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In this chapter and the next, we will derive results that were used in previous chapters in order to study
transducers and their radiation characteristics. The aim is to provide insight into how the shape of
a transducer determines its behavior as well as an understanding of how to solve acoustical problems
analytically. In each problem a new concept or method is introduced so that each problem is slightly
more complicated than the previous one. Formulas are given which the interested reader may use as
part of his or her own simulations. In this chapter, we will take the wave equation solutions of Chapter
2 and apply the appropriate boundary conditions to them in order to determine the unknown coeffi-
cients. This is known as the boundary value method. In fact we have already used this method to solve
for the reflection of a plane wave from a plane in Sec. 4.9, radiation from a pulsating sphere in Sec.
4.10, and an oscillating sphere Sec. 4.15. In Chapter 13, we will treat sound sources as arrays of point
sources which are integrated using the boundary integral method.
PART XXXIII: RADIATION IN CYLINDRICAL COORDINATES

12.1 RADIATION FROM A PULSATING INFINITE CYLINDER
The infinitely long pulsating cylinder is a useful model for vertical loudspeaker arrays. If the height of
the array is much greater than the wavelength of the sound being radiated, then we can use a two-
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488 CHAPTER 12 Radiation and scattering of sound by the boundary value method
dimensional model of infinite extent. Due to axial symmetry, it can be treated as a one-dimensional
problem with just a single radial ordinate w.
Pressure field. Since the cylinder is radiating into free space, where there are no reflections, we take
the outward-going part of the solution to the cylindrical wave equation (2.90) given by Eq. (2.94),
where ~pþ is an unknown coefficient to be determined from the boundary conditions. Let us now
impose a boundary condition at the surface of the cylinder whereby the particle velocity normal to the
surface, given by Eq. (2.95), is equal to the uniform surface velocity ~u0 so that ~uðaÞ ¼ ~u0, where a is
the radius, which gives

~pþ ¼ jr0c~u0

H
ð2Þ
1 ðkaÞ

: (12.1)

Inserting this into Eq. (2.94) and substituting ~U0=l ¼ 2pa~u0, where ~U0=l is the total volume velocity
per unit length, yields

~pðwÞ ¼ jr0cð ~U0=lÞ
2paH

ð2Þ
1 ðkaÞ

H
ð2Þ
0 ðkwÞ: (12.2)

12.2 RADIATION FROM AN INFINITE LINE SOURCE
In the limit as the radius of the cylinder shrinks to zero, we have an infinite line source. In Sec. 13.14
we will use this as a building block for an infinite ribbon which can be treated as an array of line
sources using the Huygens–Fresnel principle. When the radius is very small, we find that

H
ð2Þ
1 ðkaÞja/0 ¼ 2j

pka
; (12.3)

which after inserting into Eq. (12.2) gives the pressure field of an infinite line source:

~pðwÞ ¼ kr0cð ~U0=lÞ
4

H
ð2Þ
1 ðkwÞ: (12.4)

In the far field, we find that

H
ð2Þ
1 ðkwÞjw/N ¼

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e�jðkw� p

4
Þ; (12.5)

so that the far-field pressure for a line source is given by

~pðwÞ ¼ r0cð ~U0=lÞ
2

ffiffiffiffiffiffiffiffiffi
k

2pw

r
e�jðkw� p

4
Þ: (12.6)

Interestingly, the far-field pressure given by Eq. (12.6) varies with the inverse square-root of the radial
distance w from the source so that the SPL falls by 3 dB for every doubling of distance, which is
a characteristic of cylindrically diverging waves. This is in contrast to a spherically diverging wave,
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where the pressure given by Eq. (2.107) varies with the inverse square of the radial distance r from the
source so that the SPL falls by 6 dB for every doubling of distance. Hence line sources, in the form of
vertical stacks of loudspeakers, are popular in auditoriums because they give a more uniform sound
pressure distribution.
PART XXXIV: RADIATION AND SCATTERING IN SPHERICAL COORDINATES

12.3 SCATTERING OF A PLANE WAVE FROM A RIGID SPHERE
In this example, the expression scattering has been applied rather than reflection because not only does
a sphere reflect sound, but sound waves can bend around it, a phenomenon known as diffraction.
Generally, scattering refers to a mixture of reflection and diffraction. In the case of reflection from a plane
(see Sec. 4.9), we used rectangular coordinates in x and y. Here we are considering a sphere [1], so it is
convenient to use axially symmetrical spherical coordinates in r and q as shown in Fig. 12.1. In general,
the solution for the resultant field is the sum of the incident field in the absence of any obstacle and the
scattered fieldwhich is that which would be produced if the obstacle itself were radiating with a notional
surface velocity which is normal to its surface. If the object is rigid, this notional velocity must be equal
and opposite to the component of velocity of the incident wave that is normal to the surface of the
obstacle in its absence. The result of this is to produce zero net velocity normal to the surface of the
obstacle when it is present in the resultant field. Because the incident wave front arrives at different parts
of the surface at different times, the normal surface velocity varies in magnitude and phase over q, except
when the wavelength is very large compared with the diameter of the sphere, in which case it behaves as
a simple omnidirectional source or pulsating sphere as discussed in Sec. 4.10.
Incident field. In spherical coordinates, the incident plane wave pressure is

~pIðr; qÞ ¼ ~p0e
�jkr cos q: (12.7)

Fortunately, this expression can be expanded in terms of spherical Bessel functions jn and Legendre
functions Pn as follows:

~pIðr; qÞ ¼ ~p0
XN
n¼ 0

ð�jÞn ð2nþ 1Þ jnðkrÞPnðcos qÞ: (12.8)

This expression, which is similar in form to Eq. (2.164) for the solution to the wave equation in
spherical coordinates, is treated more rigorously later in the derivation of Eq. (13.63).
r
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FIG. 12.1 Geometry of plane wave and sphere.
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Scattered field. We assume that the pressure field scattered from the sphere is a solution to Eq.
(2.145), the Helmholtz wave equation in spherical coordinates. However, due to axial symmetry, we
can ignore Eq. (2.162) for the azimuthal part of the solution. Furthermore, since the sphere is in free
space, there are no waves reflected back towards the sphere (Sommerfeld condition). Hence we can
take just the outward-traveling part of Eq. (2.151) for the radial part of the solution. Combining this
with Eq. (2.160) for the inclinational part of the solution gives

~psðr; qÞ ¼ ~p0
XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.9)

where An are unknown series coefficients that are determined by applying appropriate boundary
conditions.
Resultant field. Using the principle of superposition of fields, we now express the resultant field
~pðr; qÞ as the sum of the incident and scattered fields:

~pðr; qÞ ¼ ~pIðr; qÞ þ ~psðr; qÞ: (12.10)

At the rigid surface of the sphere, where r¼ R, we have the boundary condition of zero normal
velocity. Hence from Eq. (2.4a), the pressure gradient must also be zero:

v

vr
~pðr; qÞjr¼R ¼ 0; (12.11)

so that

v

vr
~psðr; qÞjr¼R ¼ � v

vr
~pIðr; qÞ j r¼R: (12.12)

What this equation tells us is that the scattered field is that which would be produced if the surface of
the sphere itself were oscillating with a velocity equal and opposite to the normal velocity of the
incident wave at the surface in the absence of the sphere. Inserting the expressions for ~ps and ~pI from
Eqs. (12.9) and (12.8) respectively into Eq. (12.12) gives

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼ �

XN
n¼ 0

ð�jÞnð2nþ 1Þj0nðkRÞPnðcos qÞ; 0 � q � p; (12.13)

where

j0nðkRÞ ¼ v

vr
jnðkrÞjr¼R ¼ k

2nþ 1
ðnjn�1ðkRÞ � ðnþ 1Þjnþ1ðkRÞÞ; (12.14)

h0ð2Þn ðkRÞ ¼ v

vr
hð2Þn ðkrÞjr¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
: (12.15)

Straight away, by matching the coefficients of Pn(cos q) on both sides of Eq. (12.13), we can see that
the unknown coefficients An are given by

An ¼ �ð�jÞnð2nþ 1Þ j0nðkRÞ
h0ð2Þn ðkRÞ

: (12.16)
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Inserting Eq. (12.16) into Eq. (12.9) gives the scattered field as

~psðr; qÞ ¼ �~p0
XN
n¼ 0

ð�jÞnð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkrÞ

hð2Þn ðkrÞPnðcos qÞ: (12.17)

