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PART XXX: SOUND FIELDS IN SMALL, REGULARLY SHAPED ENCLOSURES

10.1 INTRODUCTION

The study of sound in enclosures involves not only a search into how sounds are reflected backward
and forward in an enclosure but also investigations into how to measure sound under such conditions
and the effect various materials have in absorbing and controlling this sound. Also, of great importance
in applying one’s engineering knowledge of the behavior of sound in such enclosed spaces is an
understanding of the personal preferences of listeners, whether listening in the room where the music
is produced or listening at a remote point to a microphone pickup. Psychological criteria for acoustic
design have occupied the attention of many investigators and should always be borne in mind. This
chapter is confined to physical acoustics.

Two extremes to the study of sound in enclosures can be analyzed and understood easily. At the one
extreme we have small enclosures of simple shape, such as rectangular boxes, cylindrical tubes, or
spherical shells. In these cases the interior sound field is describable in precise mathematical terms,
although the analysis becomes complicated if the walls of the enclosures are covered in whole or in
part with acoustical absorbing materials.

Acoustics: Sound Fields and Transducers. DOI: 10.1016/B978-0-12-391421-7.00010-5 449
Copyright © 2012 Elsevier Inc. All rights reserved.


http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-391421-7.00010-5

450 CHAPTER 10 Sound in enclosures

At the other extreme we have very large irregularly shaped enclosures where no precise description can
be made of the sound field but where a statistically reliable statement can be made of the average
conditions in the room. This is analogous to a study that a physician might make of a particular man to
determine the number of years he will live, as opposed to a study of the entire population on
a statistical basis to determine how long a man, on the average, will live. As might be expected, the
statistical study leads to simpler formulas than the detailed study of a particular case.

10.2 STATIONARY AND STANDING WAVES

One type of small regularly shaped enclosure, the rigidly closed tube, has been discussed already in Part
IV. This case provides an excellent example of the acoustical situation that exists in large enclosures.

First, we noted that along the x axis of the tube the sound field could be described as the combi-
nation of an outward-traveling wave and a backward-traveling wave. Actually, the outward-traveling
wave is the sum of the original free-field wave that started out from the source plus the outward-going
waves that are making their second, third, fourth, and so on, round trips. Similarly, the backward-
traveling wave is a combination of the first reflected wave and of waves that are making the return leg
of their second, third, fourth, and so on, round trips. These outward- and backward-traveling waves add
in magnitude to produce what is called a stationary wave if the intensity along the tube is zero. If there
is some, but not complete, absorption at the terminating end of the tube so that power flows along the
tube away from the source (intensity not equal to zero), it is called a standing wave. In the case of
complete absorption, we have a traveling or progressive wave.

10.3 NORMAL MODES AND NORMAL FREQUENCIES

We saw from Eq. (2.70) that whenever the driving frequency is such that sin kI — 0, the pressure in the
tube reaches a very large value. That is to say, the pressure is very large whenever

kl = nm (10.1)
Then, because
k— 2af 2w
¢ 2
we have
ne
= 10.2
=3 (10.2)
or
l n
— == 10.3
w2 (10.3)
where
n=12734,..0 (10.4)

fu 1s nth resonance (normal) frequency of the tube.
An clfy is nth resonance (normal) wavelength of the tube.
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Equation (10.3) tells us that the pressure is very large whenever the length of the tube equals some
integral multiple of a half wavelength (4/2).

The condition where the frequency equals nc/2! so that a very large sound pressure builds up in the
tube is called a resonance condition or a normal mode of vibration of the air space in the tube. The
frequency f,, of a normal mode of vibration is called a normal frequency. There are an infinite number
of normal modes of vibration for a tube because n can take on all integral values between 0 and infinity.
We may look on the tube, or in fact on any enclosure, as a large number of acoustic resonators, each
with its own normal frequency.

In the closed-tube discussion of Part IV, we made no mention of the effect on the results of the
cross-sectional shape or size of the tube. It was assumed that the transverse dimensions were less than
about 0.1 wavelength so that no transverse resonances would occur in the frequency region of interest.

If the transverse dimensions are greater than one-half wavelength, we have a small room which, if
rectangular, can be described by the dimensions shown in Fig. 10.1. Waves can travel in the room
backward and forward between any two opposing walls. They can travel also around the room
involving the walls at various angles of incidence. If these angles are chosen properly, the waves will
return on themselves and set up stationary or standing waves. Each standing wave is a normal mode of
vibration for the enclosure.

In Sec. 7.18, we solve such a rectangular enclosure, mathematically and describe exactly the
distribution of sound as determined by the strength of a piston source in one of the walls. In this
section, however, we shall describe the simplest cases in order to gain insight into the problem.

The number of modes of vibration in a rectangular enclosure is much greater than that for the
rigidly closed tube whose diameter is small compared with a wavelength. In fact, the normal
frequencies of such an enclosure are given by the equation

. C nx2 ny2 nz2 105
= =2 <z> *(z) *(E) (10

[ 1s the nth normal frequency in Hz.

ny, ny, 1, are integers that can be chosen separately. They may take on all integral values between
0 and .

