any particular equipment or in
planning new systems. Examples of measured radiation patterns for common loudspeakers are given
here as evidence of the applicability of the basic concepts.

The directivity pattern of a transducer used for the emission or for reception of sound is
a description, usually presented graphically, of the response of the transducer as a function of the
direction of the transmitted or incident sound waves in a specified plane and at a specified frequency.

The beam width of a directivity pattern is used in this text as the angular distance between the two
points on either side of the principal axis where the sound pressure level is down 6 dB from its value at
q¼ 0.

Before considering specific sound sources, we will first study some fundamental properties of
sound waves using the example of reflection from a plane.
4.9 REFLECTION OF A PLANE WAVE FROM A PLANE
Reflections from a plane are specular, meaning that they are well defined due to the regular geometry
of the reflecting surface, as opposed to diffuse, as in the case of an irregular reflecting object. In the
latter case, the sound waves are reflected in many different directions. However, although a sphere
reflects sound over a wide angle, as we shall see in Sections 12.3 and 12.4, the reflection is specular
because the reflecting surface is regular. Refer to Fig. 4.11. A plane wave with amplitude ~pI is incident
upon a plane at x¼ 0, the surface of which has a specific acoustic impedance Zs. Depending on the
value of Zs, a portion of the incident wave is reflected with amplitude ~pR. The angle qI between the
y

x
0

Rp~

Ip~

θR

θI

Zs

FIG. 4.11 Reflection of a plane wave from a plane at x[ 0.



138 CHAPTER 4 Acoustic components
incident wave and the normal to the plane, formed by the x axis, is the angle of incidence. Similarly, the
angle qR between the reflected wave and the normal to the plane is the angle of reflection. In this
instance, we assume neither wave has any component in the z direction (away from the page).

Substituting kx¼ k cos q, ky¼ k sin q, and kz¼ 0 in the wave equation solution of Eq. (2.119)
(which satisfies k2¼ kx

2 þ ky
2 þ kz

2), we obtain the following expression for the pressure field in the
negative x region of Fig. 4.11:

~pðx; yÞ ¼ ~pIe
�jkx cos qI e�jky sin qI þ ~pRe

jkx cos qRe jky sin qR : (4.54)

where the particle velocity in the x direction is given by

~uxðx; yÞ ¼ 1

�jkr0c

v

vx
~pðx; yÞ

¼ 1

r0c

	
~pIe

�jkx cos qI e�jky sin qIcosqI � ~pRe
jkx cos qRe jky sin qRcosqR



:

(4.55)

Let us now consider the boundary condition for two values of ZS. When Zs¼N, the surface is
totally rigid and the normal particle velocity at x¼ 0 is zero. This is often referred to as a Neumann
boundary condition. Hence

~uxð0; yÞ ¼ 1

r0c

	
~pIe

�jky sin qIcosqI � ~pRe
jky sin qRcosqR



¼ 0; (4.56)

which is satisfied if

qR ¼ �qI (4.57)

and

~pR ¼ ~pI : (4.58)

The latter would appear to be a reasonable assumption considering that no losses occur during
a reflection from a perfectly rigid boundary. When Zs¼ 0, the surface is totally flexible or resilient and
the surface pressure is zero. This is often referred to as aDirichlet boundary condition and is somewhat
akin to the boundary condition at the mouth of an open pipe if we assume that the radiation load is
negligible. It is also often referred to as a “pressure release” boundary condition. In this case

~pð0; yÞ ¼ ~pIe
�jky sin qI þ ~pRe

jky sin qR ¼ 0; (4.59)

which is satisfied if

qR ¼ �qI (4.60)

and

~pR ¼ �~pI : (4.61)

Again the latter would appear to be a reasonable assumption considering that no losses occur during
a reflection from a perfectly resilient boundary. Eq. (4.60) is known as the law of reflection. Generally,
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the law of reflection can be shown to hold for all boundary impedance values. The impedance at the
plane is simply the ratio of the pressure to particle velocity:

Zs ¼ ~pð0; yÞ
~uxð0; yÞ

��
qR¼�qI

¼ ð~pI þ ~pRÞr0c
ð~pI � ~pRÞcos qI

: (4.62)

Rearranging for ~pR gives

~pR ¼ �1� ðZs cos qIÞ=r0c
1þ ðZs cos qIÞ=r0c

~pI : (4.63)

What this equation tells us is that if we let Zs¼ r0c, only normal incident waves (i.e. qI¼ 0) are totally
absorbed. If qI s 0, there will be a reflected wave. In other words: A r0c boundary condition is not an
open window. This has quite far reaching implications in acoustics. For example, when waves from
a sound source in an anechoic chamber reach the walls, they are rarely perfectly normal. Hence
absorbent “wedges” are typically used in order to produce multiple or diffuse reflections so that after
a certain number of reflections, the reverberant sound field is reduced to an acceptable level. Also,
when modeling sound sources using the finite element method, it is usually necessary to create a virtual
anechoic chamber filled with air elements. A sphere coated with r0c elements should produce
acceptable results provided that the sphere is large enough for the waves that reach its inner surface to
be spherically-diverging far-field ones. Otherwise, if the field immediately adjacent to the inner
surface is the complex near-field, then reflections are guaranteed. We shall study the differences
between the near-field and far-field pressure due to various sound sources further on in this text.
4.10 RADIATION FROM A PULSATING SPHERE
The pulsating sphere may be one of the most difficult sound sources to realize in practice, but it is the
easiest three-dimensional source to analyze. Due to rotational symmetry, it can be treated as a one-
dimensional problem with just a single radial ordinate r. Many practical sources behave in a similar
way at low frequencies where they become virtually omnidirectional, as we shall see. Also, ultrasonic
hydrosounders are often in the form of a sphere coated with a piezoelectric transducer. Essentially, the
pulsating sphere is a sphere whose radius oscillates harmonically. In the limiting case, it will lead us to
the point source, which forms a fundamental building block in acoustics.
Pressure field. Since the sphere is radiating into free space, where there are no reflections, we take the
outward going part of the solution to the spherical wave equation (2.25) given by Eq. (2.107), where ~pþ
is an unknown coefficient to be determined from the boundary conditions. Let us now impose
a boundary condition at the surface of the sphere whereby the particle velocity normal to the surface,
given by Eq. (2.108), is equal to the uniform surface velocity ~u0 so that ~uðRÞ ¼ ~u0, where R is the
radius, which gives

~Aþ ¼ �jkR2r0ce
jkR

1þ jkR
~u0: (4.64)

Inserting this into Eq. (2.107) and substituting ~U0 ¼ 4pR2~u0, where ~U0 is the total volume velocity,
yields



140 CHAPTER 4 Acoustic components
~pðrÞ ¼ �jkr0c ~U0
e�jkðr�RÞ

4pr
D; (4.65)

where D is called a directivity function, but here it has no angular dependency and is merely
a frequency response function given by

D ¼ 1

1þ jkR
: (4.66)

which is plotted in Fig. 4.12. Likewise from Eq. (2.108) for the velocity we have

~uðrÞ ¼ 1

�jkr0c

v

vr
~pðrÞ

¼ �ð1þ jkrÞ ~U0
e�jkðr�RÞ

4pr2
D:

(4.67)

Radiation impedance. The specific radiation impedance is found by dividing the pressure at r¼ R
from Eq. (4.65) by the surface velocity ~u0 as follows:

Zs ¼ ~pðRÞ
~u0

¼ jkR

1þ jkR
r0c; (4.68)

or

Zs ¼ Rs þ jXs ¼ k2R2 þ jkR

k2R2 þ 1
r0c: (4.69)

It turns out that this is the same as the impedance from Eq. (2.109) for a freely propagating spherical
wave at a distance R from the origin. It is also the first time derivative of D from Eq. (4.66), above,
multiplied by r0R. The real and imaginary parts, Rs and Xs are plotted in Fig. 4.13.

It is seen from Fig. 4.13 that for kR< 0.3, that is, when the diameter is less than one-tenth of the
wavelength, the radiation impedance is mainly that of amass reactance because the resistive component
is negligible compared with the reactance component. This mass loading may be thought of as a layer of
air on the outside of the sphere, the thickness of which equals 0.587 of the radius of the sphere. At all
frequencies, the loading shown in Fig. 4.13 may be represented by the equivalent circuit inset.

We also observe from Fig. 4.12 that for kR< 0.3, the radiated sound pressure is proportional to the
volume acceleration ð ju ~U0Þ so that the radiated intensity, which is proportional to the square of the
radiated pressure (see Eq. (1.12)), is held constant. This is due to the fact that the decreasing velocity
(which is the time integral of the acceleration) is compensated for by the rising radiation resistance,
which is proportional to the square of the velocity:

I ¼
�����~pðrÞffiffiffi2p

�����
2
1

r0c
¼
����� ~u0ffiffiffi2p

�����
2
Rs

4pr2
(4.70)

The relationship between radiation impedance and far-field pressure forms the basis of a useful
theorem developed in Sec. 13.13. For kR> 3, the pressure is proportional to the volume velocity ~U0

because the radiation impedance is mainly resistive.
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FIG. 4.12 Plot of 20 log10(jDj) for a pulsating sphere with constant radial acceleration.

Frequency is plotted on a normalized scale, where kR¼ 2pR/l¼ 2pfR/c.
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Equations (4.65) and (4.67) are significant because they reveal the difference between the responses
of a microphone sensitive to pressure and a microphone sensitive to particle velocity as the microphones
are brought close to a small spherical source of sound at low frequencies. As r is made smaller, the output
of the pressure-responsive microphone will double for each halving of the distance between the
microphone and the center of the spherical source. Expressed in decibels, the output increases 6 dB for

each halving of distance. For the velocity-responsive microphone, the output variation is not so simple.

FIG. 4.13 Real and imaginary parts of the normalized specific radiation impedance Zs /r0c of the air load on

a pulsating sphere of radius R located in free space.

Frequency is plotted on a normalized scale where kR¼ 2pfR/c¼ 2pR/l. Note also that the ordinate is equal to

ZM /r0cS, where ZM is the mechanical impedance; and to ZAS/r0c, where ZA is the acoustic impedance. The

quantity S is the area for which the impedance is being determined, which in this case is S¼ 4pR2 and r0c is the

characteristic impedance of the medium.
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Only at sufficiently large distances (k2r2>> 1) does the output increase 6 dB for each halving
of distance. For shorter distances the second term inside the parentheses on the right-hand side of
Eq. (4.67) becomes large, and the magnitude of ~u increases at a rate exceedingþ6 dB for each halving of
distance. For very short distances (k2r2<< 1), the rate of increase of ~u approaches a limit ofþ12 dB for
each halving of distance. It is for this reason that the voice of a vocalist sounds “bassy” when he or she
sings very near to a velocity-sensitive microphone which was designed to have its best response when
located a large distance from the source of sound. This is commonly known as the proximity effect.

Another significant thing is to be learned from Eq. (4.69). At low frequencies it is very difficult to
radiate sound energy from a small loudspeaker. A small loudspeaker may be likened to a pulsating
balloon of some small radius R. The specific acoustic impedance Zs of the air presented to each square
centimeter of the balloon is given by Eq. (4.69) and Fig. 4.13. At low frequencies, the impedance
becomes nearly purely reactive, and the resistance becomes very, very small. Hence, the power
radiated by a small loudspeaker becomes very small. At high frequencies, kR> 2, the impedance Zs
becomes nearly purely resistive and has its maximum value of r0c, so that the power radiated for
a given value of ~U0 reaches its maximum.
4.11 RADIATION FROM A MONOPOLE POINT SOURCE (SIMPLE SOURCE)
Pressure and particle velocity. The pressure and particle velocity in the sound field of a monopole
point source are obtained by setting R / 0 in Eqs. (4.65) and (4.67) respectively:

~pðrÞ ¼ �jkr0c ~U0
e�jkr

4pr
; (4.71)

~uðrÞ ¼ �ð1þ jkrÞ ~U0
e�jkr

4pr2
; (4.72)

where

~U0 is volume velocity in m3/s of the very small source and is equal to ð4pa2Þ~u0.
~p is sound pressure in Pa at a distance r from the simple source.

Strength of a point source [3]. The magnitude of the total air flow at the surface of a simple source in
m3/s is given by ~U0 and is called the strength of a point source.
Intensity at distance r. At a distance r from the center of a simple source the intensity is given by

I ¼
�����~pðrÞffiffiffi2p

�����
2
1

r0c
¼
�����
~U0ffiffiffi
2

p
�����
2
f 2r0
4r2c

W=m2: (4.73)

When the dimensions of a source are much smaller than a wavelength, the radiation from it will be
much the same no matter what shape the radiator has, as long as all parts of the radiator vibrate
substantially in phase. The intensity at any distance is directly proportional to the square of the volume
velocity and the frequency. Wewill show in Sec. 12.2 how the point source itself can form a very useful
building block for solving problems in acoustics
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4.12 COMBINATION OF POINT SOURCES IN PHASE
The basic principles governing the directivity patterns from loudspeakers can be learned by studying
combinations of simple sources. This approach is very similar to the consideration of Huygens
wavelets in optics, which will be discussed more in Sec. 12.1. Basically, our problem is to add,
vectorially, at the desired point in space, the sound pressures arriving at that point from all the simple
sources. Let us see how this method of analysis is applied.
Two point sources in phase. The geometric situation is shown in Fig. 4.14. It is assumed that the
distance r from the two point sources to the point P at which the pressure p is being measured is large
compared with the separation b between the two sources.