The resultant field ~pðr; qÞ is then given by Eq. (12.10) using Eq. (12.7) for ~pIðr; qÞ and Eq. (12.17) for
~pSðr; qÞ. The magnitude of the normalized pressure j~pðw; zÞ=~p0j is plotted in Fig. 12.2 and Fig. 12.3 in
cylindrical coordinates w and z where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ z2
p

and cos q ¼ Z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
. It can be seen from

Fig. 12.2 that the incident field is hardly disturbed at all when kR¼ 0.1, i.e., when the wavelength is
much greater than the circumference of the sphere. On the other hand, at the other end of the spectrum,
the plot for kR¼ 10 in Fig. 12.3 tells us that there are significant interference patterns in the vicinity of
the sphere when the wavelength is considerably shorter than the circumference of the sphere.
Far-field pressure. As the distance r from the centre of the sphere is increased to many wavelengths,
the asymptotic expression for the spherical Hankel function becomes

hð2Þn ðkrÞjr/N ¼ j nþ1

kr
e�jkr: (12.18)

Inserting this into Eq. (12.17) yields

~psðr; qÞjr/N ¼ � jR ~p0
2r

e�jkr DðqÞ; (12.19)
FIG. 12.2 Resultant pressure field j ~pðw; zÞ=~p0j due to the scattering of a plane wave from a sphere for kR[ 0.1.

The arrow shows the direction of the incident wave.



FIG. 12.3 Resultant pressure field j ~pðw; zÞ=~p0j due to the scattering of a plane wave from a sphere for kR[ 10.

The arrow shows the direction of the incident wave.
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where D(q) is a directivity function given by

DðqÞ ¼ 2

kR

XN
n¼ 0

ð2nþ 1Þ j0nðkRÞ
h0ð2Þn ðkRÞ

Pn ðcos qÞ: (12.20)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 12.4 for various values of kR.
Let a reflection coefficient be defined by

DðpÞ ¼ 2

kR

XN
n¼ 0

ð�1Þnð2nþ 1Þ j0nðkRÞ
h0ð2Þn ðkRÞ

z

(
�5jk2 R2=3; kR < 0:5

�1; kR > 2;
(12.21)

where we have used the identity Pn(�1)¼ (�1)n. Similarly, let a transmission coefficient be defined by

Dð0Þ ¼ 2

kR

XN
n¼ 0

ð2nþ 1Þ j0nðkRÞ
h0ð2Þn ðkRÞ

z

(
jk2 R2=3; kR < 0:5

kR; kR > 10;
(12.22)

where we have used the identity Pn(1)¼ 1. These reflection and transmission coefficients are plotted
against kR in Fig. 12.5.

For small values of kR, the transmission and reflection coefficients are both fairly weak. We see
that, above kR¼ 2, the reflection coefficient remains virtually constant whereas the transmission



FIG. 12.4 Directivity pattern 20 log10(jD(q)j/jD(p)j) of the far-field pressure due to the scattering of a plane wave

from a rigid sphere (excluding the incident field).

FIG. 12.5 Transmission and reflection coefficients for the scattering of a plane wave by a rigid sphere.

12.3 Scattering of a plane wave from a rigid sphere 493



494 CHAPTER 12 Radiation and scattering of sound by the boundary value method
coefficient shows that energy is concentrated in the direction of the incident wave. This can also be
seen from Fig. 12.3. This may seem somewhat counter-intuitive since one might expect an obstacle to
cast a shadow at high frequencies and we will see later that this is indeed the case when the obstacle is
planar. However, in this case the smooth continuous contours or the sphere enable sound waves to be
diffracted around it at high frequencies. The fact that higher frequency waves are scattered more than
lower frequency ones is also true for light, which explains why the sky is blue.
12.4 SCATTERING FROM A RIGID SPHERE BY A POINT SOURCE
Refer to Fig. 12.6. Let a point source of volume velocity ~U0 be located at a distance d from a sphere of
radius R. We wish to calculate the resultant pressure field ~pðr; qÞ at a distance r from the center of the
sphere and at an angle q with the axis passing through the point source and center of the sphere. The
distance r1 between the observation point and the point source is given by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2rd cos q

p
: (12.23)

Incident field. In spherical coordinates, the incident pressure field due to the point source is obtained
by substituting r¼ r1 in Eq. (4.71) to give

~pIðr; qÞ ¼ �jkr0c ~U0
e�jkr1

4pr1
: (12.24)

This expression can be expanded in terms of spherical Bessel functions jn and Legendre functions Pn

from Eq. (13.68) as follows

~pIðr; qÞ ¼ � k2r0c ~U0

4p

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞjnðkrÞPnðcos qÞ; r � d: (12.25)

Scattered field. As in the case of the previous problem of the plane wave and a sphere, we assume that
the pressure field scattered from the sphere is a general axisymmetric solution to Eq. (2.145), the
Helmholtz wave equation in spherical coordinates:
r

0

),(~ θrp

0
~

U
θ

R d

r1

FIG. 12.6 Geometry of point source and sphere.
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~psðr; qÞ ¼ r0c ~U0

4pR2

XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.26)

where An are unknown series coefficients that are determined by applying appropriate boundary
conditions. However, this time the solution is in terms of the source volume velocity instead of
pressure. In order to keep the coefficients An dimensionless, the volume velocity has been converted
into a particle velocity by dividing it by the surface area of the sphere S¼ 4pR2 and then converted to
a pressure term by multiplying it by the specific acoustic impedance of free space r0c.
Resultant field. Using the principle of superposition of fields, we now express the resultant field
~pðr; qÞ as the sum of the incident and scattered fields:

~pðr; qÞ ¼ ~pIðr; qÞ þ ~psðr; qÞ: (12.27)

At the rigid surface of the sphere, where r¼ R, we have the boundary condition of zero normal
velocity. Hence from Eq. (2.4a), the pressure gradient must also be zero:

v

vr
~pðr; qÞjr¼R ¼ 0; (12.28)

so that

v

vr
~psðr; qÞjr¼R ¼ � v

vr
~pIðr; qÞjr¼R; (12.29)

which, after inserting the expressions for ~ps and ~pI from Eqs. (12.26) and (12.25) respectively gives

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼ k2R2

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞjn 0ðkRÞ Pnðcos qÞ; 0 � q � p; (12.30)

where

j0nðkRÞ ¼ v

vr
jnðkrÞjr¼R ¼ k

2nþ 1
ðnjn�1ðkRÞ � ðnþ 1Þjnþ1ðkRÞÞ; (12.31)

h0ð2Þn ðkRÞ ¼ v

vr
hð2Þn ðkrÞjr¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
: (12.32)

Straight away, by matching the coefficients of Pn(cos q) on both sides of Eq. (12.30), we can see that
the unknown coefficients An are given by

An ¼ k2R2ð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h0ð2Þn ðkRÞ

: (12.33)

Inserting Eq. (12.33) into Eq. (12.26) gives the scattered field as

~psðr; qÞ ¼ k2R2r0c ~U0

S

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h0ð2Þn ðkRÞ

hð2Þn ðkrÞPnðcos qÞ; (12.34)
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where S¼ 4pR2 is the total surface area of the sphere. The resultant field ~pðr; qÞ is then given by Eq.
(12.27) using Eq. (12.24) for ~pIðr; qÞ and Eq. (12.34) for ~pSðr; qÞ. The magnitude of the normalized
pressure, ���S~pðw; zÞ=ðrc ~U0Þ

���;
is plotted in Fig. 12.7 and Fig. 12.8 in cylindrical coordinates w and z where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
and cos q ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
:

It can be seen from Fig. 12.7 that the incident field is hardly disturbed at all when kR¼ 0.1, i.e., when
the wavelength is much greater than the circumference of the sphere, except that the constant pressure
contours are distorted slightly so that they become normal to the surface of the sphere. On the other
hand, at the other end of the spectrum, the plot for kR¼ 10 in Fig. 12.3 tells us that there are significant
interference patterns in the vicinity of the sphere when the wavelength is considerably shorter than the
circumference of the sphere. Also, the shadow regions are more distinct than those that are produced
by an incident plane wave in Fig. 12.3.
Far-field pressure. As the distance r from the centre of the sphere is increased to many wavelengths,
the asymptotic expression for the spherical Hankel function becomes that of Eq. (12.18). Inserting Eq.
(12.18) into Eq. (12.34) yields
FIG. 12.7 Resultant pressure jS ~pðw; zÞ=rc~U0j field due to the scattering of a point source from a rigid sphere for

kR[ 0.1.



