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536 CHAPTER 13 Radiation and scattering of sound by the boundary integral method
PART XXXV: BOUNDARY INTEGRALS AND THE GREEN’S FUNCTION

13.1 THE HUYGENS–FRESNEL PRINCIPLE
The Huygens–Fresnel principle states that each point on the wave front of a propagating wave can be
replaced with a point source as illustrated in Fig. 13.1, thus creating an array of wavelets whereby each
wavelet is unaffected by the presence of all the other wavelets. Some time later, the wave front is
equivalent to the envelope of these wavelets. In other words, the resultant field is due to the sum of the
point sources, using the principle of superposition. The point sources can be monopoles or dipoles.
Although the forward propagating wave remains unaltered, the principle does not explain the creation
of a backward propagating wave that was not present in the original. However, if the surface over
which the point sources are distributed encloses fully the original source(s), we can use the principle to
analyse the internal or external fields separately. It can also be used to analyse sound radiation from
vibrating surfaces, which may or may not be closed, provided that the boundary conditions are correct.
13.2 THE RAYLEIGH INTEGRALS AND GREEN’S FUNCTION
In this section, monopole and dipole boundary integrals are derived in an intuitive way based upon the
Huygens–Fresnel principle whereby monopole and dipole point sources are summed over surfaces.
A more mathematically rigorous treatment follows in Sec. 13.3. We have treated all problems so far in
this text as boundary value problems based upon solutions to the following homogeneous Helmholtz
wave equation in an arbitrary coordinate system:

ðV2 þ k2Þ~pðrÞ ¼ 0; (13.1)
Wave front at time t Wave front at time t + Δ t

FIG. 13.1 Huygens–Fresnel principle.
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where, for example, in rectangular coordinates (r) ¼ (x,y,z) and the Laplacian V2 is given in rectan-
gular, cylindrical, and spherical coordinates by Eqs. (2.112), (2.125), and (2.146) respectively. By
homogeneous, we mean that that the equation describes waves that could exist, but there are no driving
forces or velocities present in the equation to create them. These come later from the boundary
conditions. In general, the boundary value method involves solving the homogeneous Helmholtz wave
equation in a suitable orthogonal coordinate system such that it becomes a separable equation. That is,
the equation is split into a set of differential equations, each with respect to one ordinate only, as
described in Secs. 2.9 to 2.11. The solutions to those equations then contain constants which can be
determined by applying boundary conditions. By a suitable coordinate system, we mean one which
first must lead to a separable wave equation (if there is more than one ordinate involved) and second fits
the geometry of the problem, by which we mean that boundary conditions can be applied by setting
pressure or velocity to specific values at constant ordinate values. The simplest example is the
pulsating sphere which is solved by setting the particle velocity at the surface of the sphere, where the
radial ordinate is equal to the sphere’s radius. In the limit, when the radius approaches zero, this leads
to the pressure field due to a point source as defined in Eq. (4.71). Let us now recast this equation in the
following form:

~pðrjr0Þ ¼ �jkr0c ~U0gðrjr0Þ; (13.2)

where r and r0 are the positions of the observation point and source respectively in an arbitrary
coordinate system. The function gðrjr0Þ is known as the Green’s function and is defined by

gðrjr0Þ ¼ e�jkðr�r0Þ

4pðr� r0Þ: (13.3)

For example, in rectangular coordinates, we would write

gðx; y; zjx0; y0; z0Þ ¼ e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

p

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q : (13.4)

The Green’s function is a useful short hand for the spatial distribution due to a point source, but
does not indicate its absolute strength. In this instance, it tells us that the sound pressure varies
sinusoidally as it spreads outwards from the source and its amplitude is inversely proportional to the
distance from the source. It should be noted that there is a singularity at r ¼ r0. Using the Huygens–
Fresnel principle we can treat a vibrating surface as an array of point sources, or rather surface
elements which in the limit shrink to points. In the case of a closed surface (i.e., that which fully
encloses a volume) we need not worry about the back wave when considering the external field. The
volume velocity of each surface element is given by

~U0ðr0Þ ¼ ~u0ðr0ÞdS0; (13.5)

where dS0 is the area of the surface element and ~u0ðr0Þ is the velocity normal to the surface at point r0.
The radiated field is the sum of the fields due to all the point sources so that

~pMðrÞ ¼ jkr0c

ZZ
~u0ðr0Þgðrjr0ÞdS0; (13.6)
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which is known as the monopole Rayleigh integral. Furthermore, using the relationship

~u0ðr0Þ ¼ 1

�jkr0c

v

vn0
~pðr0Þ (13.7)

leads to

~pMðrÞ ¼ �
ZZ

v

vn0
~pðr0Þgðrjr0ÞdS0: (13.8)

Similarly, the surface can be made up of dipole point sources, each comprising two monopole point
sources of opposite polarity, separated by a distance Dz0 which tends to zero. Let the Green’s function
be defined in axisymmetric spherical-cylindrical coordinates by

gðr; qjz0Þ ¼ e�jkr1

4pr1
; (13.9)

where

r21 ¼ r2 þ z20 � 2rz0 cos q

and q is the inclination angle of the observation point relative to the z-axis, which passes through the
two monopole point sources. The dipole point source is located a distance z0 from the origin and r is
the distance from the observation point to the origin. The gradient of the Green’s function in the z
direction is then given by

v

vz0
gðr; qjz0Þjz0¼0 ¼

�
1

r
þ jk

�
cosq

e�jkr

4pr
: (13.10)

From Eq. (4.114), the field due to a single dipole point source has previously been shown to be

~pðr; qÞ ¼ �jkr0c ~U0b

�
1

r
þ jk

�
cosq

e�jkr

4pr
; (13.11)

which after substituting Eq. (13.10) and letting b ¼ Dz0 becomes

~pðr; qÞ ¼ �jkr0c ~U0Dz0
v

vz0
gðr; qjz0Þjz0¼0: (13.12)

Again, using the relationships of Eqs. (13.5) and (13.7), together with

Dz0
v~p0
vz0

�����
Dz0/0

¼ ~p0; (13.13)

leads to

~pðr; qÞ ¼ ~p0
v

vz0
gðr; qjz0Þjz0¼0dS0; (13.14)
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which is then integrated over the surface to give

~pDðrÞ ¼
ZZ

~pðr0Þ v

vn0
gðrjr0ÞdS0 (13.15)

in any coordinate system. This is known as the dipole Rayleigh integral. We note that the derivative of
the Green’s function is taken with respect to the normal n0 to the surface because the axis of each
dipole element must be normal to the surface.
13.3 THE KIRCHHOFF–HELMHOLTZ BOUNDARY INTEGRAL
In the previous section we introduced the Green’s function

gðrjr0Þ ¼ e�jkðr�r0Þ

4pðr� r0Þ; (13.16)

which turns out to be a solution of the following inhomogeneous wave equation:

ðV2 þ k2Þgðrjr0Þ ¼ �dðr� r0Þ: (13.17)

An important principle in acoustics is that of reciprocity whereby the locations of the sound source r0
and its observation point r are interchangeable. It can be seen that Eqs. (13.16) and (13.17) are
unaffected by interchanging r and r0. Hence

gðrjr0Þ ¼ gðr0jrÞ (13.18)

and

dðr� r0Þ ¼ dðr0 � rÞ: (13.19)

Equation (13.17) differs from the homogeneous wave equation (13.1) in that the Dirac delta function
d on the right hand side represents the excitation at the point r0. Equation (13.17) describes the
normalized pressure field (that is, divided by ikrc ~U0) of a point source. However, it is desirable to
solve the following inhomogeneous wave equation for any source distribution:

ðV2 þ k2Þ~pðrÞ ¼ �~f ðrÞ: (13.20)

where ~f ðrÞ is a source pressure distribution in Pa/m2. This can be achieved [1,2] by multiplying
Eq. (13.17) by ~pðrÞ and then subtracting it from Eq. (13.20) multiplied by gðrjr0Þ, which leads to

gðrjr0ÞV2~pðrÞ � ~pðrÞV2gðrjr0Þ ¼ ~pðrÞdðr� r0Þ � gðrjr0Þ~f ðrÞ: (13.21)

Using the reciprocity relationships of Eqs. (13.18) and (13.19), we can exchange r and r0 in
Eq. (13.21) and integrate over an arbitrary volume containing all the sources in order to obtainZZZ �

gðrjr0ÞV2
0~pðr0Þ � ~pðr0ÞV2

0gðrjr0Þ
�
dV0

¼
ZZZ

~pðr0Þdðr� r0ÞdV0 �
ZZZ

gðrjr0Þ~f ðr0ÞdV0;

(13.22)
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where the zero subscripts indicate differentiation with respect to the r0 coordinates. Using Green’s
theorem [3], which essentially states that anything created within a diverging volume passes through
its outer surface, the volume integral of the term in parentheses can be replaced with a surface
integral: ZZZ �

gðrjr0ÞV2
0~pðr0Þ � ~pðr0ÞV2

0gðrjr0Þ
�
dV0

¼
ZZZ

V0

�
gðrjr0ÞV0~pðr0Þ � ~pðr0ÞV0gðrjr0Þ

�
dV0

¼
ZZ �

gðrjr0Þ v

vn0
~pðr0Þ � ~pðr0Þ v

vn0
gðrjr0Þ

�
dS0;

(13.23)

where the surface of integration bounds the volume of the original volume integral and the Laplace
operator is replaced with a first-order derivative normal to the surface, pointing away from the space
enclosed by the surface integral. We can verify the first step of Eq. (13.23) by working backwards.
Although taking the derivative of the two products in the second line leads to four terms, two of them
cancel to leave the remaining two terms in the first line. The third line is obtained from the second by
the divergence theorem of Gauss. Inserting Eq. (13.23) into Eq. (13.22) and using the property of the
Dirac delta function to solve the volume integral ~pðr0Þdðr� r0Þ yields

~pðrÞ ¼ ~pVðrÞ þ ~pSðrÞ; (13.24)

where ~pVðrÞ is a volume integral given by

~pVðrÞ ¼
ZZZ

gðrjr0Þ~f ðr0ÞdV0 (13.25)

and ~pSðrÞ is the Kirchhoff–Helmholtz surface integral given by

~pSðrÞ ¼ ~pMðrÞ þ ~pDðrÞ (13.26)

where ~pMðrÞ is the monopole integral given by

~pMðrÞ ¼
ZZ

gðrjr0Þ v

vn0
~pðr0ÞdS0 (13.27)

and ~pDðrÞ is the dipole integral given by

~pDðrÞ ¼ �
ZZ

~pðr0Þ v

vn0
gðrjr0ÞdS0: (13.28)

What is remarkable about Eq.(13.24) is that, merely given a solution gðrjr0Þ to the wave equation for
a point source, it provides a solution for the pressure field ~pðrÞ everywhere in the presence of an
arbitrary source distribution ~f ðr0Þ within the volume of integration.

It should be noted that in this instance, the integrals ~pMðrÞ and ~pDðrÞ have nothing to do with
reflections, although they can be applied to problems of scattering surfaces when appropriate boundary
conditions are applied. The volume of integration does not have a physical reflecting boundary surface
but a transparent notional one. Inside the volume, ~pMðrÞ and ~pDðrÞ cancel each other so that there is no
net contribution from ~pSðrÞ, and the field is entirely given by the volume integral, or
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~pðrÞ
���
r˛V0

¼ ~pVðrÞ; ~pSðrÞ ¼ 0; ~pMðrÞ ¼ �~pDðrÞ ¼ �~pVðrÞ=2: (13.29)

However, outside the boundary, the field due to the surface integral cancels the field due to the volume
integral:

~pðrÞ
���
r;V0

¼ 0; ~pSðrÞ ¼ �~pVðrÞ; ~pMðrÞ ¼ ~pDðrÞ ¼ �~pVðrÞ=2: (13.30)

Hence, ~pSðrÞ is a discontinuous solution to Eq. (13.20) which is only valid outside the volume
containing the sources (provided that the sign is reversed). If the volume is infinitely large, the
Sommerfeld condition applies and the boundary integrals vanish so that ~pðrÞ ¼ ~pVðrÞ is a solu-
tion to Eq. (13.20) everywhere. In practice, however, the volume of integration only has to include
all the sources under consideration, but not necessarily all the observation points. The usefulness
of the boundary surface integral of Eq. (13.26) for solving acoustical problems cannot be over-
stated; it forms the basis for many numerical methods such as Boundary Element Modeling (or
BEM). It is an embodiment of the Huygens–Fresnel principle discussed in Sec. 13.1. The surface
of integration must be a closed one which fully encloses all the sources, although they may form
part or all of the surface. By a closed surface, we could also mean an infinite plane which isolates
the sources on one side of the plane (or within the plane itself) from the observation field on the
other. Although ~pMðrÞ and ~pDðrÞ are both needed in the case of general surfaces, such as the
spherical cap in a sphere in Sec. 13.5, we shall see that in the case of planar sources, one of
the integrals can often be eliminated due to the symmetry of the problem. Before we apply the
boundary integral to some problems of practical importance, we shall take a further look at the
Green’s function.
13.4 THE GREEN’S FUNCTION IN DIFFERENT COORDINATE SYSTEMS

13.4.1 Rectangular coordinates

Rectangular coordinates—near-field. The Green’s function in rectangular coordinates was given by
Eq. (13.4) as

gðx; y; zjx0; y0; z0Þ ¼ e�jkR=ð4pRÞ; (13.31)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
: (13.32)

However, problems are often encountered when using this expression because the space variables are
all enclosed in a square-root sign and therefore cannot be separated. This makes finding analytical
solutions very difficult and one often has to resort to using moveable-origin coordinate systems. This
limits its use to numerical integration in the Kirchhoff–Helmholtz surface integral. Unfortunately, the
Green’s function of Eq. (13.31) is not particularly amenable to numerical integration, because it is
singular at the origin and leads to oscillatory integrands at high frequencies. The dipole integral is even
more problematic because the Green’s function normal gradient has a 1/R2 term which leads to
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diverging numerical and analytical integrals. Furthermore, where the surface of integration encloses
one or more sources, we can only calculate the field on the side of the surface where there are no
sources and the waves are diverging. In other words we cannot solve the reverse problem and calculate
the field in which there are sources and the waves are converging. A more useful formula [4] is given by

gðx; y; zjx0; y0; z0Þ ¼ �j

8p2

ZN
�N

ZN
�N

e�jðkxðx�x0Þþkyðy�y0Þþkzjz�z0jÞ

kz
dkxdky (13.33)

where

kz ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
; k2x þ k2y � k2

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � k2

q
; k2x þ k2y > k2

(13.34)

where kx, ky, and kz represent the spatial frequency components in the x, y, and z directions respectively
of a plane wave of spatial frequency k traveling in an arbitrary direction. For example, if the direction
of travel subtends an angle q with the z-axis, then the trace velocity seen along the z-axis is c/cos q and
the wave-number is kz ¼ k cos q. Hence the wavelength will appear to be longer along the z-axis. In
order to gain a better understanding of Eq. (13.33) we may compare it with Eq. (7.113) for the pressure
field inside an enclosure by letting kx ¼ mp/lx, ky ¼ np/ly, and kz ¼ kmn. We also replace the infinite
integrals with summations. In other words, Eq. (13.33) may be thought of as the spatial distribution of
an infinite enclosure in which traveling plane waves of any wavelength may exist as opposed to
standing ones of particular wavelengths that correspond to the dimensions of the finite enclosure. The
fact that a point source can be represented as integral over all spatial frequencies is not so surprising
when we consider that an infinite impulse contains all frequencies.

It may seem counterintuitive to introduce two extra integrals, but the troublesome 1/R term has
vanished along with the square-root sign in the exponent. When used in the Kirchhoff–Helmholtz
integrals, we will show in Sec. 13.20 that this integral form of the Green’s function is an inverse Fourier
transform. This leads to an important theorem that forms the basis of near-field acoustical holography in
which the dipole Kirchhoff–Helmholtz integral evaluated over one plane is the Fourier transform of the
pressure distribution in that plane. The sound field spectra is then propagated in k-space to another
parallel plane in which the Green’s function is the inverse Fourier transform that gives the pressure in
that plane. Furthermore, we can solve the so-called reverse problemwhere there are one or more sources
in the field of interest. This method of calculation is particularly amenable to the digital processing of
sound fields captured by planar microphone arrays in order to calculate the entire sound field of interest.
In other words, if there are sources on one side of the array, we can plot the pressure field on both sides
of the array. This is not possible using the non-integral form of the Green’s function of Eq. (13.31).
Proof of the integral Green’s function in rectangular coordinates. In order to derive the integral
Green’s function, we shall apply a triple Fourier transform, one for each Cartesian ordinate, to the
Green’s function in the spatial domain in order to convert it to the spatial frequency domain or k-space.