The spherical sound wave arriving at the point p from source 1 will have traveled a distance r�Dr
where

Dr ¼ 1

2
b sin q (4.74)

and from Eq. (4.71) the sound pressure will be

~p1ðr; qÞ ¼
~Aþ

r � Dr
e�jkðr�DrÞ; (4.75)

where
~Aþ ¼ �jkr0c ~U0=ð4pÞ:

The wave from source 2 will have traveled a distance rþDr, so that

~p2ðr; qÞ ¼
~Aþ

r þ Dr
e�jkðrþDrÞ: (4.76)
0
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r + Δr
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),(~ θrp
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2

FIG. 4.14 Two point (simple) sources vibrating in phase located a distance b apart and at distance r and angle q

with respect to the observation point P.
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The sum of p¼ p1þ p2, assuming r>> b, gives

~pðr; qÞ ¼
~Aþ
r
e�jkrðe jkDr þ e�jkDrÞ: (4.77)

Multiplication of the numerator and the denominator of Eq. (4.77) by

expð jkDrÞ � expð�jkDrÞ
and replacement of the exponentials by sines, yields

~pðr; qÞ ¼ 2 ~Aþ
r

e�jkrDðqÞ; (4.78)

where the directivity function D(q) is given by

DðqÞ ¼ sin 2kDr

2sin kDr
¼ cos kDr; (4.79)

where we have used sin 2x¼ 2 sin x cos x. Substituting Eq. (4.74) and k¼ 2p/l in Eq. (4.79) gives

DðqÞ ¼ sin ðð2p b=lÞsin qÞ
2sin ððp b=lÞsin qÞ ¼ cos ððp b=lÞsin qÞ: (4.80)

Referring to Fig. 4.14, we see that if b is very small compared with a wavelength, the two
sources essentially coalesce and the pressure at a distance r at any angle q is double that for one
source acting alone. The directivity pattern will be that of Fig. 4.25 for a pulsating sphere, i.e.,
omnidirectional.

As b gets larger, however, the pressures arriving from the two sources will be different in phase and
the directivity pattern will not be a circle. In other words, the sources will radiate sound in some
directions better than in others. Maxima will occur when

ml ¼ bsin q; m ¼ 0; 1; / (4.81)

and nulls will occur when �
mþ 1

2

�
l ¼ bsin q; m ¼ 0; 1; /: (4.82)

As a specific example, let b¼ l/2. For q¼ 0 or 180� it is clear that the pressure arriving at a point P
will be double that from either source. However, for q¼� 90� the time of travel between the two
simple sources is just right so that the radiation from one source completely cancels the radiation from
the other. Hence, the pressure at all points along the� 90� axis is zero. Remember, we have limited our
discussion to r>> b.

Directivity patterns, expressed in decibels relative to the pressure at q¼ 0, are given in Fig. 4.15 for
the two in-phase sources with b¼ l/4; l/2; l; 3l/2; and 2l.

A very important observation can be made from the directivity patterns for this simple type of
radiator that applies to all types of radiation. The longer the extent of the radiator (i.e., here, the greater
b is), the sharper will be the principal lobe along the q¼ 0 axis at any given frequency and the greater
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FIG. 4.15 Far-field directivity patterns for the two in-phase point sources of Fig. 4.14.

Symmetry of the directivity patterns occurs about the axis passing through the two sources. Hence, only a single

plane is necessary to describe the directivity characteristics at any particular frequency. The directivity index (DI)

is given at q¼ 0�. (The directivity index is discussed in Sec. 4.16.)
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the number of side lobes. As we shall see in the next paragraph, it is possible to suppress the side lobes,
that is to say, those other than the principal lobes at 0 and 180�, by simply increasing the number of
elements.
Linear array of point sources. The geometric situation for this type of radiating array is shown in
Fig. 4.16. The sound pressure produced at a point P by N identical in-phase point sources, lying in
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FIG. 4.16 A linear array of N simple sources, vibrating in phase, located a distance b apart.

The center of the array is at distance r and angle q with respect to the observation point P.
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a straight line, the sources a distance b apart and with the extent d¼ (N� 1)b small compared with the
distance r, is

~pðr; qÞ ¼ N
~Aþ
r
e�jkrDðqÞ; (4.83)

where

DðqÞ ¼ 1

N

XN�1
2

n¼ 1�N
2

e�jnkbsinq ¼ 1

N

XN�1
2

n¼ 1�N
2

cosðnkbsinqÞ: (4.84)

Using the identity of Eq. (51) from Appendix II, this simplifies to

DðqÞ ¼ sin ððNp b=lÞsin qÞ
N sin ððp b=lÞsin qÞ: (4.85)

From Fig. 4.17(d), we see that when the wavelength is smaller than the pitch b of the point sources,
we have global maxima with an amplitude of 0 dB and local maxima of smaller amplitude in
between. The ratio between the amplitudes of the global maxima and the smallest local maxima
approaches N as N increases. In this case, where N¼ 4, the ratio is 3.7 or 11.3 dB. Global maxima
will occur when

ml ¼ bsin q; m ¼ 0; 1; / (4.86)

and nulls will occur when

ml ¼ Nbsin q;

(
m ¼ 1; 2; /

ms0; N; 2N; /
: (4.87)
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FIG. 4.17 Far-field directivity patterns for a linear array of four simple in-phase sources evenly spaced over

a length d. The directivity index (DI) is given at q[ 0�.
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Hence the global maxima are determined by the pitch of the individual point sources and the nulls are
determined by the total length of the array. The global maxima correspond to the sampling wave-
number (or spatial sampling frequency) kS of the array, that is the wave-number at which the point
sources are one wavelength apart, so that kS¼ 2p/b. In this case, d¼ 3b so that lS¼ d/3. Below this
wavelength, the maxima of the directivity function no longer decay with increasing angle, but begin to
rise again after a specific angle given by l¼ 2b sin q. This phenomenon is known as spatial aliasing
and is particularly important for microphone arrays.
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As a special case, let us assume that the number of points becomes very large and that the sepa-
ration b becomes very small. Then, as before,

d ¼ ðN � 1ÞbzNb (4.88)

which we insert into Eq. (4.85) and, noting that the denominator term N sin(p d/(Nl)sin q)/ (p d/l)
sin q as N / N, we obtain the following directivity function for a linear line array

DðqÞ ¼ sin ððp d=lÞsin qÞ
ðp d=lÞsin q

: (4.89)

As before, it is assumed that the extent of the array d is small compared with the distance r. Nulls will
occur when

ml ¼ dsin q; m ¼ 1; 2; /: (4.90)

Now that there are no spaces between the point sources, which have coalesced into a line source,
the global maxima have vanished and we are left with local maxima that decay with increasing
angle q.
Plots of Eq. (4.85) for N¼ 4 and d¼ l/4, l/2, l, 3l/2, and 2l are shown in Fig. 4.17. Similar plots for
N / N and b / 0, that is, Eq. (4.89), are given in Fig. 4.18.

The principal difference among Fig. 4.15, Fig. 4.17, and Fig. 4.18 for a given ratio of array
length to wavelength is in the suppression of the “side lobes.” That is, sound is radiated well in the
q¼ 0� and q¼ 180� directions for all three arrays. However, as the array becomes longer and the
number of elements becomes greater, the radiation becomes less in other directions than at q¼ 0�
and q¼ 180�.
4.13 STEERED BEAM-FORMING ARRAY OF POINT SOURCES
We saw in the previous paragraph that at high frequencies a linear array of point sources
becomes highly directional. There are many applications in acoustics where we wish to
concentrate sound in a particular direction, or in the case of microphones, receive sound from
a particular direction while blocking unwanted sounds from elsewhere. This can be achieved by
applying appropriate time delays or advances to the point sources as shown in Fig. 4.19 in order
to “steer” the beam in the desired direction at an angle a to the z axis. The other difference
between Fig. 4.19 and the previous Fig. 4.16 is that we have rotated the reference z axis by 90�
so that it is now the axis of rotational symmetry. This is important for when we come to optimize
the array.

Although in this example delays and advances are applied to the sources in the positive and
negative z positions respectively, we would in practice only use delays so that the source with the
largest advance would have zero delay and the delay would increase progressively towards the source

with the largest delay, which would have its delay doubled. However, the symmetrical arrangement
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FIG. 4.18 Far-field directivity patterns for a linear line array radiating uniformly along its length d. The directivity

index (DI) is given at q[ 0�.
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shown in Fig. 4.19 simplifies the analysis somewhat. In the first instance, let us assume that all the
sources have equal strengths. Then we can write

DðqÞ ¼ 1

N

XN�1
2

n¼ 1�N
2

e�jnkbðcos q�cos aÞ: (4.91)
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FIG. 4.19 A steered beam-forming array of N simple sources, located a distance b apart and vibrating with different

phases.

The time advance applied to each source at a negative distance z from the center is given by the distance shown

divided by the speed of sound c. Each source at a positive distance z from the center (not marked) has a time

delay equal to the time advance of its opposite source the same negative distance z from the center. The center of

the array is at distance r and angle q with respect to the observation point P.
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For simplicity, let us assume an even number of sources N so that the contribution from each side is
equal and the sinusoidal parts of the exponents cancel each other

DðqÞ ¼ 2

N

XN=2
n¼1

cosððn� 1=2Þkbðcos q� cos aÞÞ; (4.92)

which leads to

DðqÞ ¼ sinððNp b=lÞðcos q� cos aÞÞ
Nsinððp b=lÞðcos q� cos aÞÞ: (4.93)

which is plotted for d¼ l/2 and d¼ 5l in Fig. 4.20a and Fig. 4.20b respectively. We see that when the
wavelength is greater than the length d of the array, the directivity degenerates to virtually omnidi-
rectional. However, we can add different weightings An to the sources and optimize them using
a technique known as the least-mean-squares method:

DðqÞ ¼ 2

N

XN=2
n¼1

Ancosððn� 1=2Þkbðcos q� cos aÞÞ: (4.94)
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FIG. 4.20 Far-field directivity patterns for a beam-forming array of ten simple sources evenly spaced over a length

d, where the steering angle a[ 60�.

The directivity index (DI) is given at q¼ a. In (a) and (b) are shown directivity patterns for ten sources of equal

strength but with different time delays/advances according to Fig. 4.19. In (c) and (d) are shown directivity

patterns for ten sources with the same time delays/advances as (a) and (b) but with strengths optimized using the

least-mean-squares method.
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First of all, we define a target or reference directivity function Dref(q) to which we wish to find the best
“fit”. The ideal directivity function is simply an infinite impulse at the angle a which can be written
using the Dirac delta function:

Dref ðqÞ ¼ dðq� aÞ: (4.95)

Of course, we may choose any function we like for Dref (q) depending on what directivity pattern we
are aiming for. Let us define an error function E(An) as

EðAnÞ ¼
Zp
�p

��DðqÞ � Dref ðqÞ
��2sinq dq: (4.96)

In order to minimize the error, we differentiate it with respect to An and set the result to zero:

v

vAn
EðAnÞ ¼ 2

Zp
�p

cosððm� 1=2Þkbðcosq� cosaÞÞ

��DðqÞ -Dref ðqÞ
�
sinq dq ¼ 0; m ¼ 1; 2;/N;

(4.97)

which can be expressed in the following short form:

XN=2
n¼1

AnImn ¼ Jm; m ¼ 1; 2;/N; (4.98)

where

Imn ¼ 2

N

Zp
�p

cosððm� 1=2Þkbðcosq� cosaÞÞcosððn� 1=2Þkbðcosq� cosaÞÞsinq dq: (4.99)

The solution to the integral Imn has two parts

Imn ¼ Kmn þ Lmn; (4.100)

where

Kmn ¼

sinððm� nÞkbð1þ cosaÞÞ þ sinððm� nÞkbð1� cosaÞÞ
Nðm� nÞkb ; msn

2

N
; m ¼ n;

8>>><
>>>:

(4.101)

Lmn ¼ sinððmþ n� 1Þkbð1þ cosaÞÞ þ sinððmþ n� 1Þkbð1� cosaÞÞ
Nðmþ n� 1Þkb ; (4.102)

and
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Jm ¼
Zp
�p

Dref ðqÞcos
�
ðm� 1=2Þkbðcosq� cosaÞ

�
sinq dq

¼ sina:

(4.103)

where we have used the property of the Dirac delta function from Eq. (154) of Appendix II. Equation
(4.98) is a set of simultaneous equations which we now write in matrix form

M$a ¼ b0a ¼ M�1$b (4.104)

where

Mðm; nÞ ¼ Imn ¼ Kmn þ Lmn (4.105)

aðnÞ ¼ An (4.106)

bðmÞ ¼ Jm ¼ sin a (4.107)

Directivity patterns are plotted from Eq. (4.94) for d¼ l/2 and d¼ 5l in Fig. 4.20c and Fig. 4.20d
respectively using coefficients An calculated from Eqs. (4.101), (4.102), and (4.104). We see that for
small wavelengths (l¼ d/5) there is very little difference between the directivity pattern of the sources
of equal strengths in (b) and that of the optimized sources in (d). However, there is a significant
difference when the wavelength is larger than d (l¼ 2d) as can be seen from (a) and (c). Beam-forming
arrays often have source strengths which progressively decrease towards the outer edges in order
to reduce the side lobes. These are known as “shaded arrays”[4] and the technique is similar to
windowing as used in Fourier transforms. Of course, delays can also be used in arrays in order to
prevent high-frequency beaming so that the directivity pattern is as wide as possible regardless of
wavelength. [5]
4.14 DIPOLE POINT SOURCE (DOUBLET)
A dipole point source is a pair of monopole point sources, separated a very small distance apart
and vibrating in opposing phase. The geometric situation is shown in Fig. 4.21. The average distance r
to the observation point P is assumed to be large compared with the separation b between the two
sources.