FIG. 12.8 Resultant pressure field jS ~pðw; zÞ=rc~U0j due to the scattering of a field from a point source by a rigid

sphere where kR[ 10.
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~psðr; qÞjr/N ¼ � jkr0c ~U0

4pr
e�jkr DðqÞ; (12.35)

where D(q) is a directivity function given by

DðqÞ ¼ �
XN
n¼ 0

j nð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h0ð2Þn ðkRÞ

Pnðcos qÞ: (12.36)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 12.9 for various values of kR. Let
a reflection coefficient be defined by

Dð0Þ ¼ �
XN
n¼ 0

j nð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h0ð2Þn ðkRÞ

; (12.37)

where we have used the identity Pn(1)¼ 1. Similarly, let a transmission coefficient be defined by

DðpÞ ¼ �
XN
n¼ 0

ð�j nÞð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h0ð2Þn ðkRÞ

; (12.38)

where we have used the identity Pn(�1)¼ (�1)n. These reflection and transmission coefficients are
plotted against kR in Fig. 12.10 and Fig. 12.11. For small values of kR, the transmission and reflection
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coefficients are both fairly weak, but more or less equal because the sound is scattered in all directions.
It can be seen that above kR¼ 2, the reflection coefficient remains virtually constant. In the plot for
d¼ R, the point source is on the surface of the sphere and the reflection coefficient above kR¼ 2 is
100% because the point source is behaving as though it is on an infinite plane. In the plot for d¼ 2R,
the reflected wave has decayed over twice the distance between the point source and the sphere. We
will study the behavior of a point source on a sphere in greater detail when dealing with sound sources.
Above kR¼ 10, we do not see the rising transmission coefficient that we saw with the plane wave.
Instead, it oscillates around unity (0 dB) due to constructive and destructive interference. Hence, the
sound from a point source is not concentrated by the sphere like that from a plane wave. The reason for
this is that components of the plane wave strike the sphere from many different directions, including
the sides, and these components can be diffracted around it.
12.5 RADIATION FROM A POINT SOURCE ON A SPHERE
This problem is essentially the same as the last one when d¼ R. However, this time we shall introduce
the property of orthogonality in order to obtain a simple solution. By reciprocity, the resulting
expression can be used to obtain the pressure at a point on the sphere due to a source at some point in
space. This is a useful model for the diffraction effects of the human head on sound arriving at one ear,
assuming a hard sphere model of the head. Unlike the pulsating sphere, only an infinitesimally small
part of the surface is oscillating, so that the velocity distribution is described by

~uðR; qÞ ¼
(

~u0; 0 � q � d

0; d � q � p
; (12.39)
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where d is a vanishingly small angle.
Near-field pressure. We assume that the pressure field generated is a general axisymmetric solution to
Eq. (2.145), the Helmholtz wave equation in spherical coordinates:

~pðr; qÞ ¼ r0c~u0
XN
n¼ 0

Anh
ð2Þ
n ðkrÞ Pnðcos qÞ: (12.40)

Applying the velocity boundary condition gives

~uðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞj r¼R

¼ ~u0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼

8<
:

~u0; 0 � q � d

0; d � q � p;

(12.41)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32). We now

multiply both sides of (12.41) with the orthogonal function Pm (cos q) and integrate over the surface of
the sphere, where the area of each surface element is given by

dS ¼ 2pR2 sin q dq;

so that

1

�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞ

Zp
0

Pnðcos qÞ Pmðcos qÞ R sin q dq ¼
Zd
0

Pmðcos qÞ R sin q dq (12.42)

It can be seen from Eq. (12.42) that we have effectively exchanged q dependency for m dependency.
Hence Eq. (12.42) represents an infinite set of simultaneous equations where m¼ 0, 1, 2, $$$. The
integral solutions are given by Eqs. (66) and (67) in Appendix II. However, dmn is the Kronecker delta
function which is zero unless m¼ n in which case its value is 1. In other words, we have a matrix in
which only the diagonal terms are non-zero, so that the coefficients are given directly by

An ¼ �jk
ð2nþ 1Þ d2
4h0ð2Þn ðkRÞ

(12.43)

without having to solve a system of equations. Finally, by inserting (12.43) in (12.40) and letting ~U0 ¼
pðdRÞ2~u0 we can write the near-field pressure as

~pðr; qÞ ¼ �jr0c
~U0

S

XN
n¼ 0

ð2nþ 1Þ2hð2Þn ðkrÞPnðcos qÞ
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

; (12.44)

where S¼ 4pR2 is the total surface area of the sphere. The magnitude of the normalized pressure,���S ~pðw; zÞ=ðr0c ~U0Þ
���;
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is plotted in Fig. 12.12 and Fig. 12.13 in cylindrical coordinates w and z where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
and cos q ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
:

We can see from Fig. 12.12 that at low frequencies the pressure contours are more or less concentric
with the acoustic center at a distance of around ½R in front of the point source. By contrast, the
contours in Fig. 12.13 are eccentric so that at high frequencies, the further you are from the source, the
further the source appears to be from its actual position.
Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hankel
function from Eq. (12.18), which when inserted into Eq. (12.44) gives

~pðr; qÞjr/N ¼ �jkr0c
~U0

4pr
e �jkr DðqÞ; (12.45)

where

DðqÞ ¼ 1

k2R2

XN
n¼ 0

jnþ1ð2nþ 1Þ2 Pn ðcos qÞ
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

: (12.46)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 12.14 for various values of kR. The far-
field on-axis response is given by
FIG. 12.12 Pressure field jS ~pðw; zÞ=r0c~U0j due to a point source on a rigid sphere for kR[ 0.1.



FIG. 12.13 Pressure field jS ~pðw; zÞ=r0c~U0j due to a point source on a rigid sphere for kR[ 10.
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FIG. 12.14 Far field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a point source on

a rigid sphere of radius R.
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Dð0Þ ¼ 1

k2R2

XN
n¼ 0

j nð2nþ 1Þ2
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

: (12.47)

The on-axis response 20 log10(D(0)) and 180� off-axis response 20 log10(D(p)) are plotted against kR
in Fig. 12.15. It can be seen that there is a 6 dB lift in the on-axis response when the wavelength is
approximately equal to the circumference of the sphere. This is due to the fact that the point source acts
as a pure monopole radiator at low frequencies as though the sphere were not present. However, at high
frequencies, the sphere acts as a large baffle and the radiated sound is concentrated in half space thus
doubling the pressure value. Because the sphere is smooth and continuous with no reflecting edges, the
transition from whole-space to half-space radiation is also smooth, producing just some very small
ripples in the on-axis response. We shall see that this is not so in the case of radiators with edges.
Hence, the sphere represents an idealized loudspeaker enclosure.
12.6 RADIATION FROM A SPHERICAL CAP IN A SPHERE
In reality, loudspeakers do not have vanishingly small diaphragms and at high frequencies the size and
shape of the radiator strongly influences the resulting sound field. The spherical cap [2] represents
a curved finite diaphragm which follows the contour of the sphere. This makes it easier to analyze than
a flat piston, which we shall consider in the next problem. The spherical cap shown in Fig. 12.16 is set
in a rigid sphere of radius R and moves with an axial velocity ~u0 such that the velocity distribution is
described by

~uðR; qÞ ¼
(

~u0 cos q; 0 � q � a

0; a � q � p
; (12.48)
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FIG. 12.16 Geometry of oscillating cap in a rigid sphere.
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where a is the half-angle of the arc formed by the cap. Although the cap is rigid in this case, other
velocity distributions are possible [6]. The total volume velocity is given by

~U0 ¼ ~u0R
2

Z2p
0

Za
0

cos q sin q dq df ¼ S ~u0; (12.49)

where S is the effective surface area of the cap given by

S ¼ pR2 sin2a: (12.50)

If the cap were radially pulsating, we would drop the cos q term from Eqs. (12.48) and (12.49) and the
effective surface area would be

S ¼ 2pR2ð1� cosaÞ:

Near-field pressure. Again we assume that the pressure field generated is a general axisymmetric
solution to Eq. (2.145), the Helmholtz wave equation in spherical coordinates:

~pðr; qÞ ¼ r0c~u0
XN
n¼ 0

Anh
ð2Þ
n ðkrÞ Pnðcos qÞ: (12.51)

Applying the velocity boundary condition gives

~uðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞj r¼R

¼ ~u0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼

8<
:

~u0 cos q; 0 � q � a

0; a � q � p;

(12.52)
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.