Gðkx; ky; kzÞ ¼
ZN

�N

ZN
�N

ZN
�N

gðx; y; zjx0; y0; z0ÞejðkxxþkyyþkzzÞdxdydz; (13.35)
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where G(kx, ky, kz) is the Fourier transform of g(x, y, zjx0, y0, z0). The inverse transform is

gðx; y; zjx0; y0; z0Þ ¼ 1

8p3

ZN
�N

ZN
�N

ZN
�N

Gðkx; ky; kzÞe�jðkxxþkyyþkzzÞdkxdkydkz; (13.36)

In order to solve for G(kx, ky, kz), we take the Fourier transform of Eq. (13.17)

ZN
�N

ZN
�N

ZN
�N

ðV2 þ k2Þgðx; y; zjx0; y0; z0ÞejðkxxþkyyþkzzÞdxdydz

¼ �
ZN

�N

ZN
�N

ZN
�N

dðx� x0Þdðy� y0Þdðz� z0ÞejðkxxþkyyþkzzÞdxdydz;

(13.37)

where

V2 ¼ v2

vx2
þ v2

vy2
þ v2

vz2
; (13.38)

Using the general property of the Dirac delta function from Eq. (154) of Appendix II and noting that

V2e�jðkxxþkyyþkzzÞ ¼ ð�k2x � k2y � k2z Þe�jðkxxþkyyþkzzÞ

yields

ðk2 � k2x � k2y � k2z Þ
ZN

�N

ZN
�N

ZN
�N

gðx; y; zjx0; y0; z0ÞejðkxxþkyyþkzzÞdxdydz

¼ �ejkðkxx0þkyy0þkzz0Þ;

(13.39)

which after substituting in Eq. (13.35) gives us the Green’s function in k-space:

Gðkx; ky; kzÞ ¼ ejðkxx0þkyy0þkzz0Þ

k2x þ k2y þ k2z � k2
: (13.40)

Applying the inverse Fourier transform of Eq. (13.36) then gives us an integral Green’s function in
terms of k-parameters:

gðx; y; zjx0; y0; z0Þ ¼ 1

8p3

ZN
�N

ZN
�N

ZN
�N

e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞ
k2x þ k2y þ k2z � k2

dkxdkydkz

¼ 1

8p3

ZN
�N

ZN
�N

ZN
�N

e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞ�
kz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q ��
kz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q �dkxdkydkz;
(13.41)
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which has two poles: one at kz ¼ þs and the other at kz ¼ �s, where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
:

We now convert Eq. (13.41) from a volume integral to a surface one by integrating over kz using the
residue theorem, which states that

ZN
�N

f ðxÞe�jxtdx ¼

8>>>><
>>>>:

�2pjðsum of residues of f ðxÞejxt at all its poles ai
above the real axis; t � 0

2pjðsum of residues of f ðxÞejxt at all its poles ai
on or below the real axis; t < 0

(13.42)

where each residue is defined by

ðx� aiÞf ðxÞe�jxt
��
x/ai

: (13.43)

Applying this to Eq. (13.41) in order to solve the integral over kz gives

gðx; y; zjx0; y0; z0Þ ¼

¼ �j

8p2

ZN
�N

ZN
�N

e�jðkxðx�x0Þþkyðy�y0Þþsjz�z0jÞ
s

dkxdky:
(13.44)

If we let kz ¼ s, this then gives us Eq. (13.33).
Rectangular coordinates—far-field. At a large distance R, Eq. (13.31) simplifies to

gðx; y; zjx0; y0; z0ÞjR/N ¼ e�jkðxðx�x0Þþyðy�y0Þþzðz�z0ÞÞ=R

4pR
; (13.45)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: (13.46)
13.4.2 Cylindrical coordinates

If we substitute

x ¼ w cosf; y ¼ w sinf; x0 ¼ w0 cosf0; y0 ¼ w0 sinf0 (13.47)

in Eq. (13.31) and use

sinf sinf0 þ cosf cosf0 ¼ cosðf� f0Þ;
we obtain

gðw;f; zjw0;f0; z0Þ ¼ e�jkR=ð4pRÞ; (13.48)
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where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ ðz� z0Þ2
q

: (13.49)

However, this expression is of limited use and suffers from all the same drawbacks as were described in
reference to the non-integral Green’s function in rectangular coordinates given by Eq. (13.31). A much
more powerful formula [4] is given by

gðw;f; zjw0;f0; z0Þ

¼ �j

4p

XN
n¼ 0

ð2� dn0Þcos nðf� f0Þ
ZN
0

JnðkwwÞJnðkww0Þ e
�jkzjz�z0j

kz
kwdkw;

(13.50)

where

kz ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

p
; 0 � kw � k

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

p
; kw > k;

(13.51)

which is known as the Lamb–Sommerfeld integral [5,6]. This equation can be considered as the
integral over all spatial frequencies of radial standing waves in an infinite cylinder, which are
also summed over all azimuthal harmonics of order n. The component in the z direction is
planar as represented by the exponent term. The reason why we have radial standing waves is
that incoming waves pass through the z axis (or w ¼ 0) before traveling back out again. In
doing so, the imaginary part of the Hankel function, or Yn function, changes sign. Thus the Yn
function is canceled leaving just the Jn function. This can be considered as the same
phenomena as the incoming waves being reflected back from a rigid termination at w ¼ 0.
Hence the standing waves. In the case of axial symmetry, we exclude all azimuthal harmonics
but the n ¼ 0 term:

gðw; zjw0; z0Þ ¼ �j

4p

ZN
0

J0ðkwwÞJ0ðkww0Þ e
�jkzjz�z0j

kz
kwdkw: (13.52)

We will apply this formula to problems with cylindrical symmetry such as circular sources.
Proof of the integral Green’s function in cylindrical coordinates. If we substitute x0 ¼ w0 cos f0,
y0 ¼ w0 sin f0, x ¼ w cos f, y ¼ w sin f, kx ¼ kw cos 4, and ky ¼ kw sin 4 in Eq. (13.33) and use the
identity of Eq. (46) in Appendix II, we obtain

gðw;f; zjw0;f0; z0Þ ¼ �j

8p2

Z2p
0

ZN
0

e�jkwðw cosð4�fÞ�w0 cosð4�f0ÞÞe
�j

ffiffiffiffiffiffiffiffiffiffi
k2�k2w

p
jz�z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2w
p kwdkwd4 (13.53)
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We then expand the first exponent term using Eq. (110) of Appendix II to give

gðw;f; zjw0;f0; z0Þ ¼ �j

8p2

XN
m¼ 0

XN
n¼ 0

ð2� dm0Þð2� dn0Þjm�n

�
Z2p
0

ZN
0

cosmð4� f0Þcos nð4� fÞJmðkww0ÞJnðkwwÞ e
�j

ffiffiffiffiffiffiffiffiffiffi
k2�k2w

p
jz�z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2w
p kwdkwd4

(13.54)

where the angular integral over 4 is solved using

Z2p
0

cosmð4� f0Þcos nð4� fÞd4 ¼
8<
:

2p cos nðf� f0Þ
2� dn0

; m ¼ n

0; msn

(13.55)

so that the double expansion of Eq. (13.54) reduces to the single one of Eq. (13.50).
13.4.3 Spherical coordinates

The Green’s function in rectangular coordinates was given by Eq. (13.4):

gðx; y; zjx0; y0; z0Þ ¼ e�jkR=ð4pRÞ; (13.56)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
: (13.57)

If we substitute

x ¼ r sin q cosf; y ¼ r sin q sinf; z ¼ r cos q

x0 ¼ r0 sin q0 cosf0; y0 ¼ r0 sin q0 sinf0; z0 ¼ r0 cos q0
(13.58)

and use

sinf sinf0 þ cosf cosf0 ¼ cosðf� f0Þ;
we obtain

gðr; q;fjr0; q0;f0Þ ¼ e�jkR=ð4pRÞ; (13.59)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r20 � 2rr0ðsin q sin q0 cosðf� f0Þ þ cos q cos q0Þ

q
: (13.60)

However, as in the cylindrical and rectangular cases, this expression is of limited use and
suffers from all the same drawbacks as were described in reference to the non-integral Green’s
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function in rectangular coordinates given by Eq. (13.31). A much more powerful formula [7] is
given by

gðr; q;fjr0; q0;f0Þ ¼ �jk

4p

XN
n¼ 0

ð2nþ 1Þ
Xn
m¼ 0

ð2� dm0Þ ðn� mÞ!
ðnþ mÞ! cosmðf� f0Þ

� Pm
n ðcos q0ÞPm

n ðcos qÞ
8<
:

jnðkr0Þhð2Þn ðkrÞ; r > r0

jnðkrÞhð2Þn ðkr0Þ; r < r0:

(13.61)

In the case of axial symmetry, we exclude all terms from the summation in m except for the
m ¼ 0 term:

gðr; qjr0; q0Þ ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPn ðcos qÞ
(
jnðkr0Þhð2Þn ðkrÞ; r > r0

jnðkrÞhð2Þn ðkr0Þ; r < r0:
(13.62)

By relocating the source to q0 ¼ p, r0 / N, we obtain the expansion for a plane wave:

e�jkr cos q ¼
XN
n¼ 0

ð�jÞnð2nþ 1ÞjnðkrÞPnðcos qÞ: (13.63)

It should be noted, however, that while this expansion form of the Green’s function has certain
analytical and numerical advantages, it cannot be applied to solving reverse problems.
13.4.4 Spherical-cylindrical coordinates

Spherical-cylindrical coordinates—near-field. If we substitute

x ¼ r sin q cosf; y ¼ r sin q sinf; z ¼ r cos q; x0 ¼ w0 cosf0; y0 ¼ w0 sinf0 (13.64)

in Eq. (13.31) and use

sinf sinf0 þ cosf cosf0 ¼ cosðf� f0Þ;
we obtain

gðr; qjw0;f0Þ ¼ e�jkR=ð4pRÞ; (13.65)

where

R2 ¼ r2 þ w2
0 þ z20 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ: (13.66)

If we set z0 ¼ 0 and f ¼ 0, this simplifies to

R2 ¼ r2 þ w2
0 � 2rw0 sin q cosf0: (13.67)
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Again, this expression is of limited use, and a more powerful formula [8] is given by

gðr; qjw0;f0Þ ¼

8>>>><
>>>>:

�jk

4p

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkrÞjnðkw0ÞPnðsin q cosf0Þ; w0 � r

�jk

4p

XN
n¼ 0

ð2nþ 1ÞjnðkrÞhð2Þn ðkw0ÞPnðsin q cosf0Þ; w0 � r;

(13.68)

which is a modified form of the Gegenbauer addition theorem or multipole expansion. We shall use it
to derive near-field expressions for axisymmetric planar sources.
Spherical-cylindrical coordinates—far-field. At a large distance r, the terms containing r in
Eq. (13.66) dominate. Hence the remaining terms can be replaced with ones that enable R to be
factorized as follows:

R2 ¼ r2 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ þ w2
0 þ z20

z r2 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ
þðw0 sin q cosðf� f0Þ þ z0 cos qÞ2

¼ ðr � w0 sin q cosðf� f0Þ � z0 cos qÞ2:

(13.69)

Thus we can write the far-field Green’s function as

gðr; q;fjw0;f0; z0Þjr/N ¼ e�jkðr�w0 sin q cosðf�f0Þ�z0 cos qÞ

4pr
: (13.70)

We will use this formula to derive far-field expressions for axisymmetric planar sources.
13.5 BOUNDARY INTEGRAL METHOD CASE STUDY: RADIALLY PULSATING
CAP IN A RIGID SPHERE
In this section, we shall apply the boundary integral method to a pulsating cap in a sphere in order to
illustrate its application to an elementary acoustical problem which has already been treated in
Sec. 12.6 using the boundary value method. The geometry of the problem is shown in Fig. 12.16. From
Eq. (13.26), we can write the pressure field as a surface integral:

~pðr; qÞ ¼
Z2p
0

Zp
0

gðr; qjr0; q0Þjr0¼R

v

vr0
~pðr0; q0Þ

���
r0¼R

R2sin q0dq0df0

�
Z2p
0

Zp
0

~pðr0; q0Þ
���
r0¼R

v

vr0
gðr; qjr0; q0Þjr0¼RR

2sin q0 dq0df0;

(13.71)
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where the Green’s function in axisymmetric spherical coordinates is given from Eq. (13.62) by

gðr; qjr0; q0Þjr0¼R ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPnðcos qÞjnðkRÞhð2Þn ðkrÞ; (13.72)

and its normal gradient is given by

v

vr0
gðr; qjr0; q0Þjr0¼R ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPnðcos qÞj0nðkRÞhð2Þn ðkrÞ; (13.73)

where the derivative of the spherical Bessel function is given by Eq. (12.31). We see from
Eq. (13.71) that we have a superposition of two fields. The first integral (monopole) represents
the incident sound field due to the velocity source, formed by the cap. The normal pressure
gradient, or velocity distribution, is obtained from the boundary conditions at the surface of the
sphere:

v

vr0
~pðr0; q0Þ

���
r0¼R

¼
(
�jkr0c~u0; 0 � q � a

0; a < q � p:
(13.74)

The second integral (dipole) represents the sound field reflected by the sphere. The surface pressure
distribution, which is a function of q0, is not yet known and is thus represented as a Legendre
series:

~pðr0; q0Þ
���
r0¼R

¼ r0c~u0
XN
m¼ 0

AmPmðcos q0Þ; (13.75)

where the unknown coefficients Am have to be determined. Inserting Eqs. (13.72), (13.73), (13.74), and
(13.75) into Eq. (13.71) yields

~pðr; qÞ ¼ �k2R2r0c~u0
PN
n¼ 0

�
nþ 1

2

�
Pnðcos qÞjnðkRÞhð2Þn ðkrÞ

Za
0

Pnðcos q0Þsin q0dq0

þ jkR2r0c~u0
PN
n¼ 0

�
nþ 1

2

�
Pnðcos qÞj0nðkRÞhð2Þn ðkrÞ PN

m¼ 0
Am

Zp
0

Pmðcos q0ÞPnðcos q0Þsin q0dq0;

(13.76)

where the integrals can be solved using the identities of Eqs. (66) and (69) from Appendix II to
give

~pðr; qÞ ¼ kR2r0c~u0
XN
n¼ 0

Pnðcos qÞhð2Þn ðkrÞ
�
jAnj

0
nðkrÞ � k

�
nþ 1

2

�
jnðkRÞsinaP�1

n ðcos aÞ
�
: (13.77)
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In order to solve for the unknown coefficients An, we apply the following boundary condition to the
above pressure field:

v

vr
~pðr; qÞ

���
r¼R

¼ �jkr0c~uðR; qÞ ¼
(
�jr0c~u0; 0 � q � a

0; a < q � p:
(13.78)

The surface velocity can be represented by the following Legendre series:
~uðR; qÞ ¼ ~u0
XN
n¼ 0

BnPnðcos qÞ; (13.79)

where the coefficients Bn are found by multiplying through by the orthogonal function Pm(cos q) and
integrating over the surface as follows:

Za
0

Pnðcos qÞsin q dq ¼
XN
n¼ 0

Bn

Zp
0

Pmðcos qÞPnðcos qÞsin q dq (13.80)

and applying the identities of Eqs. (66) and (69) from Appendix II to yield

Bn ¼
�
nþ 1

2

�
sinaP�1

n ðcosaÞ: (13.81)

The coefficients are finally solved by applying Eq. (13.78) to Eq. (13.77) and equating the coefficients
of Pn(cos q) to give

An ¼ �
�
nþ 1

2

�
sina P�1

n ðcosaÞ 1þ jkR2jnðkRÞh0ð2Þn ðkRÞ
R2j0nðkRÞh0ð2Þn ðkRÞ

; (13.82)

which, after inserting into Eq. (13.77), gives

~pðr; qÞ ¼ �jkr0c~u0
XN
n¼ 0

�
nþ 1

2

�
sinaP�1

n ðcosaÞPnðcos qÞ h
ð2Þ
n ðkrÞ

h0ð2Þn ðkRÞ
: (13.83)

This is exactly the same equation as would be obtained using the boundary value method described in
Sec. 12.6. In the far field, applying the asymptotic expression for the spherical Hankel function from
Eq. (12.18) gives

~pðr; qÞ ¼ �jkr0cS
~u0
4pr

e�jkrDðqÞ; (13.84)

where the directivity function is given by

DðqÞ ¼ sina

2k2R2sin2ða=2Þ
XN
n¼ 0

jnþ1ð2nþ 1Þ2P�1
n ðcosaÞPnðcos qÞ

nh
ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

(13.85)
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and S ¼ 4pR2 sin2 a/2. The radiation impedance is given by

Zs ¼
~F
~U0

¼ 2pR2

S~u0

Za
0

~pðr; qÞsin q dq

¼ �jr0c
sin2a

sin2ða=2Þ
XN
n¼ 0

�
nþ 1

2

�2�
P�1
n ðcosaÞ	2hð2Þn ðkRÞ

nh
ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

:

(13.86)

13.6 REFLECTION OF A POINT SOURCE FROM A PLANE
Here we consider what happens when a point source is placed near an infinite reflective planar
boundary. Essentially, a hard reflecting surface is the acoustic equivalent to a mirror in optics whereby
each reflecting element on its surface acts as a light source. A mirror can be regarded as a perfect
hologram because it produces an intensity that varies with direction in accordance with the law of
reflection. That is, the angle of reflection is equal to the angle of incidence. Hence, when you walk past
a mirror, the view changes, whereas when you walk past a picture or video screen, it does not. This is
because the latter provides only intensity information and no directional information. The directional
information comes from the phase of each point source on the surface. For analytical purposes, it is
often convenient to replace the reflecting plane with a transparent plane of symmetry which has
a symmetrically identical source behind it as shown in Fig. 13.2.

This property of symmetry has already been applied in previous examples such as the domes in
Secs. 12.9 and 12.10. The source and its image both have the same perpendicular distance d from the
plane. With the image source present, the pressure fields with and without the reflecting plane can be
shown to be identical if we consider that in both cases the field is symmetrical either side of the plane.
Therefore, the pressures must be equal on opposite faces of the plane, in which case the pressure
gradient in the plane must be zero. Since it takes a pressure gradient to generate a particle velocity, this
also satisfies the boundary condition of zero particle velocity normal to the plane. Of course, there is no
physical image source, so this model is only valid on the source side of the surface.