It can be clearly seen that the sound pressure at q¼ 90� and q¼ 270� will be zero, because the
contribution at those points will be equal from the two sources and 180� out of phase. The
pressures at q¼ 0� and q¼ 180� will depend upon the ratio of b to the wavelength l. For example,
if b¼ l, we shall have zero sound pressure at those angles just as we did for b¼ l/2 in the case of
two in-phase sources. In the present case, we have a maximum pressure at q¼ 0� and q¼ 180� for
b¼ l/2.

The usual case of interest, however, is the one for

b << l (4.108)
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Obviously, the separation distance b can never be zero as this would result in complete cancellation of
the two monopole outputs. As we shall see, their combined output is directly proportional to b. From
Fig. 4.21, we have the following relationship

Dr ¼ 1

2
b cos q: (4.109)

We can now write the pressure field as the sum of the two monopole point sources from Eq. (4.71) as
follows:

~pdðr; qÞ ¼ �jkr0c ~U0

4p

 
e�jkðr�DrÞ

r � Dr
� e�jkðrþDrÞ

r þ Dr

!

¼ �jkr0c ~U0e
�jkr

4p

 
ðr þ DrÞe jkDr � ðr � DrÞe�jkDr

r2 � ðDrÞ2
!
;

(4.110)

where ~U0 is the volume velocity of each source. Because Dr < r, we ignore the (Dr)2 term in
the denominator. Also, we can expand the exponents within the parentheses in Eq. (4.110) as
follows:

e� jkDr ¼ cos kDr � jsin kDr: (4.111)

Substituting Eq. (4.111) into Eq. (4.110) we obtain

~pdðr; qÞ ¼ �jkr0c ~U0

�
2j sin kDr þ 2

Dr

r
cos kDr

�
e�jkr

4pr
: (4.112)

We can make further approximations based on the assumption that the path difference Dr is very small
in comparison with the wavelength l as follows:

sin kDrz kDr; cos kDrz 1: (4.113)
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Substituting Eqs. (4.109) and (4.113) in Eq. (4.112) yields

~pdðr; qÞ ¼ �jðkbr0c ~U0Þ
�
1

r
þ jk

�
e�jkr

4pr
cos q; (4.114)

where ~U0 ¼ strength in m3/s of each point source and the first term in parentheses is a force known as
the dipole strength.

The ratio of the complex sound pressure ~pd produced by the dipole point source to the complex
sound pressure ~pm produced by a monopole point source is found by dividing Eq. (4.114) by Eq. (4.71).
This division yields

~pdðr; qÞ
~pmðr; qÞ

¼ �b

r
ð1þ jkrÞ cos q: (4.115)

When the square of the distance r from the acoustic doublet is large compared with l2/36 (k2r2>> 1),
Eq. (4.114) reduces to

~pdðr; qÞ ¼
u2r0 ~U0b

c
$
e�jkr

4pr
cos q: (4.116)

For this case the pressure varies with q as shown in Fig. 4.22 and Fig. 4.23. It changes inversely with
distance r in exactly the same manner as for the simple source.

Near the acoustic doublet, for r2<< l2/36 (that is, k2r2<< 1), Eq. (4.114) reduces to

~pd ¼ �ur0 ~U0b
e jðp=2�krÞ

4pr2
cos q: (4.117)

For this case, the pressure also varies with cos q as shown in Fig. 4.23, but it changes inversely with the
square of the distance r. We are still assuming that r>> b. We can also derive the particle velocity
~uðr; qÞ from Eq. (4.114) using Eq. (2.4a) as follows:

~uðr; qÞ ¼ 1

�jkr0c

v

vr
~pðr; qÞ

¼ � ~U0b

�
2

r2
� k2 þ j

2k

r

�
e�jkr

4pr
cos q:

(4.118)

Now we can derive the free-field specific acoustic impedance by dividing the pressure from Eq. (4.114)
by the particle velocity from Eq. (4.118) as follows:

zs ¼ ~pðr; qÞ
~uðr; qÞ ¼

jkr ð1þ jkrÞ
2� k2r2 þ 2jkr

r0c

¼ k4r4 þ j ðk3r3 þ 2krÞ
k4r4 þ 4

r0c:

(4.119)

In the near-field where kr<< 1, the imaginary part of the impedance dominates and so the load is
mass-like. This results from the fact that, at low frequencies in particular, we have a virtual acoustic
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FIG. 4.22 Dipole point source.

This type of source consists of two monopole point sources vibrating 180� out of phase. They are located

a distance b apart and are at an angle q and a distance r with respect to the observation point P. The lower half of

the graph shows by the area of the circles the magnitude of the sound pressure as a function of angle q. The

upper half of the graph shows the variation of the radial and azimuthal components of the particle velocity as

a function of angle q.
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short circuit between the two sources. Therefore, the dipole has to move a significant amount of air in
order to radiate any sound. However, in the far field, the waves are spherically diverging and the
impedance approaches the characteristic impedance of free space

zsjkr/N ¼ r0c: (4.120)

Near-field and far-field. The difference between near-field and far-field behaviors of sources must
always be borne in mind. When the directivity pattern of a loudspeaker or some other sound source is
presented in a technical publication, it is always understood that the data were taken at a distance r
sufficiently large so that the sound pressure was decreasing linearly with distance along a radial line
connecting with the source, as was the case for Eq. (4.116). This is the far-field case. For this to be true,
two conditions usually have to be met. First, the extent b of the radiating array must be small compared
with r, and r2 must be large compared with l2/36. In acoustics the size factor indicated is usually taken
to be larger than 3 to 10.

One more item is of interest in connection with the acoustic doublet. The particle velocity is
composed of two components: one radially directed, and the other perpendicular to that direction. At
q¼ 0 and 180� the particle velocity is directed radially entirely (see Fig. 4.22). At q¼ 90� and 270� the
particle velocity is entirely perpendicular to the radial line. In between, the radial component varies as
the cos q and the perpendicular component as the sin q.

An interesting fact is that at q¼ 90� and 270� a doublet sound source appears to propagate
a transversely polarized sound wave. To demonstrate this, take two unbaffled small loudspeakers into
an anechoic chamber. Unbaffled loudspeakers (transducers) are equivalent to doublets because the
pressure increases on one side of the diaphragm whenever it decreases on the other. Hold the two
transducers about 0.5 m apart with both diaphragms facing the floor (not facing each other). Let one
transducer radiate a low-frequency sound and the other act as a microphone connected to the input of
an audio amplifier. As we see from Fig. 4.22, no sound pressure will be produced at the diaphragm
of the microphone, but there will be transverse particle velocity. A particle velocity is always the result
of a pressure gradient in the direction of the velocity. Therefore, the diaphragm of the microphone will
be caused to move when the two transducers are held as described above. When one of the transducers
is rotated through 90� about the axis joining the units, the diaphragm of the microphone will not move
because the pressure gradient will be in the plane of the diaphragm. Hence, the sound wave appears to
be plane polarized.

You have now learned the elementary principles governing the directional characteristics of sound
sources. We shall be able to use these principles in understanding the measured or calculated behavior
of some of the more complicated sound sources found in acoustics.
4.15 RADIATION FROM AN OSCILLATING SPHERE
We saw that the monopole point source is effectively a pulsating sphere with an infinitesimally small
radius. Similarly, the dipole point source can be considered as a rigid sphere with an infinitesimally
small radius oscillating back and forth along its axis. This provides us with some useful insight into the
operation of a loudspeaker without any baffle or enclosure whatsoever, but unlike the more accurate
circular piston in free space (see Sec. 13.10), it yields simple closed-form solutions for the pressure
field and radiation impedance. As in the case of the pulsating sphere, the impedance can be represented
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by a simple equivalent circuit. We shall now consider a sphere of radius R that oscillates back and forth
along a dipole axis with velocity ~u0 as shown in Fig. 4.24 so that the normal surface velocity in the
radial direction is ~u0 cos q. A spherical coordinate system is used where r is the distance from the
origin at the centre of the sphere and q is the angle subtended with the dipole axis. The area of each
surface element is

dS ¼ R2 sin q dqdf: (4.121)

Near-field pressure. The volume velocity produced by each element is

d ~U0 ¼ ~u0 cos q dS

¼ ~u0 cos qðR2sin q dqdfÞ:
(4.122)

If we now integrate this over the surface of the sphere, we obtain the volume velocity:

~U0 ¼ 2R2~u0

Z2p
0

Zp=2
0

cos q sin q dq df ¼ S ~u0; (4.123)

where S is the effective surface area of the sphere (including both front and rear surfaces) given by

S ¼ 2pR2: (4.124)

We see from Eq. (4.114) that the dipole source produces a pressure field that is proportional to cos q as
follows:

~pðr; qÞ ¼ �jkr0c ~A0

�
1

r
þ jk

�
e�jkr

4pr
cos q; (4.125)

where the term ~U0b has been replaced with the unknown coefficient ~A0 ¼ ~U0b. Likewise, from
Eq. (4.118) we have the particle velocity
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~uðr; qÞ ¼ � ~A0

�
2

r2
� k2 þ j

2k

r

�
e�jkr

4pr
cos q: (4.126)

Let us now impose a boundary condition at the surface of the sphere whereby the particle velocity
normal to the surface is equal to the angle-dependent surface velocity ~u0 cos q. Hence at r¼ R we have

~uðR; qÞ ¼ � ~A0

�
2

R2
� k2 þ j

2k

R

�
e�jkR

4pR
cos q

¼ �~u0e
�jkRcos q:

(4.127)

Solving this for ~A0 yields

~A0 ¼ 4pR3~u0
2� k2R2 þ 2jkR

: (4.128)

If we now substitute this in Eq. (4.125), together with ~U0 ¼ 2pR2~u0 from Eq. (4.123), we obtain the
pressure

~pðr; qÞ ¼ �jr0c
kR ~U0

2� k2R2 þ 2jkR

�
1

r
þ jk

�
e�jkr

2pr
cos q: (4.129)

Far-field pressure. In the far field, where r / N, Eq. (4.129) simplifies to

~pðr; qÞ��
r/N

¼ �jkr0c ~U0
e�jkr

4pr
DðqÞ; (4.130)

where

DðqÞ ¼ 2jkR

2� k2R2 þ 2jkR
cos q: (4.131)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 4.25 along with that of a pulsating sphere,
and the on-axis response D(0) is plotted in Fig. 4.26. It can be seen that when kR¼ ffiffiffi

2
p

, the pressure is
proportional to acceleration:

~pðr; qÞjr/N;kR¼ ffiffi
2

p ¼ �jkr0c ~U0
e�jkr

4pr
cos q: (4.132)

At this frequency, we have a resonant peak with aQ factor of 1=
ffiffiffi
2

p
. Above this frequency, the pressure

is proportional to velocity as in the case of the pulsating sphere:

~pðr; qÞ
���
r/N;kR>>1

¼ �r0c
~U0

R
$
e�jkr

2pr
cos q; (4.133)

but below it the pressure is proportional to the time derivative of the acceleration:

~pðr; qÞ
���
r/N;kR<<1

¼ k2R2r0c
~U0

R
$
e�jkr

4pr
cos q: (4.134)
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When the sphere moves forwards, it compresses the air in front of it causing an increase in pressure
above static pressure. Similarly, it creates a partial vacuum behind it causing a net decrease in pressure.
Hence the radiated sound pressures in front of and behind it are in opposite phases. The anti-phase
sound from the rear partially cancels the sound from the front at low frequencies. However, complete
cancellation never occurs, due to the finite path length from the rear to the front of the sphere. Hence,
the phase difference is
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� ð1þ 2d=lÞ p radians

where d is the path length difference and l is the wavelength. As the frequency decreases, the
wavelength increases relative to the path difference and the phase difference asymptotically approaches
�p. This results in a pressure response that falls at a rate of �6 dB per halving of frequency.