Iy, I, I, are dimensions of the room in m.

c is speed of sound in m/s.

where

y
0 1 =
x, ’

FIG. 10.1 Dimensions and coordinate system for a rectangular enclosure.
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As an example, let us assume that the z dimension, /,, is less than 0.1 of all wavelengths being
considered. This corresponds to n, being zero at all times. Hence,

2 2
c Ny ny
_C (™ ny 10.
fnx,ny,O ) <lx> +<ly) ( 0 6)

Let [, =4 m and /, = 3 m. Find the normal frequencies of the n,=1, n,=1 and the n, =3, n, =2
normal modes of vibration. We have

fiio = 34485 /1/16+1/g = T1.8 Hz
fi20 = 344.8/5,/9/16+4/3 = 237 Hz

The sound-pressure distribution in a rectangular box for each normal mode of vibration with
a normal frequency w, is proportional to the product of three cosines:

and

X Ty ™Mz
Pnonn, % COS—— cOS ly cos lz e/t (10.7)
x y z

where the origin of coordinates is at the corner of the box. It is assumed in writing Eq. (10.7) that the
walls have very low absorption. If the absorption is high, the sound pressure cannot be represented by
a simple product of cosines.

If we inspect Eq. (10.7) in detail, we see that ny, n,, and n; indicate the number of planes of zero
pressure occurring along the x, y, and z coordinates, respectively. Such a distribution of sound pressure
levels can be represented by forward- and backward-traveling waves in the room. This situation is
analogous to that for the closed tube (one-dimensional case). Examples of pressure distributions for
three modes of vibration in a rectangular room are shown in Fig. 10.2. The lines indicate planes of
constant pressure extending from floor to ceiling along the z dimension. Note that n, and n, indicate the
number of planes of zero pressure occurring along the x and y coordinates, respectively.

The angles 6, 6, and 6, at which the forward- and backward-traveling waves are incident upon and
reflect from the walls are given by the relations

\/(”y/ly)2 + (”z/lz)z nyC

0, = arctan = arccos (10.8)
* I’Lx/lx Zfon

ne/l)* + (n./1.)*
f, = arctan \/( /) (n:/12) = arccos ye (10.9)
’ ny/ly 2L

0, = similarly (10.10)

For the examples where n, =1, n,=1 and n, = 3, n, = 2, the traveling waves reflect from the x =0
and x = [, walls at
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FIG. 10.2 Sound-pressure contour plots on a section through a rectangular room.

The numbers on the plots indicate the relative sound pressure.

l 4
(6x), 1o = arctan — = arctan 3= 53.1°
1, )

21 8 .
(6x)3,0 = arctan 3—2 = arctan 5 = 41.6
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FIG. 10.2 (continued )

The angles of reflection at the y =0 and y =/, walls are

l 3
(0)/)1,1,0 = arctan l_y = arctan 1= 36.9°

X

(0y)3,0 = arctan % = arctan % = 48.4°
X

The wave fronts travel as shown in (a) and (b) of Fig. 10.3. It is seen that there are two forward-

traveling waves (1 and 3) and two backward-traveling waves (2 and 4). In the three-dimensional case,

there will be four forward- and four backward-traveling waves.

When the acoustical absorbing materials are placed on some or all surfaces in an enclosure, energy
will be absorbed from the sound field at these surfaces and the sound-pressure distribution will be
changed from that for the hard-wall case. For example, if an absorbing material were put on one of the
I, walls, the sound pressure at that wall would be lower than at the other /,/, wall and the traveling
wave would undergo a phase shift as it reflected from the absorbing surface.

All normal modes of vibration cannot be excited to their fullest extent by a sound source placed at
other than a maximum pressure point in the room. In Fig. 10.2, for example, the source of sound can
excite only a normal mode to its fullest extent if it is at a 1.0 contour. Obviously, since the peak value of
sound pressure occurs on a 1.0 contour, the microphone also must be located on a 1.0 contour to
measure the maximum pressure.

If the source is at a corner of a rectangular room, it will be possible for it to excite every mode of
vibration to its fullest extent provided it radiates sound energy at every normal frequency. Similarly, if
a microphone is at the corner of the room, it will measure the peak sound pressure for every normal
mode of vibration provided the mode is excited.
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(a) (b)

[,=3m l,=3m

FIG. 10.3 Wave fronts and direction of travel for (a) n, = 1, n, = 1 normal mode of vibration; and (b) n, = 3 and
ny, = 2 normal mode of vibration.

These represent two-dimensional cases where n,=0. The numbers one and three indicate forward-traveling
waves, and the numbers two and four indicate backward-traveling waves.

If either the source or the microphone is at the center of a rectangular room, only one-eighth of the
normal modes of vibration will be excited or detected, because at the center of the room seven-eighths
of the modes have contours of zero pressure. In Fig. 10.2, as an illustration, two out of the three normal
modes portrayed have contours of zero pressure at the center of the room. In fact, only those modes of
vibration having even numbers simultaneously for n,, n,, and n, will not have zero sound pressure at
the center.