The principle can be expressed by the superposition of fields as follows. If the point source is
located at a distance z0 from an infinite screen at z ¼ 0, there will be an extra field superimposed
upon the original due to a virtual source behind the screen. Using Eqs. (13.2), (13.31), (13.48), and
(13.49) for a point source, the field ~pSðw;f; zÞ produced by the source in cylindrical coordinates is
given by

~pSðw;f; zÞ ¼ �jkr0c ~US
e�jkRS

4pRS
; (13.87)

where

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cos ðf� f0Þ þ ðzþ z0Þ2
q

: (13.88)
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FIG. 13.2 Reflection of a point source from (a) a plane and (b) equivalent source and image.
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The field ~pIðw;f; zÞ produced by the image is then

~pIðw;f; zÞ ¼ �jkr0c ~US
e�jkRI

4pRI
; (13.89)

where

RI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ ðz� z0Þ2
q

; (13.90)

which produces a resultant field

~pðw;f; zÞ ¼ ~pSðw;f; zÞ þ ~pIðw;f; zÞ

¼ �jkr0c ~US

�
e�jkRS

4pRS
þ e�ikRI

4pRI

�
:

(13.91)

Let us now recast this equation in the form

~pðw;f; zÞ ¼ �jkr0c ~USGðw;f; zjw0;f0; z0Þ; (13.92)

where

Gðw;f; zjw0;f0; z0Þ ¼ e�jkRS

4pRS
þ e�ikRI

4pRI
(13.93)
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is a bounded Green’s function. Notice that we use the upper case G. An interesting feature of this
bounded Green’s function is that its normal derivative with respect to the plane (i.e., with respect
to z) is zero. Now suppose that part of the plane is in motion and radiating sound. Points on
the plane can be represented by G if we let z0 / 0 so that the source and its image coalesce.
Hence

Gðw;f; zjw0;f0; 0Þ ¼ e�jkR

2pR
¼ 2gðw;f; zjw0;f0; 0Þ; (13.94)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ z2
q

: (13.95)

We can use this Green’s function in the monopole Rayleigh integral to represent a planar source
in an infinite baffle. Because the normal derivative of G is zero, the dipole Rayleigh integral
vanishes and the point sources on the surface become monopole point sources of double
strength.
PART XXXVI: RADIATION AND SCATTERING IN CYLINDRICAL-SPHERICAL
COORDINATES

13.7 RADIATION FROM A RIGID CIRCULAR PISTON IN AN INFINITE BAFFLE
The simplest monopole planar source is the oscillating circular piston (or rigid disk) in an infinite
baffle. The piston is assumed to be rigid so that all parts of its surface vibrate in phase and its
velocity amplitude is independent of the mechanical or acoustic loading on its radiating surface.
Remarkably, its radiation impedance was first derived by Rayleigh [9] before the direct radiator
loudspeaker had even been invented [10], yet it has been widely accepted as an idealized model for
such when mounted in an enclosure situated near a wall or, even better, mounted directly in a wall
as commonly found in recording studios. The model is useful in the frequency range up to the first
diaphragm break-up mode. It should be noted that here the term “infinite baffle” refers to an
infinitely large plane rigid wall that surrounds the piston and not a finite sealed enclosure which is
often referred to as an infinite baffle enclosure. The only thing they have in common is that they
both block the transmission path between the back and the front of the radiating surface. However,
the infinitely large wall model does not take into account reflections from the edges of a real finite
enclosure. Also both sides of the radiating surface are open to half space so that the loading effects
of a real finite enclosure such as compliance, standing waves, absorption, and wall vibration, etc.
are ignored. The original derivation of the radiation impedance by Rayleigh over 100 years ago
used the non-integral Green’s function of Eq. (13.16) with an ingenious coordinate system. Here
we shall follow the approach of King [11] using the integral Green’s function in cylindrical
coordinates given by Eq. (13.52).
Boundary conditions. The circular piston of radius a shown in Fig. 13.3 is mounted in an infinite
baffle in the xy plane with its center at the origin and oscillates in the z direction with a harmonically
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.

.

time dependent velocity ~u0, thus radiating sound into a homogeneous loss-free medium. The area of
each surface element is given by

dS0 ¼ w0dw0df0: (13.96)

The monopole source elements shown in Fig. 13.4, together with their images, form the piston source
Since they are coincident in the plane of the baffle, they coalesce to form elements of double strength
Hence the piston in an infinite baffle can be modeled as a “breathing” disk in free space. It may also be
considered as a pulsating sphere of the same radius compressed into the plane of the disk. Due to the
symmetry of the pressure fields on either side of the baffle,

~pðw; zÞ ¼ ~pðw;�zÞ: (13.97)

Consequently, there is the following Neumann boundary condition on its surface:

v

vz
~pðw; zÞ

���
z¼0þ

¼ 0; a < w � N; (13.98)

which is satisfied automatically. On the surface of the disk there is the coupling condition

v

vz
~pðw; zÞ

���
z¼0þ

¼ �jkr0c~u0; 0 � w � a (13.99)

and k is the wave-number given by k ¼ u/c ¼ 2p/l, u is the angular frequency of excitation, r0 is the
density of the surrounding medium, c is the speed of sound in that medium, and l is the wavelength.
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Far-field pressure. The far-field pressure distribution is given by Eq. (13.27) taking into account the
double strength source:

~pðr; qÞ ¼ 2

Z2p
0

Za
0

gðr; qjw0;f0Þ
v

vz0
~pðw0; z0Þ

���
z0¼0þ

w0dw0df0; (13.100)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq. (13.70) is used.
Inserting Eqs. (13.70) and (13.99) into Eq. (13.100) and integrating over the surface, using Eqs. (76)
and (95) from Appendix II (with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that cos(f � f0) ¼
sin f0), gives

~pðr; qÞ ¼ �jka2r0c~u0
e�jkr

2r
DðqÞ; (13.101)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

; (13.102)

which is often referred to as the Fraunhofer or Airy diffraction pattern. The normalized directivity
function 20 log10jD(q)j is plotted in Fig. 13.5 for four values of ka ¼ 2pa/l, that is, for four values of
the ratio of the circumference of the piston to the wavelength. When the circumference of the piston
(2pa) is less than one-half wavelength, that is, ka < 0.5, the piston behaves essentially like a point
source. When ka becomes greater than 3, the piston is highly directional.
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The directivity index never becomes less than 3 dB, because the piston radiates only into half space.
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The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it in Eq. (13.100)
and integrating over the surface to give

Dð0Þ ¼ 1 (13.103)

which means that the on-axis far-field pressure is proportional to the piston acceleration at all
frequencies and is often written

~pðr; 0Þ ¼ �jr0 f ~U0
e�jkr

r
; (13.104)

where ~U0 ¼ pa2~u0 is the total volume velocity. This is a general expression for a planar source in an
infinite baffle and also applies to non-uniform velocity distributions where the volume velocity is the
product of the average velocity and the radiating area, which can be of arbitrary shape.



13.7 Radiation from a rigid circular piston in an infinite baffle 557
Although the piston behaves as a more or less omnidirectional source for ka � 1, similar to
a pulsating sphere, the output of the piston is 6 dB less than that of the pulsating sphere at very low
frequencies. Because the piston is radiating into half space, its output per unit surface area is double
that of the pulsating sphere, which is radiating into whole space. However, the sphere has four times
the surface area of a piston of the same radius. Therefore it produces twice the output. Unlike the
pulsating sphere, the on-axis response of the piston does not roll-off at high frequencies, which is
a property of planar sources in general, as already discussed in Sec. 12.8 regarding a piston in a sphere.
Unlike the piston in a sphere, there is no 6 dB level shift between low and high frequencies because the
baffled piston effectively radiates into half space at all frequencies. As we shall see, its radiation
impedance, like that of a pulsating sphere, is dominated by mass reactance at low frequencies and
resistance at high frequencies.

In the low-frequency region, the radiated sound pressure and hence also intensity are held constant
under constant piston acceleration. This is because the decreasing velocity is compensated for by the
rising radiation resistance, as discussed in greater detail in Sec. 4.10.

At higher frequencies, where the impedance starts to become more resistive, the beam pattern,
coincidentally, becomes increasingly narrow. This phenomenon compensates for the fall in on-axis
output that would otherwise occur. Indeed, in the case of the pulsating sphere, the radiated sound
pressure is proportional to the surface velocity in the region where the load is resistive and therefore
falls under constant acceleration and falling velocity. It seems a remarkable coincidence of nature that
this transition occurs so smoothly as to produce a completely flat on-axis response, although it does not
seem so surprising when we consider that the on-axis response results from the sum of an array of point
sources that are all in phase, where the field of each point source is frequency invariant under constant
volume acceleration.
Near-field pressure. The near-field pressure distribution is given by the boundary integral of
Eq. (13.27) taking into account the double-strength source:

~pðr; qÞ ¼ 2

Z2p
0

Za
0

gðr; qjw0;f0Þ
v

vz0
~pðw0; z0Þ

���
z0¼0þ

w0dw0df0; (13.105)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is used. Mast and
Yu [12] show that inserting Eqs. (13.68) and (13.99) into Eq. (13.105) and integrating over the surface
gives

~pðr; qÞ ¼ 2r0c~u0
PN
n¼ 0

ð�1ÞnG
�
nþ 1=2

�
Gðnþ 2ÞG

�
2nþ 1=2

�
�
ka

2

�2nþ2

�1F2

�
nþ 1; nþ 2; 2nþ 3

2
;
k2a2

4

�
h
ð2Þ
2n ðkrÞP2nðcos qÞ

(13.106)

which converges for r > a but is generally used for w � a. The other part of the Green’s function of
Eq. (13.68) could be used to derive an expression for r < a as was done previously by Stenzel [13].
However, a better expression is provided by Mast and Yu, [12] which is derived by moving the origin
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f the coordinate system to a point on the z axis that lies in the same plane as the observation point to give
~pðw; zÞ ¼ r0c~u0ffiffiffi
p

p
XN
n¼ 0

ð�1Þnð4nþ 1Þ
G
�
nþ 1=2

�
Gðnþ 1Þ j2nðkwÞf2n; (13.107)

here f2n is given by the following recursion formulas:

f0 ¼ e�jkz � e�jkra ; (13.108)

f2n ¼ �f2n�2 � krah
ð2Þ
2n�1ðkraÞðP2nðz=raÞ � P2n�2ðz=raÞÞ; (13.109)

nd

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
; (13.110)

hich converges for w2 < a2 þ z2 but is generally used for w < a and is thus termed the paraxial
olution. These equations are an elegant and important result for ultrasound since they eliminate the
eed for inefficient numerical integration at high frequencies. In particular, the number of terms
eeded for convergence in the paraxial expansion decreases linearly towards the z-axis until just
single term remains. This is the closed-form axial solution:

~pð0; zÞ ¼ r0c~u0ðe�jkz � e�jkraÞ: (13.111)

he first term represents a point source at the center of the piston and the second term radiation from
e rim. The magnitude of the axial pressure is j~pð0; zÞj ¼ 2r0cj~u0 sin kðra � zÞ=2j: Near the surface
f the piston, it is approximately j~pð0; zÞj z r0ckaj~u0j /(1 þ z/a) for ka < 0.5 and z < 0.5a. Hence, at
w frequencies, the radiated sound pressure of a loudspeaker may be calculated from the diaphragm
elocity [see Eq. (13.101)], which in turn may be measured using a probe microphone close to the
enter. The pressure field for three values of ka is plotted in Fig. 13.6 and for ka ¼ 12p in Fig. 13.7.
rom these figures, we can see the formation of the central and side lobes of the directivity patterns at
e start of the far-field or Fraunhofer diffraction zone, where the waves are spherically diverging. The
ear-field or Fresnel region is dominated by non-propagating interference patterns due to the differ-
nces in path lengths from different parts of the radiating surface. However, in the immediate near field
f Fig. 13.7, the pressure fluctuations are relatively small and we see here the formation of a plane
avewhich extends outwards with increasing frequency. The furthest axial peak is a focal point, which
useful for ultrasound applications. Also, we can make the following observations.

. At low frequencies, where ka < 3, the on-axis pressure of Eq. (13.111) converges to the far-field
approximation of Eq. (13.104) at around z ¼ pa/2.

. At high frequencies, where ka > 3, the on-axis pressure converges to the far-field approximation at
around z ¼ ka2/2 which is known as the Rayleigh distance [14,15]. The on-axis near-field pressure
is oscillatory and there are ka/(2p) or a/l cycles before it converges to the far-field response, where
one cycle spans two magnitude peaks or two nulls. The pressure on the face of the piston also
oscillates radially with a total of ka/2p or a/l cycles between the center and rim. Furthermore,
if ka ¼ np or nl ¼ 2a, where n is an integer, the pressure at the center of the piston is at a null
for even n and at a peak for odd n.



FIG. 13.6 Normalized near-field pressure plots for a rigid circular piston in an infinite baffle as a function of ka[
2pa/l [ 2pfa/c.

Where a is the radius of the piston, j~pj is the pressure magnitude, ~u0 is the piston velocity, r0 is the density of the

acoustic medium, and c is the speed of sound in that medium.
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FIG. 13.7 Normalized near-field pressure plots for a rigid circular piston in an infinite baffle as a function of ka[
2pa/l [ 2pfa/c.

Where a is the radius of the piston, j~pj is the pressure magnitude, ~u0 is the piston velocity, r0 is the density of the

acoustic medium, and c is the speed of sound in that medium.
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3. The number of lobes in the directivity pattern corresponds to the number of axial peaks plus the
number of peaks along the radius of the piston.

Radiation impedance and high-frequency asymptotic expression. The near-field pressure distribu-
tion is given by Eq. (13.27) taking into account the double-strength source:

~pðw; zÞ ¼ 2

Z2p
0

Za
0

gðw; zjw0; z0Þ v

vz0
~pðw0; z0Þ

���
z0¼0þ

w0dw0df0; (13.112)

where the Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this form Eq.
(13.112) is known as the monopole King integral [11]. Inserting Eqs. (13.52) and (13.99) into Eq.
(13.112) and integrating over the surface gives

~pðw; zÞ ¼ �kar0c~u0

ZN
0

J0ðkwwÞJ1ðkwaÞ 1
kz
e�jkzzdkw; (13.113)
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where we have used the integral solution of Eq. (95) from Appendix II and kz is given by Eq. (13.51). In
order to investigate the asymptotic high-frequency behavior, we let k /N in Eq. (13.113) to give

~pðw; zÞ
���
k/N

¼ �r0c~u0e
�jkza

ZN
0

J1ðkwaÞJ0ðkwwÞdkw

¼
(
�r0c~u0e

�jkz; 0 � w � a

0; w > a:

(13.114)

This slightly trivial solution describes the sound being radiated as a laser beam confined within the
diameter of the piston. It can also be regarded as a virtual infinite tube or transmission line in space
starting from the perimeter of the piston. At first sight, this may appear to contradict Eq. (13.111),
because the axial nulls and peaks never actually disappear. On the contrary, they become more
numerous and travel out further with increasing frequency. However, in the high frequency limit, the
radial width of this range of hills and dales shrinks so much that they become insignificant.

The total radiation force is found by integrating the pressure from Eq. (13.113) over the surface of
the piston and again using the integral of Eq. (95) from Appendix II to give

~F ¼ �
Z2p
0

Za
0

~pðw; zÞ
���
z¼0þ

wdwdf

¼ 2pka2r0c~u0

0
B@Z

k

0

J21ðkwaÞ
kw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

p dkw þ j

ZN
k

J21ðkwaÞ
kw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

p dkw

1
CA:

(13.115)

King [11] shows the solution to be

Zs ¼
~F
~U0

¼ Rs þ jXs; (13.116)

where ~U0 ¼ pa2~u0 is the total volume velocity and Rs is the specific radiation resistance in N$s/m3

(rayl) given by

Rs ¼ r0c

�
1� J1ð2kaÞ

ka

�
; (13.117)

where the bold R indicates that the quantity varies with frequency. Xs is the specific radiation reactance
in N$s/m3 (rayl) given by

Xs ¼ r0c
H1ð2kaÞ

ka
; (13.118)

where J1 and H1 are Bessel and Struve functions respectively as defined by Eqs. (71) and (125) in
Appendix II. Plots of the real and imaginary parts of

Zs
r0c

¼ Rs þ jXs

r0c
(13.119)
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are shown in Fig. 4.35 as a function of ka. Similar graphs of the real and imaginary parts of the specific
admittance

Ysr0c ¼ r0cðGs þ jBsÞ ¼ r0c

�
Rs

R2
s þ X2

s

� j
Xs

R2
s þ X2

s

�
(13.120)

are shown in Fig. 4.36. The specific admittance is in m3$N�1$s�1 (rayl�1).
We see from Fig. 4.35 that, for ka < 0.5, the reactance varies as the first power of frequency while

the resistance varies as the second power of frequency. At high frequencies, for ka > 5, the reactance
becomes small compared with the resistance, and the resistance approaches a constant value.

The admittance, on the other hand, is better behaved. The conductance is constant for ka< 0.5, and
it is also constant for ka > 5 although its value is larger.
13.8 RADIATION FROM A RESILIENT CIRCULAR DISK
WITHOUT A BAFFLE [16]
The resilient circular disk in free space is the simplest dipole planar source and the dipole complement of
the rigid circular piston in an infinite baffle. It can be used as an approximate model for unbaffled
loudspeakers of the electrostatic or planar magnetic type, in which it is assumed that a perfectly uniform
driving pressure is applied to a very light flexible membrane diaphragm in free space. Due to the dipole
nature of the source, there is zero pressure in the plane of the disk extending beyond its rim. Walker [17]
pointed out that such a source is acoustically transparent, in that it does not disturb the field around it, and
used this idealized model to derive the far-field on-axis pressure response of an electrostatic loudspeaker,
which provides a useful approximation over the loudspeaker’s working range. However, it should be
noted that the model assumes a freely suspended membrane, whereas in reality it is usually clamped at
the rim, which effectively removes the singularity from the rim of the idealized model [18].
Boundary conditions. The basic configuration is shown in Fig. 13.8. The infinitesimally thin
membrane-like resilient disk is assumed to be perfectly flexible, has zero mass, and is free at its
perimeter. It is driven by a uniformly distributed harmonically varying pressure ~p0 and thus radiates
sound from both sides into a homogeneous loss-free acoustic medium. In fact, there need not be a disk
present at all and instead the driving pressure could be acting upon the air particles directly. However,
for expedience, the area over which this driving pressure is applied shall be referred to as a disk from
here onwards. The pressure field on one side of the xy plane is the symmetrical “negative” of that on the
other, so that

~pðw; zÞ ¼ �~pðw;�zÞ: (13.121)

Consequently, there is a Dirichlet boundary condition in the plane of the disk where these equal and
opposite fields meet.