In Sec. 4.14 we derived the pressure field due to a compact dipole point source. However, from Eq.
(4.112), we can write the equation for the on-axis pressure response of a dipole point source where the
spacing Dz0 between the two point sources is comparable to the wavelength l of the sound being
radiated:

~pðr; 0Þ ¼ r0u ~U0 sinðpDz0=lÞe
�jkr

2pr
; (4.135)

from which it can be seen that the pressure magnitude versus frequency, with constant acceleration, is
just a series of half sinusoids like a comb filter. Nulls occur when Dz0¼ nl. and peaks occur when
Dz0¼ (nþ½)l. This is in stark contrast with the oscillating sphere which has a continuous monotonic
pressure response with just a single peak and no nulls. This is because the resulting sound field is due to
an infinite number of point sources all over the surface according to the Huygens–Fresnel principle,
which will be discussed in greater detail in Sec. 12.1. Hence there are many path lengths between the
rear and front and at no frequency do they all produce a cancellation. However, the peak at kR¼ ffiffiffi

2
p

is
due to an average path length difference of Dz0¼ pR/

ffiffiffi
2

p
.

Radiation impedance. The total force ~F acting upon the sphere is obtained by integrating the pressure
from Eq. (4.129) over the surface as follows:

~F ¼ �2R2

Z2p
0

Zp=2
0

~pðR; qÞ sin q dq df

¼ r0c ~U0
jkRð1þ jkRÞ

2� k2R2 þ 2jkR
e�jkR:

(4.136)

The specific radiation impedance Zs can be written as follows:

Zs ¼ Rs þ jXs ¼
~F

~U0e�jkR

¼ jkRð 1þ jkRÞ
2� k2R2 þ 2jkR

r0c

¼ k4R4 þ jðk3R3 þ 2kRÞ
k4R4 þ 4

r0c:

(4.137)

It turns out that this is the same as the impedance from Eq. (4.119) for a freely propagating wave due
to a dipole point source at a distance R from the origin. The real and imaginary parts, Rs and Xs are
plotted in Fig. 4.27. The main difference between Fig. 4.27 and the impedance of a pulsating sphere
shown in Fig. 4.13 is that the real part falls even more rapidly at low frequencies due to the rear
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wave cancellation. It is proportional to (kR)4 as opposed to (kR)2 in the case of the pulsating sphere.
In both cases, the imaginary part is proportional to kR at low frequencies and 1/(kR) at high
frequencies.
PART XII: DIRECTIVITY INDEX

4.16 DIRECTIVITY INDEX AND DIRECTIVITY FACTOR
Charts of the directivity patterns of sound sources are sufficient in many cases, such as when the source
is located outdoors at a distance from reflecting surfaces. Indoors, it is necessary in addition to know
something about the total power radiated in order to calculate the reinforcing effect of the reverber-
ation in the room on the output of the sound source. A number is calculated at each frequency that tells
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the degree of directivity without the necessity for showing the entire directivity pattern. This number is
the directivity factor or, when expressed in decibels, the directivity index.
Directivity factor [Q(f)]. The directivity factor is the ratio of the intensity [6] on a designated axis of
a sound radiator at a stated distance r to the intensity that would be produced at the same position by
a point source if it were radiating the same total acoustic power as the radiator. Free space is assumed
for the measurements. Usually, the designated axis is taken as the axis of maximum radiation, in which
caseQ(f) always exceeds unity. In some cases, the directivity factor is desired for other axes whereQ(f)
may assume any value equal to or greater than zero.
Directivity index [DI(f)]. The directivity index is 10 times the logarithm to the base 10 of the direc-
tivity factor:

DIð f Þ ¼ 10 log10 Qð f Þ: (4.138)

Calculation of Q(f) and DI(f). The intensity I at a point removed a distance r from the acoustical center
of a source of sound located in free space is determined by first measuring the effective sound pressure
prms and letting I¼ jpjrms2/r0c. If the source is a point source so that I is not a function of V and is
located in free space, the total acoustic power radiated is:

Wp ¼ 4pr2I:

If the source is not a point source, the total acoustic power radiated is determined by summing the
intensities over the surface of a sphere of radius r. That is, the total radiated power is

W ¼ r2

r0c

Z2p
0

Zp
0

prms
2ðq;f; rÞ sin q dq df; (4.139)

where the coordinate of any point in space is given by the angles q and f and the radius r (see Fig. 4.28)
and prms

2(q,f,r) equals the mean-square sound pressure at the point designated by q, f, and r.
Usually an analytical expression for prms

2(q,f) does not exist. In practice, therefore, data are taken
at the centers of a number of areas, approximately equal in magnitude, on the surface of a sphere of
z
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r
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0

FIG. 4.28 Coordinate system defining the angle q and f and the length r of a line connecting a point A to the center

of a sphere.

The area of the incremental surface dS¼ r2 sin q dq df.
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radius r surrounding the source. As an example, we show in Fig. 4.29 a spherical surface divided into
20 equal parts of the same shape. The measured intensities on each of these parts may be called I1, I2, I3
etc. The total power radiated W is found from

W ¼ I1S1 þ I2S2 þ $ $ $ þ I20S20; (4.140)

where S1,S2, $ $ $ , S20 are the areas of the 20 parts of the spherical surface. If, as in Fig. 4.29, the
surface is divided into 20 equal parts, then S1¼ S2¼ S3¼ $ $ $¼ S20.

By definition, the directivity factor Q(f) is

Qð f Þ ¼ jpaxj2
r0c

4pr2

W
¼ 4pjprmsðqax;faxÞj2R2p

0

Rp
0

jprmsðq;fÞj2 sin q dq df

; (4.141)

where jpaxj2 is the magnitude of the mean-square sound pressure on the designated axis of the sound
source at a certain distance r (see Fig. 4.31, 0� axis, as an example).

For the special case where, for any particular value of q, the sound pressure produced by the sound
source is independent of the value of f, that is to say, there is an axis of symmetry, Eq. (4.141)
simplifies to
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Qð f Þ ¼ 4p p2rmsð0Þ
2p
Rp
0

p2rmsðqÞ sin q dq

: (4.142)

where the designated axis is the axis of symmetry. The magnitude signs are left off for convenience.
Many sources, such as loudspeakers, are fairly symmetrical about the principal axes so that
Eq. (4.142) is valid. We notice that the integral in the denominator has the same form as that of
Eq. (13.271) used for the Bouwkamp impedance theorem and thus represents the total radiated power.
Also, for pistons of area S, where RAR¼ Rs/S, the on-axis pressure p(0) is given by Eqs. (13.101) and
(13.235) so that

Qðf Þ ¼ k2a2r0cjDð0Þj2
Rs

; (4.143)

which is a useful result since D(0) and Rs have relatively simple analytical solutions for pistons.
If no analytical solution is available, the only choice is to take measurements at a number of points

with the angles qn in a horizontal plane around the source so that

Qðf Þ ¼ ð4p p2rmsð0ÞÞð180�=pÞ
2p
P180�=Dq

n¼1 p2rmsðqnÞ sin qn Dq
; (4.144)

where

D q is separation in degrees of the successive points around the sound source at which measurement
of prms(qn) was made (see Fig. 4.31 as an example).
180�/Dq is the number of measurements that were made in passing from a point directly in
front of the source to one directly behind the source (0 to 180�). The sound source is
assumed to be symmetrical so that the variation between 360� and 180� is the same as that
between 0 and 180�.

If the source is mounted in an infinite baffle, measurement is possible only in a hemisphere. Hence, the
value of n in Eq. (4.142) varies from 1 to 90�/Dq. If the source in an infinite baffle is nondirectional in
the hemisphere, which is usually the case for ka< 0.5, then the directivity factor Q¼Qh¼ 2, that is,
DI¼ 3 dB.

If the directivity pattern is not quite symmetrical, then the factor of 4 in the numerator of Eq.
(4.142) becomes 8 and the value of n varies from 1 to 360�/Dq. This, in effect, averages the two sides of
the directivity pattern.

For easy reference, the directivity indexes for (1) a piston in free space, (2) an oscillating sphere in
free space, (3) a piston in an infinite plane baffle, (4) a hemispherical dome in an infinite baffle, and (5)
a one-sided piston in free space are plotted as a function of ka in Fig. 4.30.

Detailed calculations are shown in Table 4.3 for a box-enclosed loudspeaker having the directivity
pattern at a frequency of 3000 Hz shown in Fig. 4.31.

After a directivity factor has been calculated at each frequency, a plot of directivity index DI(f) in
decibels is made with the aid of Eq. (4.138). For the loudspeaker with the directivity patterns of
Fig. 4.31, the directivity index as a function of frequency is shown in Fig. 4.32.
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Qð f Þ ¼ 4p� ð180�=pÞ

2p
P18

1

����prmsðqnÞprmsð0Þ
����2 sin qn � 10�

¼ 11:5

1:48
¼ 7:7;

DIðf Þ ¼ 10 log 7:7 ¼ 8:9 dB:
Table 4.2 Coordinates of mid-points of sectors

Sector
numbers

Coordinate

x y z

1–8 � 1ffiffiffi
3

p ¼ �0:577 � 1ffiffiffi
3

p ¼ �0:577 � 1ffiffiffi
3

p ¼ �0:577

9–12 � 2ð ffiffiffi
5

p þ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:934 �
ffiffiffi
5

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:357 0

13–16 0 � 2ð ffiffiffi
5

p þ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:934 �
ffiffiffi
5

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:357

17–20 �
ffiffiffi
5

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:357 0 � 2ð ffiffiffi
5

p þ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffiffi

5
p þ 7Þ

q ¼ �0:934



Table 4.3 Calculation of directivity index DI(f)1

qn (degrees) sin qn Directivity (dB)

����pðqnÞpax

����
2 ����pðqnÞpax

����
2

sinqn

5 0.087 0.1 1.02 0.09

15 0.259 –0.4 0.92 0.24

25 0.423 –1.5 0.71 0.30

35 0.574 –3.2 0.47 0.27

45 0.707 –5.3 0.30 0.21

55 0.819 –7.4 0.18 0.15

65 0.906 –10.4 0.09 0.08

75 0.966 –14.5 0.04 0.03

85 0.996 –16.9 0.02 0.02

95 0.996 –15.7 0.03 0.03

105 0.966 –16.5 0.02 0.02

115 0.906 –23.1 0.00 0.00

125 0.819 –22.7 0.01 0.00

135 0.707 –18.0 0.02 0.01

145 0.574 –22.3 0.01 0.00

155 0.423 –26.6 0.00 0.00

165 0.259 –16.6 0.02 0.01

175 0.087 –12.9 0.05 0.00

1.48

1At f¼ 3000 Hz for a type 8030A loudspeaker having the directivity patterns shown in Fig. 4.31. The quantity
Dq¼ 10� ¼p/18 rad.
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PART XIII: RADIATION IMPEDANCES

4.17 PULSATING SPHERE
In Part XI we derived the radiation impedance for a sphere with a uniformly pulsating surface. For the
results, refer to Eq. (4.69) and Fig. 4.13.

It is seen from Fig. 4.13 that for kR< 0.3, that is, when the diameter is less than one-tenth the
wavelength, the impedance load on the surface of the sphere is that of a mass reactance because the
resistive component is negligible compared with the reactive component.

At all frequencies, the loading shown in Fig. 4.13 may be represented by the equivalent circuits of
Fig. 4.33. The element sizes for the mechanical and acoustic admittances and impedances are given
with the circuits.
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FIG. 4.31 Measured directivity patterns for a type 8030A 5-in direct-radiator loudspeaker in a 285- by 189- by

178-mm aluminum box.

The squares give the directivity index at q¼ 0�.
Courtesy of Genelec OY, Finland.
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4.18 OSCILLATING SPHERE
In Part XI we derived the radiation impedance for a rigid sphere that oscillates axially. For the results,
refer to Eq. (4.137) and Fig. 4.27.