,

l

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32). We now

multiply both sides of Eq. (12.52) with the orthogonal function Pm (cos q) and integrate over the
surface of the sphere, where the area of each surface element is given by

dS ¼ 2pR2 sin q d q;

so that

1

�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞ

Zp
0

Pnðcos qÞ Pmðcos qÞ sin qdq ¼
Za
0

Pmðcos qÞ cos q sin q dq (12.53)

from which we obtain the coefficients as follows:

A0 ¼ jk
�sin2 a

4h0ð2Þ0 ðkRÞ
; (12.54)

A1 ¼ jk
cos3 a� 1

2h0ð2Þ1 ðkRÞ
; (12.55)

An ¼ jkð2nþ 1Þsin a
sin a Pnðcos aÞ þ cos a P1

nðcos aÞ
2ðn� 1Þðnþ 2Þh0ð2Þn ðkRÞ

; n � 2; (12.56)

where we have used the integral solutions from Eqs. (66) and (68) in Appendix II. Separate terms have
been derived for n¼ 0 and 1 in Eq. (68) because the expression for n � 2 is singular at n¼ 1
Alternatively, if the cap were radially pulsating, we would drop the cos q term from the right hand side
of Eqs. (12.48) and (12.52) and use Eq. (69) from Appendix II. Finally, by inserting Eqs. (12.54)
(12.55), and (12.56) in Eq. (12.51) we can write the near-field pressure as

~pðr; qÞ ¼ �jkrc~u0

 
sin2 a

4h0ð2Þ0 ðkRÞ
h
ð2Þ
0 ðkrÞ þ 1� cos3 a

2h0ð2Þ1 ðkRÞ
h
ð2Þ
1 ðkrÞ cos q

�sin a
PN
n¼ 2

ð2nþ 1Þ sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

2ðn� 1Þðnþ 2Þh0ð2Þn ðkRÞ
hð2Þn ðkrÞ Pn ðcos qÞ

! (12.57)

Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hanke
function from Eq. (12.18), which when inserted into Eq. (12.57) gives

~pðr; qÞjr/N ¼ �jkr0cS
~u0
4pr

e�jkr DðqÞ; (12.58)

where S is the dome effective area given by S¼ pa2 and
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DðqÞ ¼ � 2

k2R2

 
j

2h
ð2Þ
1 ðkRÞ

þ 3ð1� cos3 aÞ
sin2 a

�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

� cos q

þ PN
n¼ 2

jnþ1ð2nþ 1Þ2�sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

�
ðn� 1Þðnþ 2Þ sin a

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

� Pnðcos qÞ
!
:

(12.59)

When a¼½p, the second term simplifies to that for an oscillating sphere, as described in Sec. 4.15,
and odd terms in the expansion vanish so that Eq. (12.59) simplifies to

DðqÞj
a¼ p

2
¼ �j

2kRejkR

2� k2R2 þ j2kR
cos q

�j
2

k2R2

XN
n¼ 0

ð�1Þnð4nþ 1Þ2 P2nð0Þ
ð2n� 1Þð2nþ 1Þ

�
2nh

ð2Þ
2n�1ðkRÞ � ð2nþ 1Þhð2Þ2nþ1ðkRÞ

� P2nðcos qÞ;
(12.60)

which represents the superposition of two fields. The first term represents an oscillating sphere and the
second two diametrically opposed hemispherical caps or a hemispherical dome in an infinite baffle,
which will be discussed in greater detail in Sec. 12.9. The same kind of superposition of fields, or
“Gutin concept”, will be used in Sec. 13.11 to describe a single-sided piston. The directivity pattern 20
log10(D(q)/D(0)) for a¼ 60� is plotted in Fig. 12.17 for various values of ka. As expected, we see that
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FIG. 12.17 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a spherical cap of

radius a in a rigid sphere for a[ 60�, where a is the half angle of the arc formed by the cap.
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at low frequencies the pattern is almost omnidirectional. However, at high frequencies the spherical
cap shows a fairly constant angle of dispersion which is approximately equal to the angle of arc formed
by the cap itself. The far-field on-axis response is given by

Dð0Þ ¼ � 2

k2R2

 
j

2h
ð2Þ
1 ðkRÞ

þ 3ð1� cos3 aÞ
sin2 a

�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

�

þ PN
n¼ 2

j nþ1ð2nþ 1Þ2�sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

�
ðn� 1Þðnþ 2Þ sin a

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
!
:

(12.61)

The on-axis response 20 log10(D(0)) is plotted against ka in Fig. 12.18. Like the point source on
a sphere, we see a rise in the response around kR¼ 1, (i.e. the wavelength is roughly equal to the
circumference of the sphere) due to the transition from whole-space to half-space radiation. However,
like the oscillating sphere, the response starts to fall above ka¼ 5 because the response is proportional
to the cap velocity when the radiation resistance is mainly resistive, as indicated in Fig. 12.19. Unlike
the oscillating sphere, the falling response is accompanied by ripples due to the discontinuity at the
edge of the cap. This produces cancellation effects due to path length differences from different parts
of the cap.
Radiation impedance. The total radiation force ~F is given by

~F ¼ R2

Z2p
0

Za
0

~pðR; qÞ sin q dq df (12.62)
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FIG. 12.18 Plot of 20 log10(D(0)) where D(q) is the directivity function of a spherical cap of radius a in a rigid
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Frequency is plotted on a normalized scale, where ka¼ 2pa/l¼ 2pfa/c.
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using the identity of Eq. (69) from Appendix II. The specific impedance Zs is then given by

Zs ¼
~F
~U0

¼ r0c

 
jð1� cos aÞhð2Þ0 ðkRÞ

2h
ð2Þ
1 ðkRÞ

� 3jð1� cos3 aÞP�1
1 ðcos aÞhð2Þ1 ðkRÞ

sin a
�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

�

þ PN
n¼ 2

jð2nþ 1Þ2
�
sin a Pnðcos aÞ þ cos a P1

nðcos aÞ
�
P�1
n ðcos aÞhð2Þn ðkRÞ

ðn� 1Þðnþ 2Þ
�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
!
;

(12.63)

where we have used the expression for ~U0 from Eq. (12.49). When a¼½p, the second term simplifies
to that for an oscillating sphere, as described in Sec. 4.15, and the expansion vanishes so that Eq.
(12.63) simplifies to

Zsja¼ p
2

¼ r0c

 
k4R4 þ jðk3R3 þ 2kRÞ

2ðk4R4 þ 4Þ þ jh
ð2Þ
0 ðkRÞ

2h
ð2Þ
1 ðkRÞ

!
; (12.64)
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which represents the superposition of two fields. The first term represents an oscillating sphere and the
second two diametrically opposed hemispherical caps or a hemispherical dome in an infinite baffle,
which will be discussed in greater detail in Sec. 12.9. The same kind of superposition of fields, or
“Gutin concept”, will be used in Sec. 13.11 to describe a single-sided piston. The real and imaginary
parts, Rs and Xs, are plotted in Fig. 12.19 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.65)

We can see that the impedance of the 90� cap is roughly the average of the pulsating and oscillating
spheres. At 15�, the cap approaches a piston in an infinite baffle, which we will study later. There are
ripples in the impedance curves above ka¼ 2 due to interference patterns in the immediate vicinity of
the radiator.
12.7 RADIATION FROM A RECTANGULAR CAP IN A SPHERE
A useful model for the mouth of a circular horn is the spherical cap in a sphere [3]. However, this
can be shown to have a somewhat irregular on-axis response with peaks and dips due to inter-
ference between sound radiated from the center of the cap and its rim. Also, circular horns are
rarely used these days and it is more common to find a rectangular horn with an aspect ratio
chosen so that its horizontal radiation is concentrated over an angle which covers the auditorium
area. However, one additional advantage of this arrangement is that on-axis irregularities are less
likely. The question we wish to answer is what is the optimum aspect ratio for a smooth on-axis
response? Until now we have only dealt with problems with axial symmetry, which are inde-
pendent of the azimuthal angle f. In other words, they are really 2-dimensional in r and q. The
rectangular cap in a sphere is our first genuinely 3-dimensional problem in spherical coordinates
(r, q, f) and its geometry is shown in Fig. 12.20. The rectangular cap, which is defined by the half
angles a and b, is set in a rigid sphere of radius R and pulsates with a velocity ~u0 such that the
velocity distribution is described by
R 

2β 

2α 

φ 

θ0 

R cos θ0 = r cos α  

R sin θ0 cos φ = r sin α 

FIG. 12.20 Geometry of rectangular cap in sphere. For clarity the sphere is not shown.



