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290 CHAPTER 7 Loudspeaker systems
PART XXI: SIMPLE ENCLOSURES

Loudspeaker enclosures are the subject of more controversy than any other item connected with
modern high-fidelity music reproduction. Even though the behavior of enclosures is well understood,
opinions and pseudo theories as to the effects of enclosures on loudspeaker response still persist. For
instance, the very mention of directivity is guaranteed to spark a lively debate amongst audio engi-
neers, with some favoring a wide pattern while others prefer a narrow pattern, although virtually all
agree that a constant pattern is desirable to ensure that the room reflections produced by the off-axis
sound have the correct frequency balance. Personal preferences aside, it could be that the choice
depends on the program material. A narrow pattern with fewer room reflections allows the listener to
hear the acoustics of the recording location more clearly, as well as the positions of the individual
performers on the stage. Hence we might expect a narrow pattern to favor recordings made in a natural
acoustic space such as a concert hall, church, or theatre. On the other hand, for close-miked studio
recordings, a greater sense of presence and listener envelopment may be created by employing a wide
pattern that produces many reflections around the room in order to produce some sense of a live
performance, albeit in a flawed domestic listening space. After all, unlike the majority of loudspeakers,
musical instruments do not generally fire in one direction only at higher frequencies. One thing that we
cannot control is the fact that at low frequencies, where the wavelength is much larger than the dia-
phragm, loudspeakers are invariably omnidirectional, except for a few dipole/cardioid designs. More
directive patterns at low frequencies come at the cost of reduced efficiency.

The design of an enclosure should be undertaken only with full knowledge of the characteristics of
the loudspeaker and of the amplifier available, but fortunately most reputable manufacturers now
provide the Thiele–Small parameters in their data sheets along with other useful figures such as
sensitivity, xmax, and power rating.

A large part of the difficulty of selecting a loudspeaker and its enclosure arises from the fact that the
psychoacoustic factors involved in the reproduction of speech and music are not understood. Listeners
will rank-order differently four apparently identical loudspeakers placed in four identical enclosures. It
has been remarked that if one selects his own components, builds his own enclosure, and is convinced
he has made a wise choice of design, then his own loudspeaker sounds better to him than does anyone
else’s loudspeaker. In this case, the frequency response of the loudspeaker seems to play only a minor
part in forming a person’s opinion.

Many working in the field of loudspeaker design believe that it is as much an art as a science
because it involves many choices which reflect personal preferences such as maximum loudness versus
bass extension, physical size, directivity characteristics, and so forth. In this chapter, we shall discuss
only the physics of the problem. Designers should be able to achieve, from this information, any
reasonable frequency-response curve that they may desire. Further than that, they will have to seek
information elsewhere or to decide for themselves which shape of frequency-response curve will give
greatest pleasure to themselves and to other listeners.

With the information of this chapter, the high-fidelity enthusiast should be able to calculate, if he or
she understands AC circuit theory, the frequency-response curve for his or her amplifier-loudspeaker-
baffle combination. Design graphs are presented to simplify the calculations, and three complete
examples are worked out in detail. Unfortunately, the calculations are sometimes tedious, but there is
no short cut to the answer.
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7.1 BRIEF SUMMARY OF COMMON LOUDSPEAKER SYSTEMS
In the sections that follow, information is given on the detail design of loudspeaker systems. A brief
summary of the four most common systems is given here as an aid to understanding the relative
advantages of each of those that are discussed.
Loudspeaker in closed box. It is not practical to mount a loudspeaker in the wall of a residence.
Alternatively, an unbaffled speaker would behave like a dipole radiator and at low frequencies would
radiate little power. To eliminate radiation from the rear side, all loudspeakers before 1950weremounted
in a simple box. In the equivalent circuit, see Fig. 7.1a, the presence of the box appears as a series
compliance CMB which equals SD

2VB/1.4P0, where VB is the volume of the box. Its presence raises the
speaker’s resonance frequency above that if it were in an infinite baffle. Obviously, to minimize this
increase, the volume of the box must be made very large. Historically, increasing the compliance CMS to
compensate would result in too large an excursion of the voice coil at low frequencies.
Air-suspension loudspeaker system. A unique solution to box size came with the perception that if
the suspension compliance CMSwere made very large, the compliance of the box CMB (i.e., its volume)
could be made much smaller, actually equaling the magnitude of the CMS of the usual loudspeaker,
A different method of suspending the cone was used and, after about 1950, box volumes were often as
small as 20 liters.
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RE = Electrical voice-coil resistance  CMS = Compliance of suspension 
Bl = Electro-mechanical force factor  CMB = Compliance of air in box 
MMS = Mass of diaphragm & coil incl. radiation RMR = Radiation resistance 

RMR1 = Radiation resistance of diaphragm RMR2 = Radiation resistance of port 
MMP = Mass of port incl. end corrections 

FIG. 7.1 Low-frequency analogous circuits for (a) a closed-box loudspeaker and (b) a bass-reflex loudspeaker with

electrical quantities referred to mechanical side.

For simplicity, generator, box, leakage, and port resistances are omitted.
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Bass-reflex loudspeaker system. The bass-reflex system is a means for obtaining a greater response at
low frequencies than that from the same loudspeaker in a closed box. Actually, it is often used to boost
the output at low frequencies from a system using a relatively small box. Its special feature is a port in
the box from which sound emerges that adds to that directly radiated by the loudspeaker. The port is
a tube with a cross-section area about equal to the area of the loudspeaker cone and a length that is
chosen to give the desired resonance frequency.

The simplified equivalent circuit is shown in Fig. 7.1b. Two resonant frequencies occur: that of the
loudspeaker (u0) and that of the box/port. Usually,MMSCMS¼MMPCMB¼ 1/u0.Atu0, ~uc approaches zero
and ~uP becomes very large. Below u0, ~uc and ~uP are out of phase and the response is not enhanced by the
addition of the port. But, for one to two octaves above u0 the response is usually enhanced by about 5 dB.
Transmission-line enclosures. A transmission-line enclosure is the result of research leading to
a small box containing a small loudspeaker and yet producing a strong bass sound. The box may have
a volume as little as 2 liters. The loudspeaker-drive unit usually has a stiff cone with a diameter
between 5 cm and 12 cm and its voice coil is capable of large excursions without generating appre-
ciable distortion. The front side of the cone radiates directly into the listening space. Connected to the
rear side is a tube whose length is 1/4th that of the lowest desired bass frequency, and the open end of
which also radiates into the listening space. A small displacement of the cone will result in a large
displacement of the air particles at the end of the tube. For strong bass at 100 Hz this means a length of
86 cm. The difficulty in the overall design of the system, is that the tube also resonates at frequencies
higher than the 100 Hz. Their strength at the opening end of the tube is diminished by tapering the tube
and filling it with a porous acoustical material of low flow resistance.
7.2 UNBAFFLED DIRECT-RADIATOR LOUDSPEAKER
A baffle is a structure for shielding the front-side radiation of a loudspeaker diaphragm from the rear-
side radiation which can potentially cancel it at low frequencies. The necessity for shielding the front
side from the rear side can be understood if we consider that an unbaffled loudspeaker at low
frequencies is the equivalent of a pair of simple spherical sources of equal strength located near each
other and pulsing out of phase (see Fig. 7.2). The rear side of the diaphragm of the loudspeaker is
equivalent to one of these sources, and the front side is equivalent to the other.
r

b

A

θ

FIG. 7.2 Doublet sound source equivalent at low frequencies to an unbaffled vibrating diaphragm.

The point A is located a distance r and at an angle q with respect to the axis of the loudspeaker.
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If we measure, as a function of frequency f, the magnitude of the rms sound pressure p at a point A,
fairly well removed from these two sources, and if we hold the volume velocity of each constant, we
find from Eq. (4.117) that

���~p��� ¼ �
r0 f

2
��� ~U0

���bp
rc

cos q (7.1)

where

j ~U0j is strength of each simple source in m3/s.
b is separation between the simple sources in m.
r0 is density of air in kg/m3 (1.18 kg/m3 for ordinary temperature and pressure).
r is distance in m from the sources to the point A. It is assumed that r>> b.
q is angle shown in Fig. 7.2.
c is speed of sound in m/s (344.8 m/s, normally).

In other words, for a constant-volume velocity of the loudspeaker diaphragm, the pressure ~p
measured at a distance r is proportional to the square of the frequency f and to the cosine of the angle q
and is inversely proportional to r. In terms of decibels, the sound pressure ~p increases at the rate of
12 dB for each octave (doubling) in frequency.