Examples of the transmission of sound from a point source to an observation point in a model
sound chamber are shown in Fig. 10.4 and Fig. 10.5. The curves were obtained using the following
equation for the pressure at the observation point (x, y, z):

5 4ch0 k cos (m mxq /1) cos (n wyo/ly) cos (m mx/l;) cos (n mwy/ly)
play.s) = — 00§~ 5 />k<16/> m /1) cos (o w3/
m=0n=0 ( + mO)(l+ On)
knnZ,
S 008 Kz 4 SIN kypnz
kpoc
. ngS .
coS kyply + j sin Kyl
kpoc
(10.11)
where

2 2
- \/kz_ (m_”) _(ﬂ) (10.12)
I I
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FIG. 10.4 Comparison of two transmission curves calculated with and without an abhsorbing sample on a 762 hy
607 mm wall of a model chamber with dimensions 762 by 607 by 406 mm. (a) bare chamber, (b) one wall absorbent
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The source was in one corner (/XJ l,, ), and the observation point was diagonally opposite (0, 0 ,0). The plots are
of 20 logio(Ixlyp(X,y,2)/(pocUp)), where p(x, y, z) is calculated from Eq. (10.11). This result has also been

verified experimentally

[14].
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and k = w/c =2x/A, which is derived in the same way as we derive the 2-port network for a bass-reflex
enclosure in Part XXIV, except that the rectangular pistons are replaced by a point source of volume
velocity Uy at a point (xo, Yo, [;) described by the Dirac delta function

0(x —xo) 6(y — yo)-

The absorbing material at z = 0 has a specific impedance Z, which is related to the flow resistance Ry of
the material by
Red P
Z, = are + 20

10.13
3 jwd ( )

where d is the thickness for the material, which is subtracted from [,. The eightfold increase in the
number of modes of vibration that were excited with the source at the corner over that with the source
at the center is apparent. It is apparent also that the addition of sound-absorbing material decreases the
height of resonance peaks and smoothes the transmission curve, particularly at the higher frequencies,
where the sound-absorbing material is most effective.

10.4 STEADY-STATE AND TRANSIENT SOUND PRESSURES

Sound pressure at normal modes. When a source of sound is turned on in a small enclosure, such as
that of Fig. 10.1, it will excite one or more of the stationary-wave possibilities, i.e., normal modes of
vibration in the room. Let us assume that the source is constant in strength and is of a single frequency
and that its frequency coincides with one of the normal frequencies of the enclosure. The sound pressure
for that normal mode of vibration will build up until the magnitude of its rms value (averaged in time
and also in space by moving the microphone backward and forward over a wavelength) equals [14]

K
IPn| = T (10.14)

where

K is source constant determined principally by the strength and location of the source and by the
volume of the room.

k,, is damping constant determined principally by the amount of absorption in the room and by the
volume of the room. The more absorbing material that is introduced into the room, the greater k,
becomes, and the smaller the value of the average pressure. The value of k,, is inversely proportional
to the value of Q,,.

Blocked-tube impedance and equivalent circuit. In order to illustrate what happens when the driving
frequency does not necessarily coincide with the normal frequency, we shall simplify the problem by
considering only those modes of vibration which occur in one direction only. Hence we may model the
room as a one-dimensional tube. Furthermore, although absorption mainly occurs at boundary
surfaces, we may simplify the problem even further by assuming that it occurs everywhere. Also, we
assume the acoustic resistance to have the same value at all frequencies, although this is unlikely in
practice. However, if the variation of resistance with frequency is known, the resistance value at each
normal frequency may be used to improve accuracy.
According to Eq. (2.72), the specific impedance Z7 of a blocked tube is given by
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Zr = —jZ, cotkl (10.15)

which is expanded using Eq. (43) from Appendix II:

. hd ( 60,,)kl
Zr = —jz, 3 o dom)H (10.16)
r=- ,,Zo(kz) 22

where from Eqgs. (2.80), (2.84), and (2.85), the complex wavenumber k and characteristic impedance
Z, are given by

1 Rf
k = — — 10.17
“ Pg <p0 +jw) ( )
Ry
Zs = (| Po| py+— (10.18)
Jw

where Py is the static pressure, pg is the density of air, and Ryis the flow resistance per unit length of the
filling material. Hence, the impedance of the tube may be written

Zy 10.19
COS —+ Zj (10.19)
where each impedance term is represented by a parallel resonance circuit in which
R
1 s+ L—n
Zy = ——5—04—— (10.20)
Co o R I
L, L,C,

where s = w and the specific compliance C,,, mass L,, and resistance R, element values are given by

I I 2p0! 2Ryl
Co=—, Cp=—\ L,=2P g —ZY 10.21
0 Py’ 2P n2m? T 22 ( )
or
1 s—l—ﬂ

Z, = roh 7Q" (10.22)

nos2 4 s 4 w?

On

where the angular normal frequency w, and Q,, values are given by

1 nme Po nwpoc
Wy = = — O = wy— = (10.23)
"OVLG UV LR VR

The equivalent circuit for a blocked tube using this impedance expansion is shown in Fig. 10.6a.
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Alternatively, we may use the expansion of Eq. (42) from Appendix II for the admittance:

where

and

so that

1
Zr = Y, 10.24
T tan kl <Z > (10:24)
1
L—S
Y, = n (10.25)
s2+&s+ !
Ln LnCn
21 I Ryl
2 L, = ’%, R, = % (10.26)
(n +§> 7T2P0
(b)
1 LT
T Co Ly <L, L,
Ro R R>

Co

o
+

C TC2

t+

FIG. 10.6 Equivalent circuits for the impedance Z; of a blocked tube using an impedance expansion (a) and an

admittance expansion (b).
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1 1
1 - (n+§>7rc o (n—&-z)r(poc

N/ ol Op = wpt2 = (10.27)

w" "Ry VR
The equivalent circuit for a blocked tube using this admittance expansion is shown in Fig. 10.6b. In
general we use the impedance expansion to calculate the time response of the pressure as a function of
an input velocity and the admittance expansion to calculate the time response of the velocity as
a function of an input pressure.
Open-tube impedance and equivalent circuit. Although we shall only consider the decay of sound in
a blocked tube, the equivalent circuit of an open tube is derived here just for completeness as it is
frequently encountered in the field of acoustics.