~pðw; 0Þ ¼ 0; a < w � N: (13.122)

On the front and rear surfaces of the disk, the pressures are ~pþ and ~p� respectively, which are given by

~pþðw0Þ ¼ �~p�ðw0Þ ¼ ~p0=2; 0 � w0 � a (13.123)
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and k is the wave-number given by k ¼ u/c ¼ 2p/l, where u is the angular frequency of excitation, r0
is the density of the surrounding medium, c is the speed of sound in that medium, and l is the
wavelength.
Far-field pressure. The far-field pressure distribution is given by the dipole boundary integral of
Eq. (13.28), taking into account the surface pressure on both sides:

~pðr; qÞ ¼
Z2p
0

Za
0

ð~pþðw0Þ � ~p�ðw0ÞÞ v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.124)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq. (13.70) is used.
Inserting Eqs. (13.70), (13.121), and (13.123) into Eq. (13.124) and integrating over the surface, using
Eqs. (76) and (95) from Appendix II [with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that
cos(f � f0) ¼ sin f0], gives

~pðr; qÞ ¼ �ja~p0
e�jkr

4r
DðqÞ; (13.125)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
sin q

cos q: (13.126)

The on-axis pressure is evaluated by setting q¼ 0 in Eq. (13.70) before inserting it in Eq. (13.124) and
integrating over the surface to give

Dð0Þ ¼ ka (13.127)
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so that the on-axis response can be written as

~pðr; 0Þ ¼ �jka2~p0
e�jkr

4r
; (13.128)

which just gives a constant 6 dB/octave rising response at all frequencies for a given driving pressure.
The normalized directivity function 20 log10jD(q)/D(0)j is plotted in Fig. 13.9 for four values of ka ¼
2pa/l, that is, for four values of the ratio of the circumference of the disk to the wavelength. The
directivity pattern is that of a rigid piston in an infinite baffle multiplied by cos q. When the circum-
ference of the disk (2pa) is less than one-half wavelength, that is, ka < 0.5, the resilient disk behaves
essentially like a dipole point source. When ka becomes greater than 3, the resilient disk is highly
directional, like the piston in an infinite baffle. In fact, at very high frequencies, they both radiate sound
as a narrow central lobe (Airy disk) accompanied by a number of very small side lobes, in which case the
factor of cos q makes relatively little difference. In the case of a push-pull electrostatic loudspeaker,

~p0 ¼ EP

d
$
2~Iin
jupa2

; (13.129)

where EP is the polarizing voltage, d is the membrane-electrode separation, and ~Iin is the static input
current to each electrode, assuming that the motional current is negligible in comparison. Substituting
this in Eq. (13.128) yields

~pðr; 0Þ ¼ �EP

d
$
~Iine

�jkr

2prc
; (13.130)
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which is Walker’s equation, [17] albeit obtained by a slightly different method.
Near-field pressure. The near-field pressure distribution is given by Eq. (13.28) taking into account
the surface pressure on both sides:

~pðr; qÞ ¼ 2

Z2p
0

Za
0

ð~pþðw0Þ � ~p�ðw0ÞÞ v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.131)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is used. It has
been shown [16] that inserting Eqs. (13.68) and (13.123) into Eq. (13.131) and integrating over the
surface gives

~pðr; qÞ ¼ �j~p0
PN
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h
ð2Þ
2nþ1ðkrÞP2nþ1ðcos qÞ;

(13.132)

which converges for r > a but is generally used for w � a. The other part of the Green’s function of
Eq. (13.68) could be used to derive an expression for r< a. However, a better expression is provided by
moving the origin of the coordinate system to a point on the z axis that lies the same plane as the
observation point to give

~pðw; zÞ ¼ j~p0ffiffiffi
p

p
kw

XN
n¼ 0

ð�1Þnð4nþ 3Þ
G

�
nþ 3=2

�
Gðnþ 1Þ j2nþ1ðkwÞf2nþ1; (13.133)

where f2nþ1 is given by the following recursion formulas:

f1 ¼ j

�
z

ra
e�jkra � e�jkz

�
; (13.134)

f2nþ1 ¼ �f2n�1 þ krah
ð2Þ
2n ðkraÞðP2nþ1ðz=raÞ � P2n�1ðz=raÞÞ; (13.135)

and

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
; (13.136)

which converges for w2 < a2 þ z2 but is generally used for w < a and is thus termed the paraxial
solution. The number of terms in the expansion needed for convergence decreases linearly towards the
z-axis until just a single term is needed. This is the closed-form axial solution:

~pð0; zÞ ¼ ~p0
2

�
e�jkz � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p e�jk

ffiffiffiffiffiffiffiffiffi
z2þa2

p �
: (13.137)
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The pressure field for three values of ka is plotted in Fig. 13.10. We can see that the plane wave region
near the surface forms more readily than in the case of the rigid piston (see Fig. 13.6), no doubt aided
by the uniform pressure distribution at the surface of the resilient disk. At ka ¼ 6p, the pressure field
fluctuations in the vicinity of the resilient disk are smaller than for the rigid piston. Furthermore, the
axial pressure response of a rigid disk given by Eq. (13.111) has nulls, whereas the resilient disk axial
response given by Eq. (13.137) is oscillatory but with decreasing magnitude towards the face of the
disk.
Surface velocity. Using the solutions for the near-field pressure from Eqs. (13.133), (13.134), and
(13.135), and taking the normal pressure gradient at the surface of the disk, the surface velocity is
given by

~u0ðwÞ ¼ j

krc

d

dz
~pðw; zÞ

���
z¼0þ

¼ � ~p0
rc

ffiffiffi
p

p
XN
n¼ 0

ð�1Þnð4nþ 3Þ
G

�
nþ 3=2

�
Gðnþ 1Þ f 02n

j2nþ1ðkwÞ
kw

;

(13.138)

where

f 00 ¼ 1� j
e�jka

ka
; (13.139)

f 02n ¼ �f 02n�2 � h
ð2Þ
2n ðkaÞðð2nþ 1ÞP2nð0Þ � ð2n� 1ÞP2n�2ð0ÞÞ: (13.140)

The magnitude and phase of the normalized velocity are shown in Fig. 13.11 and Fig. 13.12,
respectively, for four values of ka. For small k, it can be shown to agree well with the asymptotic
expression given by Eq. (13.144). We see that the velocity increases rapidly towards the rim, where it is
singular. This is a feature of uniform pressure sources in general due to the discontinuity at the rim.
However, it is exacerbated in this case by the acoustic short circuit between the front and rear surfaces
of the dipole source.
Radiation admittance and low-frequency asymptotic surface velocity. The near-field pressure
distribution is given by Eq. (13.28) taking into account the surface pressure on both sides:

~pðw; zÞ ¼
Z2p
0

Za
0

ð~pþðw0Þ � ~p�ðw0ÞÞ v

vz0
gðw; zjw0; z0Þjz0¼0þw0dw0df0; (13.141)

where the inregral Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this form
Eq. (13.141) is known as the dipole King integral. Inserting Eqs. (13.52), and (13.123) into Eq.
(13.141) and integrating over the surface gives

~pðw; zÞ ¼ �kar0c~u0

ZN
0

J0ðkwwÞJ1ðkwaÞ 1
kz
e�jkzzdkw; (13.142)



FIG. 13.10 Normalized near-field pressure plots for a resilient circular disk in free space as a function of ka [
2pa/l [ 2pfa/c, where a is the radius of the disk.

j~pj is the pressure magnitude, ~p0 is the driving pressure.
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where we have again used the integral of Eq. (95) from Appendix II and kz is given by Eq. (13.51). The
disk velocity ~u0ðwÞ can be derived using the following relationship for the normal pressure gradient:

~u0ðwÞ ¼ 1

�jkr0c

v

vz
~pðw; zÞ

���
z¼0þ

¼ a~p0
2kr0c

ZN
0

J1ðkwaÞJ0ðkwwÞkzdkw:
(13.143)
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.

For small k, we obtain

~u0ðwÞ
���
k/0

¼ ja~p0
2kr0c

ZN
0

J1ðkwaÞJ0ðkwwÞkwdkw

¼ j~p0Eðw2=a2Þ
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�
1� w2

a2

��1

;

(13.144)

where E is the complete elliptic integral of the second kind. Hence there is a singularity at the rim. The
total volume velocity ~U0 is found by integrating the velocity from Eq. (13.143) over the surface of the
disk and again using the integral of Eq. (95) from Appendix II to give

~U0 ¼
Z2p
0

Za
0

~u0ðwÞwdwdf

¼ pa2~p0
kr0c

0
@Zk

0

J21ðkwaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

p
kw

dkw � j

ZN
k

J21ðkwaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

p
kw

dkw

1
A;

(13.145)

The solution [16,20] has been shown to be

Ys ¼
~U0

S ~p0
¼ Gs þ jBs; (13.146)

where ~U0 ¼ pa2~u0 is the total volume velocity and Gs is the specific radiation conductance in
m3$N�1$s�1 (rayl�1) given by

Gs ¼ 1

r0c

�
1þ J1ð2kaÞ

ka
� 2J0ð2kaÞ � pðJ1ð2kaÞH0ð2kaÞ � J0ð2kaÞH1ð2kaÞÞ

�

z
1

r0c
$
k2a2

6
; ka < 0:5;

(13.147)

where the bold G indicates that the quantity varies with frequency. Bs is the specific radiation sus-
ceptance in m3$N�1$s�1 (rayl�1) given by

Bs ¼ � 1

r0c

�
4

p ka
�H1ð2kaÞ

ka
þ 4ka

p 2F3

�
1; 1;

3

2
;
3

2
; 2;�k2a2

��

z
1

r0c
$
4

pka
; ka < 0:5;

(13.148)

where Jn and Hn are Bessel and Struve functions respectively and 2F3 is a hypergeometric function
Plots of the real and imaginary parts of

r0cYs ¼ r0cðGs þ jBsÞ (13.149)
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are shown in Fig. 13.13 as a function of ka. Similar graphs of the real and imaginary parts of the
specific impedance

Zs
r0c

¼ Rs þ jXs

r0c
¼ 1

r0c

�
Gs

G2
s þ B2

s

� j
Bs

G2
s þ B2

s

�
(13.150)
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are shown in Fig. 13.14. The specific admittance is in m3$N�1$s�1 (rayl�1). Whereas the impedance
and admittance functions of the rigid disk in an infinite baffle show ripples (see Fig. 4.35 and Fig. 4.36
respectively), those of the resilient disk are smooth almost monotonic functions. We can see that at low
frequencies the impedance and admittance curves are more reactive than those of a piston in an infinite
baffle, so that less power is radiated. This is due to the cancellation of the acoustic output by the rear
wave or acoustic “short circuit”, which is generally the case with all dipole sources.
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Relationship between a resilient disk in free space and a rigid piston in an infinite baffle. Suppose
that the radiation resistance and reactance of a rigid disk in an infinite baffle are denoted by Rs and Xs

respectively and Gs and Bs are the radiation conductance and susceptance respectively of a resilient
disk in free space as defined in Eqs. (13.147) and (13.148), then

ðr0cÞ2
d

dðkaÞ kaGsðkaÞ ¼ RsðkaÞ ¼ r0c

�
1� J1ð2kaÞ

ka

�
; (13.151)

or

GsðkaÞ ¼ 1

kaðr0cÞ2
Z
RsðkaÞdðkaÞ; (13.152)

and

ðr0cÞ2
d

dðkaÞ kaBsðkaÞ ¼ XsðkaÞ ¼ r0c
H1ð2kaÞ

ka
; (13.153)

or

BsðkaÞ ¼ 1

kaðr0cÞ2
�Z

XsðkaÞdðkaÞ þ 4

p

�
; (13.154)
13.9 RADIATION FROM A RESILIENT DISK IN AN INFINITE BAFFLE [19]
A resilient disk in an infinite baffle, like the previous example, represents a sourcewith a uniform pressure
distribution over its radiating surface, unlike the rigid pistonwhere the velocity is uniform. Thismakes the
problem slightly harder to solve because we have to include a trial function for the disk velocity distri-
bution in the surface integral. The trial function is in the form of a series expansion, the unknown coef-
ficients of which have to be calculated via a set of simultaneous equations. However, it is worth the effort
because, aswe shall see, this particular source represents thediffractionpattern due to a planewavepassing
through a circular aperture in an infinite screen,which is an important result in optics too.The transmission
coefficient, or radiation conductance,was first calculated byBouwkamp [20] in his PhDdissertation using
the boundary value method in the oblate-spheroidal coordinate system. Less than a decade later, Spence
[21] calculated the surface velocity distribution and directivity pattern. However, oblate-spheroidal
functions are rather complicated, so instead we shall use the boundary integral method with the Green’s
function in cylindrical coordinates and a trial function first used by Streng [22] for a membrane.
Boundary conditions. The configuration is the same as that shown in Fig. 13.3. The infinitesimally
thin membrane-like resilient disk is mounted in an infinite baffle in the xy plane with its center at the
origin. It is assumed to be perfectly flexible, has zero mass, and is free at its perimeter. It is driven by
a uniformly distributed harmonically varying pressure ~p0 and thus radiates sound from both sides into
a homogeneous loss-free acoustic medium. In fact, there need not be a disk present at all and instead
the driving pressure could be acting upon the air particles directly. However, for expedience, the area
over which this driving pressure is applied shall be referred to as a disk from here onwards. As with the
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rigid piston in an infinite baffle, we will model this as a “breathing” disk in free space. Due to the
symmetry of the pressure fields on either side of the baffle

~pðw; zÞ ¼ ~pðw;�zÞ: (13.155)

Consequently, there is a Neumann boundary condition in the plane of the disk where these fields meet:

v

vz
~pðw; zÞ

���
z¼0

¼ 0; a < w � N; (13.156)

which is satisfied automatically. On the front and rear surfaces of the disk, the pressures are ~pþ and ~p�
respectively, which are given by

~pþðw0Þ ¼ ~p�ðw0Þ ¼ ~p0=2; 0 � w0 � a: (13.157)

The pressure gradient is given by

v

vz0
~pðw0; z0Þ

���
z0¼0þ

¼
(
�jkr0c~uðw0Þ; 0 � w0 � a;

0; w0 > a;
(13.158)

where ~uðw0Þ is the unknown surface velocity distribution and k is the wave-number given by k ¼ u/c ¼
2p/l, whereu is the angular frequency of excitation, r0 is the density of the surrounding medium, c is the
speed of sound in that medium, and l is the wavelength.Wewill use the following trial function, which is
itself a solution to the free-space Helmholtz wave equation in oblate-spheroidal coordinates, [20]

~u0ðw0Þ ¼ ~p0
2r0c

XN
n¼ 0

An

�
nþ 1

2

��
1� w2

0

a2

�n�1
2

; (13.159)

where An are the as-yet unknown power series coefficients which will be evaluated by means of a set of
simultaneous equations in matrix form. Note that the n¼ 0 term is singular when w0¼ a. This is due to
the discontinuity at the rim, which is inherent in the problem. [2] Otherwise, if we were modelling
a problem with zero velocity at the rim, such as a membrane with a clamped rim [18], we would
replace (n � ½) in the index with (n þ ½). Using a trial function, any velocity distribution is possible
and this is not the only trial function which may be used [42],[43].
Solution of the power series coefficients. The near-field pressure distribution is given by Eq. (13.27)
taking into account the double-strength source:

~pðw; zÞ ¼ 2

Z2p
0

Za
0

gðw; zjw0; z0Þ v

vz0
~pðw0; z0Þ

���
z0¼0

w0dw0df0; (13.160)

where the integral Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this form
Eq. (13.160) is known as the monopole King integral. Inserting Eqs. (13.52), (13.158), and (13.159)
into Eq. (13.160) and integrating over the surface using Eq. (96) from Appendix II gives

~pðw; zÞ ¼ ka
~p0
2

XN
n¼ 0

AnG

�
nþ 3

2

�ZN
0

�
2

akw

�n�1
2

J0ðkwwÞJnþ 1
2
ðkwaÞ e

�jkzz

kz
dkw; (13.161)



574 CHAPTER 13 Radiation and scattering of sound by the boundary integral method
where kz is given by Eq. (13.51). At the surface of the disk, we have the coupling condition

~pðw; zÞ
���
z¼0þ

¼ ~p0
2
; 0 � w � a; (13.162)

which leads to the following equation:

XN
n¼ 0

AnInðwÞ ¼ FðwÞ; (13.163)

where

FðwÞ ¼ 1; 0 � w � a; (13.164)

which is to be solved for the power series coefficients An. The integral In(w) can be split into two
parts:

InðwÞ ¼ InRðwÞ þ jInIðwÞ; (13.165)

where the real part is given by

InRðwÞ ¼ kaG

�
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2

�Zk
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kwa
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2

Jnþ 1
2
ðkwaÞJ0ðkwwÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2w
p dkw (13.166)

and the imaginary part is given by

InIðwÞ ¼ kaG
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�ZN
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2

Jnþ 1
2
ðkwaÞJ0ðkwwÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2w � k2
p dkw: (13.167)

These integrals can be shown [19] to be given by

InRðwÞ ¼ ffiffiffi
p

p XN
m¼ 0

XN
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; (13.168)

InIðwÞ ¼ ffiffiffi
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p XN
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; (13.169)

which are both expansions in (w/a)2m. We also note that

FðwÞ ¼
XN
m¼ 0

dm0

�w
a

�2m
; 0 � w � a; (13.170)
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where dm0 is the Kronecker delta function. Inserting Eqs. (13.165), (13.168), (13.169), and (13.170) in
Eq. (13.163) and equating the coefficients of (w/a)2m yields the following (N þ 1) � (N þ 1) matrix
equation:

M$a ¼ b0a ¼ M�1$b; (13.171)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ nPmðkaÞ þ jnTmðkaÞ;
(
m ¼ 0; 1;/;N

n ¼ 0; 1;/;N;
(13.172)

bðmþ 1Þ ¼ dm0; m ¼ 0; 1;/;N; (13.173)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/;N; (13.174)

and the infinite power series limits have been truncated to order N. The monopole cylindrical wave
functions nPm and nTm are named the Spence and Stenzel functions respectively in tribute to their
pioneering work and are defined by

nPmðkaÞ ¼ ffiffiffi
p

p XN
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; (13.175)

nTmðkaÞ ¼ ffiffiffi
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: (13.176)

Now that we have the surface velocity series coefficients An, we can derive some radiation charac-
teristics for the resilient disk.
Far-field pressure. The far-field pressure distribution is given by Eq. (13.27) taking into account the
double-strength source:

~pðr; qÞ ¼ 2

Z2p
0

Za
0

gðr; qjw0;f0Þ
v

vz0
~pðw0; z0Þ

���
z0¼0þ

w0dw0df0; (13.177)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq. (13.70) is used.
Inserting Eqs. (13.70), (13.158), and (13.159) into Eq. (13.177) and integrating over the surface, using
Eqs. (76) and (96) from Appendix II [with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that
cos(f � f0) ¼ sin f0], gives