510 CHAPTER 12 Radiation and scattering of sound by the boundary value method
~uðR; q;fÞ ¼

8>>><
>>>:

~u0;

(
0 � q � q0; 0 � f � arctan ðtan b=tan aÞ
0 � q � q1; 0 � f � arctan ðtan a=tan bÞ

0;

(
q0 � q � p; 0 � f � arctan ðtan b=tan aÞ
q1 � q � p; 0 � f � arctan ðtan a=tan bÞ ;

(12.66)

where

q0 ¼ arctanðtan a=cosfÞ; (12.67)

q1 ¼ arctanðtanb=cosfÞ: (12.68)

In order to calculate the effective surface area S of the cap, where the area of each surface element is
given by

dS ¼ R2 sin q dq df;

we need only integrate over one quarter of the cap and multiply the result by four:

S ¼ 4R2

0
BBBBBB@

Zarctan
tan b
tan a

0

Zarctan tan a
cos f

0

sin q dq dfþ
Zarctan tan a

tan b

0

Zarctan
tan b
cos f

0

sin q dq df

1
CCCCCCA

¼ 4R2

(
arctan

 
tan a tan b

sec2 aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 aþ tan2b

p
!

þ arctan

 
tan a tan b

sec2 bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 bþ tan2a

p
!)

z 4R2 sin a sin b; a <
p

4
; b <

p

4

(12.69)

Near-field pressure. The Helmholtz wave equation in spherical coordinates is given by

V2 ¼ v2

vr2
þ 2

r

v

vr
þ 1

r2
v2

vq2
þ 1

r2tan q

v

vq
þ 1

r2sin2 q

v2

vf2
; (12.70)

The resulting pressure field is given by the following solution:

~pðr; q;fÞ ¼ r0c~u0
XN
n¼ 0

Xn=2
m¼ 0

Amnh
ð2Þ
n ðkrÞP2m

n ðcos qÞ cos 2 mf: (12.71)
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where Amn are the as-yet unknown power series coefficients which are evaluated by applying appro-
priate boundary conditions. In order to meet the boundary condition of symmetry at f¼ 0, we use only
cosine terms in the solution. Applying the velocity boundary condition gives

~uðR; q;fÞ ¼ 1

�jkr0c

v

vr
pðr; q;fÞj r¼R

¼ ~u0
�jk

XN
n¼ 0

Xn=2
m¼ 0

Amnh
0ð2Þ
n ðkRÞP2m

n ðcos qÞ cos 2 mf

(12.72)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by

h0ð2Þn ðkRÞ ¼ v

vr
hð2Þn ðkrÞ j r¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
: (12.73)

We now equate Eq. (12.66) with Eq. (12.72) while truncating the infinite series limit to N. Then
multiplying both sides with the orthogonal function

P2p
q ðcos qÞ cos 2 pf

and integrating over the surface of the sphere gives

1

�jk

XN
n¼ 0

Xn=2
m¼ 0

Amnh
0ð2Þ
n ðkRÞ

Zp
0

P2m
n ðcos qÞ P2p

q ðcos qÞ sin q dq

Z2p
0

cos 2m f cos 2 pf df

¼
Zarctan

tan b
tan a

0

cos 2 pf

Zarctan tan a
cos f

0

P2 p
q ðcos qÞsin q dqdf

þ
Zp

2 þarctan tan a
tan b

p
2 �arctan tan a

tan b

cos 2 pf

Zarctan
tan b

ðcos f�p=2Þ

0

P2 p
q ðcos qÞsin q dqdf

þ
Zp

p�arctan
tan b
tan a

cos 2 pf

Zarctan tan a
cosðf�pÞ

0

P2p
q ðcos qÞsin q dqdf

(12.74)
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from which we obtain the coefficients:

Amn ¼ ð2nþ 1Þ2ðn� 2mÞ! Imn
j2pðnþ 2mÞ!

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

� ; (12.75)

where

Imn ¼
Zarctan

tan b
tan a

0

cos 2 mf

Zarctan tan a
cos f

0

P2m
n ðcos qÞsin q dqdf

þ
Zp

2 þ arctan tan a
tan b

p
2 �arctan tan a

tan b

cos 2 mf

Zarctan
tan b
sin f

0

P2m
n ðcos qÞsin q dqdf

þ
Zp

p�arctan
tan b
tan a

cos 2 mf

Zarctan tan a
�cosf

0

P2m
n ðcos qÞsin q dqdf;

(12.76)

Ion ¼
Zarctan

tan b
tan a

0

tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 fþ tan2 a

p P�1
n

 
cos fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 fþ tan2 a
p

!
df

þ
Zp

2 þarctan tan a
tan b

p
2 �arctan tan a

tan b

tan bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 fþ tan2 b

p P�1
n

 
sin fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 fþ tan2 b
p

!
df

þ
Zp

p�arctan
tan b
tan a

tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 fþ tan2 a

p P�1
n

 
�cos fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 fþ tan2 a
p

!
df;

(12.77)

and we have used the integral solutions

Z2p
0

cos 2mf cos 2 pf df ¼
(

p; m ¼ p

0; m s p
(12.78)
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Zp
0

P2m
n ðcos qÞP2p

q ðcos qÞ sin q dq ¼
8<
:

2ðnþ 2mÞ!
ð2nþ 1Þðn� 2mÞ! ; m ¼ p and n ¼ q

0; msp or nsq

(12.79)

Zj
0

Pnðcos qÞ sin q dq ¼ P�1
n ðcos jÞ sin j (12.80)

Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hankel
function:

hð2Þn ðkrÞjr/N ¼ jnþ1

kr
e�jkr; (12.81)

which when inserted into Eq. (12.71) gives

~pðr; q;fÞjr/N ¼ �jkr0cS
~u0
4pr

e�jkr Dðq;fÞ; (12.82)

where S is the cap effective area given by Eq. (12.69) and

Dðq;fÞ ¼ � 4p

k2S

XN
n¼ 0

Xn=2
m¼ 0

Amn j
nP2m

n ðcos qÞ cos 2mf: (12.83)

The far-field on-axis response is obtained using the relationship

P2m
n ð1Þ ¼ dm0 (12.84)

so that

Dð0; 0Þ ¼ � 4p

k2S

XN
n¼ 0

A0n j
n: (12.85)

The on-axis response 20 log10(D(0,0)) is plotted against kR in Fig. 12.21. The black curve shows
the response of a pulsating circular cap in a sphere [from Eq. (13.83)], which has even deeper
nulls than those of the oscillating cap shown in Fig. 12.18. Replacing it with a square cap, shown
by the dark gray trace, immediately reduces the heights of the peaks and depths of the nulls. The
smoothest response is that of the rectangular cap with an aspect ratio of 1:3 shown by the light
gray trace. The worst shape is circular because at certain frequencies, the sound from near the rim
arrives out of phase with that from the center and cancels it. At other frequencies it is in phase and
reinforces it. By making the cap rectangular, the cancellations are never complete because the
amount of sound radiated from near the corners is reduced compared with what it would be if the
cap were circular.
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Radiation impedance. The total radiation force ~F is given by

~F ¼ 2R2

0
BBBBBB@

Zarctan
tan b
tan a

0

Zarctan tan a
cos f

0

~pðR; q;fÞ sin q dq df

þ
Zp

2 þ arctan tan a
tan b

p
2 � arctan tan a

tan b

Zarctan
tan b
sin f

0

~pðR; q;fÞ sin q dq df

þ
Zp

p�arctan
tan b
tan a

Zarctan
tan b
�cos f

0

~pðR; q;fÞ sin q dq df

1
CCCCCCA

(12.86)