According to Eq. (2.60) with Zr = 0, the specific impedance Z7 of an open tube is given by

Zr = jZs tan ki (10.28)

which is expanded using Eq. (42) from Appendix II:

Zr =Y 7, (10.29)
n=0
where
R
1 s+L—n
Zy = (10.30)
Cn g2 +&s+ !
L, L,C,
and
[ 200l 2R¢l
Cn = A5 n — po 2 9 Rn - f 2 (1031)
2o +l w2 +1 w2
n - n -
2 2
or
Loty
Z, = —-wiQ” (10.32)
Cn 2 425402
n
where
+ D + D
1 )" 0 po_ \"72)T (10.33)
(D) = = N =y — = — .
VLG A TR VTRsl

The equivalent circuit for an open tube using this impedance expansion is shown in Fig. 10.7a.
Alternatively, we may use the expansion of Eq. (43) from Appendix II for the admittance:
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(a) (b)
o o— ’ G
Lo L L
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o .
FIG. 10.7 Equivalent circuits for the impedance Z; of an open tube using an impedance expansion (a) and an
admittance expansion (b).

1 —1
. Z Lo -
Zr = = Y, 10.34
T = okl R0+Z n (10.34)
s+ — n=1
Ly
where
1
ES
Yy = —F"+——— (10.35)
s2 + &v + !
L, L,C,
and
21 pol Ryl
n = n2772P()’ Ly = pol, L, = 77 Ry = Rfl7 R, = 7 (10.36)
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so that
1 nmwe nwpPoC
Wy = i Qn = CL’np_o = Po
vV L,Cy, lﬁ Rf ﬁRfl

The equivalent circuit for an open tube using this admittance expansion is shown in Fig. 10.7b.
Resonance curve. When the driving frequency does not coincide with the normal frequency, the
pressure for that particular mode of vibration builds up according to a standard resonance curve as
shown in Fig. 10.8. The maximum value of the resonance curve is given by

Zn|w=w,, = (Qn +j)Qan

(10.37)

(10.38)
= QiRy, On23
The width of the resonance curve at the half-power (3 dB down) points is equal to [1]
[ —f= Ju. (10.39)
QF!

When driven by an excitation velocity ug, the magnitude of the sound pressure p,, for a single mode as
a function of frequency is given by

Uo Q,zwz—i-wz
pnl = wolZal = =\ | 555 (10.40)
Co | Q(w2 — 0?)” + wiw

where w is the angular driving frequency and w,, is the angular normal frequency given approximately
by Eq. (10.5).
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FIG. 10.8 Resonance curve for a normal mode of vibration with @, = 3.
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Obviously, if the driving frequency lies between two normal frequencies, or if k,, is large so that the

resonance curve is broad, more than one normal mode of vibration will be excited significantly, each to
the extent shown by Eq. (10.40). Because the phase above a normal frequency is opposite to that below
it, there will be a cancellation at some frequency between a pair of adjacent normal frequencies,
leading to a minimum impedance value. These minimum impedance frequencies correspond to the
resonance frequencies ), in the admittance expansion.
Transient response. When the source of sound is turned off, each normal mode of vibration
behaves like an electrical parallel-resonance circuit in which energy has been stored initially. The
pressure for each normal mode of vibration will decay exponentially at its own normal frequency
as shown in Fig. 10.9. In order to simulate the decay of sound, let us apply an impulse to our tube
model, rather like a hand clap in a room. We simply take the expression for the impedance of each
mode given by Eq. (10.22) and apply the inverse Laplace transform given by Table 6.2 in Sec. 6.17
to obtain

= 7 UO 4y, 1 cos 6, SI (07! Wyt Sin (9;1)
1) = 1) = n n
pn( ) U n( ) Cne e~y

(10.41)

where cos 0, = 1/(20Q,,). If only one mode of vibration is excited, the decay is as shown in Fig. 10.9a.
Stated differently, on a log p,, scale vs. time, the magnitude of the rms sound pressure level decays
linearly with time.

If two or more modes of vibration are decaying simultaneously, beats will occur because each
has its own normal frequency (Fig. 10.9b). However, as we superimpose an ever greater number of
modes, the waveform becomes a series of impulses (Fig. 10.9¢), as we would expect, due to the
original impulse being reflected at each end of the tube and thus making multiple round journeys
along it. In a real room, as opposed to a simple one-dimensional tube, early reflections would
behave in a similar manner, being distinct and thus specular in nature. However, later reflections
resulting from random reflections off multiple surfaces tend to cluster together and are termed
diffuse.

In this illustration, each mode has the same decay constant (w,/20,, = Ry/2pg) because the specific
flow resistance per unit length Ryhas been assumed to be independent of frequency. However, it is very
possible that each will have its own decay constant, dependent upon the position of the absorbing
materials in the room.