~pðr; qÞ ¼ �ja~p0
e�jkr

4r
DðqÞ; (13.178)
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where the directivity function D(q) is given by

DðqÞ ¼ ka
XN
n¼ 0

AnG

�
nþ 3=2

��
2

ka sin q

�nþ1
2

Jnþ 1
2
ðka sin qÞ: (13.179)

The on-axis pressure is evaluated by setting q¼ 0 in Eq. (13.70) before inserting it in Eq. (13.177) and
integrating over the surface to give

Dð0Þ ¼ ka
XN
n¼ 0

Anz

(
4j=p; ka < 0:5

ka; ka > 2:
(13.180)

It is worth noting that D(0) is simply the normalized radiation admittance, that is

Dð0Þ ¼ ðGs þ jBsÞ=ðr0cÞ
where Gs and Bs are given by Eq. (13.193) and (13.194) respectively. The asymptotic expression for
low-frequency on-axis pressure is then simply

~pðr; 0Þz a

pr
~p0e

�jkr; ka < 0:5 (13.181)

and at high frequencies

~pðr; 0Þz j
ka2

4r
~p0e

�jkr; ka > 2; (13.182)

which is the same as for a resilient disk in free space at all frequencies. The on-axis response is shown
in Fig. 13.15, calculated from the magnitude of D(0). The normalized directivity function
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20 log10jD(q)/D(0)j is plotted in Fig. 13.16 for four values of ka¼ 2pa/l, that is, for four values of the
ratio of the circumference of the piston to the wavelength. When the circumference of the piston (2pa)
is less than one-half wavelength, that is, ka < 0.5, the disk behaves essentially like a point source.
When ka becomes greater than 3, the resilient disk is highly directional, rather like the rigid piston in
an infinite baffle except without the nulls.
Near-field pressure. The near-field pressure distribution is given by Eq. (13.27) taking into account
the surface pressure on both sides:

~pðr; qÞ ¼ 2

Z2p
0

Za
0

gðr; qjw0;f0Þ
v

vz0
~pðw0; z0Þ

���
z0¼0þ

w0dw0df0; (13.183)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is used. It has
been shown [19] that inserting Eqs. (13.68), (13.158), and (13.159) into Eq. (13.183) and integrating
over the surface gives
0 dB

−20

−20

−20

0 dB

0 dB

30°

60°

0°

90°
ka = 1

ka = 3

ka = 10

ka = 5

−30 −10

FIG. 13.16 Far-field directivity patterns for a resilient disk in an infinite baffle as a function of ka[ 2pa/l[ u/c,

where a is the radius of the disk.
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(13.184)
which converges for r > a. For r � a, we derive a suitable expression from Eq. (13.161), which is
weakly singular at kw ¼ k. However, we can remove this singularity as follows: First, we
substitute

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
for kw � k

and

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
for kw > k

in Eq. (13.161) to obtain
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We then apply the expansion or Eq. (109) from Appendix II to give
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which, after integrating, yields
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Equation (13.189) converges everywhere and is therefore suitable for r < a. Unfortunately,
Eq. (13.190) only converges for z2 > w2 þ a2 and is therefore not suitable. However, Eq. (13.187)
converges everywhere and can be calculated numerically without problem and is therefore suitable for
r < a. Using the Babinet–Bouwkamp principle, this represents the field scattered by a hole in an
infinite screen in the presence of an incident plane wave, as plotted in Fig. 13.39 for three values of ka.
Surface velocity. The magnitude and phase of the normalized velocity from Eq. (13.159) are shown in
Fig. 13.17 and Fig. 13.18, respectively, for four values of ka. We see that the velocity increases rapidly
0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

ka = 1

ka = 10ka = 5
ka = 3

02
1

00

~
)(~

p

wucρ

w/a

FIG. 13.17 Normalized surface velocity magnitude for a resilient circular disk in an infinite baffle as a function of

w/a where w is the radial ordinate and ka [ 2pa/l [ u/c, where a is the radius of the disk.



0.0 0.2 0.4 0.6 0.8 1.0

80

60

40

20

0

20

ka = 1

ka = 10

ka = 5

ka = 3Phase
(deg)

w/a

FIG. 13.18 Surface velocity phase for a resilient circular disk in an infinite baffle as a function of w/a where w is

the radial ordinate and ka [ 2pa/l [ u/c, where a is the radius of the disk.

580 CHAPTER 13 Radiation and scattering of sound by the boundary integral method
towards the rim where it is singular. This is a feature of uniform pressure sources in general due to the
discontinuity at the rim.
Radiation admittance. The total volume velocity ~U0 is found by integrating the velocity from
Eq. (13.159) over the surface of the disk to give

~U0 ¼
Z2p
0

Za
0

~u0ðw0Þw0dw0df0 ¼ pa2~p0
2r0c

XN
n¼ 0

An: (13.191)

The specific radiation admittance is then given by

Ys ¼
~U0

S ~p0
¼ Gs þ jBs; (13.192)

where ~U0 is the total volume velocity and Gs is the specific radiation conductance in m3$N�1$s�1

(rayl�1) given by
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(13.193)

where the bold G indicates that the quantity varies with frequency. Bs is the specific radiation sus-
ceptance in m3$N�1$s�1 (rayl�1) given by
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(13.194)

Plots of the real and imaginary parts of

r0cYs ¼ r0cðGs þ jBsÞ (13.195)

are shown in Fig. 13.19 as a function of ka. Similar graphs of the real and imaginary parts of the
specific impedance

Zs
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¼ Rs þ jXs
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�
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� j
Bs

G2
s þ B2

s

�
(13.196)

are shown in Fig. 13.20. The specific admittance is in m3$N�1$s�1 (rayl�1). Whereas the impedance
and admittance functions of the rigid disk in an infinite baffle show ripples (see Fig. 4.35 and Fig. 4.36
respectively), those of the resilient disk are smooth, almost monotonic functions.
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13.10 RADIATION FROM A RIGID CIRCULAR PISTON IN A FINITE CIRCULAR
OPEN BAFFLE [23, 24]
A disk in a circular baffle is a useful model for an open-baffle type loudspeaker and in the limiting case
a loudspeaker without a baffle of any sort. Loudspeaker drive units are often measured in a finite baffle
such as the rectangular IEC 268-5 baffle. See IEC 60268-5, ed. 3.1, “Sound system equipment - Part 5:
Loudspeakers,” available from http://webstore.iec.ch/. For example, for a nominal 8-in (200 mm)
diameter loadspeaker, the baffle size would be 1.65 m long by 1.35 m wide, with the loadspeaker offset
from the center by 22.5 cm lengthways and 15 cm widthways. If we have a rigorous model of the
baffle, we can subtract its diffraction effects from the measurement in order to reveal the true response
of the drive unit. The problem was first solved by Nimura and Watanabe [25] using the boundary value
method in the oblate-spheroidal coordinate system. However, oblate-spheroidal functions are rather
complicated, so instead we shall use the boundary integral method with the Green’s function in
cylindrical coordinates and a trial function first used by Streng [22] for a membrane. Previous solutions
for the limiting case of a disk in free space have been obtained by Bouwkamp [20] using the boundary
value method and Sommerfeld [26] using the boundary integral method in cylindrical coordinates.
Meixner and Fritze [27] plotted the near-field pressure, a formidable task without the benefit of modern
computing power, and Wiener [28] plotted the far-field directivity pattern.

http://webstore.iec.ch/
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The point of observation P is located at a distance r and angle q with respect to the origin at the center of the piston.

13.10 Radiation from a rigid circular piston in a finite circular open baffle 583
Boundary conditions. The circular piston of radius a shown in Fig. 13.21 is mounted in a finite
circular baffle of radius b in the xy plane with its center at the origin and oscillates in the z direction
with a harmonically time-dependent velocity ~u0, thus radiating sound from both sides into a homo-
geneous loss-free medium. The dipole source elements shown in Fig. 13.21 form the piston source.
The area of each surface element is given by

dS0 ¼ w0dw0df0: (13.197)

The pressure field on one side of the xy plane is the symmetrical “negative” of that on the other, so that

~pðw; zÞ ¼ �~pðw;�zÞ: (13.198)

Consequently, there is a Dirichlet boundary condition in the plane of the disk where these equal and
opposite fields meet:

~pðw; 0Þ ¼ 0; b < w � N; (13.199)

which is satisfied automatically. On the front and rear surfaces of the baffle, there is a Neumann
boundary condition

v

vz
~pðw; zÞ

���
z¼0�

¼ 0; a < w � b: (13.200)

Also, on the front and rear surfaces of the disk, there is the coupling condition

v

vz
~pðw; zÞ

���
z¼0�

¼ �jkr0c~u0; 0 � w � a; (13.201)
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where k is the wave-number given by k ¼ u/c ¼ 2p/l, u is the angular frequency of excitation, r0 is
the density of the surrounding medium, c is the speed of sound in that medium, and l is the wave-
length. In order to tackle this problem, we shall use the dipole surface integral of Eq. (13.28).
However, some prior expression for the frontal surface pressure distribution ~pþðw0Þ is needed. Also,
because the disk can radiate from both sides, the rear surface pressure distribution ~p�ðw0Þ must be
included too, where ~pþðw0Þ ¼ �~p�ðw0Þ. Streng [22] showed that the surface pressure distribution
for any flat axially-symmetric unbaffled source (or sink), based upon Bouwkamp’s solution [20] to the
free-space wave equation in oblate-spheroidal coordinates, could be written as

~pþðw0Þ ¼ �~p�ðw0Þ ¼ kbr0c~u0
a2

b2

XN
n¼ 0

An

�
nþ 3

2

��
1� w2

0

b2

�nþ1
2

; 0 � w0 � b: (13.202)

where An are the as-yet unknown power series coefficients which will be evaluated by means of a set of
simultaneous equations in matrix form.
Formulation of the coupled equation. The near-field pressure distribution is given by the boundary
integral of Eq. (13.28) taking into account the surface pressure on both sides:

~pðw; zÞ ¼
Z2p
0

Zb
0

ð~pþðw0Þ � ~p�ðw0ÞÞ v

vz0
gðw; zjw0;z0Þjz0¼0þw0dw0df0; (13.203)

where the integral Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this form
Eq. (13.203) is known as the dipole King integral. Inserting Eqs. (13.52), (13.198), and (13.202) into
Eq. (13.203) and integrating over the surface of the piston and baffle using Eq. (96) from Appendix II
gives

~pðw; zÞ ¼ �ka2r0c~u0
XN
n¼ 0

AnG

�
nþ 5

2

�ZN
0

�
2

kwb

�nþ1
2

J0ðkwwÞJnþ 3
2
ðkwbÞe�jkzjzjdkw; (13.204)

where kz is given by Eq. (13.51). At the surface of the disk, we have the coupling condition

v

vz
~pðw; zÞ

���
z¼0

¼ �jkr0c~u0FðwÞ (13.205)

where F(w) is a dimensionless function of the surface velocity distribution. We will use different
expressions for F(w) when considering a piston in free space and a piston or point source in a circular
baffle This leads to the following coupled equation:

XN
n¼ 0

AnInðwÞ ¼ �FðwÞ; (13.206)

which is to be solved for the power series coefficients An. The integral In(w) can be split into two
parts:

InðwÞ ¼ InRðwÞ � jInIðwÞ; (13.207)
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where the real part is given by

InRðwÞ ¼ a2G

�
nþ 5

2

�Zk
0

�
2

kwb

�nþ1
2

J
nþ 3

2
ðkwbÞJ0ðkwwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q
dkw (13.208)

and the imaginary part is given by

InIðwÞ ¼ a2Gðnþ 5

2

�ZN
k

�
2

kwb

�nþ1
2

J
nþ 3

2
ðkwbÞJ0ðkwwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

q
dkw: (13.209)

These integrals can be shown [29,23] to be given by

InRðwÞ ¼ ffiffiffi
p

p a2

b2

XN
m¼ 0

XN
r¼ 0

ð�1ÞmþrG
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; (13.210)

InIðwÞ ¼ ffiffiffi
p

p a2

b2

XN
m¼ 0

XN
r¼ 0
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(13.211)

Solution of the power series coefficients for a piston in free space. Equations (13.210) and (13.211)
are both expansions in (w/b)2m. Hence, in order to solve for the expansion coefficients, it is useful to
express the disk and baffle velocity distribution F(w) as a function of (w/b)2m. In the case of a disk in
free space where b ¼ a, we have

FðwÞjb¼a ¼ 1 ¼
XN
m¼ 0

dm0

�w
a

�2m
; 0 � w � a; (13.212)

where dm0 is the Kronecker delta function. Inserting Eqs. (13.207), (13.210), (13.211), and (13.212) in
Eq. (13.206) and equating the coefficients of (w/a)2m yields the (N þ 1) � (N þ 1) matrix equation

M$a ¼ b; (13.213)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ nBmðkaÞ � jnSmðkaÞ;
(
m ¼ 0; 1;/;N

n ¼ 0; 1;/;N
; (13.214)

bðmþ 1Þ ¼ �dm0; m ¼ 0; 1;/;N; (13.215)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/;N; (13.216)
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and the infinite power series limits have been truncated to order N. The dipole cylindrical wave
functions nBm and nSm are named the Bouwkamp and Streng functions respectively in tribute to their
pioneering work and are defined by

nBmðkaÞ ¼ ffiffiffi
p

p XN
r¼ 0

ð�1ÞmþrG

�
nþ 5

2

�
Gðmþ r þ 1Þ

ðm!Þ2r!G
�
r þ nþ 5

2

�
G

�
mþ r þ 5

2

��ka
2

�2ðmþrÞþ3

; (13.217)

nSmðkaÞ ¼ ffiffiffi
p

p XN
r¼ 0

ð�1ÞmþrþnG

�
nþ 5

2

�
G

�
mþ r � n� 1

2
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ðm!Þ2r!G
�
r � n� 1

2

�
Gðmþ r � nþ 1Þ

�
ka

2

�2ðmþr�nÞ
: (13.218)

Solution of the power series coefficients for a piston in a circular baffle. For a finite baffle, where
b s a, we can employ the following least-mean-squares (LMS) algorithm. From Eq. (13.206), let an
error function be defined by

EðAnÞ ¼
Zb
0

�����
XN
n¼ 0

AnInðwÞ þ FðwÞ
�����
2

wdw: (13.219)

where

FðwÞ ¼
(
1; 0 � w � a

0; a < w � b;
(13.220)

In order to find the values of An that minimize the error, we take the derivative of E with respect to An

and equate the result to zero:

v

vAn
EðAnÞ ¼ 2

Zb
0

I�mðwÞ
 XN

n¼ 0

AnInðwÞ þFðwÞ
!
wdw ¼ 0; (13.221)

which, after truncating the infinite series limit to order N, yields the following set of N þ 1 simulta-
neous equations:

XN
n¼ 0

An

Zb
0

I�mðwÞInðwÞwdw ¼ �
Za
0

I�mðwÞwdw; m ¼ 0; 1;/N; (13.222)

where

I�mðwÞ ¼ a2

b2

XP
p¼ 0

�
mBpðkbÞ þ jmSpðkbÞ

	�w
b

�2p
; (13.223)
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InðwÞ ¼ a2

b2

XQ
q¼ 0

�
nBqðkbÞ � jnSqðkbÞ

	�w
b

�2q
: (13.224)

Integrating over w yields the following (N þ 1) � (N þ 1) matrix equation:

M$a ¼ b; (13.225)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ PP
p¼ 0

PQ
q¼ 0

�
mBpðkbÞ þ j mSpðkbÞ

	
pþ qþ 1

��nBqðkbÞ � jnSqðkbÞ
	
;

(
m ¼ 0; 1;/;N

n ¼ 0; 1;/;N
;

(13.226)

bðmþ 1Þ ¼ �
XP
p¼ 0

ðmBpðkbÞ þ j mSpðkbÞÞ
pþ 1

�a
b

�2p
; m ¼ 0; 1;/;N; (13.227)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/;N: (13.228)

Solution of the power series coefficients for a point or ring source in a circular baffle. In the case of
a ring source of radius a in a circular baffle, we have

FðwÞ ¼ a

2
dðw� aÞ; (13.229)

where d is the Dirac delta function. Inserting this into Eq. (13.221) and truncating the infinite series
limit to order N, yields the following set of N þ 1 simultaneous equations:

XN
n¼ 0

An

Zb
0

ImðwÞInðwÞwdw ¼ � a

2

Zb
0

dðw� aÞImðwÞwdw; m ¼ 0; 1;/N; (13.230)

where Im(w) and In(w) are given by Eqs. (13.223) and (13.224) respectively. Integrating over w and
using the property of the Dirac delta function yields the same matrix equations as Eqs. (13.225) to
(13.228) except that

bðmþ 1Þ ¼ �
XP
p¼ 0

�
mBpðkbÞ þ j mSpðkbÞ

	�a
b

�2p
: (13.231)

In the limiting case of a point source at the center of a circular baffle, we let a / 0 so that

bðmþ 1Þ ¼ �mB0ðkbÞ � jmS0ðkbÞ: (13.232)

Now that we have the surface velocity series coefficients An, we can derive some radiation charac-
teristics for the disk in free space or open circular baffle or a point source in a circular baffle.