The specific impedance Zs is then given by

Zs ¼
~F
~U0

¼
~F

S~u0
¼ 2R2r0c

S

XN
n¼ 0

Xn=2
m¼ 0

Amnh
ð2Þ
n ðkRÞImn; (12.87)
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where we use the expression for S from Eq. (12.69). The real and imaginary parts, Rs and Xs, are
given by

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.88)

12.8 RADIATION FROM A PISTON IN A SPHERE
The geometry of the piston of radius a in a sphere of radius R is shown in Fig. 12.22. In this example we
shall see the effect of having a planar radiator as opposed to the curved ones in all the previous
examples. In the previous problem, the spherical cap followed the contour of the sphere so that there
was only angular dependency in the velocity boundary condition with no radial dependency. This led
to a direct solution for the expansion coefficients. Here a flat circular piston [4] oscillates with
a uniform axial velocity of ~u0. Hence the velocity boundary condition is more complicated so that the
expansion coefficients can only be obtained by solving a set of simultaneous equations.
Near-field pressure. Again we assume that the pressure field generated is a general axisymmetric
solution to Eq. (2.145), the Helmholtz wave equation in spherical coordinates:

~pðr; qÞ ¼ r0c~u0
XN
n¼ 0

Anh
ð2Þ
n ðkrÞ Pnðcos qÞ; (12.89)

where An are the as-yet unknown expansion coefficients which will be calculated by means of a set of
simultaneous equations in matrix form. Now we define the velocity boundary condition on the piston
as

~uzðr1; qÞ ¼ ~u0; 0 � q � a; r ¼ r1; (12.90)

where

r1 ¼ R cos a

cos q
; (12.91)
R 

),(~ θrp

r 

α
θ a = R sinα

Sphere

Piston

0 0
~u

FIG. 12.22 Geometry of piston in a rigid sphere.
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and the velocity boundary condition on the sphere as

~urðR; qÞ ¼ 0; a � q � p; r ¼ R; (12.92)

where the subscript z denotes the axial direction, or normal to the piston, and the subscript r denotes the
radial direction, or normal to the sphere. The piston velocity boundary condition can be obtained using

~uzðr1; qÞ ¼ 1

�jkr0c

v

vz
pðr; qÞj r¼r1 ; (12.93)

where

v

vz
¼ vr

vz
$
v

vr
þ vq

vz
$
v

vq
; (12.94)

vr

vz
¼ cos q; (12.95)

vq

vz
¼ � sin q

r
; (12.96)

so that

~uzðr1; qÞ ¼ ~u0
�jk

XN
n¼ 0

An

�
h0ð2Þn ðkr1ÞPnðcos qÞ cos q� 1

r1
hð2Þn ðkr1ÞP0

nðcos qÞsin q

	
; (12.97)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkr1Þ is given by Eq. (12.32) and the

derivative of the Legendre function Pn
0ðcos qÞ is given from Eq. (65) in Appendix II by

Pn
0ðcos qÞ ¼ v

vq
Pnðcos qÞ ¼ � nðnþ 1Þ

ð2nþ 1Þsin q
ðPn�1ðcos qÞ � Pnþ1ðcos qÞÞ: (12.98)

The sphere boundary condition is the same as that for the spherical cap in a sphere given by Eq.
(12.52). We also note that the area of each surface element on the piston and the sphere are given
respectively by

dSp ¼ 2p
r21

cos q
sin q dq; (12.99)

dSs ¼ 2pR2sin q dq: (12.100)

Hence, we can create an infinite set of simultaneous equations by multiplying Eqs. (12.90) and (12.92)
through by Pm(cos q) and integrating over the surfaces of the piston and sphere:Za

0

~uzðr1; qÞPmðcos qÞr21 tan q dqþ R2

Zp
a

~urðR; qÞ Pm ðcos qÞsin q dq

¼ ~u0

Za
0

Pmðcos qÞr21 tan q dq; m ¼ 0; 1; 2; $$$:

(12.101)
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In matrix form this becomes

M$a ¼ b0a ¼ M�1$b; (12.102)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼
Imn þ

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
Kmn

2nþ 1
;

(
m ¼ 0; 1; $$$;N

n ¼ 0; 1; $$$;N
;

(12.103)

bðmþ 1Þ ¼ �jLm; m ¼ 0; 1; $$$;N; (12.104)

aðnþ 1Þ ¼ An; n ¼ 0; 1; $$$;N; (12.105)

where

Imn ¼
Za
0

n�
nh

ð2Þ
n�1ðkr1Þ � ðnþ 1Þhð2Þnþ1ðkr1Þ

�
Pnðcos qÞ cos q

þnðnþ 1Þhð2Þn ðkr1Þ ðPn�1ðcos qÞ � Pnþ1ðcos qÞÞ=kr1
o
Pmðcos qÞ r

2
1

R2
tan q dq;

(12.106)

Kmn ¼
Zp
a

Pnðcos qÞPmðcos qÞ sin q dq; (12.107)

Lm ¼
Za
0

Pmðcos qÞ r
2
1

R2
tan q dq: (12.108)

A solution to the integral Kmn is given by Eq. (70) in Appendix II. Unfortunately, integrals Imn and Lm
have no analytical solutions and therefore have to be evaluated numerically using, for example,

Za
0

f ðqÞ dq ¼ a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ p� 1=2

P
a: (12.109)

Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hankel
function from Eq. (12.18), which when inserted into Eq. (12.89) gives

~pðr; qÞjr/N ¼ �jkr0cS
~u0
4pr

e�jkr DðqÞ: (12.110)

where S is the piston area given by S¼ pa2 and
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DðqÞ ¼ � 4

k2R2 sin 2a

XN
n¼ 0

An j
nPnðcos qÞ: (12.111)

The directivity pattern 20 log10(D(q)/D(0)) for a¼ 60� is plotted in Fig. 12.23 for various values of ka.
The far-field on-axis response is given by

Dð0Þ ¼ � 4

k2R2 sin 2a

XN
n¼ 0

An j
n: (12.112)

The on-axis response 20 log10(D(0)) is plotted against ka in Fig. 12.24. Comparing the directivity
pattern of Fig. 12.23 with that of a spherical cap shown in Fig. 12.17 we see that the piston is more
directional at high frequencies, concentrating its output over a decreasing angle. By contrast, the
spherical cap shows a fairly constant angle of dispersion at high frequencies which is approximately
equal to the angle of arc formed by the cap itself. The on-axis responses of Fig. 12.24 are quite
interesting. They all show an overall 6 dB rise due to the transition from whole-space radiation at low
frequencies to half-space radiation at high frequencies. In addition, there are ripples in the response
above ka¼ 1.5 due to reflections from the edge of the piston, which acts as a secondary radiator
interfering with the direct radiation. Furthermore, the 15� cap behaves rather like the point source on
a sphere and produces ripples below ka¼ 1.5 due to diffraction around the sphere. An important
difference between planar sources and curved “constant directivity” sources such as the spherical cap
(see Fig. 12.18), driven with constant acceleration, is that the on-axis response of the latter rolls off in
0 dB
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FIG. 12.23 Far field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a piston of radius a in
a rigid sphere for a[ 60�, where R[ a/sin a is the radius of the sphere.
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the region where the radiation impedance is resistive and the radiated pressure is thus proportional to
the velocity of the radiating surface. With a planar source, the narrowing of the directivity pattern and
subsequent concentration of the radiated pressure on axis tends to compensate for this and maintain
a level response. At lower frequencies, where the radiation load is mainly mass, both have a level
pressure response with constant acceleration due to Newton’s second law: force¼mass�
acceleration.
Radiation impedance. The total radiation force ~F is given by

~F ¼
Z2p
0

Za
0

~pðr1; qÞr21 tan q dq df: (12.113)

The specific impedance Zs is then given by

Zs ¼
~F
~U0

¼ 2r0c

R2sin2a

XN
n¼ 0

An

Za
0

hð2Þn ðkr1ÞPnðcos qÞr21 tan q dq; (12.114)

where ~U0 ¼ pR2 sin2 a ~u0. The real and imaginary parts, Rs and Xs, are plotted in Fig. 12.25 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.115)