In actual measurements of sound in rooms, it is quite common to use fast Fourier transforms (FFTs)
to create waterfall plots of the sound-pressure decay against both time T and frequency f, which in this
case is obtained as follows:

T+0t
palfsT) = 2 / 0.54 — 046 cos L0 1\ gronrcos g, S Un+ Ont $i000) o
’ C, t sin 0,
T—ot
(10.42)

where the integration is performed over a sliding interval or “window” of width 20¢ centered on
the time of interest 7. The term in parenthesis is the Hamming window function, which mini-
mizes any unwanted frequency components that may otherwise appear in the spectrum due to the
finite integral limits. In this way we can plot the variation of the frequency spectrum with time
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FIG. 10.9 (a) Sound-pressure decay curve for the first mode of vibration. (b) Sound-pressure decay curve for the
first two modes of vibration. (c) Sound-pressure decay curve for the first ten modes of vibration in a blocked tube,
where /= 3.5 m and Ry= 10 rayls/m.

and thus see how the individual normal modes of vibration decay relative to each other, as shown
in Fig. 10.10.

In summary, we see that when a sound source of a given frequency is placed in an enclosure, it will
excite one or more of the infinity of resonance conditions, called normal modes of vibration. Each of
those normal modes of vibration has a different distribution of sound pressures in the enclosure, its
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0.10

FIG. 10.10 Waterfall plot of sound-pressure decay in a tube in which / = 3.5 m, R, = 10 rayls/m, 6t = 0.5 s, and
the first five modes are summed in the calculation.

The 0" mode is ignored because it simply gives a constant change in pressure.

own normal frequency, and its own damping constant. The damping constant determines the maximum
height and the width of the steady-state sound-pressure resonance curve.

In addition, when the source of sound is turned off, the sound pressure associated with
each mode of vibration decays exponentially with its own normal frequency and at a rate deter-
mined by its damping constant. The room is thus an assemblage of resonators that act indepen-
dently of each other when the sound source is turned off. The larger the room and the higher the
frequency, the nearer together will be the normal frequencies and the larger will be the number of
modes of vibration excited by a single-frequency source or by a source with a narrow band of
frequencies.



10.5 Examples of rectangular enclosures 467

10.5 EXAMPLES OF RECTANGULAR ENCLOSURES

Example 10.1. Determine the normal frequencies and directional cosines for the lowest six normal
modes of vibration in a room with dimensions 5 by 4 by 3 m.
Solution. From Eq. (10.5) we see that

fi00
foro = 348.8/5 x 1/, = 40.4 Hz

348.8/y x 1/5 = 349 Hz

firo = 348.8/5/1/p5+ 1/1g = 55.8 Hz
200 = 348.8/5 x 2/5 = 69.8 Hz
P10 = 348-8/21/4/25 + 1/16 = 82.3Hz

Joo1 = 348.8/5 x 1/3 = 58.1 Hz

From Egs. (10.8) to (10.10) we find the direction cosines for the various modes as follows:
(1,0,0) mode : 6, = 0; 6, = 90° 6@, = 90°
(0,1,0) mode : 6, = 90°; 6, = 0° 6, = 90°

348.8 i
(1,1,0) mode : 6, = arc COS— = ssg = 51.3
348.8 o
0}1 = arc C()Sm = 38.6
0, = 90°
(2,0,0) mode : 6, = 0; 6y = 90° 6, = 90°
2 % 348.8 .
(2,1,0) mode : 6, = arc OS85 32.1
348.8 o
Hy = arc C()Sm = 58.0
g, = 90°

(0,0,1) mode : 6, = 90° 6, = 90°; 6, = 0°

Example 10.2. A rectangular room with dimensions [, =3 m, [, =4 m, and [, =35 m is excited by
a sound source located in one corner of the room. The sound pressure level developed is measured at
another corner of the room. The sound source produces a continuous band of frequencies between 450
and 550 Hz, with a uniform spectrum level, and a total acoustic-power output of 1 watt. When the
sound source is turned off, a linear decay curve (log p vs. ) is obtained which has a slope of 30 dB/s.
(a) Determine graphically the number of normal modes of vibration excited by the source; (b)
determine the approximate angle of incidence of the traveling-wave field involving the walls at x =0
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and x=1[, in each of the principal groupings of normal frequencies shown in the graphical
construction.

Solution. (a). A graphical solution to Eq. (10.5) is given in Fig. 10.11. The frequency of any
given normal mode of vibration is the distance from the origin of coordinates to one of the black
spheres shown. That frequency will be made up of three components given by cn./2ly, cn,/2l,,
and cn,/2l,. Notice that along the vertical coordinate the normal frequencies occur in increments
of 348.8/¢; along the right-hand axis in increments of 348.8/¢ and along the remaining axis

L
4
Ny =19
| ] ﬁg
144 348.8 g Ny =52
ase [ | 20 M s
2x5 | LT Bes N,=55  2x4
S [
|+ E<K
/// TSI =
S E oo
= e /
B = Ns =56
gBs =
L1 N; =56
=
BASES e N =52
>
<§§ % Ny =57
0,
Agég N, =54
450 Hz <§§§ No=53
550 Hz—~ | | |
5
t

L=3m, L[=4m, L=5m
Frequency band: 450-550 Hz

FIG. 10.11 Normal frequency diagram, drawn to scale for a 3 by 4 by 5 m rectangular room with hard walls.

Most of the vertical lines are omitted to avoid confusion.
After Hunt, Beranek, and Maa, [14] Analysis of Sound Decay in Rectangular Rooms, J. Acoust. Soc. Am., 11: 80-94 (1939).
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in increments of 348.8/1(. On the layer labeled Ny, there are 53 normal frequencies. The total
number of normal frequencies between 450 and 550 Hz for this room is 507. The average
frequency is 500 Hz.