It is seen from Fig. 4.27 that for kR< 1, that is, when the diameter is less than one-third the
wavelength, the impedance load on the surface of the sphere is that of a mass reactance because the
resistive component is negligible compared with the reactive component.
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At all frequencies, the loading shown in Fig. 4.27 may be represented by the equivalent circuits of
Fig. 4.34. The element sizes for the mechanical and acoustic admittances and impedances are given
with the circuits.
4.19 PLANE CIRCULAR PISTON IN INFINITE BAFFLE
The specific impedance in N$s/m3 of the air load upon one side of a plane piston mounted in an infinite
baffle (see Fig. 13.3) and vibrating sinusoidally is given by Eqs. (13.116), (13.117), and (13.118). Plots
of the real and imaginary parts of

Zs
r0c

¼ Rs þ jXs

r0c
(4.145)

are shown in Fig. 4.35 as a function of ka. Similar graphs of the real and imaginary parts of the specific
admittance

Ysr0c ¼ r0cðGs þ jBsÞ ¼ r0c

�
Rs

R2
s þ Xs

X

� j
Xs

R2
s þ X2

s

�
(4.146)

are shown in Fig. 4.36. The specific admittance is in m3$N�1$s�1 (rayls�1).
The data of Fig. 4.35 are used in dealing with impedance analogies and the data of Fig. 4.36 in

dealing with admittance analogies.
We see from Fig. 4.35 that, for ka< 0.5, the reactance varies as the first power of frequency while

the resistance varies as the second power of frequency. At high frequencies, for ka> 5, the reactance
becomes small compared with the resistance, and the resistance approaches a constant value.
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The admittance, on the other hand, is better behaved. The conductance is constant for ka< 0.5, and
it is also constant for ka> 5 although its value is larger.
Approximate analogous circuits. The behavior just noted suggests that, except for the ripples in the
curves for ka between 1 and 5, the impedance and the admittance for a piston in an infinite baffle can be
approximated over the whole frequency range by the analogous circuits of Fig. 4.37. Those circuits
give the mechanical and acoustic impedances and admittances, where

RM2 ¼ pa2r0c N$ s=m (4.147)

RM ¼ RM2 þ RM1 ¼ 128a2r0c=ð9pÞ
¼ 4:53a2r0c N$s=m

(4.148)

RM1 ¼ 1:386a2r0c N$s=m (4.149)
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CM1 ¼ 1:89=ðpar0c2Þ ¼ 0:6=ðar0c2Þ m=N (4.150)

MM1 ¼ 8a3r0=3 ¼ 2:67a3r0 kg (4.151)
GM2 ¼ 1=ðpa2r0cÞ ¼ 0:318=ða2r0cÞ m$N�1$s�1 (4.152)

GM1 ¼ 0:722=ða2r0cÞ m$N�1$s�1 (4.153)

RA2 ¼ r0c=ðpa2Þ ¼ 0:318r0c=a
2 N$s=m5 (4.154)

RA ¼ RA2 þ RA1 ¼ 128r0c=ð9p3a2Þ
¼ 0:459r0c=a

2 N$s=m5
(4.155)
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RA1 ¼ 0:1404r0c=a
2 N$s=m5 (4.156)

CA1 ¼ 1:89pa3=ðr0c2Þ ¼ 5:94a3=ðr0c2Þ m5=N (4.157)

MA1 ¼ 8r0=ð3p2aÞ ¼ 0:27r0=a kg=m4 (4.158)

GA2 ¼ pa2=ðr0cÞ m5$N�1$s�1 (4.159)

GA1 ¼ 7:12a2=ðr0cÞ m5$N�1$s�1 (4.160)

All constants are dimensionless and were chosen to give the best average fit to the functions of
Fig. 4.35 and Fig. 4.36.
Low- and high-frequency approximations. At low and at high frequencies these circuits may be
approximated by the simpler circuits given in the last column of Table 4.4.

It is apparent that when ka< 0.5, that is, when the circumference of the piston 2pa is less than one-
half wavelength l/2, the impedance load presented by the air on the vibrating piston is that of a mass
shunted by a very large resistance. In other words R2¼ (R1þ R2)

2 is large compared with u2M1
2. In

fact, this loading mass may be imagined to be a layer of air equal in area to the area of the piston and
equal in thickness to about 0.85 times the radius, because



Table 4.4 Radiation impedance and admittance for one side of a plane circular piston in an
infinite baffle1

Impedance

Mechanical Specific Acoustic

Analogous circuits
f[ drop
u [ flow

p[ drop
u [ flow

p[ drop
U [ flow

ka< 0.5:
Series
resistance, R
Shunt
resistance, R
Mass, M1

ka> 5:
Resistance, R2

RM ¼ pa4r0u
2

2c

RM ¼ 128a2r0c

9p

MM1 ¼ 8a3r0
3

RM2 ¼ pa2r0c

RS ¼ a2r0u
2

2c

RS ¼ 128r0c

9p2

MS1 ¼ 8ar0
3p

RS2 ¼ r0c

RA ¼ r0u
2

2pc

RA ¼ 128r0c

9p3a2

MA1 ¼ 8r0
3p2a

RA2 ¼ r0c

pa2

M1 M1

R

R

R2

Admittance
u[ drop
f[ flow

u[ drop
p[ flow

U[ drop
p[ flow

ka< 0.5:
Series
conductance,
G
Mass, M1

ka> 5:
Conductance,
G2

GM ¼ 9p

128a2r0c

MM1 ¼ 8a3r0
3

GM2 ¼ 1

pa2r0c

GS ¼ 9p2

128r0c

MS1 ¼ 8ar0
3p

GS2 ¼ 1

r0c

GA ¼ 9p3a2

128r0c

MA1 ¼ 8r0
3p2a

GA2 ¼ pa2

r0c

G

G2

M1

1This table gives element sizes for analogous circuits in the region where ka< 0.5 and ka> 5. All constants are
dimensionless. For the region between 0.5 and 5.0, the charts of Fig. 4.35 and Fig. 4.36 should be used.

174 CHAPTER 4 Acoustic components
ðpa2Þð0:85aÞr0z 2:67a3r0 ¼ MM1

At high frequencies, ka> 5, the air load behaves exactly as though it were connected to one end of
a tube of the same diameter as the piston, with the other end of the tube perfectly absorbing. As we
saw in Eq. (2.89), the input mechanical resistance for such a tube is pa2r0c. Hence, intuitively one
might expect that at high frequencies the vibrating rigid piston beams the sound outward in lines
perpendicular to the face of the piston. This is actually the case for the immediate near-field close
to the piston. At a distance, however, the far-field radiation spreads, as we learned earlier in this
chapter.
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4.20 PLANE CIRCULAR FREE DISK
A disk in free space without surrounding structure is a suitable model, at low frequencies, for a direct-
radiator loudspeaker without a baffle of any sort. In other words, the loudspeaker radiates as a dipole.
The radiation impedance is given by Eqs. (13.249), (13.250), and (13.251).

Graphs of the real and imaginary parts of the normalized specific impedance load on one side of the
diaphragm, Zs/r0c, as a function of ka for the free disk, are shown in Fig. 4.38. The data of Fig. 4.38 are
used in dealing with impedance analogies. For admittance analogies, the complex admittance can be
obtained by taking the reciprocal of the complex impedance.
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FIG. 4.38 Real and imaginary parts of the normalized specific radiation impedance Zs /r0c of the air load on one

side of a plane circular piston of radius a in free space.

Frequency is plotted on a normalized scale, where ka¼ 2pa/l¼ 2pfa/c.
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A simple equivalent circuit, approximately valid for all frequencies like those shown in Fig. 4.37,
cannot be drawn for this case. At very low frequencies, however, it is possible to represent the
impedance by an equivalent circuit, which is similar to that for an oscillating sphere. In the
frequency ranges where ka< 0.5 and ka> 5, analogous circuits of the type shown in Table 4.5 may
be used.
4.21 PLANE CIRCULAR PISTON RADIATING FROM ONE SIDE ONLY
IN FREE SPACE
The specific impedance (N$s/m3) of the air load on a plane piston in free space, which has one surface
vibrating sinusoidally while the other remains stationary, is given by Eqs. (13.254) and (13.255) and
plotted in Fig. 4.39.
Table 4.5 Radiation impedance and admittance for one side of a plane circular piston in free
space1

Impedance

Mechanical Specific Acoustic

Analogous circuits
f[ drop
u[ flow

p[ drop
u[ flow

p[ drop
U[ flow

ka< 0.5:
Series
resistance, R
Mass, M1

Compliance, C1

ka> 5:
Resistance, R

RM ¼ 8a6r0u
4

27pc3

MM1 ¼ 4a3r0
3

CM1 ¼ 1ffiffiffi
6

p
par0c

2

RM ¼ pa2r0c

RS ¼ 8a4r0u
4

27p2c3

MS1 ¼ 4ar0
3p

CS1 ¼ affiffiffi
6

p
r0c

2

RS ¼ r0c

RA ¼ 8a2r0u
4

27p3c3

MA1 ¼ 4r0
3p2a

CS1 ¼ pa3ffiffiffi
6

p
r0c

2

RA ¼ r0c

pa2

M

R

M R

R

C

Admittance
u[ drop
f[ flow

u[ drop
p[ flow

U[ drop
p[ flow

ka< 0.5:
Series
conductance, G
Mass, M1

Compliance, C1

ka> 5:
Conductance, G

GM ¼ u2

6pr0c
3

MM1 ¼ 4a3r0
3

CM1 ¼ 1ffiffiffi
6

p
par0c

2

GM ¼ 1

pa2r0c

GS ¼ a2u2

6r0c
3

MS1 ¼ 4ar0
3p

CS1 ¼ affiffiffi
6

p
r0c

2

GS ¼ 1

r0c

GA ¼ pa4u2

6r0c
3

MA1 ¼ 4r0
3p2a

CA1 ¼ pa3ffiffiffi
6

p
r0c

2

GA ¼ pa2

r0c

G

G

M

C G

M

1This table gives element sizes for analogous circuits in the region where ka< 0.5 and ka> 5. All constants are
dimensionless. For the region between 0.5 and 5.0, the chart of Fig. 4.38 should be used.
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FIG. 4.39 Real and imaginary parts of the normalized specific radiation impedance Zs /r0c of the air load on one

side of a plane circular piston of radius a radiating from one side only into free space.

Frequency is plotted on a normalized scale, where ka¼ 2pa/l¼ 2pfa/c.
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It is simply the mean of the impedances of a plane circular piston in an infinite baffle and the same
in free space.

To a fair approximation, the radiation impedance for a one-sided piston in free space may be
represented over the entire frequency range by the same analogous circuits used for the piston in an
infinite baffle and shown in Fig. 4.37, where the elements now are:

RM2 ¼ pa2r0c N$s=m (4.161)

RM ¼ RM2 þ RM1 ¼ 16a2r0c=p
¼ 5:09a2r0c N$s=m
(4.162)

RM1 ¼ 1:95a2r0c N$s=m (4.163)
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CM1 ¼ 1=ðpar0c2Þ ¼ 0:318=ðar0c2Þ m=N (4.164)

MM1 ¼ 2a3r0 kg (4.165)

GM2 ¼ 1=ðpa2r0cÞ ¼ 0:318=ða2r0cÞ m$N�1$s�1 (4.166)

GM1 ¼ 0:513=ða2r0cÞ m$N�1$s�1 (4.167)

RA2 ¼ r0c=ðpa2Þ ¼ 0:318r0c=a
2 N$s=m5 (4.168)

RA ¼ RA2 þ RA1 ¼ 16r0c=ðp3a2Þ
¼ 0:516r0c=a

2 N$s=m5
(4.169)

RA1 ¼ 0:1977r0c=a
2 N$s=m5 (4.170)

CA1 ¼ pa3=ðr0c2Þ ¼ 3:142a3=ðr0c2Þ m5=N (4.171)

MA1 ¼ 2r0=ðp2aÞ ¼ 0:2026r0=a kg=m4 (4.172)

GA2 ¼ pa2=ðr0cÞ m5$N�1$s�1 (4.173)

GA1 ¼ 5:06a2=ðr0cÞ m5$N�1$s�1 (4.174)

In the frequency ranges where ka< 0.5 and ka> 5, analogous circuits of the type shown in
Table 4.6 may be used.
PART XIV: VISCOUS AND THERMAL LOSSES

4.22 SOUND IN LOSSY TUBES
In Sec. 2.4, we examined the propagation of one-dimensional waves in a loss-free tube. In order to
be able to neglect viscous losses inside the tube, the radius of the tube must not be too small. Also, in
order to be able to neglect transverse resonances in the tube, the radius must not be too large. Here
we shall re-derive the one-dimensional wave equation using a slightly different procedure than
before, taking into account the viscous and thermal losses that take place at the boundary wall, using
what are known as the Navier–Stokes equations. In accordance with the continuum theory of gases,
traditional models have assumed that the axial velocity at the wall of the tube is zero and that the



Table 4.6 Radiation impedance and admittance for a plane circular piston radiating from one
side only in free space1