In the case of an actual unbaffled loudspeaker, below the first resonance frequency where the
system is stiffness-controlled, the velocity of the diaphragm is not constant but doubles with each
doubling of frequency. This is an increase in velocity of 6 dB per octave. Hence, the pressure ~p from
a loudspeaker without a baffle increases 12þ 6¼ 18 dB for each octave increase in frequency. Above
the first resonance frequency, where the system is mass-controlled, the velocity of the diaphragm
decreases 6 dB for each octave in frequency. Hence, in that region, the pressure ~p increases
12� 6¼ 6 dB for each octave increase in frequency and we can use the curve shown in Fig. 13.22 for
an unbaffled circular piston (b ¼ a), which turns out to be the magnitude of the radiation impedance
shown in Fig. 4.38.

The unbaffled loudspeaker has the same analogous circuit as that shown in Fig. 6.4 for
a loudspeaker in an infinite baffle except that the radiation impedance is given by Fig. 4.38 and the
on-axis pressure is proportional to the total radiation force ~f R as opposed to the volume acceler-
ation. The on-axis pressure is given by Eq. (13.128) if we let ~p0 ¼ ~f R/SD. Although this is an
expression for a resilient disk (uniform pressure), it will be shown in Sec. 13.10 that it is the same
as that for a rigid disk (uniform velocity) if we let ~p0 ¼ 2ZAR

~U0. Hence we find that the on-axis
pressure is the same as that given by Eq. (6.31) multiplied by SDZAR/(r0c). In other words, if the
diaphragm acceleration is constant, the on-axis response is simply the magnitude of the radiation
impedance shown in Fig. 4.38.

The absence of a baffle makes the loudspeaker more directional because, in the plane of the baffle,
the sound pressure tends to reduce to zero. Hence there are fewer reflections from side walls. This
figure 8 directivity pattern may be used to extend the width of the stereo “sweet spot” in a room. If the
listener moves towards one side of the listening area, he or she will move further off the main axis of
the nearest loudspeaker than that of the furthest one. Hence the sound pressure of the nearest loud-
speaker will be reduced automatically relative to that of the furthest one, which will compensate for its
proximity.
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Certain kinds of loudspeaker that have very low moving mass, such as electrostatic or planar
magnetic types, are used almost exclusively without a baffle because the extra stiffness provided
by a closed box would push the fundamental resonance frequency up too high. The problem of
low-frequency cancellation is compensated for by using a very large radiating area. Full-range elec-
trostatic or planar magnetic loudspeakers have radiating areas of at least 0.5 m2.
7.3 INFINITE BAFFLE
In the previous chapter we talked about direct-radiator loudspeakers in infinite baffles. Reference to
Fig. 6.7 reveals that with an infinite baffle, the response of a direct-radiator loudspeaker is enhanced
over that just indicated for no baffle. It was shown that if one is above the suspension resonance
frequency, but below the first diaphragm break-up mode, usually the response is flat with frequency
(unless the Bl product is very large) and that if one is below the first resonance frequency the response
decreases at the rate of 12 dB per octave instead of 18 dB per octave. Hence, the isolation of the front
side from the back side by an infinite baffle is definitely advantageous.

In practice, the equivalent of an infinite baffle is a very large enclosure, well damped by absorbing
material. One practical example is to mount the loudspeaker in one side of a closet filled with clothing,
allowing the front side of the loudspeaker to radiate into the adjoining listening room.

Design charts covering the performance of a direct-radiator loudspeaker in an infinite baffle are
identical to those for a closed box. We shall present these charts in Sec. 7.6.
7.4 FINITE-SIZED FLAT BAFFLE
The discussion above indicated that it is advisable to shield completely one side of the loud-
speaker from the other, as by mounting the loudspeaker in a closet. Another possible alternative is
to mount the loudspeaker in a flat baffle of finite size, free to stand at one end of the listening
room. The worst shape for such a baffle is circular because sound from the rear arrives at the front
at the same time whichever radial path is taken. Hence at some frequencies, where the radial path
length is a multiple of the wavelength l, the front radiation is partially canceled and we have
a comb filter effect, as shown in Fig. 13.22. The effect is considerably smeared if we use
a rectangular baffle with the drive unit offset from the center as is the case with the IEC 268-5
baffle. [38]

The performance of a loudspeaker in a free-standing flat baffle leaves much to be desired,
however. If the wavelength of a tone being radiated is greater than twice the smallest lateral
dimension of the baffle, the loudspeaker will act according to Eq. (7.1). This means that for a finite
flat baffle to act approximately like an infinite baffle at 50 Hz, its smallest lateral dimension must
be about 3.5 m (11.5 ft), which limits its use to mid-range units or above. However, even above
this frequency, sound waves traveling from behind the loudspeaker reflect off walls and meet with
those from the front and cause alternate cancellations and reinforcements of the sound as the two
waves come into phase or out of phase at particular frequencies in particular parts of the room.
Hence, the loudspeaker must be located away from walls or reflecting objects in order to minimize
this effect.
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7.5 OPEN-BACK CABINETS
An open-back cabinet is simply a box with one side missing and with the loudspeaker mounted in the
side opposite the open back. Many portable stereos are of this type. Such a cabinet performs nearly the
same as a flat baffle that provides the same path length between the front and back of the loudspeaker.
One additional effect, usually undesirable, occurs at the frequency where the depth of the box
approaches a quarter wavelength. At this frequency, the box acts as a resonant tube, and more power is
radiated from the rear side of the loudspeaker than at other frequencies. Furthermore, the sound from
the rear may combine in phase with that from the front at about this same frequency, and an abnormally
large peak in the response may be obtained.
7.6 CLOSED-BOX BAFFLE [1,2]
The most commonly used type of loudspeaker baffle is a closed box in one side of which the loud-
speaker is mounted. In this type, discussed here in considerable detail, the back side of the loudspeaker
is completely isolated from the front. A customary type of closed-box baffle is shown in Fig. 7.3. The
sides are made as rigid as possible using some material like 5-ply plywood or MDF, 0.75 to 1.0 inch
thick and braced to prevent resonance. A slow air leak must be provided in the box so that changes in
atmospheric pressure do not displace the neutral position of the diaphragm.

When selecting a loudspeaker, the first two questions that arise are how loud must it go and what
bass cut-off frequency can be tolerated? This of course will depend on the application and the radiated
sound pressure will need to be greater for an auditorium than for a domestic living room. For a cell-
phone ring tone, it must be possible to hear it in a noisy street environment. In general, the low-
frequency sound pressure is limited by the displacement limit xmax and the high-frequency sound
pressure is limited by the power rating. In fact, at higher frequencies the situation is worse because at
least the larger low-frequency displacement pumps air through the magnetic gap, which helps to cool
the voice coil. If the suspension alone is not stiff enough to limit the full-power displacement at low
Plywood or MDF 
18 to 25 mm 
thick 

Acoustical lining 
13 to 38 mm 
thick 

FIG. 7.3 Typical plywood box with loudspeaker mounted off center in one side and lined with a layer of soft

absorbent acoustical material.
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frequencies, then part of the function of the box is to provide the extra stiffness needed to keep the
displacement in check. Otherwise, an auxiliary high-pass filter must be employed. As more stable
suspension materials have been developed, the trend has been towards more compliant suspensions so
that an ever greater proportion of the stiffness can be provided by air in the box which in turn makes the
volume of the box correspondingly smaller. This principle is known as air suspension [37].
Summary of closed-box baffle design
To determine the volume of the closed box and the� 3 dB cut-off frequency:
If the Thiele-Small parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then QTS¼QESQMS /(QESþ QMS).
From Table 7.2, select the frequency-response shape, taking into account that the closed-box QTC value
must be higher than the infinite-baffle QTS of the drive unit. The effect of various QTC values upon
the frequency-response shape can be seen from Fig. 7.16. Further advice regarding QTC is given in the
paragraph following Eq. (7.56).
Estimate the volume of air in the box VA using Eq. (7.61). However, if the box is filled or has a thick lining,
then the QTC value will be modified. Using the manufacturer’s or measured value of flow resistance Rf for the
lining material, compute RAB from Eq. (7.7) and QMB from Eq. (7.58). Determine the volume VA from Eq.
(7.60). The total internal volume is then VB¼ VAþ VM, where VM is the volume of the lining material.
Determine the closed-box resonance frequency fC from Eq. (7.28). From the value of f3dB/fC given in Table 7.2,
compute the cut-off frequency f3dB.

To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLmax is obtained from Eq. (6.34) to give

SPLmax ¼ 20 log10

0
@ 1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
S VASr0

REQES

s 1
A dB SPL @ 1 m

whereWmax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax.