Solution. b. The 6, angles of incidence can be divided into ten principal groups as shown in
Fig. 10.11. The angles are as follows:

0.(0,ny,n;) = 90°
Hx(lﬂ’lyﬂ’lz) = (:0871 (345/6 1/500) = 83°

2.345
0+(2,ny,n;) = cos™! () = 77°

6.500
0<(3,ny,n;) = cos~! (0.345) = 70°
0.(4,ny,n;) = cos™! (0.46) = 63°
0c(5,ny,n;) = cos—! (0.575) = 55°
0,(6,ny,n;) = cos~! (0.69) = 46°
0,(7,ny,n;) = cos~! (0.805) = 36°
0x(8,ny,n;) = cos~! (0.92) = 23°
0+(9,ny,n;) = cos~! (0.995) = 6°

PART XXXI: SOUND IN LARGE ENCLOSURES

10.6 BASIC MATTERS

When a sound source, having components that extend over a band of frequencies, radiates sound
into a large irregular enclosure, a microphone that is moved about will experience fluctuations in
sound pressure. The maxima and minima of these fluctuations will lie much closer together in
such an enclosure than in a small or regular enclosure because there are a large number of room
resonances in all bands except for the very lowest frequency bands. Thus, in these enclosures, the
mean-square sound pressure can be determined by moving the microphone back and forth over
a short distance. The sound field is largely a superposition of plane waves traveling in all
directions with equal probability. This condition is called a diffuse sound field. In order to avoid
the influence of the direct sound, this condition is experienced at a reasonable distance from the
source.

The number of reflections from surfaces in such a room per second is equal to c¢/d where d is the
mean free path of the wave and c is the speed of sound. By actual measurements in rooms of varying
shapes and sizes it has been found that mean free path is equal to

4
d = TV m (10.43)
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Surface with o

FIG. 10.12 Path of a sound wave with energy density D’ as it travels distances of 41/S and reflects off surfaces with
average absorption coefficient a.

where Vis the volume of the room in m> and S is the total area of the surfaces of the room in m>. If,
after establishing a steady-state sound field, the source of sound is turned off, the sound energy stored
in the enclosure will decrease with each reflection (See Fig. 10.12) according to

D(n) = D'(1 —a)" (10.44)

where D’ is the steady-state energy density before the source was turned off, n is the
number of reflections that have occurred, and « is the sound absorption coefficient, which is taken to be
averaged for all angles of incidence. By replacing n with ct/d = (¢S/4V)t the decay formula is

D(t) _ D/(l _a)(cs/4V)t _ Dle—(cs/4V)(—ln(l—0é))l (10.45)

where In is the logarithm to the base e. In a reverberant sound field, the energy density is proportional
to the mean-square sound pressure. Hence

piv(t) _ piv(o)e—(csﬂV)(—ln(l—a))t (10.46)
Because 10log;g of the exponential function equals
10(cS/4V)(logo(1 — )1,

where we have used the relationship log;g x =logjg e-1n x, the sound pressure level decays at the rate
of
10 ¢S

4v

logo(l — @) dB/s (10.47)

10.7 THE REVERBERATION EQUATIONS

The reverberation time of the enclosure is defined as the time required for the sound pressure level to
fall 60 dB. Thus, the well-known Eyring equation [2], which gives the reverberation time 7 for an
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energy drop of 60 dB, is obtained from Eq. (10.47), with S=S,,,=>_S;, where S;’s are areas of
particular surfaces in the room, such as audience area and ceiling area:

24V
T — s (10.48)
_CSIOI loglo(] — Oéey)

where, V = volume of room in m>, S,,, = area of all surfaces in the room, and Qy is the average sound
absorption coefficient for the surfaces S; as shown in Fig. 10.12. The Eyring equation is usually
presented with either the natural logarithm or log¢ in the denominator and with ¢ taken as 343.5 m/s at
20°C so that

0.161V 0.161v
T - =
Sl()l( — ln(l — aey)) Smt( —2.30 loglo(l — Oéey))
Note that if the surfaces are perfectly absorbing, i.e., oy, = 1.0, the reverberation time T goes to zero.

The Sabine equation [3] was derived by Wallace Sabine from measurements he made in a number
of rooms at Harvard University:

s (10.49)

0.161V

T = s (metric units) (10.50)
Storor
0.049V

T = s (English units) (10.51)
Stor%or

Note that, in the Sabine equation, T only goes to zero if a4, approaches infinity. Even today, most
published data on acoustical materials and the absorption of audiences and the like have been obtained
using the Sabine equation, partly because the formula is simpler to use and partly because for a,, less
than 0.26, «,, is decreasingly less than 0.3.

It is possible to derive the absorption coefficients in one equation from the absorption coefficients
in the other equation [4]. In the Sabine equation, let

LS“”S i (10.52)
tot

Qror =
where, «j; is the Sabine absorption coefficient for a particular area S;, and S;,; = =S;.