Impedance

Mechanical Specific Acoustic

Analogous circuits
f[ drop
u[ flow

p[ drop
u[ flow

p[ drop
U[ flow

ka< 0.5:
Series
resistance, R
Shunt
resistance, R
Mass, M1

ka> 5:
Resistance, R2

RM ¼ pa4r0u
2

4c

RM ¼ 16a2r0c

p

MM1 ¼ 2a3r0

RS2 ¼ pa2r0c

RS ¼ a2r0u
2

4c

RS ¼ 16r0c

p2

MS1 ¼ 2ar0
p

RS2 ¼ r0c

RA ¼ r0u
2

4pc

RA ¼ 16r0c

p3a2

MA1 ¼ 2r0
p2a

RS2 ¼ r0c

pa2

M1

R

R M1

R2

Admittance
u[ drop
f[ flow

u[ drop
p[ flow

U[ drop
p[ flow

ka< 0.5:
Series
conductance,
G
Mass, M1

ka> 5:
Conductance,
G2

GM ¼ p

16a2r0c

MM1 ¼ 2a3r0

GM2 ¼ 1

pa2r0c

GS ¼ p2

16r0c

MS1 ¼ 2ar0
p

GS2 ¼ 1

r0c

GA ¼ p3a2

16r0c

MA1 ¼ 2r0
p2a

GA2 ¼ pa2

r0c

G

G

M

1This table gives element sizes for analogous circuits in the region where ka< 0.5 and ka> 5. All constants are dimensionless.
For the region between 0.5 and 5.0, the chart of Fig. 4.39 should be used.
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temperature there is ambient, due to the sheer number of collisions occurring between air molecules
and the wall. However, as the diameter of the tube is reduced relative to the mean free path of the
molecules, fewer collisions occur so that the axial velocity and temperature both increase at the
wall. This is generally known as a slip boundary condition. Formulation is now available [7] that
models this slip, thus allowing us to model tubes of much smaller diameter than was previously
possible. The resulting wave-number is complex and from this new wave-number we shall derive
two new parameters called the dynamic density and dynamic compressibility which replace the
density and inverse bulk modulus respectively in the expressions for wave-number and character-
istic impedance. These result from the average flow over the cross-section of the tube as if the losses
were homogeneous throughout the bulk of the acoustic medium, even though they are actually
localized near the tube wall. We will also define a viscous boundary thickness to define the region



180 CHAPTER 4 Acoustic components
within which most of the viscous losses occur. For those readers who are not interested in the full
derivation but only wish to apply the results to practical uses, you may skip on to the results shown
in Fig. 4.46 to Fig. 4.51.

Two-terminal electrical components generally obey Kirchhoff’s law. In other words, the current
flowing out of one terminal is equal to that flowing into the other. However, the exact model of a tube
does not obey this law because, due to losses, the volume velocity flowing out of one end is less than
that flowing into the other. Therefore, we must model it as a four-terminal device, or 2-port model. We
shall develop a discrete-element 2-port model, which is a useful result as it allows us to apply electrical
circuit theory. However, we shall see that under certain frequency or diameter ranges, we can make
useful two-terminal approximations for an open or closed tube which form the basis of some of the
acoustic components presented in Sec. 4.4.
4.23 WAVE EQUATION FOR AN INFINITE LOSSY TUBE
Assumptions. The circular tube of radius a shown in Fig. 4.40 has z as the axial ordinate and w as the
radial ordinate. In the following discussion, it is assumed that the radial pressure distribution is
uniform and that the pressure variations are purely axial. This has been shown to be valid provided that
a(meters) � 104/f 3/2. [8] Also, it is assumed that the radial velocity is zero, but the axial velocity is
allowed to vary radially due to laminar flow resulting from viscous losses. Thermal conduction through
the tube wall is also taken into consideration, where the wall is at ambient temperature T0. However,
boundary slip is allowed for, whereby the axial particle velocity adjacent to the tube wall can be
non-zero and the air temperature there can be non-ambient. Furthermore, the degree of slip is
proportional to the gradient of the radial distribution of the velocity or temperature at the tube wall.
The momentum conservation equation. In accordance with the conservation of momentum law, we
can write the linearized Navier–Stokes equation [10]�

r0
v

vt
� mV2

�
uðwÞ ¼ �vp

vz
; (4.175)

where

V2 ¼ v2=ðvw2Þ þ w�1v=ðvwÞ
and u is the axial velocity, p is the axial pressure, r0¼ 1.18 kg/m3 and m¼ 18.6� 10–6 N$s/m2 are the
density and viscosity of air respectively, and z is the axial ordinate. Replacing the time derivative with
ju gives
z2a

w

FIG. 4.40 Geometry of tube.
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ðV2 þ k2VÞ~uðwÞ ¼ � k2V
jur0

v~p

vz
; (4.176)

where

kV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jur0=m

p
: (4.177)

The gas law and thermal conduction (entropy). For an ideal gas we can write the following linearized
equation of state [11]

~p

P0
¼

~d

r0
þ ~sðwÞ

T0
; (4.178)

where ~p, ~d and ~s are the small pressure, density and temperature fluctuations respectively. Fourier’s law
for thermal conduction gives

kV2~sðwÞ ¼ juT0ðr0CV ~p=P0 � CP
~dÞ; (4.179)

where k¼ 25.4� 10–3 N$s�1$K�1 is the thermal conductivity, CV is the specific heat capacity under
constant volume, and CP is the specific heat capacity under constant pressure. Eliminating ~d from Eqs.
(4.178) and (4.179) gives

kV2~sðwÞ ¼ jur0T0

 
ðCV � CPÞ ~p

P0
þ CP

~sðwÞ
T0

!
: (4.180)

We also note that CP � CV ¼ P0=ðr0T0Þ so that

ðV2 þ Prk
2
VÞ~sðwÞ ¼

Prk
2
V

r0CP
~p; (4.181)

where the Pr is the (dimensionless) Prandtl number given by

Pr ¼ mCP=k (4.182)

which is the ratio of the viscous diffusion rate to the thermal diffusion rate.
Solution of the velocity and temperature radial equations. Equations (4.176) and (4.181) for the
radial velocity and temperature distributions respectively are subject to the following slip boundary
conditions:

~uðaÞ ¼ �aBu
v~uðwÞ
vw

��
w¼a

; (4.183)

~sðaÞ ¼ �aBe
v~sðwÞ
vw

��
w¼a

; (4.184)

where the boundary slip factors Bu and Be are given by

Bu ¼ ð2a�1
u � 1ÞKn; (4.185)
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Be ¼ ð2g=Prð1þ gÞÞð2a�1
e � 1ÞKn: (4.186)

We note that g¼ CP/Cv is the specific heat ratio, au and ae are the accommodation coefficients,
both of which are assumed to have a value of 0.9, and Kn is the (dimensionless) Knudsen number
given by

Kn ¼ lm=a; (4.187)

where lm¼ 60 nm is the molecular mean free path length between collisions. Substituting

~uðwÞ ¼ � 1

jur0

v~p

vz
ð1� FðkV ;w;BuÞÞ; (4.188)

~sðwÞ ¼ ~p

r0CP
ð1� FðkT ;w;BeÞÞ (4.189)

in Eqs. (4.176) and (4.181) respectively leads to a new pair of equations:

ðV2 þ k2VÞFðkV ;w;BuÞ ¼ 0; (4.190)

ðV2 þ k2TÞFðkT ;w;BeÞ ¼ 0; (4.191)

where

kT ¼ ffiffiffiffiffi
Pr

p
kV : (4.192)

Eqs. (4.190) and (4.191) are subject to the boundary conditions

FðkV ; a;BuÞ þ aBu
v

vw
FðkV ;w;BuÞ

��
w¼a

¼ 1; (4.193)

FðkT ; a;BeÞ þ aBe
v

vw
FðkT ;w;BeÞ

��
w¼a

¼ 1 (4.194)

Solutions to Eqs. (4.190) and (4.191) are given by

FðkV ;w;BuÞ ¼ AJ0ðkVwÞ; (4.195)

FðkT ;w;BeÞ ¼ BJ0ðkTwÞ: (4.196)

The unknown coefficients can be found by substituting Eqs. (4.195) and (4.196) in the boundary
conditions of Eqs. (4.193) and (4.194) respectively to give

A ¼ ðJ0ðkVaÞ � BukVaJ1ðkVaÞÞ�1

and

B ¼ ðJ0ðkTaÞ � BekTaJ1ðkTaÞÞ�1:

The average values across the tube cross-section are defined by
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hFðkV ; a;BuÞi ¼ 1

pa2

Z2p
0

Za
0

FðkV ;w;BuÞwdwdf

¼ QðkVaÞ
1� 0:5Buk

2
Va

2QðkVaÞ
;

(4.197)

where

QðxÞ ¼ 2J1ðxÞ=ðxJ0ðxÞÞ (4.198)

and similarly

hFðkT ; a;BeÞi ¼ QðkTaÞ
1� 0:5Bek

2
Ta

2QðkTaÞ
: (4.199)

In Fig. 4.41, the axial velocity along the radius of a narrow tube is plotted at a frequency of 100 Hz
using Eq. (4.188), where the radius of the tube is 1 mm. Also, the axial velocity along the radius of
a wide tube is plotted in Fig. 4.42 at a frequency of 10 kHz, where the radius is 1 mm

The effective boundary layer thickness dvisc can be calculated using the formula

dvisc ¼
ffiffiffiffiffiffiffiffi
m

r0u

r
(4.200)

In Fig. 4.41, the effective boundary layer thickness of 155 mm is much greater than the radius of the
tube, so the normalized velocity never reaches the theoretical maximum value of unity even at the
center (w¼ 0). At the wall, the boundary slip condition is clearly visible as the velocity does not reach
zero. By contrast, the effective boundary layer thickness in Fig. 4.42 of 15.5 mm is only 1.55% of the
radius, which explains why the normalized velocity is unity over most of the radius and only falls
FIG. 4.41 Variation of normalized velocity along radius of ultra-narrow tube of radius 1mmat a frequency of 100Hz.

The effective boundary layer thickness is 155 mm.
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rapidly close to the wall (w¼ a), albeit after a small peak. At the wall, the velocity is virtually zero, so
there is no appreciable slip
Mass conservation and Helmholtz wave equation. Finally, we use the following mass conservation
equation or equation of continuity [12]

juh~di þ r0
v

vz
h~ui ¼ 0: (4.201)

For the average velocity, we can write from Eq. (4.188)

h~ui ¼ � 1

jur0

v~p

vz
ð1� hFðkV ; a;BuÞiÞ: (4.202)

Differentiating Eq. (4.202) with respect to z and inserting it in Eq. (4.201) yields

h~di ¼ � 1

u2
ð1� hFðkV ; a;BuÞiÞ v

2~p

vz2
: (4.203)

Also, from the gas law of Eq. (4.178)

~p

P0
¼ h~di

r0
þ h~si

T0
; (4.204)

where the average temperature is derived from Eq. (4.189) as follows

h~si ¼ ~p

r0CP
ð1� hFðkT ; a;BeÞiÞ: (4.205)
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Substituting Eq. (4.205) in Eq. (4.204) while noting that

CP � Cv ¼ P0=ðr0T0Þ and g ¼ CP=Cv

so that

CP ¼ gP0

ðg� 1Þr0T0
(4.206)

gives

h~di ¼ r0

gP0
ð1þ ðg� 1ÞhFðkT ; a;BeÞiÞ~p: (4.207)

Equating Eqs. (4.203) and (4.207) then leads to the following Helmholtz wave equation:

v2~p

vz2
þ k2~p ¼ 0; (4.208)

where

k2 ¼ ð1þ ðg� 1ÞhFðkT ; a;BeÞiÞu2r0

ð1� hFðkV ; a;BuÞiÞgP0
(4.209)

or, using Eqs. (4.197) and (4.199),

k2 ¼

 
1þ ðg� 1Þ QðkTaÞ

1� 0:5Bek
2
Ta

2QðkTaÞ

!
u2r0 

1� QðkVaÞ
1� 0:5Buk

2
Va

2QðkVaÞ

!
gP0

: (4.210)

Dynamic density. In order to simplify the expressions for the wave-number k and characteristic
impedance Z0, we can use the following shorthand known as the dynamic density where h~ui is given by
Eq. (4.202) so that

r ¼ � 1

juh~ui
v~p

vz
¼ r0

1� hFðkV ; a;BuÞi

¼ r0

 
1� QðkVaÞ

1� 0:5Buk
2
Va

2QðkVaÞ

!�1

:

(4.211)

Dynamic compressibility. Also, the dynamic compressibility is defined by

C ¼ h~di
r0~p

: (4.212)

From the ideal gas law of Eq. (4.207) we obtain

h~di
r0~p

¼ 1

gP0
ð1þ ðg� 1ÞhFðkT ; a;BeÞiÞ; (4.213)
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which is inserted in Eq. (4.212) to give

C ¼ 1

gP0

 
1þ ðg� 1ÞQðkTaÞ

1� 0:5Bek
2
Ta

2QðkTaÞ

!
: (4.214)

Wave-number and characteristic impedance. Using the expressions for the dynamic density r and
dynamic compressibility C from Eqs. (4.211) and (4.214) respectively, the wave-number of Eq. (4.210)
simply becomes

k ¼ u
ffiffiffiffiffiffi
rC

p
(4.215)

By comparing this with the wave-number for a loss-free plane wave [from Eqs. (2.19) and (2.45)]

k ¼ u

ffiffiffiffiffiffiffiffi
r0

gP0

r
(4.216)

we see that when there are no viscous or thermal losses r¼ r0 and C¼ 1/(gP0). Hence the
compressibility is the inverse bulk modulus of the medium. Similarly, from Eq. (2.89), we see that the
characteristic specific impedance of an infinite tube is

Zs ¼
ffiffiffiffiffiffiffiffiffi
r=C

p
: (4.217)

A 2-port network for a finite tube [9]. We have already introduced 2-port networks for transducers
using z-parameters in Sec. 3.10. Here we shall apply the theory to a tube with viscous and thermal
losses. A general equivalent circuit for passive 2-port networks is shown in Fig. 4.43. Due to the
reciprocity of the tube, or in other words, the fact that it does not matter at which end there is
a transmitter or receiver, we obtain z22¼ z11 and z21¼ z12.