To determine the excursion limit:
Themaximumpeak diaphragm displacement at frequencies well below the closed-box resonance is obtained from
Eq. (7.64) to give

hmax ¼ 1

SDcð1þ VAS=VABÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS
REQESpfsr0

s

However, we see from Fig. 7.17 that at frequencies below the closed-box resonance, the displacement peaks at
a higher value in the case of Chebyshev alignments. For example, the displacement peaks at 1.4hmax in the case of
the 3-dB Chebyshev alignment or 2hmax in the case of the 6-dB Chebyshev alignment. If this peak value is greater
than the rated xmax limit of the drive unit, then it should be arranged for the box resonance frequency fC to be
placed below the lower limit of the frequency range of the program material to be reproduced. If this is not
possible, a high-pass filter should be employed to remove all content below the box resonance frequency. If
this is not possible either, then an alternate drive unit with a greater xmax limit should be considered.
Fig. 7.4 shows the effective diameter of a drive unit required to achieve a given sound pressure
level, with a peak displacement of 1 mm, when radiating omnidirectionally into free space from
a closed-box enclosure. This is obtained from Eq. (6.35), but adjusted by a factor of O2 for free-space
omnidirectional radiation. Hence, for loudspeakers which are to be placed near a wall, the required
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diameter should be divided by O2. Because the diameter has an inverse square-root relationship with
the displacement, quadrupling the peak displacement halves the required diameter. Hence there has
been a trend towards smaller drive units with greater xmax values, usually achieved by extending the
coil beyond the magnetic gap, although this reduces sensitivity and efficiency. Considering that the
maximum effective diameter of an individual drive unit is around 40 cm, the difficulty of producing
very low frequencies at high sound pressures is evident. For large auditoriums, the very large diameters
are made up by stacking multiple loudspeakers.
Analogous circuit. A closed box reacts on the back side of the loudspeaker diaphragm. This reaction
may be represented by an acoustic impedance which at low frequencies is a compliance operating to
stiffen the motion of the diaphragm and to raise the resonance frequency. At high frequencies, the
reaction of the box, if unlined, is that of a multiresonant circuit. This is equivalent to an impedance that
varies cyclically with frequency from zero to infinity to zero to infinity, and so on. This varying
impedance causes the frequency-response curve to have corresponding peaks and dips.

If the box is lined with a sound-absorbing material, these resonances are damped and at high
frequencies the rear side of the diaphragm is loaded with an impedance equal to that for the diaphragm
in an infinite baffle radiating into free space. The acoustical circuit for the box and radiation load on the
diaphragm is given in Fig. 7.5. The reactance and resistance of the box are XAB and RAB. The radiation
mass and resistance on the front of the diaphragm are MAR and RAR respectively.

At low frequencies, where the diaphragm vibrates as one unit so that it can be treated as a rigid
piston, a complete electro-mechano-acoustical circuit can be drawn that describes the behavior of the
box-enclosed loudspeaker. This circuit is obtained by combining Fig. 6.4(b) and Fig. 7.5. To do this,
the acoustical radiation element of the circuit labeled “2MM1” in Fig. 6.4(b) is removed, and the circuit
of Fig. 7.5 is substituted in its place. The resulting circuit with the transformer removed and everything
referred to the acoustical side is shown in Fig. 7.6.

Some interesting facts about loudspeakers are apparent from this circuit. First, the electrical
generator (power amplifier) resistance Rg and the voice-coil resistance RE appear in the denominator of
one of the resistances shown. This means that if one desires a highly damped or an overdamped system,
it is possible to achieve this by using a power amplifier with very low output impedance. Second, the
Front of 
diaphragm 

Back of 
diaphragm 

Box

Diaphragm radiation 

FIG. 7.5 Analogous acoustical circuit for a loudspeaker box. The volume velocity of the diaphragm is ~UC.
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Front side of 
diaphragm 
radiation 

Mechanical part 
of loudspeaker Electrical 

FIG. 7.6 Circuit diagram for a direct-radiator loudspeaker mounted in a closed-box baffle. This circuit is valid for

frequencies below about 400 Hz.
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circuit is of the simple resonant type so that we can solve for the voice-coil volume velocity (equal to
the linear velocity times the effective area of the diaphragm) by the use of universal resonance curves.
Our problem becomes, therefore, one of evaluating the circuit elements and then determining the
performance by using standard theory for electrical series LRC circuits.
Values of electrical-circuit elements. All the elements shown in Fig. 7.6 are in units that yield
acoustic impedances in N$s/m5, which means that all elements are transformed to the acoustical side of
the circuit. This accounts for the effective area of the diaphragm SD appearing in the electrical part of
the circuit. The quantities shown are:

~eg is open-circuit voltage in V of the audio amplifier driving the loudspeaker.
B is flux density in the air gap in T (1 T¼ 104 gauss).
l is length of the wire wound on the voice coil in m.
Rg is output electrical impedance (assumed resistive) in U of the audio amplifier.
RE is electrical resistance of the wire on the voice coil in U.
a is effective radius in m of the diaphragm.
SD¼ pa2 is effective area in m2 of the diaphragm.

Values of the mechanical-circuit elements. The elements for the mechanical part of the circuit differ
here from those of Part XIX in that they are transformed over to the acoustical part of the circuit so that
they yield acoustic impedances in N$s/m5.

MAD¼MMD/SD
2 is acoustic mass of the diaphragm and voice coil in kg/m4.

MMD is mass of the diaphragm and voice coil in kg.
CAS¼ CMSSD

2 is acoustic compliance of the diaphragm suspensions in m5/N.
CMS is mechanical compliance in m/N.
RAS¼ RMS/SD

2 is acoustic resistance of the suspensions in N$s/m5.
RMS is mechanical resistance of the suspensions in N$s/m.

These quantities may readily be measured with a simple setup in the laboratory, as described in
Sec. 6.10. It is helpful, however, to have typical values of loudspeaker constants available for rough
computations, and these are shown in Fig. 7.7 and Fig. 7.8. The average value of RE for a drive unit
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FIG. 7.7 (a) Relation between effective diameter of a loudspeaker and its advertised diameter. (b) Average

resonance frequencies of direct-radiator loudspeakers when mounted in IEC 268-5 baffles [38] vs. the advertised

diameters. (c) Average effective radiating areas of loudspeakers vs. the advertised diameters. (d) Average

compliances of suspensions of loudspeakers vs. the advertised diameters, where the compliance is expressed as

an equivalent volume in liters.
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with an advertised impedance of 8 U is around 6.3 U. The magnitude of the air-gap flux density B
varies from 0.6 to 1.4 T depending on the cost and size of the loudspeaker.
Impedance of closed box with absorbent lining. The type of reactance function shown in Fig. 7.12
without absorbent lining is not particularly desirable because of the very high value that XAB reaches at
the first normal mode of vibration (resonance) for the box, which occurs when the depth of the box
equals one-half wavelength. A high reactance reduces the power radiated to a very small value. To
reduce the magnitude of XAB at the first normal mode of vibration, an acoustical lining is placed in the
box. This lining should be highly absorbent at the frequency of this mode of vibration and at all higher
frequencies. For normal-sized boxes, a satisfactory lining is a 25 mm-thick layer of bonded mineral
wool, bonded Fiberglass, bonded hair felt, Cellufoam (bonded wood fibers), etc. For small cabinets,
where the largest dimension is less than 0.5 m, a 12.5 mm-thick layer of absorbing material may be
satisfactory.

At low frequencies, where the thickness of the lining is less than 0.05 wavelength, the impedance of
the box presented to the rear side of the diaphragm is represented by the analogous circuit of Fig. 7.9
and equals

ZAB ¼ RAB þ jXAB (7.2)

where

XAB zuMAB � 1

uðCAA þ CAMÞ (7.3)

and CAA andMAB are the acoustic compliance and mass respectively of the air inside the box given by

CAA ¼ VA

gP0
(7.4)

MAB ¼ Br0
pa

(7.5)
FIG. 7.9 Analogous circuit for the acoustic impedance ZAB presented to the rear side of the diaphragm at low

frequencies where the smallest dimension of the box is less than one-sixteenth wavelength.

The volume velocity of the diaphragm¼ ~Uc; MAB¼ acoustic mass of the air load on the rear side of diaphragm;

CAA¼ acoustic compliance of the air in the box excluding the lining; CAM¼ acoustic compliance of the air in the

pores of the lining, RAM¼ acoustic resistance of the lining.
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where

VA is volume of air in the box in m3 excluding that contained within the pores of the lining material.
The volume of the loudspeaker should also be subtracted from the actual volume of the box in order
to obtain this number. To a first approximation, the volume of the speaker in m3 equals 0.4� the
fourth power of the advertised diameter in m.
g¼ 1.4 for air for adiabatic compressions.
P0 is atmospheric pressure in Pa (about 105 on normal days).
pa¼ ffiffiffiffiffiffiffiffiffi

SDp
p

if the loudspeaker is not circular.
B is a constant, given in Fig. 7.10 for a box of the type shown in Fig. 7.11, which is dependent upon
the ratio of the effective area of the loudspeaker diaphragm SD to the area L2 of the side of the box
in which it is mounted.