588 CHAPTER 13 Radiation and scattering of sound by the boundary integral method
Far-field pressure. The far-field pressure distribution is given by the dipole boundary integral of
Eq. (13.28), taking into account the surface pressure on both sides:

~pðr; qÞ ¼
Z2p
0

Zb
0

�
~pþðw0Þ � ~p�ðw0Þ

� v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.233)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq. (13.70) is used.
Inserting Eqs. (13.70), (13.198), and (13.202) into Eq. (13.233) and integrating over the surface, using
Eqs. (76) and (96) from Appendix II [with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that
cos(f � f0) ¼ sin f0], gives

~pðr; qÞ ¼ �jka2r0c~u0
e�jkr

2r
DðqÞ; (13.234)

where the directivity function D(q) is given by

DðqÞ ¼ kb cos q
XN
n¼ 0

AnG

�
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2

��
2

kb sin q

�nþ3
2

J
nþ 3

2
ðkb sin qÞ: (13.235)

The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it into Eq. (13.233)
and integrating over the surface to give

Dð0Þ ¼ kb
XN
n¼ 0

An; (13.236)

so that the on-axis response can be written as

~pðr; 0Þ ¼ �jr0 f ~U0
e�jkr

r
kb
XN
n¼ 0

An: (13.237)

where ~U0 ¼ pa2~u0 is the total volume velocity. It is worth noting that in the unbaffled case, where
b ¼ a, D(0) is simply the normalized radiation impedance, that is D(0) ¼ (Rs þ jXs)/(r0c) where Rs

and Xs are given by Eq. (13.249) and (13.250) respectively. Using standard curve-fitting methods,
the following asymptotic expression can be written:

Dð0Þz j0:66

�
b

a
� 0:3

�
ka; kb < 0:5: (13.238)

The on-axis response for five values of b is shown in Fig. 13.22, calculated from the magnitude ofD(0).
We can see from Fig. 13.22 that, in the case of an unbaffled piston (b¼ a) radiating from both sides, the
on-axis sound pressure falls at 6 dB/octave for small values of ka due to the decreasing path difference
(as a proportion of wavelength l) between the anti-phase rear radiation and the front radiation, which it
partially cancels. This is also true of the oscillating sphere (see Fig. 4.26), but the attenuation is not as
great due to the longer path difference around the sphere.
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At larger values of ka, the rear radiation moves in and out of phase with that from the front.
However, the comb-filter effect is fairly “smeared,” the largest peak being 3 dB at ka ¼ p/O2 (or l ¼
2O2 a), the reason being that rear radiation is due to the sum of many ring sources spread over the
radius of the piston, each with a different path length to the front, so that at no particular frequency do
they combine to produce a source that is either directly in phase or out of phase with that from the
front. Unlike the oscillating sphere, the on-axis response does not roll-off at high frequencies, which is
a property of planar sources, as already discussed in Sec. 12.8.

By contrast, when we include a circular baffle and increase its size, the actual radiating area
decreases in proportion to the total so that it behaves more like a coherent point source at the center.
Hence, when b ¼ 4a, a deep null can be seen at ka ¼ p/2 or l ¼ 4a, which is the distance from the
center to the edge. Of course, a piston at the center of a circular baffle is the “worst case” and it would
be interesting to compare these results with those of an offset piston in a circular, rectangular, or
elliptical baffle, for example, in order to “smear” the path difference effect.

The normalized directivity function 20 log10jD(q)/D(0)j for a piston in free space is plotted in
Fig. 13.23 for four values of ka ¼ 2pa/l, that is, for four values of the ratio of the circumference of the
disk to the wavelength. When the circumference of the piston (2pa) is less than one-half wavelength,
that is, ka < 0.5, it behaves essentially like a dipole point source. In fact, to a first approximation, an
unbaffled thin piston is simply a doublet, because an axial movement in one direction compresses the
air on one side of it and causes a rarefaction of the air on the other side. When ka becomes greater than
3, the piston is highly directional, like the piston in an infinite baffle. Also, the directivity function for
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a piston in a finite open baffle is plotted in Fig. 13.24 for four values of kawith b¼ 2a and in Fig. 13.25
for four values of b.
Near-field pressure. The near-field pressure distribution is given by Eq. (13.28) taking into account
the surface pressure on both sides:

~pðr; qÞ ¼
Z2p
0

Zb
0

ð~pþðw0Þ � ~p�ðw0ÞÞ v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.239)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is used. It has
been shown [16] that inserting Eqs. (13.68), (13.198), and (13.202) into Eq. (13.239) and integrating
over the surface gives
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(13.240)
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which converges for r > b. For r � b, we derive a suitable expression from Eq. (13.204), which is
weakly singular at kw ¼ k. However, we can remove this singularity as follows: Firstly, we
substitute

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
for kw � k

and

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
for kw > k

in Eq. (13.204) to obtain

~pðw; zÞ ¼ k2a2r0c~u0
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We then apply the expansion of Eq. (109) from Appendix II to give
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which after integrating yields
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Equation (13.245) converges everywhere and is therefore suitable for r < b. Unfortunately,
Eq. (13.246) only converges for z2 > w2 þ b2 and is therefore not suitable. However, Eq. (13.243)
converges everywhere and can be calculated numerically without problem and is therefore suitable for
r< b. The pressure field of a rigid piston in free space is plotted in Fig. 13.26 for three values of ka. At
ka¼ 6p, the sound field of the unbaffled piston shows similar characteristics to the baffled one, except
that the radial pressure beyond its rim is zero, as with any planar dipole source. This suggests that, at
high frequencies, objects either side of the source have less effect upon the sound field, except that the
axial nulls are not as deep and the peaks are slightly higher. It can be shown that at low frequencies,
where ka < 1, the on-axis pressure converges to the far-field approximation at increasingly greater
distances due to the proximity effect (bass tip-up). The pressure field of a rigid piston in a circular
baffle of radius b ¼ 2a is plotted in Fig. 13.27 for two values of ka.
Radiation impedance of a piston in a circular baffle. The total radiation force is found by integrating
the pressure from Eq. (13.202) over the surface of the disk on both sides to give
~F ¼ �
Z2p
0

Za
0

�
~pþðw0Þ � ~p�ðw0Þ

�
wdwdf

¼ �2pa2r0c~u0
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The specific radiation impedance Zs is then given by

Zs ¼
~F
~U0

¼ Rs þ jXs; (13.248)

where ~U0 ¼ pa2~u0 is the total volume velocity and Rs is the specific radiation resistance in N$s/m3

(rayl) given by
Rs ¼ kbr0c<
 XN

n¼ 0

An
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; (13.249)

where the bold R indicates that the quantity varies with frequency and Xs is the specific radiation
reactance in N$s/m3 (rayl) given by

Xs ¼ kbr0cJ
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FIG. 13.26 Normalized near-field pressure plots for a rigid circular piston in free space as a function of ka[ 2pa/

l [ 2pfa/c, where a is the radius of the piston.

j~pj is the pressure magnitude, ~u0 is the piston velocity, r0 is the density of the acoustic medium, and c is the

speed of sound in that medium.
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Plots of the real and imaginary parts of

Zs
r0c

¼ Rs þ jXs

r0c
(13.251)

are shown in Fig. 13.28 as a function of ka.
The data of Fig. 13.28 are used in dealing with impedance analogies. The complex admittance can

be obtained by taking the reciprocal of the complex impedance.
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13.11 RADIATION FROM A RIGID CIRCULAR PISTON IN A FINITE CIRCULAR
CLOSED BAFFLE [30] (ONE-SIDED RADIATOR)
The configuration is the same as that shown in Fig. 13.21 for a piston in an open baffle except that the
velocity on the rear of the piston is zero. We can achieve this boundary condition by superposition of
fields (or Gutin concept) whereby we combine the field of a piston in an open finite baffle with that of
a piston in an infinite baffle. The former has negative velocity�~u0 on its rear surface whereas the latter,
if treated as a “breathing” disk in free space, has positive velocity ~u0 on its rear surface. Hence, when
the two fields are combined, their rear surface velocities cancel to produce a zero velocity boundary
condition as illustrated in Fig. 13.29. However, if we wish the front velocity to be ~u0 and not 2~u0, we
must halve the result.

Although the piston and baffle are both infinitesimally thin in this model, it can be used to model
a finite cylindrical enclosure with reasonably accuracy. In fact, the radiation characteristics of the
single-sided piston without a baffle (b ¼ a) are remarkably similar to those of a piston at the end of an
infinite tube [31]. In the case of a finite cylinder, there will be secondary reflections from the far end but
they will be considerably weaker than the primary ones from the rim of the baffle.
Far-field pressure. The directivity function D(q) is half the sum of that from Eq. (13.102) for a piston
in an infinite baffle and that from Eq. (13.235) for a piston in a finite open baffle:

DðqÞ ¼ J1ðka sin qÞ
ka sin q

þ kb

2
cos q

XN
n¼ 0

AnG

�
nþ 5

2

��
2

kb sin q

�nþ3
2

J
nþ 3

2
ðkb sin qÞ: (13.252)
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FIG. 13.29 Gutin concept: By superposition of fields, a one-sided piston in a finite closed baffle is equivalent to the

sum of a double-sided dipole piston in a finite open baffle and a monopole piston in an infinite baffle. Also see

Fig. 13.4 for the monopole piston model.
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Similarly, the on-axis pressure is obtained from Eqs. (13.103) and (13.236) to give

Dð0Þ ¼ 1

2

 
1þ kb

XN
n¼ 0

An

!
: (13.253)

The on-axis response for five values of b is shown in Fig. 13.30, calculated from the magnitude of
D(0). The normalized directivity function 20 log10jD(q)/D(0)j for a one-sided piston in free space is
plotted in Fig. 13.31 for four values of ka ¼ 2pa/l, that is, for four values of the ratio of the
circumference of the disk to the wavelength. Also, the directivity function for a piston in a finite
closed baffle is plotted in Fig. 13.32 for four values of ka with b ¼ 2a and in Fig. 13.33 for four
values of b.
Near-field pressure. The near-field pressure is simply the average of the pressures from Eqs. (13.106)
and (13.240) for r> a or Eqs. (13.107) and (13.241) for r� a. The pressure field for a one-sided piston
in free space is plotted in Fig. 13.34 for three values of ka. The pressure response on the shadow side of
the one-sided radiator is interesting not only for what it reveals about the diffraction effects around an
infinitesimally thin edge, but also for the fact that this pressure field is actually the difference between
the baffled (monopole) and unbaffled (dipole) responses of the rigid piston. In particular, the differ-
ences persist into the high-frequency range. The pressure field for a rigid circular piston in a closed
circular baffle of radius b ¼ 2a is plotted in Fig. 13.35 for two values of ka.
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Radiation impedance. The same principle can also be applied to the radiation impedance,
which is proportional to the sum of the surface pressures of a piston in a finite baffle and
an infinite baffle. Hence the real part can be obtained from Eqs. (13.117) and (13.249) as
follows:

Rs ¼ r0c
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ka
þ kb<
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Likewise, the imaginary part can be obtained from Eqs. (13.118) and (13.250) as follows:

Xs ¼ r0c
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Plots of the real and imaginary parts of

Zs
r0c

¼ Rs þ jXs

r0c
(13.256)

are shown in Fig. 13.36 as a function of ka.
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13.12 THE BABINET–BOUWKAMP PRINCIPLE
Kirchhoff theory. In its original form, Babinet’s principle [32] simply states that the diffraction pattern
resulting from the transmission of a plane wave through an aperture in an infinite screen is equivalent
to that produced by the scattering of the same incident wave by the complementary disk. In the
Kirchhoff theory of diffraction [33], it is assumed that the screen and complementary disk are either
both rigid or both resilient, in which case the field scattered by an aperture in a rigid screen or
complementary rigid disk can be represented by radiation from a rigid piston in an infinite baffle.
Similarly, the field scattered by an aperture in a resilient screen or complementary resilient disk can be
represented by radiation from a resilient disk in free space. If this were true, it would make life much
simpler as everything could be calculated from closed-form solutions. The problem is that the former
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assumes that the velocity of the scattered wave at the aperture or complementary rigid disk is the same
as that of the incident wave, as if it were unaffected by the presence of the scattering object. Similarly,
the latter assumes that the pressure of the scattered wave at the aperture or complementary resilient
disk is the same as that of the incident wave. At best, this is an approximation [21] that can only be
used when the wavelength is much smaller than the aperture or disk.
Bouwkamp theory. Bouwkamp’s modified version [20] of Babinet’s principle states that the diffrac-
tion pattern resulting from the transmission of a plane wave through an aperture in an infinite rigid
screen (see Fig. 13.37c) is equivalent to that produced by the scattering of the same incident wave by
the complementary resilient disk (see Fig. 13.37f). Also, the flip side of this is that the diffraction
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FIG. 13.37 The Babinet–Bouwkamp principle for a circular aperture in an infinite rigid screen.
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pattern resulting from the transmission of a plane wave through an aperture in an infinite resilient
screen (see Fig. 13.38c) is equivalent to that produced by the scattering of the same incident wave by
the complementary rigid disk (see Fig. 13.38f). Furthermore, Bouwkamp states that:

• The sound field scattered by a rigid disk is equivalent to that produced if the disk itself were
radiating in free space, provided that the velocity at the surface of the disk is equal to that of the
incident plane wave in the absence of any scattering obstacle.

• The sound field scattered by a resilient disk is equivalent to that produced if the disk itself were
radiating in an infinite rigid baffle, provided that the pressure at the surface of the disk is equal
to that of the incident plane wave in the absence of any scattering obstacle.

The general principle is illustrated in Fig. 13.37 and Fig. 13.38, but before we discuss apertures, we
will consider the scattering from plane objects.
Reflection from plane rigid objects [34]. We have already discussed the radiation of sound from
moving surfaces using the boundary integral method. It often happens in acoustics that once you have
found a solution for one problem, you get another for free. This is certainly the case with reflection
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from plane objects and here it will be shown how. Imagine a plane wave being reflected from an
arbitrary rigid surface. At the surface, the normal velocity is zero. Now we let the resulting pressure
field ~pðrÞ comprise two components as follows:

~pðrÞ ¼ ~pIðrÞ þ ~pSðrÞ; (13.257)

where ~pIðrÞ is the incident wave in the absence of any obstacles and ~pSðrÞ is the scattered wave. In
order to satisfy the boundary condition of zero normal velocity at the surface, the normal velocity of
the surface producing the scattered wave must be equal and opposite to the component of the velocity
of the incident wave that is normal to the surface. This is easiest to illustrate with a planar obstacle such
as a circular disk in free space, as shown in Fig. 13.8 except that in this case it is perfectly rigid. Let
~pIDðzÞ be a simple plane incident wave travelling along the disk’s axis of symmetry, which in this case
is defined as the z-axis, and let the disk be located at z¼ 0. At the disk, the velocity, and hence also the
gradient of the resultant field ~pDðzÞ, are both zero:

~u0 ¼ �ikr0c
v

vz
~pDðw; zÞ

���
z¼0

¼ 0; 0 � w � a; (13.258)
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where w is the radial ordinate and a is the radius of the disk. Also, from Eq. (13.257) and to preserve
continuity, the resultant pressure gradient is the sum of the incident and scattered pressure gradients:

v

vz
~pDðw; zÞ

���
z¼0

¼ v

vz
~pIDðw; zÞ

���
z¼0

þ v

vz
~pSDðw; zÞ

���
z¼0

¼ 0; 0 � w � a: (13.259)

Hence, the velocity ~u0 of the disk is equal and opposite to the velocity ~uID of the incident wave in the
absence of any scattering obstacles:

~u0 ¼ �ikr0c
v

vz
~pSDðw; zÞ

���
z¼0

¼ ikr0c
v

vz
~pIDðw; zÞ

���
z¼0

¼ �~uID; 0 � w � a: (13.260)

Therefore, the scattered field ~pSDðw; zÞ is that which would be produced if the disk were oscillating
back and forth with the same velocity as the incident wave, but with opposite phase, and the resultant
field ~pDðw; zÞ is the sum of the incident and scattered fields:

~pDðw; zÞ ¼ ~pIDðw; zÞ þ ~pSDðw; zÞ; (13.261)

as expressed in Fig. 13.38d, e, and f. However, we have to ask whether scattered field ~pSDðw; zÞ is the
same as that of a disk in free space or one in an infinite baffle. In order to answer that, we have to
consider another boundary condition, which lies in the plane of the disk beyond its rim. We can already
assume that the field on one side of this plane will be the symmetrical negative of that on the other. This
can be explained by the fact that on the “bright” side (facing the incident wave), the radiated sound
represents the reflected sound, whereas on the “dark” side, it is of opposite phase and therefore cancels
the incident wave that would otherwise be present in the absence of the disk. However, in a baffle,
these equal and opposite pressure values either side of the baffle would produce a discontinuous field
when added to the original incident wave. Therefore, the disk must behave as though it is oscillating in
free space, thus producing a continuous field with zero pressure in the plane beyond its rim as shown in
Fig. 13.38f. Hence, the resultant pressure in that region is simply that of the incident wave in the
absence of any obstacles. The scattered field ~pSDðw; zÞ is that of a rigid disk oscillating in free space,
which has already been evaluated in Sec. 13.10, using the dipole part of the Kirchhoff–Helmholtz
boundary integral.
Reflection from plane resilient objects. In the case of a resilient disk in the presence of an incident
plane wave traveling towards it along its axis of symmetry, the boundary condition at its surface is that
of zero pressure:

~pDðw; zÞ
���
z¼0

¼ ~pIDðw; zÞ
���
z¼0

þ ~pSDðw; zÞ
���
z¼0

¼ 0; 0 � w � a: (13.262)

Hence, the pressure of the scattered field at the surface must be equal and opposite to the pressure of
the incident wave in the absence of any scattering obstacles:

~p0 ¼ ~pSDðw; zÞ
���
z¼0

¼ �~pIDðw; zÞ
���
z¼0

; 0 � w � a: (13.263)

Therefore, the scattered field ~pSDðw; zÞ is that which would be produced if the disk were in motion with
the same pressure as the incident wave, but opposite phase, and the resultant field ~pDðw; zÞ is the sum
of the incident and scattered fields:

~pDðw; zÞ ¼ ~pIDðw; zÞ þ ~pSDðw; zÞ; (13.264)
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as expressed in Fig. 13.37d, e, and f. Furthermore, the scattered fields on each side of the disk are
symmetrical and both of opposite polarity to the incident wave. This has the effect of creating a shadow
on the “dark” side and reversing the phase of the reflected wave on the “bright” side due to the
boundary condition of zero pressure, as opposed to zero velocity. If the boundary condition in the plane
beyond the rim of the disk were one of zero pressure, the velocities on each side would be equal and
opposite thus adding to and subtracting from the velocity of the incident wave on consecutive sides.
This would in turn lead to a discontinuity in the velocity distribution of the resultant field at the plane.
Hence, the scattered field is that of a resilient disk in an infinite baffle with symmetrical fields on each
side, or a “breathing” resilient disk, which we have already evaluated in Sec. 13.9, using the monopole
part of the Kirchhoff–Helmholtz boundary integral.
The Babinet–Bouwkamp principle for diffraction through a circular aperture in a rigid
screen. Essentially, the boundary conditions for a circular aperture in an infinite rigid screen are the
same as those for the complementary rigid disk in free space above and Fig. 13.38d, except that they
are interchanged as shown in Fig. 13.37a. Hence, the resultant velocity is zero at the screen, which is
the scattering obstacle, and the pressure in the aperture is the same as that of the incident wave in the
absence of any scattering obstacles. However, whereas the rigid disk itself was treated as the source of
the scattered wave, it is not so convenient to treat the infinite rigid screen as such. Instead, the aperture
is treated as the source whereby the pressure is uniform everywhere within it and the aperture acts as
a pressure source, namely a resilient disk in an infinite baffle, which we have already evaluated in Sec.
13.9, using the monopole part of the Kirchhoff–Helmholtz boundary integral, and satisfies the
boundary condition of zero velocity on the screen. In order to calculate the resultant field on both sides
of the screen, we simply add the scattered field to the incident field in the absence of an aperture, i.e.,
the incident plane wave plus its reflection from a continuous infinite rigid screen plus the radiation
from the resilient disk. This is illustrated in Fig. 13.37a, b, and c. For clarity, the diagram portrays the
scattering of a sound wave at some very high frequency where there is minimal diffraction. However,
the principle applies at all frequencies. In general, for diffraction through a circular aperture in a rigid
screen,

~pIHðzÞ ¼

8>><
>>:

~p0ðeikz þ e�ikzÞ; bright side of rigid screen

0; dark side of rigid screen

~p0e
ikz; without disk ðor screenÞ

(13.265)

and

~pSHðzÞ ¼
(

~p0; z ¼ 0þ
�~p0 z ¼ 0� :

(13.266)

These expressions are plotted in Fig. 13.39 for ka ¼ 1, 5, and 10.
The Babinet–Bouwkamp principle for diffraction through a circular aperture in a resilient
screen. Here we interchange the boundary conditions for a resilient disk in free space, described
above. Hence, the resultant pressure is zero at the screen, which is the scattering obstacle, and the
velocity in the aperture is the same as that of the incident wave in the absence of any scattering
obstacles. The aperture is treated as the source, namely a rigid disk in free space, which we have
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already evaluated in Sec. 13.10, using the dipole part of the Kirchhoff–Helmholtz boundary integral,
and satisfies the boundary condition of zero pressure on the screen. In order to calculate the resultant
field on both sides of the screen, we simply add the scattered field to the incident field in the absence of
an aperture, i.e., the incident plane wave plus its reflection from a continuous infinite resilient screen
plus the radiation from the rigid disk. This is illustrated in Fig. 13.38a, b, and c. For clarity, the diagram
portrays the scattering of a sound wave at some very high frequency where there is minimal diffraction.
However, the principle applies at all frequencies. In general, for diffraction through a circular aperture
in a resilient screen,

~pIHðzÞ ¼

8>><
>>:

~p0ðeikz � e�ikzÞ; bright side of resilient screen

0; dark side of resilient screen

~p0e
ikz; without disk ðor screenÞ

(13.267)

and

� ikr0c
v

vz
~pSHðzÞ

���
z¼0

¼ ~u0: (13.268)

PART XXXVII: RADIATION THEOREMS, RADIATION IN RECTANGULAR-
SPHERICAL COORDINATES, MUTUAL IMPEDANCE

13.13 THE BOUWKAMP IMPEDANCE THEOREM [35]
In order to find the radiation impedance of a piston in an infinite baffle, we used an expression for the
near-field pressure and integrated the pressure over the surface of the piston in order to find the total
force. However, the far-field pressure is generally given by a much simpler expression. According to
Bouwkamp’s impedance theorem, if the acoustic medium is loss free, we can integrate the far-field
pressure over a hemispherical surface (or spherical in the case of a whole-space radiator) and let the
radius tend to infinity in order to obtain the radiation resistance. In general, the far-field pressure is
given in spherical coordinates (r, q, f) by

~pðr; q;fÞ ¼ �jkr0c ~U0

2pr
Dðq;fÞ (13.269)

although, in the case of an axisymmetric source such as the circular piston, there is no f dependency.
The total radiated power W is given by

W ¼

��� ~U0

���2
2

RAR ¼ 1

r0c

Z2p
0

Zp2
0

���~pðr; q;fÞ���2
2

r2sin q dq dfjr/N; (13.270)
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where RAR is the acoustic radiation impedance of the source and ~U0 is its total volume velocity. Hence
the specific radiation resistance is given by

Rs ¼ SRAR ¼ k2r0cS

4p2

Z2p
0

Zp2
0

jDðq;fÞj2sin q dq df: (13.271)

Also, the specific radiation reactance is given by

Xs ¼ SXAR ¼ �j
k2r0cS

4p2

Z2p
0

Zp
2 þ jN

p
2 þ j0

jDðq;fÞj2sin q dq df: (13.272)

It is fairly straightforward to verify this result by inserting the directivity function of Eq. (13.102)
together with kw ¼ k sin q into Eqs. (13.271) and (13.272). In this way, the expressions for the
radiation impedance given by Eqs. (13.118) and (13.117) can be duplicated, bearing in mind that
sin(p/2þjN) ¼ cos jN ¼ cosh N ¼ N. Of course, this theorem is not limited to radiators with
uniform surface velocity. Bouwkamp’s expression [35] includes the square of average surface
velocity divided by the square of the velocity at some reference point, although we have omitted this
here. We will use this theorem to derive an expression for the radiation impedance of a rectangular
piston in an infinite baffle.
13.14 RADIATION FROM AN INFINITELY LONG OSCILLATING STRIP IN AN
INFINITE BAFFLE [36,37]
Boundary conditions. Essentially this is the limiting case of a rectangular piston as one of its
dimensions tends to infinity. The infinitely long strip of width d shown in Fig. 13.40 is mounted
in an infinite baffle in the xy plane and oscillates in the z direction with a harmonically time
dependent velocity ~u0. As with the circular piston in an infinite baffle, the monopole source
elements, together with their images, coalesce to form elements of double strength. Due to the
symmetry of the pressure fields on either side of the baffle, there is the following Neumann
boundary condition on its surface:

v

vz
~pðx; zÞ

���
z¼0þ

¼ 0;

8>><
>>:

�N � x < �d

2

�d

2
< x � N

; (13.273)

which is satisfied automatically. On the surface of the strip there is the coupling condition

v

vz
~pðx; yÞ

���
z¼0þ

¼ �jkr0c~u0; �d

2
� x � d

2
; (13.274)
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FIG. 13.40 Geometry of infinitely long rigid strip in infinite baffle. The point of observation P is located at position

(x,y,z) in rectangular coordinates.

13.14 Radiation from an infinitely long oscillating strip in an infinite baffle 611
where r0 is the density of air or any other surrounding medium, c is the speed of sound in that medium
and k ¼ 2p/l ¼ u/c is the wave-number.
Far-field pressure. The pressure at point P due to a single line source at x0 is obtained from Eq. (12.6)
to give

~pðr; qÞ ¼ r0cð ~U0=lÞ
2

ffiffiffiffiffiffiffiffiffiffi
k

2pr1

r
e
�j

�
kr1�

p

4

�
; (13.275)

where ð ~U0=lÞ is the volume velocity per unit length, k ¼ u/c ¼ 2p/l is the wave-number and

r21 ¼ r2cos2qþ ðr sin q� x0Þ2: (13.276)

Hence, the pressure due to the strip is the integral across its width of Eq. (13.275) for a single line
source taking into account the double strength sources and letting ~U0 ¼ ld~u0 as follows:

~pðr; qÞ ¼ r0c~u0

Zd2
�d
2

ffiffiffiffiffiffiffiffiffiffi
k

2pr1

r
e
�j

�
kr1� p

4

�
dx0: (13.277)

At a large distance r, the terms containing r in Eq. (13.276) dominate. Hence the remaining terms can
be replaced with ones that enable r1 to be factorized as follows

r21 ¼ r2 þ x20 � 2rx0 sin q

z r2 þ x20 sin
2 q� 2rx0 sin q

¼ ðr � x0 sin qÞ2;
(13.278)
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which after inserting into Eq. (13.277) gives

~pðr; qÞ ¼ r0c~u0

ffiffiffiffiffiffiffiffi
k

2pr

r
e
�j

�
kr� p

4

� Zd2
�d
2

e jkx0 sin qdx0

¼ kdr0c~u0
2

ffiffiffiffiffi
d

pr

r
e
�j

�
kr� p

4

�
DðqÞ;

(13.279)

where the directivity function D(q) is given by

DðqÞ ¼
sin

�
1

2
kd sin q

�
�
1

2
kd

�3=2

sin q

; (13.280)

which is the same as that of a finite line source of length d in its plane, as given by Eq. (4.89). The
directivity pattern is shown in Fig. 4.18. The on-axis pressure is given by

Dð0Þ ¼ 1=

ffiffiffiffiffiffiffiffi
1

2
kd

r
:

In Sec. 2.1, we saw that in the case of a piston radiating into an infinitely long tube, the pressure ~p along
the tube is directly proportional to the piston velocity ~u0. Assuming the tube is much narrower than the
wavelength, this represents a one-dimensional system. In three-dimensional space, such as that of
a piston in an infinite baffle radiating into free space, the radiated pressure is proportional to the
acceleration of the piston ju~u0. Not surprisingly, in the two-dimensional space of an infinite strip we
find that the pressure is proportional to

ffiffiffiffiffi
ju

p
~u0.

Radiation impedance. Using the Bouwkamp impedance theorem (see Sec. 13.13), the radiated power
per unit length l is given by

W ¼
�����
~U0ffiffiffi
2

p
�����
2

RAR ¼ l

r0c

Zp2
�p
2

�����~pðr; qÞffiffiffi2p
�����
2

rdqjr/N; (13.281)

where the integration is taken over a half-cylindrical surface in the extreme far field. Using the pressure
from Eq. (13.279) we obtain the real and imaginary parts of the impedance as follows:

Rs ¼ ldRAR ¼ r0c
kd

p

Zp2
0

D2ðqÞdq; (13.282)
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Xs ¼ ldXAR ¼ r0c
kd

p

Zp
2 þ jN

p
2 þ j0

D2ðqÞdq; (13.283)
where Rs is the specific radiation resistance in N$s/m3 (rayl), where the bold R indicates that
the quantity varies with frequency, and Xs is the specific radiation reactance in N$s/m3 (rayl).
Substituting t ¼ sin q yields

Rs ¼ ldRAR ¼ r0c
kd

p

Z1
0

0
BBB@
sin

�
kd

2
t

�
kd

2
t

1
CCCA

2

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p

¼ r0c
kd

2 1F2

�
1

2
;
3

2
; 2;�k2d2

4

�

z r0c
kd

2
; kd < 0:5;

ð13:284Þ

Xs ¼ ldXAR ¼ r0c
kd

p

ZN
1

0
BBB@
sin

�
kd

2
t

�
kd

2
t

1
CCCA

2

dtffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p

¼ r0c
1

kd
G2;1
2;4

0
BBB@k2d2

4

�������
1;
3

2

1; 1; 0;
1

2

1
CCCA

z r0c
kd

p

�
3

2
� g� ln

�
kd

2

��
; kd < 0:5; (13.285)
where F is the hypergeometric function,G is the MeijerG function, and g¼ 0.5772 is Euler’s constant.
Separate plots of Rs/r0c and Xs/r0c are shown in Fig. 13.43 and Fig. 13.44, respectively, as a function
of kd.
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13.15 THE FAR-FIELD PRESSURE DISTRIBUTION AS A SPATIAL
FREQUENCY SPECTRUM OF THE SOURCE VELOCITY DISTRIBUTION
Two-dimensional system. In a two-dimensional system with a planar source, the far-field pressure
distribution is given by a generalized version of Eq. (13.279), where ~u0ðx0Þ is the source velocity
distribution:

~pðr; qÞ ¼ r0c

ffiffiffiffiffiffiffiffi
k

2pr

r
e
�j

�
kr� p

4

� ZN
�N

~u0ðxÞe jkx0 sin qdx0

¼ �j
e
�j

�
krþ p

4

�
ffiffiffiffiffiffiffiffiffiffi
2pkr

p ~FðkxÞ;

(13.286)

where

~FðkxÞ ¼
ZN

�N

~f ðx0Þejkxx0dx0; (13.287)

which is simply the Fourier transform or spatial frequency spectrum of the normal pressure gradient
distribution ~f ðx0Þ in the xy plane:

~f ðx0Þ ¼ � v

vz0
~pðx0; z0Þ

���
z0¼0

¼ jkr0c~uðx0Þ; (13.288)

where kx is the spatial frequency of the component of a wave in the x direction given by

kx ¼ k sin q: (13.289)

In the case of a strip of infinite extent in the y direction, the velocity distribution is just a step function
in the x direction:

f ðx0Þ ¼

8>>>>>><
>>>>>>:

0; x < �d

2

1; �d

2
� x � d

2

0; x > �d

2
:

(13.290)

By inspection of Eq. (13.279) we see that

DðkxÞ ¼ 2p

jkdr0c~u0
FðkxÞ ¼

sin

�
1

2
kxd

�
1

2
kxd

: (13.291)
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Now let us convert from polar coordinates in r and q to rectangular coordinates in x and z,
using

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p
; (13.292)

sin q ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p (13.293)

and project the polar directivity pattern onto a distant parallel screen. Hence, the spatial frequency kx at
a point on the screen a horizontal distance x from the z axis is scaled by

kx ¼ k sin q ¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p : (13.294)

At a given frequency u ¼ kc, only the spectrum up to spatial frequency kx ¼ k is displayed on the
screen as q varies from 0 to p/2. As the frequency is increased, more of the spectrum is shown but never
the whole spectrum. We also note that the amplitude of the spectrum is scaled by (z2 þ x2)�1/4 due to
the 1=

ffiffi
r

p
term in Eq. (13.279).

Three-dimensional system. Here we consider a three-dimensional system in rectangular coordinates
(x,y,z) with an arbitrary source velocity distribution in an infinite baffle in the xy plane, which radiates
into half space. The pressure field is given by the Rayleigh integral of Eq. (13.6) using the Green’s
function given by Eq. (13.4), which for z0 ¼ 0 can be written

gðx; y; zjx0; y0; 0Þ ¼ e�jkr1

4pr1
; (13.295)

where

r21 ¼ ðx� x0Þ2 þ ðy� y0Þ2 þ z2: (13.296)

If we let x ¼ r sin qx, y ¼ r sin qy and z2 ¼ r2 � x2 � y2, then

r21 ¼ r2 � 2rx0 sin qx � 2ry0 sin qy þ x20 þ y20

z ðr � x0 sin qx � y0 sin qyÞ2; r2[x20 þ y20;
(13.297)

where qx is the angle of elevation subtended with the z axis in the x direction and qy is that subtended
with the z axis in the y direction as follows:

sin qx ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ x

r
; (13.298)

sin qy ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ y

r
: (13.299)

Alternatively, in cylindrical coordinates we have sin qx¼ sin q cos f and sin qy¼ sin q sin f. Inserting
the Green’s function of Eq. (13.295) into the Rayleigh integral of Eq. (13.6), whilst doubling the source
strength due to half-space radiation, yields
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~pðx; y; zÞ ¼ jkr0c
e�jkr

2pr

ZN
�N

ZN
�N

~uðx0; y0Þe jkðx0 sin qxþy0 sin qyÞdx0dy0

¼ e�jkr

2pr
~Fðkx; kyÞ;

(13.300)

where

~Fðkx; kyÞ ¼
ZN

�N

ZN
�N

~f ðx0; y0Þe jðkxx0þkyy0Þdx0dy0; (13.301)

which is simply the Fourier transform or spatial frequency spectrum of the normal pressure gradient
distribution ~f ðx0; y0Þ in the xy plane:

~f ðx0; y0Þ ¼ � v

vz0
~pðx0; y0; z0Þ

���
z0¼0

¼ jkr0c~uðx0; y0Þ; (13.302)

where kx and ky are the spatial frequencies given by

kx ¼ k sin qx; (13.303)

ky ¼ k sin qy; (13.304)

and the amplitude in the distant plane is scaled by (x2 þ y2 þ z2)�1/2.
Axisymmetric three-dimensional system. In an axisymmetric system with a planar source, such
as a piston in an infinite baffle, the pressure distribution is given by the Rayleigh integral of
Eq. (13.6) using the Green’s function given by Eq. (13.70), which for z0 ¼ 0 and f ¼ p/2 can
be written

pðr; qÞ ¼ jkr0c
ejkr

2pr

Z2p
0

ZN
0

~uðw0Þe jkw0 sin q sinf0w0dw0f0

¼ ejkr

r

ZN
0

~f ðw0ÞJ0ðkw0 sin qÞw0dw0

¼ ejkr

r
~FðkwÞ;

(13.305)

where we have used Eq. (76) from Appendix II to solve the integral and

~FðkwÞ ¼
ZN
0

~f ðw0ÞJ0ðkww0Þw0dw0; (13.306)
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which is simply the Hankel transform or spatial frequency spectrum of the normal pressure gradient
distribution ~f ðw0Þ in the w plane:

~f ðw0Þ ¼ � v

vz0
~pðw0; z0Þ

���
z0¼0

¼ jkr0c~uðw0Þ; (13.307)

where kw is the spatial frequency is given by

kw ¼ k sin q: (13.308)

In the case of a piston in an infinite baffle, the velocity distribution is just a step function in the w
direction:

~f ðw0Þ ¼
(
jkr0c~u0; 0 � w0 � a

0; w0 > a:
(13.309)

so that applying the integral solution of Eq. (95) from Appendix II yields

~FðkwÞ ¼ jkr0c~u0

Za
0

J0ðkw0 sin qÞw0dw0

¼ jka2r0c~u0
J1ðka sin qÞ
ka sin q

:

(13.310)

By inspection of Eq. (13.102) we see that

DðkwÞ ¼ 2

jka2r0c~u0
~FðkwÞ: (13.311)

Now let us convert from polar coordinates in r and q to cylindrical coordinates in w and z,
using

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p
; (13.312)

sin q ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p ; (13.313)

and project the polar directivity pattern onto a distant parallel screen. Hence, the spatial frequency kw at
a point on the screen a horizontal distance w from the z axis is scaled by

kw ¼ k sin q ¼ kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p : (13.314)

At a given frequency u ¼ kc, only the spectrum up to spatial frequency kw ¼ k is displayed on the
screen as q varies from 0 to p/2. As the frequency is increased, more of the spectrum is shown but never
the whole spectrum. We also note that the amplitude of the spectrum is scaled by (z2 þ w2)�1/2 due to
the 1/r term in Eq. (13.101).
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13.16 THE BRIDGE PRODUCT THEOREM
This important theorem in acoustics is a corollary of the fact that the pressure distribution in
one plane is a Fourier transform of the velocity distribution in another one which is far away
and parallel to it, as discussed in the previous section. For simplicity, let us consider a two-
dimensional system in the xz plane of infinite extent in the y direction. We then multiply the
Fourier transform of an arbitrary velocity distribution f(x) by that of a line source at x0 as
follows:

FðKÞ ¼
ZN

�N

f ðxÞ ejKxdx�
ZN

�N

dðx� x0Þ e jKxdx

¼
ZN

�N

f ðxÞ e jKðxþx0Þdx;

(13.315)

where d(x � x0) is the Dirac delta function and we have used the property that

ZN
�N

dðx� x0Þ e jKxdx ¼ e jKx0 : (13.316)

If we now substitute x0 ¼ x þ x0, we obtain

FðKÞ ¼
ZN

�N

f ðx0 � x0Þe jKx0dx0; (13.317)

which is simply the Fourier transform of the original distribution f(x) shifted to a new origin at x0 as
illustrated in Fig. 13.41. This is somewhat analogous to the principle of amplitude modulation whereby
multiplying a baseband signal by a single tone in the time domain produces a modulated tone with
“sideband” spectrums either side of the tone in the frequency domain. Here the space domain is
analogous to the frequency domain and the spatial frequency domain is analogous to the time domain,
since the product is taken in the latter. Seeing that the far-field pressure of a planar source is the Fourier
transform of the source velocity distribution, we can use the product theorem to derive the far-field
pressure for a transducer array by simply taking the product of the directivity function for a single
transducer and that of any number of point sources located in the array positions, as illustrated in
Fig. 13.42.
13.17 RADIATION FROM A RIGID RECTANGULAR PISTON IN AN INFINITE
BAFFLE [38,39]
Far-field pressure. Using the product theorem given in Sec. 13.16, the directivity pattern is equal
to the product of the directivity patterns for two line arrays at right angles to each other [see
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FIG. 13.41 Product theorem: Origin shifting.