In the Eyring equation, let

> S
— diat] 10.53
Aey Sior ( )

where o, ; is the Eyring absorption coefficient for a particular area S;.
Then, we find

Goy _ 2 eiSi (10.54)
Aot Z as,iSi

Hence

Qeij = (aey/atot)as,i~ (10.55)
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Table 10.1 Measured values of air attenuation constant m (multiplied by 4) in m~! as a function

of frequency, temperature, and relative humidity

Relative humidity Temperature °C (°F) 2000 Hz 4000 Hz 6300 Hz 8000 Hz

30% 15° (59°) 0.0147 0.0519 0.1144 0.1671
20° (68°) 0.0122 0.0411 0.0937 0.1431
25° (77°) 0.0111 0.0335 0.0759 0.1178
30° (86°) 0.0114 0.0292 0.0633 0.0975

50% 15° (569°) 0.0096 0.0309 0.0712 0.1102
20° (68°) 0.0092 0.0258 0.0577 0.0896
25° (77°) 0.0101 0.0234 0.0489 0.0748
30° (86°) 0.0119 0.0234 0.0443 0.0655

70% 15° (69°) 0.0081 0.0231 0.0519 0.0808
20° (68°) 0.0088 0.0208 0.0437 0.0671
25° (77°) 0.0105 0.0208 0.0396 0.0586
30° (86°) 0.0131 0.0231 0.0391 0.0548

10.8 AIR ABSORPTION

As a sound wave travels from one reflection to another in a room, some energy is lost in the air itself.
Such absorption in all but very large rooms is appreciable only at frequencies above 1000 Hz. When
the reverberation equations are corrected to account for air absorption, they read as follows.

Eyring Equation, metric units:

0.161V
T

0.161V

Sabine Equation, metric units:

T

0.161T

- StorQor + 4mV’

T Sir(— (1 = apy)) +4mV  Sipr(— 230 logyo(1 — py)) +4mV"

(10.56)

(10.57)

where m is the energy attenuation constant in units of reciprocal length. Measured values of 4m under
some typical atmosphere conditions are shown in Table 10.1.

10.9 TOTAL STEADY SOUND-PRESSURE LEVEL

We are now in a position to incorporate the direct sound field from a source into the energy equations
and calculate the total steady-state sound pressure level.
Direct steady-state sound pressure. The space-average sound pressure in a room (determined by
moving a microphone back and forth over at least one wavelength) at a distance r from a small

directional source radiating W watts is



10.11 Sound Strength G 473

pocW
PAr) = 40W2 O N?/m*, (10.58)

where Q is the directivity index (not in decibels) (see Sec. 4.16).

Reverberant steady-state sound pressure. The sound power absorbed by the first reflection is W,
hence the power remaining for the reverberant field is W, = W(1 — «). Let ¢ be the length of time it
takes for the sound to travel one mean-free-path length:

t’—4vs
TS

Let the steady-state value of the reverberant energy density be D,’. Then, the total energy per second
removed from the room is

(10.59)

DV
t,“ s (10.60)
which yields, where p? = D,/ poc?,
4pocW
P’ = g—a(l — a)N?/m*. (10.61)

Total steady-state sound pressure. Combining Egs. (10.58) and (10.61) yields

2 Q 41 —a)] 2, 4
= —+——|N 10.62
p0) = Wone | 2y 0 |2, (1062
The restrictions on this equation are that « not be too large and the mean free path is about 4V/S. The
absorption coefficient « is the Eyring coefficient.

10.10 OPTIMUM REVERBERATION TIME

The following formula [5-10] gives the average optimum reverberation time 7 for a given auditorium
volume V based on subjective results:

2.43
log)V = 5.72 + log,oT — == (10.63)

Vi

which is solved numerically for 7 and plotted in Fig. 10.13.

10.11 SOUND STRENGTH G

It is now customary in auditorium acoustics to express Eq. (10.61) in terms of Sound Strength G
[11]. Sound Strength G, in decibels, is the ratio of the sound energy that comes from



474 CHAPTER 10 Sound in enclosures

24
[] T 1
vo O
[ A. Concert halls
__ 2 +B. Chamber music halls
@2 t C. Opera houses / A
&~ 18 1D. College auditoria 7
g | E. Classrooms
=16 B
c |
kel
T 14 4
8
5 1.2
5 D
g 1
I

£o0s8
5 ~

06 LE

0.4

0.2

10 100 1000 10000 100000

Volume V' (m3)

FIG. 10.13 Optimum reverberation T versus auditorium volume V.

a nondirectional source (Q = 1) measured at a distance r in the auditorium, to the same sound
energy from the same source but measured in an anechoic chamber at r=10 m. Thus, the
reference sound pressure is

Wpoc
47 *100

Pros = (10.64)

Division of Eq. (10.62) by (10.64) and taking 10 log to get decibels, yields the Sound Strength G:

100 M) dB (10.65)

G = 10 lOglo (r—2 +

Stor%or

The reason «y,, is used here instead of «,, is because it has been found that if RT is measured in an
actual hall and if S« is determined from the Sabine formula (RT = 0.016V/S«,,,) and this value for Sa
is used in the G equation to calculate G, the calculated G equals the actual measured values of G in the
hall very closely (when using the reverberation method of calibrating the standard dodecahedral
source) (see Fig. 10.14). If the Eyring equation is used, this means that the [—2.30log(1 — a,,)] must be
used and not just ., to calculate G. If «,y is used, the calculated G will be about 2.5 dB higher than the
measured G.

The second term in Eq. (10.65) would seem to indicate that the reverberant sound field is uniform in
an auditorium, but sound pressure levels measure larger in the front part of an auditorium than toward
the rear (see next section). This term actually indicates the average of the sound pressure levels
determined from measurements at a large number of positions in the auditorium (with r large enough
that the first term does not appreciably influence the second).
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FIG. 10.14 Values of G at middle frequencies measured in 10 concert halls (4 shoebhox shaped, 4 surround, and 2
fan shaped) versus G,,;; calculated from measurements of RT in these halls.