We see from Fig. 7.10 that when the diaphragm has the same area as the cross-sectional area of the
box, that is SD/L

2¼ 1, the box becomes a closed tube of length L/2 and the mass load on the rear of the
diaphragm is one third of the total mass in the box, so that B ¼ ffiffiffi

p
p

=6. On the other hand, when the
area of the diaphragm is very small compared to the cross-sectional area of the box, that is SD/L

2 / 0,
the mass on the rear of the diaphragm is that of a piston in an infinite baffle so that B/8=ð3pÞ.

It is assumed that the pressure variations in the pores of the lining material are isothermal so that the
compliance of the lining material is given by

CAM ¼ VM

P0
(7.6)
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FIG. 7.10 End-correction factor B for the reactance term of the impedance at the rear side of the loudspeaker

diaphragm mounted in a box of the type shown in Fig. 7.11.

The acoustic reactance of the box on the diaphragm is given by XAB¼�gP0/uVAþuBr0/pa. For a noncircular

diaphragm of area SD, pa¼
ffiffiffiffiffiffiffiffiffi
SDp

p
.
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FIG. 7.11 Loudspeaker mounted in a closed box with internal dimensions L3 L3 L /2 when unlined and a dia-

phragm of area SD[pa2 at the center of the L3 L face where L2/SD[ 16.

When lining of thickness d¼ L/10 is added to the rear surface, the internal depth is increased to 0.6L. While this

type of box is convenient for analysis, the construction shown in Fig. 7.3 is more commonly used.
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where VM is the total volume of the pores. Then from Fig. 7.9 the resistance is defined by

RAB ¼ <
  

juCAA þ 1

RAM þ ðjuCAMÞ�1

!�1!

¼ RAM�
1þ VA

gVM

�2

þ u2R2
AMC

2
AA

(7.7)

where

RAM¼ dRf /(3SM) is one-third of the total flow resistance of a layer of thickness d of the acoustical
material that lines the box divided by the area of the acoustical material SM. The units are N$s/m

5.
The flow resistance equals the ratio of the pressure drop across the sample of the material to the
linear air velocity through it. For lightweight materials the flow resistance Rf is about 100 rayls
for each 25 mm of thickness. For dense materials like PF Fiberglass board or rockwool duct
liner, the flow resistance may be as high as 2000 rayls for each 25 mm of thickness of the
material. For example, if the flow resistance per 25 mm of material is 500 rayls, the thickness
75 mm, and the area 0.2m2, then RAM ¼1500/(3� 0.2)¼ 2500 N$s/m5.
It is assumed in writing this equation that the material does not occupy more than 20% of the
volume of the box.

Sound propagation in homogeneous absorbent materials [3]. The sound propagation in fibrous or
porous acoustical materials can be described with a relatively simple analytical model if the
constituent (the solid part of the material) is assumed to be rigid [4]. A model taking into account the
flexibility of the constituent [5] would better describe behavior of the relatively low-density absorbents
used in loudspeakers, but such a model requires parameters that are quite difficult to obtain. A good
empirical description of sound propagation in absorbents has been presented by Delany and Bazley
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[6], with extensions by Miki [7]. Flow resistance is needed to compute the acoustical properties of
a porous material. It can be determined, when the porosity and the average (rms) fiber diameter are
known, by using an equation derived by Sides et al. [8]:

Rf ¼ Dp

ud
¼ 4mð1� 4Þ

4r2

0
B@1� 4

p
ð1� 4Þ

2þ ln
m4

2rr0u

þ 6

p
ð1� 4Þ

1
CA (7.8)

where

Rf is flow resistance of material in rayls/m.
Dp is pressure difference across material in Pa.
u is flow velocity in the material in m/s.
d is thickness of the material in m.
m is viscosity coefficient. For air m¼ 1.86� 10�5 N$s/m2 at 20�C and 0.76 m Hg.
4 is porosity of the material.
r is fiber diameter (rms average).
r0 is density of air in kg/m3.

As Eq. (7.8) shows, the flow resistance is a function of flow velocity. Equation (7.8) is actually the
equation of the static flow resistance, and so with sound the rms value of flow velocity should be used.
With flow velocities associated with sound pressures of interest the variation of the flow resistance is
rather small, and so this nonlinear effect can be ignored and a typical value of flow velocity can be
used; Sides et al. recommend a value of u¼ 0.03 m/s. If the flexibility of the constituent were taken
into account, the resistance values would be somewhat lower. The porosity 4 is defined as the
proportion of the constituent material to the total volume the absorbent and is defined by

4 ¼ 1� rM

rC
(7.9)

where

rM is density of absorbent material in kg/m3.
rC is density of the constituent material (e.g. glass 2200–2900 kg/m3).

Typical values of porosity in acoustical absorbents range from 0.95 to 0.99. When the flow resistance is
determined, then the characteristic impedance Zs can be determined by

Zs ¼ r0c

��
1þ a1

�
Rf

f

�b1�
� ja2

�
Rf

f

�b2�
(7.10)

and the wave number k by

k ¼ u

c

��
1þ a3

�
Rf

f

�b3�
� ja4

�
Rf

f

�b4�
(7.11)

where

r0 is density of air in kg/m3.
c is speed of sound in air in m/s.
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f is frequency in Hz.
u is angular frequency (2pf).
a is real part of the propagation coefficient.
b is imaginary part of the propagation coefficient.
and the coefficients a1 to b4 are given in Table 7.1

The original coefficients given by Delany and Bazley give an excellent match to experimental
results when 0.01< f/Rf< 1, but the coefficients should not be used for extrapolation outside this
range; using these coefficients with low values of flow resistance and frequency (such as those
usually applied in loudspeakers) can yield negative values of attenuation. In such cases the
coefficients given by Miki should be used instead. The lower limit of validity for Miki’s equations
is f/Rf> 0.0005. Other conditions for validity of these equations is that the porosity is close to
unity and that the flow resistance Rf is between 20 and 800 rayls/cm. In practice the soft bulk
fibrous absorbents, like natural and synthetic organic fibers and soft glass wool, used in loud-
speakers meet these additional conditions. The more rigid absorbent sheets commonly used for
room acoustics treatment have anisotropic acoustical characteristics and these models cannot be
applied as such.
Impedance of closed box with or without absorbent lining at all frequencies. Until now we have
only dealt with low frequencies using the circuit shown in Fig. 7.9, which is valid when the
wavelength is greater than 8 times the smallest dimension of the box. In order to see the effect of
the internal standing wave modes upon the impedance or to investigate the effect of placing lining
material on the rear surface, we need a full model of the enclosed space. Such a model will be
developed in Sec. 7.18 resulting in Eq. (7.131) for the self and mutual impedances of a closed box
with two pistons in one wall and an impedance boundary condition on the opposite wall as shown
in Fig. 7.34. The second piston is intended to represent the coupling to a bass-will reflex port. The
width, length, and depth of the box are lx, ly, and lz respectively. The dimensions of the pistons are
a1� b1 and a2� b2. However, for a closed box with no bass-reflex port, we just use z11 and divide
through by a1

2b1
2 to obtain the acoustic impedance which is in the form of an eigenfunction

expansion:
Table 7.1 Values of coefficients used in Eqs. (7.10) and (7.11) for
characteristic impedance and wave number respectively of a homogenous
absorbent material

Coefficient Delaney & Bazley Miki

a1 0.0511 0.070

a2 0.0768 0.107

a3 0.0858 0.109

a4 0.175 0.160

b1 0.75 0.632

b2 0.73 0.632

b3 0.70 0.618

b4 0.59 0.618
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ZAB ¼ r0c

8>><
>>:

1

lxly

Zs
r0c

þ j tan klz

1þ j
Zs
r0c

tan klz

þ 2lx
p2a12ly
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m2km0
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lx

� km0Zs
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(7.12)

where kmn is given by

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
2mp

lx

�2

�
�
np

ly

�2
s

(7.13)

Although this expansion looks complicated, it is highly amenable to numerical computation and the
impedance can be used as part of a matrix expression for the equivalent circuit, as will be demonstrated
in Examples 7.2 and 7.3. The first term is simply that of a tube with the same depth lz as that of the box
and a termination impedance Zs. The impedance of a tube was given by Eq. (2.60). For the impedance
of the lining we set

Zs ¼ Rf d

3
þ P0

jud
(7.14)

where d is the thickness of the lining and we are assuming that the material is so porous that it is mainly
air. For simplicity we will let lz¼ L/2, lx¼ ly¼ L, a1¼ b1¼

ffiffiffiffiffiffi
SD

p
, and y1¼ L/2. In Fig. 7.12 the

specific impedance is plotted for the box of Fig. 7.11 with acoustic lining on the rear surface only to
a depth of d¼ L/10 in addition to the box depth of L/2. Hence the air volume is VA¼ L3/2 and the
material volume VM¼ L3/10. The flow resistance of the lining is Rfd¼ 3r0c in order maximize
absorption at high frequencies.