13.17 Radiation from a rigid rectangular piston in an infinite baffle 619
Eq. (4.89)]. The directivity patterns for this type of radiating source with dimensions d1 and d2 are
given by the formula

Dðq1; q2Þ ¼
sin

�
1

2
kd1 sin q1

�
1

2
kd1 sin q1

$

sin

�
1

2
kd2 sin q2

�
1

2
kd2 sin q2

; (13.318)

where

q1 is the angle between the normal to the surface of the piston and the projection of the line joining
the middle of the surface and the observation point on the plane normal to the surface and parallel
to d1.
q2 is the same as q1, with d2 substituted for d1.
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It is often more convenient to express Eq. (13.318) in spherical coordinates using

sin q1 ¼ sin q cosf; sin q2 ¼ sin q sinf: (13.319)

Also, we shall substitute j0(x) ¼ (sin x)/x to obtain

Dðq;fÞ ¼ j0

�
1

2
kd1 sin q cosf

�
$j0

�
1

2
kd2 sin q sinf

�
: (13.320)

Radiation impedance. Using the Bouwkamp impedance theorem, the radiation resistance and
reactance can be found by inserting Eq. (13.320) into Eqs. (13.271) and (13.272) respectively to
give

Rs ¼ kd1kd2
r0c

p2

Zp2
0

Zp2
0

j20

�
1

2
kd1sin q cosf

�
$j20

�
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kd2 sin q sinf

�
sin q dqdf; (13.321)

Xs ¼ �jkd1kd2
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kd1 sin q cosf

�
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�
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kd2 sin q sinf

�
sin q dqdf; (13.322)

where Rs is the specific radiation resistance in N$s/m3 (rayl), where the bold R indicates that the
quantity varies with frequency, and Xs is the specific radiation reactance in N$s/m

3 (rayl). Substituting
u ¼ cos q, together with v ¼ sin f, in Eq. (13.321) and u ¼ j cos q, together with v ¼ sin f, in
Eq. (13.322) yields

Rs ¼ kd1kd2
r0c
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p du dv; (13.323)
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An analytical solution to Eq. (13.323) can be found by expanding the Bessel functions using

j20ðxÞ ¼ ðsin xÞ2=x2 ¼
XN
n¼ 1

ð�1Þnþ122n�1

ð2nÞ! x2n�2; (13.325)

which gives
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�2n�1

: (13.326)



13.18 Mutual radiation impedance between rigid circular pistons in an infinite baffle 621
Equation (13.324) is much more complicated to solve. Firstly, the sine squared terms have to be
expanded into cosine terms using Eqs. (46) and (50) from Appendix II. Then the infinite integral is
solved before expanding the resulting Bessel and Struve functions. The remaining finite integral has to
be split into two at kd1/(kd1

2 þ kd2
2)1/2. Hence it can be shown that the following solution is obtained,

which is the same as Stenzel’s formula [38]
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where q ¼ d1/d2,

fmðqÞ ¼ Pm
n¼ 1

ð�1Þn
2nþ 1
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1þ q2m�2nþ2

	�
1þ q2Þnþ1=2 � 1� q2mþ3
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and

gm;nðqÞ ¼
Xn
p¼ 1

�
2p�1ðp� 1Þ!	2
ð2p� 1Þ!

 
m� p

m� n

!
: (13.329)

Separate plots of Rs/r0c and Xs/r0c are shown in Fig. 13.43 and Fig. 13.44, respectively, as a function
of kd where d ¼ d2 is the smallest dimension. Separate plots of Rs/r0c and Xs/r0c are also shown in
Fig. 13.45 and Fig. 13.46, respectively, as a function of ka, where a is a notional radius that gives the
same circular area S as the actual area of the rectangular piston, which is given by S ¼ pa2 ¼ d1d2.
13.18 MUTUAL RADIATION IMPEDANCE BETWEEN RIGID CIRCULAR
PISTONS IN AN INFINITE BAFFLE [40]
When a sound source is radiating in close proximity with other sources, their radiation characteristics
may be affected by their acoustic interaction, depending upon their spacing. Here we consider two
circular pistons, as shown in Fig. 13.47, of radius a and mounted in an infinite rigid baffle in the xy
plane, which oscillate in phase in the z direction with a harmonically time dependent velocity ~u0. We
can apply the product theorem of Sec. 13.16 in order to obtain the directivity pattern by multiplying the
directivity pattern of a single piston from Eq. (13.102) by that of two point sources from Eq. (4.80).
Note that the latter is modified in order to include f dependency.

Dðq;fÞ ¼ 2J1ðka sin qÞ
ka sin q

� cos

�
pd

l
sin q sinf

�
: (13.330)
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We now apply the identity

cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1þ cos 2xÞ

r

to Eq. (13.330) and insert the result into Eqs. (13.271) and (13.272) with S ¼ 2pa2 in order to obtain
the radiation impedance by means of the Bouwkamp impedance theorem:

Rs ¼ R11 þ R12

¼ r0c

p

Z2p
0

Zp2
0

J21ðka sin qÞ
sin2q

ð1þ cosðkd sin q sinfÞÞsin q dqdf;
(13.331)
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where R11 is the self resistance of each piston and R12 is the mutual resistance between the two pistons.
Also, the specific radiation reactance is given by

Xs ¼ X11 þ X12

¼ �j
r0c

p

Z2p
0

Zp
2 þ jN

p
2 þ j0

J21ðkasinqÞ
sin2q

ð1þ cosðkd sin q sinfÞÞsin q dq df;
(13.332)

where X11 is the self reactance of each piston and X12 is the mutual reactance between the two pistons.
The first term in each integral, which is independent of the spacing d, may be identified as the self
impedance Z11 so that

Z11 ¼ 2r0c

0
BBBB@
Zp2
0

J21ðka sin qÞ
sin q

dqþ
Zp

2 þ jN

p
2 þ j0

J21ðka sin qÞ
sin q

dq

1
CCCCA; (13.333)

which after substituting kw ¼ k sin q, as discussed in Sec. 13.13, gives

Z11 ¼ R11 þ jX11 ¼ r0c


�
1� J1ðkaÞ

ka

�
þ j

H1ðkaÞ
ka

�
: (13.334)
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The second term in each integral then gives the mutual impedance Z12 so that, after inte-
grating over f using the integral solution of Eq. (77) in Appendix II (with z ¼ kd sin q),
we have

Z12 ¼ 2r0c

0
BBBB@
Zp2
0

J21ðka sinqÞ
sin q

J0ðkd sin qÞdqþ
Zp

2 þ jN

p
2 þ j0

J21ðka sin qÞ
sin q

J0ðkd sin qÞdq

1
CCCCA; (13.335)



0.01

0.1

1

0.1 1 10

N
or

m
al

iz
ed

 re
ac

ta
nc

e

ka

Xs/ρ0c 
Circular (dashed) 

30:1 

10:1 

3:1 

1:1 

100:1 

FIG. 13.46 Normalized specific radiation reactance Xs /r0c of the air load on one side of a plane rectangular

piston in an infinite flat baffle for five different aspect ratios d1/d2, where d1 and d2 are the dimensions of the

piston.

Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c and a is a notional radius that

gives the same circular area S as the actual area of the rectangular piston, which is given by S ¼ pa2 ¼
d1d2.

13.18 Mutual radiation impedance between rigid circular pistons in an infinite baffle 625
which, after substituting s ¼ sin q becomes

Z12 ¼ 2r0c

0
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A: (13.336)

We then expand the J1 functions using the following Lommel expansion:

JvðkasÞ ¼ sv
XN
m¼ 0

�
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2

�m ð1� s2Þm
m!

JvþmðkaÞ (13.337)

to give
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which can be solved with help from Eqs. (96), (97), and (98) from Appendix II to yield

Z12 ¼ R12 þ jX12 ¼ 2r0cffiffiffi
p

p
XN
m¼ 0

XN
n¼ 0

�
ka

kd

�mþnG

�
mþ nþ 1

2

�
Jmþ1ðkaÞJnþ1ðkaÞ
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h
ð2Þ
mþnðkdÞ

(13.339)

where hmþn
(2) is the spherical Hankel function defined in Eq. (133) in Appendix II. For very large

wavelengths and separations, where ka << 1 and d >> a, we have

Z12 ¼ R12 þ jX12 ¼ r0c
k2a2

2

�
sin kd

kd
þ j

cos kd

kd

�
; (13.340)
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where R11 ¼ (ka)2/2. Plots of the real normalized mutual radiation resistance (R12/R11) and reactance
(X12/R11) for ka ¼ 1 are shown in Fig. 13.48 as a function of kd.
13.19 NEAR-FIELD ACOUSTICAL HOLOGRAPHY [41]
The forward problem. In Sec. 13.3 we stated that an infinite plane counts as a closed surface over
which a boundary surface integral may be evaluated because it isolates the sources on one side of the
plane from the observation field on the other. You will also recall from Sec. 13.15 that the far-field
pressure distribution is the Fourier transform of the velocity distribution over an infinite plane. In order
to calculate the near-field pressure we also have to take the inverse Fourier transform, and this tech-
nique is known as near-field acoustical holography. If we take the integral Green’s function of
Eq. (13.33) and insert it into the dipole part of the Kirchhoff–Helmholtz boundary integral of
Eq. (13.28) or dipole Rayleigh integral, we obtain

~pðx; y; zÞ ¼ 1

8p2

ZN
�N

ZN
�N

2~p0ðx0; y0; z0Þ
ZN

�N

ZN
�N

e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞdkxdkydx0dy0;

(13.342)

which gives the pressure ~pðx; y; zÞ in the z-plane in terms of the pressure ~p0ðx0; y0; z0Þ on both faces of
the z0-plane. The forward problem is defined as the one where the field is calculated for z � z0 and all
sources are located in the region z � z0. Rearranging the integrals gives
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~pðx; y; zÞ ¼ 1

4p2

ZN
�N

ZN
�N

e�jkzðz�z0Þ
ZN

�N

ZN
�N

~p0ðx0; y0; z0Þe jðkxx0þkyy0Þdx0dy0e�jðkxxþkyyÞdkxdky:

(13.343)

where

kz ¼
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q
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(13.344)

We shall now reconstruct this equation by a different method in three simple steps. First, we take the
spatial Fourier transform of the pressure in the z0-plane:

~Pðkx; ky; z0Þ ¼
ZN

�N

ZN
�N

~p0ðx0; y0; z0Þe jðkxx0þkyy0Þdx0dy0 (13.345)

The transformed pressure ~Pðkx; ky; z0Þ contains no references to the spatial ordinates x and y. It is simply
the wave-number spectra, each component of which represents a plane harmonic traveling wave,
provided that the associated wave-number is real. However, non-propagating evanescent fields can
exist, in which case the transform component represents a field of uniform phase that oscillates in time,
but not in space, and decays exponentially with distance. Next, the wave-number spectra is propagated
in k-space to the parallel z-plane by multiplying it with an exponent propagator term as follows

~Pðkx; ky; z0; zÞ ¼ e�jkzðz�z0Þ ~Pðkx; ky; z0Þ (13.346)

Over values of kx and ky for which kz is real, the propagator is simply a phase term which does not
affect the amplitude of the spectra. However, when kz is imaginary, the propagator becomes a decaying
exponent which when multiplied with the spectra represents non-propagating evanescent waves.
Finally, we take the inverse Fourier transform in order to construct the pressure field in the z-plane
which is essentially the sum of all the fields produced by each component of the wave-number spectra:

~pðx; y; zÞ ¼ 1

4p2

ZN
�N

ZN
�N

~Pðkx; ky; z0; zÞe�jðkxxþkyyÞdkxdky (13.347)

Combining Eq. (13.347) with Eqs. (13.344) and (13.346) gives Eq. (13.343). However, Eq. (13.347)
has computational and interpretational advantages over the Rayleigh integral and is particularly
amenable to the digital processing of sound fields captured by planar microphone arrays in order to
calculate the entire sound field of interest.
The reverse problem. It turns out that we can apply exactly the same equations that were used for the
forward problem, above, to the inverse problem, where the field is calculated for z� z0 and all sources
are also located in the region z � z0. The only difference now is that over values of kx and ky for which
kz is imaginary, the propagator becomes a growing exponent because the non-propagating evanescent
waves increase in strength when approaching the sources.
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13.20 TIME-REVERSAL
Imagine that we place a planar array of microphones between a stage and an audience and then make
a recording of a performance by musicians on the stage. We assume that the extent of the array is large
enough to be considered infinite and that the microphones are small enough and far enough apart not to
disturb the sound field produced. We also assume that the ratio of the smallest wavelength to the
microphone pitch is large enough not to introduce spatial aliasing. If we play back the recording
through an infinite array of either omnidirectional (monopole) or bidirectional (dipole) loudspeakers in
place of the microphones (making the same assumptions as with the microphones), we will faithfully
reproduce the concert when listening from the audience side of the array. However, if we listen from
the stage side, we will not hear what was heard by the musicians, but that which was heard by the
audience. Reproducing a sound field with sources in it is not so easy. Near-field acoustical holography,
as described in the previous section, only provides a way to calculate the sound field on the stage side.
In other words, we only have a virtual field, not a real one.

In time reversal, we play the recording backwards. Although this obviously makes no sense for
music, it does have an interesting effect in the case of signals such as a continuous tone or an impulse.
During the recording, an impulse arrives at the middle microphone first and then the ones either side of
that and works its way progressively towards the outermost microphones. During normal playback, the
impulse leaves the loudspeakers in the same order as it arrived at the corresponding microphones, but if
the recording is played backwards the sound emanates in reverse order starting from the outermost
loudspeakers and finishing from the middle one. The effect of this is to focus the sound towards the
source from which it was originally produced during the recording. If the sound was produced by
a point source [see Eq. (4.71)], will the original source be faithfully reproduced?

In order to answer that question, let us now consider a simpler example. Suppose now that we have
a spherical wave converging towards a point. If there is no source or sink at the focal point, the spherical
wave will pass through the focal point and re-emerge as a diverging wave. From Eq. (2.99) we have

~pðrÞ ¼ ~Aþ
e�jkr

r
þ ~A�

ejkr

r
; (13.348)

where ~A� is the amplitude of the sound pressure in the incoming wave at unit distance from the center
of the sphere and ~Aþ is the same for the outgoing wave. In order to meet the boundary condition of
pressure continuity, or zero pressure gradient, at the center, we set ~Aþ ¼ � ~A� so that

~pðrÞ ¼ 2j ~A�
sin kr

r
; (13.349)

The incoming wave is reflected back out again as if there were a rigid termination point at the center. In
order to absorb it we have to place a point sink � ~Aþe�jkr=r at the center. It has been pointed out that,
when time reversing the waves produced by dropping a pebble into a pond, a pebble must rise out of
the water at the end of the sequence. [44] In the case of a plane wave, it is relatively straight forward to
absorb it using a r0c termination as was shown in Sec. 2.4. In the case of a converging spherical wave,
the characteristic impedance is only approximately r0c at a distance of several wavelengths from the
center, as demonstrated by Eq. (2.109). At closer distances, the impedance is mainly massive.
Therefore, a sphere whose surface impedance is r0c can only be used as an acoustic sink to absorb an
incoming spherical wave if it has a diameter of several wavelengths.
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If we now return to the problem of the planar loudspeaker array, the same principle applies. In the
absence of any acoustic sink, the waves converge upon the point from which the sound originally
emanated and re-emerge on the opposite side. As they pass through the focal point, there is a transition
from the positive phase angle of the converging wave to the negative phase angle of the diverging one.
Hence the imaginary part of the pressure field is zero in the plane of the focal point where the
converging and diverging waves meet. In this way, the singularity of the original point source is
removed and we are left with an approximation of it.
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