The main difference between these curves and those of Fig. 12.19 for the spherical cap is that they all
show ripples due to interference patterns in the immediate vicinity of the piston.
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520 CHAPTER 12 Radiation and scattering of sound by the boundary value method
12.9 RADIATION FROM AN OSCILLATING CONVEX DOME IN AN
INFINITE BAFFLE
A convex dome [5] of radius a and radius of curvature R in an infinite baffle is shown in Fig. 12.26. We
shall solve this problem using field matching, whereby we make use of the fact that the dome in an
infinite baffle produces the same field as that of two back-to-back domes in free space which oscillate
in opposite directions. The latter produces a symmetrical field which is identical to that of the single
dome together with its image field due to reflection from the baffle. In this way, the boundary condition
of zero velocity or pressure gradient at the baffle is satisfied automatically.
Near-field pressure. Again we assume that the pressure field generated is a general axisymmetric
solution to Eq. (2.145), the Helmholtz wave equation in spherical coordinates:

~pðr; qÞ ¼ r0c~u0
XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.116)
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FIG. 12.26 Geometry of convex dome in infinite baffle.
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where An are the as-yet unknown expansion coefficients which will be calculated by means of a set of
simultaneous equations in matrix form. The normal particle velocity ~uSðR; qÞ at the surface of the
dome is given by

~usðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞj r¼R

¼ ~u0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ:

(12.117)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32). For q � a, this

is simply equal to the normal velocity of the dome. However, for q> a, we are in the image field to
the left of the baffle plane, as indicated by PI in Fig. 12.26 and we need to match this velocity with
that of the particle velocity ~u1ðqÞ at the corresponding point P0 to the right of the plane. The latter is
defined by

~u1ðr1; q1Þ ¼ 1

�jkr0c

v

vn
pðr; qÞj r¼r1;q¼q1 ; (12.118)

where the derivative is taken with respect to the normal n of the surface such that

v

vn
¼ vr

vn
$
v

vr
þ vq

vn
$
v

vq
; (12.119)

vr

vn
¼ cos b; (12.120)

vq

vn
¼ sin b

r
: (12.121)
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The following useful relationships can be derived from the geometry of the problem:

cos b ¼ R

r1
ð1� 2cos a cos qÞ; (12.122)

r1 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos a ðcos a� cos qÞ

p
; (12.123)

cos q1 ¼ R

r1
ð2cos a� cos qÞ: (12.124)

Inserting all of the above into Eq. (12.118) leads to

~u1ðr1; q1Þ ¼ ~u0
�jk

XN
n¼ 0

An

�
h0ð2Þn ðkr1Þcos bPnðcos q1Þ þ hð2Þn ðkr1Þ sin b

r1
P0
nðcos q1Þ

	
; (12.125)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32) and the

derivative of the Legendre function P0
nðcos q1Þ is given by Eq. (65) from Appendix II. By matching the

fields, the velocity boundary condition can be expressed by

~usðR; qÞ ¼
(

~u0 cos q; 0 � q � a

~u1ðr1; q1Þ a < q � p:
(12.126)

As before, we multiply through with the orthogonal function Pm (cos q) and integrate over the surface
of the sphere, where the area of each surface element is given by

dS ¼ 2pR2 sin q dq;

in order to yield the following infinite set of simultaneous equations:

Zp
0

~usðR; qÞPmðcos qÞ sin q dq ¼ ~u0

Za
0

Pmðcos qÞ cos q sin q dq

þ
Zp
a

~u1ðr1; q1ÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2; $$$:

(12.127)

Inserting Eqs. (12.117) and (12.125) for ~usðR; qÞ and ~u1ðr1; q1Þ respectively into Eq. (12.127), while
truncating the infinite summation limits to order N, gives

XN
n¼ 0

An

 
2dmn

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
ð2nþ 1Þ2 � Imn

!
¼ �jKm; m ¼ 0; 1; 2; $$$;N

(12.128)
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where

Imn ¼
Zp
a

 
nh

ð2Þ
n�1ðkr1Þ � ðnþ 1Þhð2Þnþ1ðkr1Þ

2nþ 1
Pnðcos q1Þ cos b

� nðnþ 1Þhð2Þn ðkr1Þ
ð2nþ 1Þkr1 ðPn�1ðcos q1Þ � Pnþ1ðcos q1ÞÞ sin b

sin q1

!
Pmðcos qÞ sin q dq;

(12.129)

Km ¼
Za
0

Pmðcos qÞ cos q sin q dq

¼

8><
>:

ð1� cos3 aÞ=3; m ¼ 1

�sin a
sin a Pmðcos aÞ þ cos a P1

mðaÞ
ðm� 1Þðmþ 2Þ ; ms1;

(12.130)

where the identities of Eqs. (66) and (68) from Appendix II have been applied. Unfortunately, the
integral Imn has no analytical solution and has to be evaluated numerically using, for example:

Zp
a

f ðqÞdq ¼ p� a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ aþ p� 1=2

P
ðp� aÞ: (12.131)

In matrix form Eq. (12.128) becomes

M$a ¼ b0a ¼ M�1$b; (12.132)

where the N�N matrix elements are given by

Mðmþ 1; nþ 1Þ ¼
2dmn

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
jð2nþ 1Þ2 � Imn;

(
m ¼ 0; 1; $$$;N

n ¼ 0; 1; $$$;N
;

(12.133)

bðmþ 1Þ ¼ �jKm; m ¼ 0; 1; $$$; N; (12.134)

aðnþ 1Þ ¼ An; n ¼ 0; 1; $$$; N; (12.135)

Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hankel
function from Eq. (12.18), which when inserted into Eq. (12.116) gives

~pðr; qÞjr/N ¼ �jkr0cS
~u0
2pr

e�jkr DðqÞ; (12.136)

where S is the dome effective area given by S¼ pa2 and
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DðqÞ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

An j
nPnðcos qÞ: (12.137)

In the case where a¼½p, we obtain the following simple expansion solution from Eq. (12.60):

DðqÞa¼ p
2

������ ¼ �j
2

k2R2

XN
n¼ 0

ð�1Þnð4nþ 1Þ2 P2nð0ÞP2nðcos qÞ
ð2n� 1Þð2nþ 1Þ

�
2nh

ð2Þ
2n�1ðkRÞ � ð2nþ 1Þhð2Þ2nþ1ðkRÞ

�: (12.138)

The directivity pattern 20 log10(D(q)/D(0)) for a¼ 60� is plotted in Fig. 12.27 for various values of ka.
The results are fairly similar to those of the spherical cap in a sphere in that at low frequencies the
pattern is almost omnidirectional and at high frequencies the dome cap shows a fairly constant angle of
dispersion which is approximately equal to the angle of arc formed by the dome itself. The far-field on-
axis response is given by
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FIG. 12.27 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a convex dome of

radius a in an infinite baffle for a[ 60�, where a is the half-angle of the arc formed by the dome.
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FIG. 12.28 Plot of 20 log10(D(0)) where D(q) is the directivity function of a convex dome of radius a in an infinite

baffle, where a is the half-angle of the arc formed by the dome. The axial acceleration of the dome is constant.

Frequency is plotted on a normalized scale, where ka¼ 2pa/l¼ 2pfa/c.
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Dð0Þ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

An j
n: (12.139)

The on-axis response 20 log10(D(0)) is plotted against ka in Fig. 12.28. Again, the response is fairly
similar to that of the spherical cap in a sphere except that there is no 6 dB level shift between low and
high frequencies due to that fact that the sound is radiated into half-space at all frequencies.
Radiation impedance. The total radiation force ~F is given by

~F ¼ R2

Z2p
0

Za
0

~pðR; qÞ sin q dq df; (12.140)

using the identity of Eq. (69) from Appendix II. The specific impedance Zs is then given by

Zs ¼
~F
~U0

¼ 2r0c

sin a

XN
n¼ 0

Anh
ð2Þ
n ðkrÞP�1

n ðcos aÞ; (12.141)

where we have used the expression for ~U0 from Eq. (12.49). The real and imaginary parts, Rs and Xs,
are plotted in Fig. 12.29 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.142)