We see from Fig. 7.12 that at high frequencies the unlined box impedance varies dramatically with
frequency between zero reactance and very high reactance.With lining, the box resonances (normalmodes
of vibration) are damped out so thatRSB has a constant value of around r0c andXSB approaches zero. If this
behaved simply like an acoustic transformer (see Eq. (4.38)), wemight expect the high-frequency value of
RSB tober0c/16, that is, the impedanceof the liningdividedby the ratioof the areaof the lining to that of the
diaphragm. However the transformer model is only valid when the wavelength is large compared to
the depth L/2. Instead we see a much higher value of RSB because, as the size of the box is increased, the
impedance seen by the diaphragm approaches that of a piston in an infinite baffle, which is r0c.

Acoustical material may also be used to enlarge effectively the volume of enclosed air. Gaseous
compressions in a sound wave are normally adiabatic. If the air space is completely filled with a soft,



FIG. 7.12 Normalized specific acoustic impedance ðZSB=r0c[ZMB=ðSDr0cÞ[ZABSD=r0cÞ of the closed box
shown in Fig. 7.11.

The lining has a specific flow resistance of Rfd¼ 3r0c which provides optimum sound absorption at higher

frequencies. The position of the first normal mode of vibration occurs when L/2¼ l/2, that is, it occurs atffiffiffiffiffiffi
SD

p
=l¼ 0.25 for L2/SD¼ 16. Without the lining, RSB¼ 0.
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lightweight material such as kapok or Cellufoam (foamed wood fibers), the compressions become
isothermal. This means that the speed of sound decreases from c¼ 344.8 m/s to c¼ 292 m/s.
Reference to Fig. 7.12 shows that this lowers the reactance at low frequencies just as does an increase
in box dimension L. This also means that in Eq. (7.4) the value of g is 1.0 instead of 1.4. In some
designs, activated carbon is used to increase the apparent volume of the box even further. The pores
within the material have a vast internal surface area on which air molecules are adsorbed when the
pressure increases. When the pressure decreases, they are released again, the effect of which is to
reduce the stiffness of the air in the box. However, the flow resistance of the material will have the
effect of reducing the Q of the closed-box resonance which may or may not be a good thing depending
on what the value was to begin with. [40,41]
Unlined closed box at low frequencies. In an unlined box, XAB is not well behaved for wavelengths
shorter than8 times the smallest dimensionof the box [9], as is seen fromFig. 7.12. If the dimensionbehind
the loudspeaker is less than about l/4, the reactance is negative (compliance dominated). If that dimension
is greater than l/4, the reactance is usually positive (mass dominated).When that dimension is equal to l/2,
the reactance becomes very large and the sound pressure radiated from the loudspeaker is attenuated.
However, in many applications, such as tweeters, cellphones andMP3-player docking stations, the box is
small compared to the wavelength over most of the working frequency range and so these typically have
unlined enclosures. For those frequencies where the wavelength of sound is greater than eight times the
smallest dimension of the box, the acoustic reactance presented to the rear side of the loudspeaker is
a seriesmass and compliance as givenbyEq. (7.3), butwithCAM¼ 0.For example if the depth of the box is
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2 cm, then the maximum frequency for Eq. (7.3) is 2.18 kHz and the reactance will become very large at
8.72 kHz. The impedance at all frequencies is given by Eq. (7.12), but with Zs/N, so that

kmnZs
kr0c

þ j tan kmnlz

1þ j
kmnZs
kr0c

tan kmnlz

¼ �jcot kmnlz (7.15)

In order to determine the end-correction factor B used in Eq. (7.5) and for the plot of Fig. 7.10
(where for simplicity we let lz¼ L/2, lx¼ ly¼ L, a1¼ b1¼

ffiffiffiffiffiffi
SD

p
, and y1¼ L/2), we make the following

low-frequency (k / 0) approximations:

cot
kL

2
z

2

kL
� kL

6
(7.16)

kmn z j
2p

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
(7.17)

and

k

kmn
cot

kmnL

2
z � kL

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p (7.18)

Noting that ZAB¼ jXAB, where XAB is given by Eq. (7.3), we obtain the following expression for the
end-correction factor B:

B ¼
ffiffiffiffiffiffiffiffiffi
pSD

p
r0
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(
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ffiffiffiffiffiffi
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p
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m2n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
) (7.19)

which is valid for lined or unlined boxes.

Location of loudspeaker drive unit in box. The results shown in Fig. 7.12 for the reactance of the
closed box apply to a loudspeaker mounted in the center of one of the L by L sides, This location of the
loudspeaker leaves something to be desired, because waves traveling outward from the diaphragm
reach the outside edges of the box simultaneously and in combination set up a strong diffracted wave in
the listening space. To reduce the magnitude of the diffracted wave, the loudspeaker should be moved
off center by several inches—preferably in the direction of one corner. The use of rounded corners also
helps to mitigate diffraction effects.

Note that if an ideal flat drive unit occupies the whole of one wall, no modes will occur between the
adjacent walls, only between the drive unit and opposite (rear) wall. This is because the drive unit itself
and the opposite wall are both reflected in the adjacent walls which act like mirrors. Hence the drive
unit behaves like an infinite piston facing an infinite reflective surface.
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The front face of the box of Fig. 7.11 need not be square. It is possible to make the ratio of the two
front edges vary between 1 and 3 without destroying the validity of the charts, for the same total
volume. In hi-fi loudspeaker enclosures it is not unusual for all the sides to be of different lengths with
a “golden ratio” of 21/3 (¼ 1.26) between the two smallest sides and the two largest ones so that the
largest side is 22/3 (¼ 1.6) times longer than the shortest one. The purpose of this is to interleave the
internal vibration modes so that they do not reinforce each other. It is also common to make the width
of the front panel as narrow as possible (hence there will be little in the way of modes between the side
walls) and also to extend the height of the box so that the loudspeaker is floor standing. It is advisable
to locate the drive unit at about one third of the internal height from either the top or bottom so as not to
coincide with the anti-nodes of the first or second vertical modes.
Effect of box compliance on resonance frequency and Q. Let us analyze the effect of the closed-box
baffle on the lowest resonance frequency of a direct-radiator loudspeaker. For convenience, let us
define a net compliance CAB for a lined box:

CAB ¼ CAA þ CAM (7.20)

where CAM is the compliance of the air in the lining material (we assume that it is highly porous so that
it is mainly air) given by Eq. (7.6) and CAA is the compliance of the remaining free space given by
Eq. (7.4). Let us define an apparent box volume VAB for a lined box in terms of the volume of the lining
material VM and the remaining internal free space VA so that

VAB ¼ VA þ gVM (7.21)

However, the total physical internal volume of the box VB is

VB ¼ VA þ VM (7.22)

which is smaller than the apparent volume VAB due to the isothermal pressure fluctuations within
the lining material. For a loudspeaker mounted in an infinite baffle, the frequency for zero reactance is

fSB ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CASðMAD þ 2M0

A1Þ
p (7.23)

where we have assumed that the radiation reactance XAR from each side of the diaphragm equals
uM0

A1 and that M0
A1¼ 0.27r0/a.

From Fig. 7.6 we see that the resonance frequency fC for the loudspeaker in a closed-box baffle with
a volume less than about 200 L is

fC ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAS þ CAB

CASCABðMAD þMA1 þMABÞ

s
(7.24)

where CAB and MAB are given by Eqs. (7.20) and (7.5) and MA1 is the radiation mass of a closed-back
piston given by MA1¼ 3/4M

0
A1 z 0.2r0/a.

The ratio of (7.24) to (7.23) is equal to the ratio of the resonance frequency with the box to the
resonance frequency with an infinite baffle. This ratio is

fC
fSB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ CAS

CAB

��
1þ 2M0

A1 �MA1 �MAB

MAD þMA1 þMAB

�s
(7.25)
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Let us assume that MAB is approximately the radiation mass of a piston in an infinite baffle and that
M0

A1 z 0.043MAD so that Eq. (7.25) is approximately:

fC
fSB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:01

�
1þ CAS

CAB

�s
(7.26)

Hence the 1% difference in mass loading alone of the loudspeaker in a closed box compared to in an
infinite baffle will produce a 0.5% increase in resonance frequency.

Often, it is difficult to find an “infinite” baffle in which to determine the resonance frequency. If the
loudspeaker is held in free space without a baffle, the mass loading M00

A1 on the diaphragm will be
exactly one-half its value in an infinite baffle, that is,M00

A1¼ 0.135r0/a. Hence, the ratio of the resonance
frequency in the closed box fC to the resonance frequency without baffle fSA is approximately

fC
fSA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:97

�
1þ CAS

CAB

�s
(7.27)

Ignoring the mass loading effect, the above equations for the frequency shift due to a lined box can be
conveniently expressed in terms of the Thiele–Small parameters fS, and VAS (IEC-baffle [38] resonance
frequency and equivalent suspension volume respectively), and the apparent box volume VAB:

fC
fS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VAB

r
(7.28)

This equation is plotted in Fig. 7.13.
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FIG. 7.13 Frequency ratio fC /fS[ ratio of the resonance frequency for a loudspeaker in a closed-box baffle to the

resonance frequency for the same loudspeaker in an IEC 268-5 baffle.38
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Values of radiation (front-side) impedance. Acoustical elements always give the newcomer to the
field of acoustics some difficulty because they are not well behaved. That is to say, the resistances vary
with frequency, and, when the wavelengths are short, so do the masses.