From Eq. (3.64) we write "
~pin

~pout

#
¼
"
z11 z12

z21 z22

#
$

"
~uin

�~uout

#
: (4.218)

The equations for the tube with losses take on the same form as those without losses which we have
already derived in Chapter 2. From Eqs. (2.58) and (2.59) for the pressure and velocity in a finite tube,
the following z-parameters are obtained:

z11 ¼ z22 ¼ ~pðlÞ
�~uðlÞ

��
ZT¼N

¼ �jZs cot kl; (4.219)
inp~

z11 − z12inu~ outu~

outp~

2-port network 
z22 − z21

z12 = z21

FIG. 4.43 Equivalent electrical circuit for a general passive 2-port network.
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z12 ¼ z21 ¼ ~pð0Þ
�~uðlÞ

��
ZT¼N

¼ �jZs cosec kl; (4.220)

where we have replaced r0c with Zs for a tube with viscous and thermal losses. This is equivalent to
using a piston to apply a velocity ~uðlÞ at z¼ l while the other end (at z¼ 0) is blocked (hence zT¼N)
and using a probe microphone to measure the pressure at z¼ l and z¼ 0. The pressures ~pðlÞ and ~pð0Þ
are then divided by ~uðlÞ in order to determine z11 and z12 respectively. The wave-number k and
characteristic impedance Zs with losses are given by Eqs. (4.215) and (4.217) respectively. Using the
relationships of Eqs. (3.74) to (3.77), we can write the following equations for the transmission
parameters "

~pin

~uin

#
¼
"
a11 a12

a21 a22

#
$

"
~pout

~uout

#
; (4.221)

where

a11 ¼ ~pðlÞ
~pð0Þ

��
ZT¼N

¼ cos kl; (4.222)

a12 ¼ ~pðlÞ
�~uð0Þ

��
ZT¼0

¼ jZs sin kl; (4.223)

a21 ¼ �~uðlÞ
~pð0Þ

��
ZT¼N

¼ j sin kl

Zs
; (4.224)

a22 ¼ �~uðlÞ
�~uð0Þ

��
ZT¼0

¼ cos kl: (4.225)

If the tube is blocked at the far end, the impedance Zin at the entrance is simply

Zin ¼ ~pin
~uin

���
~uout¼0

¼ z11 ¼ �jZs cot kl: (4.226)

If the far end is open, then

Zin ¼ ~pin
~uin

����
~pout¼0

¼ z11 þ
�

1

z11
þ 1

z12

��1

¼ jZs tan kl: (4.227)

A 2-port network for a short finite tube. When the wavelength is about six times greater than the
length l of the tube or greater, we can take just the first two terms of the equivalent series forms for the
cotangent and cosecant so that Eqs. (4.219) and (4.220) reduce to

z11 ¼ z22z � jZs

�
1

kl
� kl

3

�
¼ 1

juCs
þ juMs

3
; (4.228)
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z12 ¼ z21z � jZs

�
1

kl
þ kl

6

�
¼ 1

juCs
� juMs

6
: (4.229)

where Cs¼ Cl is a lossy specific compliance and Ms¼ rl is a lossy specific mass. The bold typeface
indicates that these are not pure reactances, but also contain resistive components due to losses. The
compliance Cs contains thermal losses andMs contains viscous losses. The dynamic compressibility C
and dynamic density r are given by Eqs. (4.214) and (4.211) respectively. The compliance and mass
are shown in Fig. 4.44 as an equivalent electrical circuit. It is valid so long as the radius a is greater than
the molecular mean free path length lm. When one end of the tube is open and the radiation load is
negligible, the corresponding pair of terminals is effectively shorted and, at low frequencies, the two
upper mass elements ½Ms dominate so that the total mass is Ms.

When one end is closed, the corresponding pair of terminals is open circuited and, at low
frequencies, the compliance element Cs dominates. The mass is now due to one upper element and the
negative middle element which gives

1

2
Ms � 1

6
Ms ¼ 1

3
Ms:

The fact that the mass of a blocked tube is one third of that of an open tube can be verified by
expanding the tangent function of Eq. (4.227), as we did in Sec. 4.2.
A 2-port network for a short finite tube using approximate discrete elements. Let us now shorten the
equivalent series forms of the Bessel functions in the function Q(x) of Eq. (4.198) to just their first two
terms:

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞz

8� x2

8� 2x2
(4.230)

We now apply this to the dynamic density from Eq. (4.211) to obtain

r ¼ �r0
8� ð2þ 4BuÞk2Va2 þ 0:5Buk

4
Va

4

ð1þ 4BuÞk2Va2 þ 0:5Buk
4
Va

4
: (4.231)

For small values of kVa, this simplifies to

r ¼ �8r0
ð1þ 4BuÞk2Va2

; (4.232)
Cs

½Ms ½Ms

6
1– Ms

 

FIG. 4.44 A 2-port network for a short tube of radius a, length l, which is valid for a > lm, the molecular mean free

path.
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which after substituting kV from Eq. (4.177) yields

r ¼ 8m

juð1þ 4BuÞa2: (4.233)

We also apply Eq. (4.230) to the dynamic compressibility from Eq. (4.214) to obtain

C ¼ 1

gP0

 
8g� ð1þ gþ 4BeÞk2Ta2 þ 0:5Bek

4
Ta

4

8� ð2þ 4BeÞk2Ta2 þ 0:5Bek4Ta
4

!
: (4.234)

For small values of kTa, this simplifies to

C ¼ 1=P0; (4.235)

By substituting Eqs. (4.233) and (4.235) into Eqs. (4.215) and (4.217), we obtain the asymptotic wave-
number and characteristic impedance for a short narrow tube

k
��
a/0

¼ 2ð1� jÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu

ð1þ 4BuÞP0

r
; (4.236)

Zs
��
a/0

¼ 2ð1� jÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mP0

ð1þ 4BuÞu

s
: (4.237)

In order to separate out the reactive and resistive elements of Fig. 4.44, we have to include
the second-order terms of Eqs. (4.215) and (4.217). However, the approximation is not optimum
because the singularity of the polynomial approximation of Q(x) in Eq. (4.230) does not match that
of the Bessel function expression. Hence we will modify Eq. (4.230) in order to align the
singularities

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞz

a2 � ð1� a2=8Þx2
a2 � x2

; (4.238)

where a¼ 2.4048 is the first zero of J0(x). In other words J0(a)¼ 0. The numerator part of this
approximation has been determined in order to lead to the same asymptotic expressions for r, C, k, and
Zs as Eq. (4.230). We now apply this to the dynamic density from Eq. (4.211) to obtain

r ¼ r0

8�
�
8

a2
þ 4Bu

�
k2Va

2 þ 8� a2

2a2
Buk

4
Va

4

�ð1þ 4BuÞk2Va2 þ
8� a2

2a2
Buk

4
Va

4

: (4.239)

Ignoring the fourth-order terms and substituting kV from Eq. (4.177) yields

r ¼ 8m

juð1þ 4BuÞa2 þ
ð8=a2Þ þ 4Bu

1þ 4Bu
r0: (4.240)

The impedance due to the complex mass Ms is then given by
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ZV ¼ juMs ¼ jurl ¼ 8ml

ð1þ 4BuÞa2 þ jur0l
ð8=a2Þ þ 4Bu

1þ 4Bu
: (4.241)

We see that the first term represents the resistance due to viscous flow losses while the second term
represents the mass reactance. We also apply Eq. (4.238) to the dynamic compressibility from Eq.
(4.214) to obtain

C ¼ 1

gP0
$

8g�
�
1þ

�
8

a2
� 1

�
gþ 4Be

�
k2Ta

2 þ 8� a2

2a2
Bek

4
Ta

4

8�
�
8

a2
þ 4Be

�
k2Ta

2 þ 8� a2

2a2
Bek

4
Ta

4

: (4.242)

Ignoring the fourth-order terms and substituting kT from Eqs. (4.177), (4.182), (4.192), and (4.206)
yields

C ¼ 1

gP0
$

gþ ju

�
1þ �ð8=a2Þ � 1

�
gþ 4Be

�
gP0a

2

8ðg� 1ÞkT0
1þ ju

��
8=a2Þ þ 4Be

�
gP0a

2

8ðg� 1ÞkT0

: (4.243)

We will use the approximation that

1þ ðð8=a2Þ � 1Þgz 8=a2:

The impedance due to the complex compliance Cs is then given by

ZT ¼ 1

juCs
¼ 1

juCl
¼ 1þ juRTCT

juðC0 þ CT þ juRTC0CTÞ

¼ 1

juC0 þ 1

RT þ 1

juCT

; (4.244)

where

C0 ¼ l

gP0
; (4.245)

CT ¼ ðg� 1ÞC0; (4.246)

RT ¼
��
8=a2Þ þ 4Be

�
gP0a

2

8ðg� 1ÞkT0CT
;

z
ð1þ 3BeÞgP0a

2

6ðg� 1ÞkT0CT
:

(4.247)
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Similarly, we can separate ZV from Eq. (4.241) into its constituent elements:

ZV ¼ RV þ juM0; (4.248)

where

RV ¼ 8ml

ð1þ 4BuÞa2; (4.249)

M0 ¼ ð8=a2Þ þ 4Bu

1þ 4Bu
r0lz

1þ 3Bu

1þ 4Bu
$
4

3
r0l: (4.250)

These elements are shown on the equivalent electrical circuit of Fig. 4.45 and are known as lumped
elements as opposed to the distributed ones of Eqs. (4.219) and (4.220) because the mass, compliance,
and resistance elements have been separated out into discrete elements whereas in reality they are
evenly distributed over the length of the tube. However, the distributed parameter model may be
considered as an infinite number of lumped parameter sections coupled together, where each one is
infinitesimally short. At low frequencies, the impedance due to CT is larger than RT, so that the total
compliance is effectively C0þCT¼ 1/P0. The low-frequency pressure fluctuations are isothermal due
to heat transfer to and from the wall of the tube. At higher frequencies, RT represents energy loss due
to the time taken for the heat to flow back and forth. At even higher frequencies, RT is greater than the
impedance due to CT, so very little heat is transferred, making the pressure fluctuations adiabatic in
nature. The total compliance is then effectively C0¼ 1/(gP0). Hence the compliance at low
frequencies is greater than that at high frequencies by a factor of g (that is, around 40% greater).
Regimes for an open-ended tube. The real and imaginary impedances at the entrance of the tube with
the far end open, that is, with one pair of terminals of the 2-port network shorted, are shown in Fig. 4.46
and Fig. 4.47 respectively. In each case, four different curves are plotted. For the exact curves (black),
Eq. (4.227) is used together with the exact wave-number and characteristic impedance of Eqs. (4.215)
and (4.217) respectively. These are valid for a> lm. Real and imaginary approximate curves are also
shown for the three following regimes:

For the very narrow radius or asymptotic curves (dark grey) Eq. (4.227) is also used but with the
asymptotic wave-number and characteristic impedance of Eqs. (4.236) and (4.237) respectively.
C0 

½M0 ½M0

6
1− M0

½RV ½RV

CT

6
1− RV

 

RT

FIG. 4.45 A 2-port network for a short narrow tube of radius a length l, which is valid for a > lm , the molecular

mean free path.
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FIG. 4.46 Real impedance at the entrance of an open-ended tube at a frequency of 100 Hz plotted against its radius

a where the length l of the tube is 10 mm.