10.12 EARLY AND REVERBERANT SOUND IN CONCERT HALLS

It can be shown that the second term of Eq. (10.65) may be divided into two parts, one for early sound
(that arriving within 80 ms of the direct sound) and the other for late (reverberant) sound (after 80 ms),
both varying with distance r [12]. These equations are

312007 g0, )

Eear[y = Te 0.04r/T (1 —e l'll/T), (10.66)
312007 _ _

Ereverberant = ——e 0.04r/T (6 l'll/T). (10.67)

Vv

As an example, these equations, with V = 20,000 m’and T=2s, are plotted in Fig. 10.15. Zero on
the ordinate is set for the direct sound with r = 10 m. For r between 10 and 40 m, the top curve predicts
the difference in G(total) to be 3.8 dB. Measurements made in nine shoebox-shaped halls, with average
V=16,500 m> and T= 2.5 s, found that for r between 10 and 40 m, G(total) drops about 2 dB, while in
eleven surround halls, with average V = 23,000 m® and 7= 2.2 s, it drops by about 5 dB. The quantity
of 3.8 dB above for V=20,000 m> and T=2 s is correctly between these two numbers.
Also, measurements show that the levels drop off faster if the reverberation times are less than about
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FIG. 10.15 Calculation of the component values of G with ¥V = 20,000 miand T=2s.

The reference sound pressure level at 10 m distance is O dB. “Total” at top is the sum of “Direct”, “Early
Reflected” and “Late”. “Early” is the sum of “Direct” and “Early Reflected”. “Early reflected” is from Eq. (10.66)
and “Late” is from Eq. (10.67).

From Barron [12].

1.5 s—the drop-off rate significantly increasing (nearer the drop in direct sound level) as RT’s become
less than 0.7 s.

10.13 DISTANCE FOR EQUALITY OF DIRECT AND REVERBERANT SOUND
FIELDS

We will define the distance r,., at which the reverberant field takes over as the distance at which the
direct and reverberant fields are equal. Hence

1 OSiorQor
roy = — 4 |t tOL 10.
Trev 4\ (1 — aor) (10.68)

The total absorbent area S;,, and absorption coefficient o, are both related to the volume of the
auditorium. On average [7]

S = 2.2V2/3, (10.69)
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FIG. 10.16 Distance r,, from an omnidirectional source, at which the reverberant sound is equal to the direct
sound, versus auditorium volume V. Optimum reverberation time T is assumed (see Fig. 10.13).

Let us also assume the reverberation time is the optimum value given by Eq. (10.63) and plotted in
Fig. 10.13, and that we have a point source with Q = 1. From Eq. (10.48),

@y = 1 — 107 24V/(es0T) (10.70)

We can now deduce the distance r,,,, which is shown in Fig. 10.16.

We note that r,,,, will be greater for sources which are more directional than a point source (Q > 1).
It is common to use directional loudspeakers such as horns or column arrays in more reverberant
spaces where satisfactory speech intelligibility is needed. The reference distance is generally taken as
10 m which is valid for even the larger concert halls.

10.14 SOUND LEVELS FOR SPEECH AND MUSIC

When designing a sound system for a specific auditorium, we need to know how much sound
pressure is required to produce realistic volumes for music or speech or both. The second column
of Table 10.2 shows the maximum peak SPL at 10 m from various sources. However, conversa-
tional speech at such a distance is too quiet so the third column gives an SPL value adjusted for
a distance of 1 m, which is more natural. The orchestra is adjusted for a distance of 3 m, which
represents a good seat a few rows back from the stage. For speech the crest factor (the difference
between the maximum peak SPL and average rms SPL) is about 13 dB. For music it is about
20 dB.
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Table 10.2 Maximum peak sound pressure levels due to various sound sources [16]

Maximum peak SPL (dB)
adjusted for 1 m

Maximum peak SPL (dB) (conversational speech)
Sound source at 10 m from source and 3 m (others)
Conversational speech [17] 56 76
Declamatory speech [17] 67.5 78
Large orchestra [18] 92 102.5
10
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FIG. 10.17 Peak acoustic power W versus auditorium volume Vfor various sound sources. Optimum reverberation
time T is assumed (see Fig. 10.13). The maximum peak sound pressure levels are given in Table 10.2.
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Knowing the required pressure from the third column of Table 10.2, Sy, from Eq. (10.69), and «,,
from Eq. (10.70), we can evaluate the acoustic power required [13] from Eq. (10.62) as follows:

~1

4 % 10(SPL/10)=10 4(1 —

w o= 410 0 | Hag)) (10.71)
pOC 47Trref Stgtaey

where r,,r= 10 m and the SPL value is taken from the third column of Table 10.2. The maximum peak
acoustic power is plotted against auditorium volumes in Fig. 10.17. Of course, the required amplifier
output power will depend upon the choice of loudspeaker. For example, a living room with a volume of
60 m® will require a stereo amplifier with a power rating of 6 W per channel to reproduce a large
orchestra if the loudspeakers have an efficiency of 1%. If loudspeakers with an efficiency of 10% can
be employed, the power rating of the amplifier can be reduced to 0.6 W per channel.
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