The radiation impedance for the radiation from the front side of the diaphragm is simply a way of
indicating schematically that the air has mass, that its inertia must be overcome by the movement of the
diaphragm, and that it is able to accept power from the loudspeaker. The magnitude of the front-side
radiation impedance depends on whether the box is very large so that it approaches being an infinite
baffle or whether the box has dimensions of less than about 0.6 by 0.6 by 0.6 m (7.6 ft3), in which case
the behavior is quite different.

Very large box (approximating infinite baffle)

RAR is radiation resistance for a piston in an infinite baffle in N$s/m5. This resistance is
determined from the ordinate of Fig. 4.35 multiplied by 407/SD. If the frequency is low, so
that the effective circumference of the diaphragm (2pa) is less than l, that is, ka< 1 (where
k¼ 2p/l), RAR may be computed from

RARz
0:159u2r0

c
z 0:0215 f 2 (7.29)

XAR is radiation reactance for a piston in an infinite baffle. This reactance is determined from the
ordinate of Fig. 4.35, multiplied by 407/SD. For ka< 1, XAR is given by

XAR ¼ uMA1z
0:270ur0

a
z

2:0 f

a
(7.30a)

and

MA1 ¼ 0:270r0
a

z
0:318

a
(7.30b)

Small to medium-sized box (less than 200 L)

RAR is approximately the radiation impedance for a one-sided piston in free space. This resistance
is determined from the ordinate of Fig. 4.39 multiplied by 407/SD. If the frequency is low so that
the effective circumference of the diaphragm (2pa) is less than l, RAR may be computed from

RAR ¼ pf 2r0
c

z 0:01076 f 2 (7.31)

XAR is approximately the radiation reactance for a one-sided piston in free space. This reactance is
determined from the ordinate of Fig. 4.39 multiplied by 407/SD. For ka< 1, XAR is given by

XAR ¼ uMA1z
uð0:2026Þr0

a
z

1:5 f

a
(7.32a)

and

MA1 ¼ 0:2026r0
a

z
0:239

a
(7.32b)
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Radiation equation. At very low frequencies where the diaphragm has not yet become a direc-
tional radiator (i.e., its circumference is less than about a wavelength), the loudspeaker in
a closed-box baffle may be treated as though it were a simple spherical source of sound. We find
from Eq. (4.71) that the sound pressure a distance r away from such a source in a free field is
given by

~pðrÞ ¼ �jfr0 ~Uc
e�jkr

2r
; kR << 1 (7.33)

where

~p is sound pressure in Pa at a distance r from the loudspeaker.

~Uc ¼ ~ucSD is volume velocity of the diaphragm in m3/s.
r0 is density of air in kg/m3 (about 1.18 kg/m3 for normal room conditions).
r is distance from the loudspeaker in m.
f is frequency in Hz
R¼ (3VB/4p)

1/3 is average dimension of the enclosure.

At higher frequencies, where the diaphragm is becoming more directional but yet is still vibrating
substantially as a rigid piston, we use Eq. (13.104) for a piston in an infinite baffle. When the
wavelength is small compared to the dimensions of the box, it acts as a large baffle so that the pressure
at a distance r in a free field is

~pðrÞ ¼ �jfr0 ~Uc
e�jkr

r
; kR >> 1 (7.34)

Hence there is a 6 dB lift at higher frequencies due to the baffle effect. Examples of this can be seen in
Fig. 12.24 and Fig. 13.30 which show the on-axis pressure responses of a piston in a sphere and
a closed-back circular baffle respectively. If the corners of the box are square, the rise will be
accompanied by some ripples in the on-axis response due to reflections from the corners. No exact
solution exists for this kind of problem although some useful approximations can be made [10–12].
Otherwise, if the corners are rounded, the transition will be smoother like that of a point source in
a sphere shown in Fig. 12.15. Let us now modify Eq. (7.33) by adding an on-axis directivity function
D(0) so that it covers the transition region:

~pðrÞ ¼ �jfr0 ~Uc
e�jkr

2r
Dð0Þ (7.35)

The type of approximationwe use forD(0) will depend on the form of the enclosure. If it is very rounded,
the following expression provides a reasonably good approximation to a point source on a sphere:

Dð0Þ ¼ 1þ jkR

1þ jkR=2
(7.36)

where R is the radius of the sphere and k¼ 2pf/c, so that the pressure magnitude is

jpðrÞj ¼ fr0jUcj
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2R2

1þ k2R2=4

s
(7.37)
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FIG. 7.14 Plot of 20log10D (0) for a point source in a sphere of radius R, which is used to model the baffle effect of

a loudspeaker in a rounded closed-box baffle with constant diaphragm acceleration.

The black curve shows the exact result from Eq. (12.47) and the gray curve the approximation from Eq. (7.36).
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The approximation of Eq. (7.36) is plotted in Fig. 7.14 along with the exact expression for a point
source on a sphere from Eq. (12.47). For an enclosure in which the loudspeaker occupies the full width,
a closed-back piston model is more appropriate, in which case

Dð0Þ ¼ 1� 2k2a2 þ j2ka

1� k2a2 þ jka
(7.38)

where a is the radius of the piston so that the pressure magnitude is:

jpðrÞj ¼ fr0jUcj
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2k2a2Þ2 þ 4k2a2

ð1� k2a2Þ2 þ k2a2

s
(7.39)

The approximation of Eq. (7.38) is plotted in Fig. 7.15 along with the exact expression for a closed-
back piston in free space from Eq. (13.253). This gives a more rapid 6 dB transition than the point
source on a sphere. Since most drive units are designed to have as flat a response as possible in a flat
baffle, the only way to correct for this 6 dB lift is to include the inverse of the function D(0) in the
cross-over network as will be discussed in Sec. 7.20. At even higher frequencies, the on-axis response
starts to roll off, even if the diaphragm is rigid and perfectly well behaved, because of the cone shape,
which can be thought of as an approximate concave dome. See Fig. 12.32. The roll off is somewhat
irregular due to “cup” resonances. The directivity pattern then becomes constant with an angle of
dispersion that corresponds to the arc angle of the concave dome, as shown in Fig. 12.31.
Diaphragm volume velocity ~Uc. We determine the volume velocity ~Uc from Fig. 7.6:

~Uc ¼ ~egBl

SDðRg þ REÞ
 

B2l2�
Rg þ RE

	
S2D

þ RA þ jXA

! (7.40)
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FIG. 7.15 Plot of 20log10D (0) for a closed-back piston of radius a in free space, which is used to model the baffle

effect of a loudspeaker in a narrow closed-box baffle with constant diaphragm acceleration.

The black curve shows the exact result from Eq. (13.253) and the gray curve the approximation from Eq. (7.38).

It is interesting to note that the exact on-axis response of the closed-back piston is the obtained from the sum of

the on-axis responses of a free piston and a piston in an infinite baffle, where the latter is just unity under constant

acceleration. The on-axis response of a free piston is simply the magnitude of its radiation impedance shown in

Fig. 4.38.
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where, from Fig. 7.6,

RA ¼ RAS þ RAB þ RAR (7.41)

XA ¼ uMA � 1=ðuCAÞ (7.42)

MA ¼ MAD þMA1 þMAB (7.43)

CA ¼ CASCAB

ðCAS þ CABÞ (7.44)

The radiation mass and resistance RAR and MA1 are generally given by Eqs. (7.31) and (7.32) but for
very large boxes or for infinite baffles are given by Eqs. (7.29) and (7.30).