The exact solution is given by Eq. (4.227) together with Eqs. (4.215) and (4.217), the very narrow solution by

Eq. (4.227) together with Eqs. (4.236) and (4.237). For narrow and medium tubes, Zin¼RV þ juM0 where RV

andM0 are given by Eqs. (4.249) and (4.250) for narrow tubes and Eqs. (4.251) and (4.252) for medium tubes.
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The real curve is valid for lm < a < 0:00008l
ffiffiffi
f

p
and the imaginary curve for

lm < a < 0:0005
ffiffi
l

p
. Unfortunately, the discrete element equivalent circuit of Fig. 4.45 cannot

be used in this range.
At low frequencies, we can ignore the compliance elements of Fig. 4.45 for an open tube. Hence

the input impedance reduces to Zin¼ RV þ juM0 where RV and M0 are given by Eqs. (4.249) and
(4.250) respectively and these are used for the narrow radius curves (medium grey), commonly
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FIG. 4.47 Imaginary impedance at the entrance of an open-ended tube at a frequency of 100 Hz plotted against its

radius a where the length l of the tube is 10 mm.

The exact solution is given by Eq. (4.227) together with Eqs. (4.215) and (4.217), the very narrow solution by Eq.

(4.227) together with Eqs. (4.236) and (4.237). For narrow and medium tubes, Zin¼RV þ juM0 where RV and

M0 are given by Eqs. (4.249) and (4.250) for narrow tubes and Eqs. (4.251) and (4.252) for medium tubes.
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known as the Poisseulle flow. The real curve is valid for 0:00008l
ffiffiffi
f

p
< a < 0:002=

ffiffiffi
f

p
and the

imaginary curve for 0:0005
ffiffi
l

p
< a < 0:002=

ffiffiffi
f

p
.

For medium radius tubes, that is for a > 0:01=
ffiffiffi
f

p
,we again ignore the compliance elements of

Fig. 4.45 and use the expression Zin¼ RVþ juM0, but this time apply the expressions developed by
Ingard for RV and M0 as follows:

RV ¼ l

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
(4.251)
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M0 ¼ r0l (4.252)

The fact that the resistance in Eq. (4.251) varies with frequency does not really matter much in
practice. In a resonant system, such as where the acoustic mass of the tube is combined with the
acoustic compliance of a cavity, the resistance only dominates over a small range of frequencies either
side of the resonant frequency, especially as the resistance of a medium tube is relatively small and so
the Q value is likely to be high. Hence we can simply use the value of the resistance at the resonant
frequency for all frequency values.

Let us now examine the elements RV and M0 of Fig. 4.45. Using Eqs. (4.249) and (4.250) but with
zero slip (Bu¼ 0), the frequency at which their impedances are equal is given by

uV ¼ RV

M0
¼ 6m

a2r0
or a ¼

ffiffiffiffiffiffiffiffiffiffiffi
6m

uVr0

s
(4.253)

It turns out that an effective viscous boundary layer thickness dV can be defined by

dV ¼
ffiffiffiffiffiffiffiffi
m

ur0

r
(4.254)

In other words, at u¼uV, we have a ¼ ffiffiffi
6

p
dV so that the radius is about two and a half times greater

than the effective boundary layer thickness when the mass reactance and resistance are equal. Above
this frequency, the mass reactance of the air in the tube dominates and below it the viscous resistance
dominates. If we insert the values m¼ 1.86� 10�5 N$s/m2 and r0¼ 1.18 kg/m3 into Eq. (4.253) we
also obtain a ¼ 0:004=

ffiffiffi
f

p
, which is the demarcation between narrow and medium radius tubes above.

Hence, in a narrow tube the frequency-invariant resistance dominates, and in a medium diameter one
the mass reactance dominates and the resistance is proportional to the square root of frequency. This
can be clearly seen from Fig. 4.46 and Fig. 4.47 where the mass reactance and resistance are both
approximately 10 rayl at a¼ 0.4 mm.
Ultra-narrow tube. At high frequencies in narrow tubes we encounter a fourth regime which is distinct
from those already discussed (very narrow, narrow and medium) and where the lumped parameter
model of Fig. 4.45 no longer applies. In that respect it is similar to the very narrow or asymptotic
regime. Let us now examine some properties of the tangent function in Eq. (4.227) for the impedance
of an open tube. The argument kl and Zs can be expressed in terms of lumped parameters using the
wave-number from Eq. (4.215), together with jurl¼ juMs¼ ZV and juCl¼ juCs¼ 1/ZT so that

Zin ¼ j
ffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZV=ZT

p
: (4.255)

We can see that for small arguments of the tangent function, where tan kl z kl, the impedance of the
blocked tube is just Zin¼ ZV. Using similar arguments with Eq. (4.226), where cot klz 1/(kl,), we find
that the impedance of a blocked tube is Zin¼ ZT. From Eq. (4.248), ZV¼ RV þ juM0. From Eq. (4.244)
we will use the approximation ZT¼ 1/( juC0). Putting these into Eq. (4.255) we obtain

Zin ¼ j
ffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðRV þ juM0ÞjuC0

p
: (4.256)

If u<< uV, then this simplifies to

Zin

���
u<<uV

¼ j
ffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�juRVC0

p
¼ j

ffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan
	�

1� j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uRVC0=2
p 


: (4.257)
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From Eq. (48) of Appendix II, one property of the tangent function is that tan(x� jy) z �j for
virtually any value of x provided that y is greater than or equal to about 2. Hence we can define
a transition frequency uT by

uT ¼ 8

RVC0
¼ gP0a

2

ml2
: (4.258)

Below the transition frequency, the tube regimes are those for an open-ended tube above. Above it, the
impedance is given by

Zin

���
u<<uV

¼ ffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p ¼ Zs: (4.259)

where the asymptotic expression for Zs is given by Eq. (4.237). In this regime, the impedance is
proportional to the inverse square root of frequency and the real and imaginary parts are equal, as can
be seen in Fig. 4.48 and Fig. 4.49 where the transition frequency according to Eq. (4.258) is 1.45 kHz.
Above this frequency, the dashed curves for Zs from Eq. (4.237) match very closely with the black
curves for the exact expression of Eq. (4.227). At low frequencies, the dark grey curves representing
the lumped parameter model of Fig. 4.45 with one pair of terminals shorted appear to be a good
approximation for the black exact curves. Although there is up to 25% error in the imaginary lumped
impedance at low frequencies, it is less than 10% of the total impedance, which is mainly resistive and
so the impedance modulus is fairly accurate.

Interestingly, above the transition frequency of 1.45 kHz, the real and imaginary impedances of the
closed tube shown in Fig. 4.50 and Fig. 4.51 respectively are virtually identical to those of the open
tube shown in Fig. 4.48 and Fig. 4.49 respectively. This is not so surprising considering that if the
tangent function in Eq. (4.227) converges towards �j, then the cotangent function in Eq. (4.226) must
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FIG. 4.48 Real impedance at the entrance of an open-ended tube plotted against frequency f.

The radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and the

characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45, where the

pair of terminals at the far end is short-circuited.
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FIG. 4.49 Imaginary impedance at the entrance of an open-ended tube plotted against frequency f.

The radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and the

characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45, where the

pair of terminals at the far end is short-circuited.
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FIG. 4.50 Real impedance at the entrance of a closed tube plotted against frequency f.

The radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and the

characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45, where the

pair of terminals at the far end is open-circuit.
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FIG. 4.51 Imaginary impedance at the entrance of a closed tube plotted against frequency f.

The radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and the

characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45, where the

pair of terminals at the far end is open-circuit.
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converge towards j. Together with the fact that the input impedance is the characteristic impedance Zs,
this suggests that the tube under this regime behaves as an infinitely long one in which no sound is
transmitted to the far end or reflected back from it due to full internal absorption. This can be
confirmed if we take a look at the 2-port model of Fig. 4.43. The z-parameters are described by Eqs.
(4.219) and (4.220), which under this regime reduce to

z11
��
u>uT

¼ z22
��
u>uT

z Zs; (4.260)

z12
��
u>uT

¼ z21
��
u>uT

z 0; (4.261)

because cotan(x� jy)/ j and cosec(x� jy)/ 0 for y> 2 for any x. As stated above, the existence of
this regime is conditional that uT<< uV where uV and uT are given by Eqs. (4.253) and (4.258)
respectively. Hence

8

RVC0
<<

RV

M0
: (4.262)
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Now let us define a Q value by

Q ¼ 1

RV

ffiffiffiffiffiffiffi
M0

C0

r
<<

1ffiffiffi
8

p : (4.263)

In practice, the regime only exists for highly damped tubes where Q< 0.05 or l> (6� 107)a2.
According to Eq. (4.258), it describes the asymptotic curves in Fig. 4.46 and Fig. 4.47 for a< 3 mm and
hence can be regarded as an “ultra-narrow” tube regime.

Notes
[1] Crandall IB. Vibrating Systems and Sound. New York: D. Van Nostrand Company, Inc; 1926.
[2] Ingard U. Scattering and Absorption by Acoustic Resonators, doctoral dissertation, Massachusetts Institute

of Technology, 1950. J Acoust Soc Am 1953;25:1044–5.
[3] Olson HF. Elements of Acoustical Engineering. 2nd ed. New York: D. Van Nostrand Company, Inc; 1947.

109–111.
[4] L. Fincham and P. Brown, Line Arrays with Controllable Directional Characteristics - Theory and Practice,

in the 125th AES Convention, 2008, paper no. 7535.
[5] Walker PJ. New Developments in Electrostatic Loudspeakers. J Audio Eng Soc 1980;28(11):795–9.
[6] See the definition for intensity in Section 1.10. The intensity equals the sound pressure squared, divided by

r0c for a plane wave in free space or for a spherical wave.
[7] Kozlov VF, Fedorov AV. Acoustic Properties of Rarefied Gases Inside Pores of Simple Geometries.

J Acoust Soc Am 2005;117(6):3402–12.
[8] Stinson MR. The Propagation of Plane Sound Waves in Narrow and Wide Circular Tubes, and General-

ization to Uniform Tubes of Arbitrary Cross-sectional Shape. J Acoust Soc Am 1991;89(2):550–8.
[9] Veijola T. A Two-Port Model for Wave Propagation Along a Long Circular Microchannel. Microfluidics

and Nanofluidics 2007;3(3):359–68.
[10] P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), p. 279, Eq.

(6.4.17).
[11] P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), p. 231, Eq. (6.1.5).
[12] P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), p. 8, Eq. (6.1.11).


	4. Acoustic components
	4.1 Introduction
	Part X: Acoustic elements
	4.2 Acoustic mass (inertance)
	Tube of medium diameter
	End correction ℓ′′ if the open end of the tube terminates in a wall—called an infinite baffle or flanged tube
	End correction ℓ′′ if the open end of the tube terminates in open air—called an unflanged tube

	4.3 Acoustic compliances
	Limitations on an acoustic compliance
	Series acoustic compliance

	4.4 Acoustic resistances
	Screens
	Tube of small diameter [0.0005 l< radius a (in meters)<0.002/ f]
	Narrow slit[1] [t (in meters)<0.003/ f]

	4.5 Cavity with holes on opposite sides—mixed mass-compliance element
	4.6 Intermediate-sized tube—mixed mass-resistance element [a (in meters)﹥0.01/ f and a<10/f] [2]
	4.7 Perforated sheet—mixed mass-resistance element[a (in meters)﹥0.01/ f and a<10/f] [2]
	Definition of Q

	4.8 Acoustic transformers
	Junction of two pipes of different areas
	Two pipes of different areas joined by an exponential connector [3]

	Part XI: Elementary reflection and radiation of sound
	4.9 Reflection of a plane wave from a plane
	4.10 Radiation from a pulsating sphere
	Pressure field
	Radiation impedance

	4.11 Radiation from a monopole point source (simple source)
	Pressure and particle velocity
	Strength of a point source [3]
	Intensity at distance r

	4.12 Combination of point sources in phase
	Two point sources in phase
	Linear array of point sources

	4.13 Steered beam-forming array of point sources
	4.14 Dipole point source (doublet)
	Near-field and far-field

	4.15 Radiation from an oscillating sphere
	Near-field pressure
	Far-field pressure
	Radiation impedance

	Part XII: Directivity index
	4.16 Directivity index and directivity factor
	Directivity factor [Q(f)]
	Directivity index [DI(f)]
	Calculation of Q(f) and DI(f)

	Part XIII: Radiation impedances
	4.17 Pulsating sphere
	4.18 Oscillating sphere
	4.19 Plane circular piston in infinite baffle
	Approximate analogous circuits
	Low- and high-frequency approximations

	4.20 Plane circular free disk
	4.21 Plane circular piston radiating from one side only in free space
	Part XIV: Viscous and thermal losses
	4.22 Sound in lossy tubes
	4.23 Wave equation for an infinite lossy tube
	Assumptions
	The momentum conservation equation
	The gas law and thermal conduction (entropy)
	Solution of the velocity and temperature radial equations
	Mass conservation and Helmholtz wave equation
	Dynamic density
	Dynamic compressibility
	Wave-number and characteristic impedance
	A 2-port network for a finite tube [9]
	A 2-port network for a short finite tube
	A 2-port network for a short finite tube using approximate discrete elements
	Regimes for an open-ended tube
	Ultra-narrow tube

	Notes