Again the results are fairly similar to those for a spherical cap in a sphere except at low frequencies
where the radiation impedance is greater due to the half-space radiation load.
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12.10 RADIATION FROM AN OSCILLATING CONCAVE DOME IN AN
INFINITE BAFFLE
A concave dome [5] of radius a and radius of curvature R in an infinite baffle is shown in
Fig. 12.30. In this problem, we shall introduce the concept of coupling whereby the field ~pIðr; qÞ
inside the imaginary sphere, which includes the space inside the dome, is coupled to an external
field ~pðr; qÞ. Again, the baffle can be removed so that we have an equivalent field which is
symmetrical either side of the plane of the baffle. However, in the external field we completely
ignore the dome as if it inhabited some other universe. What we have in effect is a breathing disk in
free space with identical pressure distributions on both faces, which are also the same as that of the
mouth of the dome. The velocity distributions are also equal in magnitude to that of the mouth, but
have opposite directions. This enables us to apply the same field-matching condition as in the
convex dome.
Near-field pressure. We assume that the external pressure field ~pðr; qÞ in the region r � R is a general
axisymmetric solution to Eq. (2.145), the Helmholtz wave equation in spherical coordinates:
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~pðr; qÞ ¼ r0c~u0
XN
n¼ 0

xnh
ð2Þ
n ðkrÞ Pnðcos qÞ; (12.143)

where xn are the as-yet unknown expansion coefficients which will be calculated by means of a set of
simultaneous equations in matrix form. The normal particle velocity ~uSðR; qÞ at the surface of the
sphere is given by

~uðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞjr¼R

¼ ~u0
�jk

XN
n¼ 0

xnh
0ð2Þ
n ðkRÞPnðcos qÞ;

(12.144)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32). The internal

field ~pIðr; qÞ must be continuous everywhere in the region r � R. Hence we omit the spherical Bessel
function of the second kind, which has a singularity at r¼ 0, from the spherical Hankel function so that

~plðr; qÞ ¼ r0c~u0
XN
n¼ 0

yn jnðkrÞ Pnðcos qÞ; (12.145)

where yn are the unknown expansion coefficients. The normal particle velocity ~uIðR; qÞ at the surface
of the sphere is given by

~uIðR; qÞ ¼ 1

�jkr0c

v

vr
pIðr; qÞjr¼R

¼ ~u0
�jk

XN
n¼ 0

yn j
0
nðkRÞPnðcos qÞ:

(12.146)
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At the surface of the dome, the normal particle velocity has to match the axial velocity ~u0 of the dome.
Hence

~uIðR; qÞ ¼ �~u0cos q; 0 � q � a: (12.147)

Also, we have the coupling condition whereby the normal particle velocity on the inner surface of the
imaginary sphere has to match that on its outer surface

~uIðR; qÞ ¼ ~uðR; qÞ; a � q � p: (12.148)

Likewise, the pressure on the inner surface of the sphere has to match that on its outer surface:

~pðR; qÞ ¼ ~pIðR; qÞ; a < q � p: (12.149)

Finally, we apply the field matching whereby the pressure on the outer surface of the imaginary sphere
is equal to that of its mirror image, which lies inside the image sphere:

~pðR; qÞ ¼ ~pIðr1; q1Þ; 0 < q � a: (12.150)

From the geometry of the problem, we can write

r1 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos aðcos a� cos qÞ

p
; (12.151)

cos q1 ¼ R

r1
ð2 cos a� cos qÞ: (12.152)

Now we have all of the boundary conditions in place, we can create the following pair of infinite
simultaneous equations in the unknown coefficients xn and yn in the usual manner by multiplying
through by Pm(cos q) and integrating over the surface of the imaginary sphere together with its image
and the surface of the dome:

Zp
0

~pðR; qÞPmðcos qÞ sin q dq ¼
Za
0

~pIðr1; q1Þ Pmðcos qÞ sin q dq

þ
Zp
a

~pIðR; qÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2; $$$;

(12.153)

Zp
0

~uIðR; qÞPmðcos qÞ sin q dq ¼ �~u0

Za
0

Pmðcos qÞ cos q sin q dq

þ
Zp
a

~uðR; qÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2; $$$:

(12.154)
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In matrix form this becomes

x ¼ A$y; (12.155)

y ¼ B$xþ c; (12.156)

where

x ¼ ½x0; x1; $$$xm�; y ¼ ½y0; y1; $$$ym�;

where the matrices A and B and vector c are given by

Aðmþ 1; nþ 1Þ ¼ mþ 1=2

h
ð2Þ
m ðkRÞ

ðImn þ jnðkRÞKmnÞ;
(
m ¼ 0; 1; $$$;N

n ¼ 0; 1; $$$;N
; (12.157)

Bðmþ 1; nþ 1Þ ¼ mþ 1=2

j0mðkRÞ
h0ð2Þn ðkRÞKmn;

(
m ¼ 0; 1; $$$;N

n ¼ 0; 1; $$$;N
; (12.158)

cðmþ 1Þ ¼ jk
mþ 1=2

j0mðkRÞ
Lm; m ¼ 0; 1; $$$;N; (12.159)

where

Imn ¼
Za
0

jnðkr1ÞPnðcos q1ÞPmðcos qÞ sin q dq; (12.160)

Kmn ¼
Zp
a

Pnðcos qÞPmðcos qÞ sin q dq

¼

8>>>>><
>>>>>:

sin a
�
Pnðcos aÞP0

mðcos aÞ � Pmðcos aÞP0
nðcos aÞ

�
mðmþ 1Þ � nðnþ 1Þ ; m s n

1þ ðPmðcos aÞÞ2 cos aþ 2
Xm�1

j¼ 1

Pjðcos aÞðPjðcos aÞcos a� Pjþ1ðcos aÞÞ

2mþ 1
; m ¼ n

(12.161)

Lm ¼
Za
0

Pmðcos qÞ cos q sin q dq

¼

8><
>:

ð1� cos3 aÞ=3; m ¼ 1

�sin a
sin a Pmðcos aÞ þ cos a P1

mðcos aÞ
ðm� 1Þðmþ 2Þ ; ms1;

(12.162)
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where the identities of Eqs. (66), (68), and (70) from Appendix II have been applied. Unfortunately, the
integral Imn has no analytical solution and has to be evaluated numerically using, for example,

Za
0

f ðqÞdq ¼ a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ p� 1=2

P
a: (12.163)

Solving Eqs. (12.155) and (12.156) for x and y gives

y ¼ ½I� B$A��1$c; (12.164)

x ¼ A$y: (12.165)

Far-field pressure. In the far field, we can use the asymptotic expression for the spherical Hankel
function from Eq. (12.18), which when inserted into Eq. (12.143) gives
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~pðr; qÞ
���
r/N

¼ �jkr0cS
~u0
2pr

e�jkr DðqÞ; (12.166)

where S is the dome effective area given by S¼ pa2 and

DðqÞ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

xn j
nPnðcos qÞ: (12.167)

The directivity pattern 20 log10(D(q)/D(0)) for a¼ 60� is plotted in Fig. 12.31 for various values of ka.
Not surprisingly, the directivity is similar to that of the convex dome. The far-field on-axis response is
given by

Dð0Þ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

xn j
n: (12.168)

The on-axis response 20 log10(D(0)) is plotted against ka in Fig. 12.32. This shows some interesting
features. The dips in the responses of the convex dome shown in Fig. 12.28 for various values a are
now replaced with resonant peaks. In each case, the resonant frequency is determined by the
compliance of the dome cavity and the radiation mass. The peak is fairly broad due to the damping
effect of the radiation resistance. At ka¼ 4.1 we see a sharp dip due to a radial standing wave across
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the mouth of the dome, where the air just circulates back and forth between points of maximum and
minimum pressure. Above this frequency the response is fairly uneven due to standing wave
harmonics.
Radiation impedance. The total radiation force ~F is given by

~F ¼ R2

Z2p
0

Za
0

~pðR; qÞ sin q dq df (12.169)

using the identity of Eq. (69) from Appendix II. The specific impedance Zs is then given by

Zs ¼
~F
~U0

¼ 2r0c

sin a

XN
n¼ 0

yn jnðkrÞP�1
n ðcos aÞ; (12.170)
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where we have used the expression for ~U0 from Eq. (12.49). The real and imaginary parts, Rs and Xs,
are plotted in Fig. 12.33 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.171)

We can see from these curves that at the first peak in the radiation resistance, which more or less
corresponds with the first peak in the on-axis response, the radiation reactance is at a minimum, so that
the radiation efficiency is enhanced. Below this resonance, the reactance is positive due to the radiation
mass. Immediately above it, the reactance is negative due to the compliance of the dome cavity.
However, due to standing wave modes, the reactance is alternately positive and negative as the
frequency increases above ka¼ 4.
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