In an effort to simplify Eq. (7.40), let us define a QTC in the same manner as we do for electrical
circuits. First, let us set

uC ¼ 2pfC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p (7.45)

where uC¼ angular resonance frequency for zero reactance. Then,

QEC ¼ ðRg þ REÞS2D
B2l2

ffiffiffiffiffiffiffi
MA

CA

r
(7.46)
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QMC ¼ 1

RA

ffiffiffiffiffiffiffi
MA

CA

r
(7.47)

QTC ¼ QECQMC

QEC þ QMC
(7.48)

so that we can write

~Uc ¼ SD~eg
BlQEC

BCðf Þ (7.49)

where the frequency response function BC ( f ) is given by

BCð f Þ ¼
j
f

fC

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.50)

This has the same form as bc(f) in Eq. (6.7) for a loudspeaker in an infinite baffle, which is plotted in
Fig. 6.5, except that the parameters have been modified by the enclosure.
Reference volume velocity and sound pressure. A reference diaphragm volume velocity is arbitrarily
defined here by the equation

UcðrmsÞ ¼ egðrmsÞBlSD
ðRg þ REÞuMM

(7.51)

where we have set the total mass toMA¼MM/SD
2. This reference volume velocity is equal to the actual

volume velocity above the resonance frequency under the special condition that RA
2 of Eq. (7.41) is

small compared with u2MA
2. This reference volume velocity is consistent with the efficiency defined

in Sec. 6.9.
The reference sound pressure at low frequencies, where it can be assumed that there is unity

directivity factor, is found from Eqs. (7.33) and (7.51):

prms ¼ egðrmsÞBlSDr0
ðRg þ REÞMM4pr

(7.52)

It is emphasized that the reference sound pressure will not be the actual sound pressure in the region
above the resonance frequency unless the motion of the diaphragm is mass-controlled and unless
the directivity factor is nearly unity. The reference pressure is, however, a convenient way of loca-
ting “zero” decibels on a relative sound-pressure-level response curve, and this is the reason for
defining it here.
Radiated sound pressure for ka< 1. The radiated sound pressure in the frequency region where the
circumference of the diaphragm (2pa) is less than a wavelength (i.e., where there is negligible
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directivity) is found by inserting the volume velocity from Eqs. (7.49) and (7.50) into Eq. (7.33) so
that

~pðrÞ ¼ � ~egBlSDr0
ðRg þ REÞMM

$
e�jkr

4pr
aCðf Þ; kR << 1 (7.53)

where aC( f ) is a frequency-response function in the form of a 2nd-order high-pass filter which is
proportional to the acceleration of the cone. It is defined by

aCð f Þ ¼
� f 2

f 2C

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.54)

Notice that Eq. (7.53) is very similar to Eq. (6.32) for the sound pressure radiated from a loud-
speaker in an infinite baffle, the only difference being the factor of 4 in the denominator instead of 2.
The reason for this is that the sound pressure is doubled when radiating into half space instead of whole
space. Otherwise, there are very little difference in the reference sensitivity apart from that due to the
change in mass loading when the loudspeaker is mounted in the enclosure. However, this will be
negligible in most cases. Similarly, the sensitivity is the same as that given in Eq. (6.33) but with
a factor of 4 in the denominator:

Sensitivity ¼ 20 log10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE

p
BlSDr0

4prðRg þ REÞMM � 20� 10�6

�
dB SPL=W=m (7.55)

Alignments for pre-determined frequency-response shapes. The normalized sound pressure level
(SPL) is plotted Fig. 7.16 using 20log10jaCj from Eq. (7.54). Note that at the resonance frequency fC,
the SPL is simply 20 log10QTC so that it is 6 dB forQTC¼ 2, 3 dB for QTC¼

ffiffiffi
2

p
, 0 dB forQTC¼ 1, and

so forth.
We should observe that, even in the frequency range where the diaphragm diameter is less than one-

third wavelength, the value of QTC is not strictly constant because RAR increases with the square of the
frequency. In using Eq. (7.54) and Fig. 7.16, therefore, RA in QTC probably ought to be calculated as
a function of u/uC. Usually, however, the value of RA at uC is the only case for which calculation is
necessary.

The curve for QTC ¼ 1=
ffiffiffi
2

p
, also known as critical damping, has a Butterworth high-pass

frequency-response shape. It gives the flattest possible response down to fC where it is 3 dB
below the pass-band level. Hence we see that we can choose a frequency-response shape and
engineer the loudspeaker accordingly. Instead of defining the shape by the QTC factor, which only
tells us the magnitude at the resonance frequency fC, it is more convenient to define the largest
amount of deviation from the flat level that we wish to allow, or ripple factor, in dB. Chebyshev
alignments are defined in this way, and the QTC values needed for various ripple factors are given
in Table 7.2. These are calculated from the formulae given in Appendix I. Small loudspeakers are
often deliberately designed with a peak in the bass response in order to make them sound more
impressive on first hearing and thus compensate for the lack of deep bass. On the other hand, if
this is overdone, the effect of the poor transient response (see Sec. 6.17), with the resulting “one



Table 7.2 Resonance frequencies and Q values for various 2nd-order frequency-response
shapes

Frequency-response shape f3dB/fC QTC

Synchronous 1.5538 0.5000

Bessel 1.2720 0.5774

Butterworth 1.0000 0.7071

Chebyshev with 0.1 dB ripple 0.93682 0.76736

Chebyshev with 0.5 dB ripple 0.88602 0.86372

Chebyshev with 1.0 dB ripple 0.86234 0.9565

Chebyshev with 2.0 dB ripple 0.84461 1.1287

Chebyshev with 3.0 dB ripple 0.84090 1.3047

Chebyshev with 4.0 dB ripple 0.84312 1.4934

Chebyshev with 5.0 dB ripple 0.84842 1.6996

Chebyshev with 6.0 dB ripple 0.85544 1.9269
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FIG. 7.16 Normalized sound-pressure-level (SPL) response of a loudspeaker in a closed box at low frequencies

using 20log10jaCj from Eq. (7.54).

An infinite baffle or a closed-box enclosure is assumed. QTC is the same as QTC of Eq. (7.48) and uC is found from

Eq. (7.45). The graph applies only to the frequency range where the wavelengths are greater than about three

times the advertised diameter of the diaphragm.
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note” bass, can be fatiguing. For larger loudspeakers with more extended bass, the Bessel
frequency-response shape, which has a maximally linear phase response, offers a useful
compromise between bass extension and good transient response. If the loudspeaker is to be
situated in a relatively small listening room where the low frequencies are likely to be augmented
by room modes, then a gentle roll-off is desirable, as provided by the synchronous shape, which
has two real coincident poles. In this case, a relatively small room is one in which the largest
dimension is less than 6 m.

Referring back to Eq. (6.115), we find that we suggested for satisfactory transient response that uS/
(2QTS)> 92 s�1. Let us see what this means in terms of QTC.

In terms of QTC the suggested criterion for satisfactory transient response is

QTC <
uC

184
(7.56)

As an example, if uC ¼2pfC¼ 2p40¼ 251 rad/s, then QTC should be less than 1.37. This would
mean that the peak in the response curve must be less than 2.7 dB. Methods for achieving desired QTC

values will be discussed as part of the example below.
Setting the value of QTC and determination of the total box volume VT. The QTC of a loudspeaker in
a closed box is never the same as its free-space QTS unless the box is extremely large and empty.
However, it is the closed-box QTC which determines the final frequency-response shape. Its value
obviously depends upon the inherent mechanical resistance [see QMC from Eq. (7.47)] and electrical
damping [see QEC from Eq. (7.46)] of the drive unit, which we cannot change very easily in the case of
a passive loudspeaker design except through the choice of drive unit. However, we can control the box
volume and filling material. If we ignore the acoustic mass loading effect so that MA¼ SD

2 MMS, the
ratio of QTC to QTS is found from Eqs. (7.48) and (6.9):

QTC

QTS
¼

B2l2

Rg þ RE
þ RMS

B2l2

Rg þ RE
þ RMS þ RMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CAS

CAB

r
(7.57)

Let us define QMB for the box:

QMB ¼ 1

RMB

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
¼ r0c

2

RABuSVAS
(7.58)

where RAB is calculated from Eq. (7.7). Hence

QTC

QTS
¼

1

QES
þ 1

QMS

1

QES
þ 1

QMS
þ 1

QMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VAB

r
(7.59)

where VAB¼ VAþ gVM, which is solved for VA to yield

VA ¼ VAB � gVM ¼ VAS

Q2
TC

�
1

QTS
þ 1

QMB

�2

�1

� gVM (7.60)



320 CHAPTER 7 Loudspeaker systems
where VM is the volume of the lining material and VA the remaining free space. Although a value of VA
is required to calculate RAB from Eq. (7.7), a first approximation is given by letting QMB¼N so that

VA z
VAS

ðQTC=QTSÞ2 � 1
� gVM (7.61)

The total internal volume of the box is then VB¼ VAþVM.
Cone displacement. The first time integral of the velocity from Eqs. (7.49) and (7.50) gives the
displacement:

~hC ¼ ~uC
ju

¼
~UC

juSD
¼ ~eg

uCBlQEC
gCð f Þ (7.62)

where gC(f) is a dimensionless frequency response function given by

gCð f Þ ¼ 1

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.63)

This is plotted in Fig. 7.17. At very low frequencies we have

~h0 ¼ ~eg
uCBlQEC

¼ ~eg
uSBlQESð1þ VAS=VABÞ (7.64)

Hence, reducing the size of the box reduces the amount of displacement at low frequencies below uC

and thus enables greater sound pressure to be obtained at higher frequencies above uC with less risk of
displacement limiting due to the low frequencies present. On the other hand, reducing the box volume
raises uC and therefore reduces the sound pressure at low frequencies, so a compromise has to be
reached somewhere.
7.7 MEASUREMENT OF BAFFLE CONSTANTS
The constants of the baffle may be measured after the loudspeaker constants are known. Refer to
Fig. 7.6. The quantities RAR and XAR are determined from Eqs. (7.31) and (7.32). The electrical and
mechanical quantities are measured directly.
Measurement of CAB. Using the same procedure as for measuring fS and QEC in Sec. 6.10, determine
a new fC and QEC, and solve for CAB from Eq. (6.71) so that

CAB ¼ VAS

r0c
2

�
fCQEC

fSQES
� 1

� (7.65)

Measurement of RAB. Using the same procedure as for measuringQES andQMS in Sec. 6.10, determine
a new QEC and QMC and solve for RAB from

RAB ¼ uCðMAD þMA1 þMABÞ
QMC

� ðRAS þ RARÞ
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FIG. 7.17 Normalized cone displacement of a loudspeaker in a closed box at low frequencies using jgC (f )j from
Eq. (7.63). QTC is the same as QTC of Eq. (7.48) and uC is found from Eq. (7.45).
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where MAD¼MMD/SD
2 ; MA1 is given by Eq. (7.32b), and

RAS þ RAR ¼ RMS þ RMR

S2D

Example 7.1. Miniature loudspeaker. A miniature loudspeaker intended for use in mobile products
has the Thiele–Small parameters given below:

RE¼ 7.2 U
QES¼ 2.05
QMS¼ 3.48
fS¼ 476 Hz
SD¼ 1.40 cm2

VAS¼ 4.81 cm3

It is assumed that the loudspeaker will be used mainly near a large flat surface such as a table.

Determine the reference sound pressure at a distance of 0.1 m for 0.5 W input.
Determine the percentage shift in the first resonance frequency of the loudspeaker from the value
for an infinite baffle if an unlined box having a volume of 1 cm3 is used.
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Determine the sound pressure at the closed box resonance frequency, assuming RAB¼ 0.
Determine the volume of a box that will cause a shift in infinite-baffle resonance frequency of
only 25%.
Determine the sound pressure at the closed box resonance frequency for the box of (c).

Solution, 1. In order to calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs.
(6.27), (6.28), and (6.30) respectively:

CMS ¼ 4:81� 10�6

ð1:40� 10�4Þ2 � 1:18� 3452
¼ 1:75 mm=N

MMS ¼ 1

ð2� 3:14� 476Þ2 � 0:00175
¼ 64 mg

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:2

2� 3:14� 476� 2:05� 0:00175

r
¼ 0:82 T$m

From Eq. (6.33) we obtain the reference sound pressure:

20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 0:5

p � 0:82� 1:401� 10�4 � 1:18

2� 3:14� 0:1� 7:2� 64� 10�6 � 20� 10�6

!
¼ 93:4 dB SPL

Solution, 2. From Eq. (7.28) we obtain the closed-box resonance frequency:

fC ¼ fS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VB

r
¼ 476�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4:81

1

r
¼ 1147 Hz

Solution, 3. The sound pressure at resonance is simply increased by a factor ofQTC compared to the
reference level. From Eq. (6.10), QTS¼ 2.05� 3.48/(2.05þ 3.48)¼ 1.29. At resonance,

QTC ¼ fC
fS

QTS ¼ 1147

476
� 1:29 ¼ 3:11

Then the sound pressure is simply 93.4þ 20log103.11¼ 103.3 dB SPL.
Solution, 4. We rearrange the equation of part 2 of the solution to obtain

VB ¼ VAS

ð fC=fSÞ2 � 1

so that for a 25% shift in resonance frequency, where fC/fS¼ 1.25 or fC¼ 595 Hz, we have

VB ¼ 4:81

1:252 � 1
¼ 8:55 cm2

which is too large a volume for most mobile products and, in any case, the diaphragm displacement
becomes unacceptably large because of the greater compliance of air in the larger box.
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Solution, 5. Using the same procedure as in part 3 of the solution, we obtain the sound pressure at
the new resonance frequency of 595 Hz:

93:4þ 20 log10

�
595

476
� 1:29

�
¼ 97:6 dB SPL

Example 7.2. Low-frequency loudspeaker (woofer). Design a loudspeaker to be used with a 600 Hz
crossover network and which is intended for use in a small to medium sized room where the bass
response will be augmented by room modes. A maximum sound pressure of 99 dB SPL will be
sufficient. Let us choose the Bandor type 100DW/8A drive unit which has a 6-inch diameter aluminum
cone that is free from resonances until well above the cross-over frequency. The Thiele–Small
parameters are:

RE¼ 6.27 U
QES¼ 0.55
QMS¼ 2.2
fS¼ 39 Hz
SD¼ 120 cm2

VAS¼ 21.6 L

which gives a QTS value of

QTS ¼ QESQMS

QES þ QMS
¼ 0:44

For a small listening room we desire a smooth low-frequency roll-off, so we choose the Butter-
worth alignment from Table 7.2, which returns a QTC value of 1=

ffiffiffi
2

p
and gives a good transient

response without ringing. The frequency response shape for this value is shown in Fig. 7.16. However,
in order to reuse this design with a bass-reflex port in a future example, we set QTC¼ 0.7, which is
close enough. Also, we will not fill the box completely with lining material because this would kill the
bass-reflex resonance when the port is added. Therefore we set the volume of the lining material to be
one third of that of the remaining free space or one quarter of the total volume. That is, VM¼ VA/
3¼ VB/4 because VB¼ VAþVM. We estimate VA from Eq. (7.61):

VAz
VAS

ð1þ g=3ÞðQ 2
TC=Q

2
TS � 1Þ ¼ 21:6

ð1þ 1:4=3Þð0:72=0:442 � 1Þ ¼ 9:6 L

and VM¼ 9.6/3¼ 3.2 L, which we use to compute RAB from Eq. (7.7), where CAA¼VA/(gP0). First
though, we have to calculate RAM¼ Rf d /(3SM), where Rf is the flow resistance of the lining material
chosen such that Rf d /3¼ r0c¼ 412 rayl, which is the impedance of free space and thus provides
optimum sound absorption at higher frequencies. Also, SM is the area of the lining material, which in
this case is the area of the back panel given by SM¼ lxly¼ 0.15� 0.3175¼ 0.04763 m2, so that
RAM¼ 412/0.047625¼ 8651 N$s/m5. We just need to find the internal depth lz from the volume after
computing the following from Eq. (7.7)

RABz
8651�

1þ 3

1:4

�2

þ
�
2� 3:14� 0:7

0:44
� 39

�2

�86512 �
�

0:0096

1:4� 105

�2
¼ 871 N$s=m5
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Then from Eq. (7.58) the box Q is determined:

QMB ¼ 1:18� 3452

871� 2� 3:14� 39� 0:0216
¼ 30:5

so that after inserting this into Eq. (7.60) we obtain the air volume:

VA ¼ VAS

1þ g

3

��
Q2
TC

�
1

QTS
þ 1

QMB

�2

�1

� ¼ 21:6�
1þ 1:4

3

��
0:72

�
1

0:44
þ 1

30:5

�2

�1

� ¼ 9:15 L

from which VM ¼ 9.15/3¼ 3.05 L, VB¼ 9.15þ 3.05¼ 12.2 L, and VAB¼ 9.15þ (1.4� 3.05)¼ 13.42
L. The internal depth is then lz¼ VA/SM¼ 0.00915/0.04763¼ 0.192 m. The box is shown in Fig. 7.18.
The internal width lx is 15 cm, which is the smallest width that will accommodate the drive unit. The
acoustic center of the drive unit is about one third of the internal height from the bottom so as not
to coincide with the anti-nodes of the first or second vertical modes. The box contains one 31.8
by 15 by 6.4 cm piece of lining material. From Eq. (7.28) we obtain the closed-box resonance
frequency:

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 21:6

13:42

r
� 39 ¼ 63 Hz

From Table 7.2 we see that the cut-off frequency is f3dB¼ 1� 63¼ 63 Hz. From Eq. (6.48) we can
calculate the reference efficiency, noting that a loudspeaker in a box is half as efficient as one radiating
from both sides in an infinite baffle:

Eff ¼ 100
8� 3:142 � 0:0216� 393

2� 0:55� 3453
¼ 0:224%

In order to calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27), (6.28), and
(6.30) respectively:

CMS ¼ 0:0216

0:0122 � 1:18� 3452
¼ 1:07 mm=N
Plywood 19 mm
thick

Acoustical lining
= 6.4 cm thick

= 19.2 cm

= 
11.5 cm

31.8 cm =
15 cm

FIG. 7.18 Example of closed-box enclosure design.
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MMS ¼ 1

ð2� 3:14� 39Þ2 � 0:00107
¼ 0:0156 kg

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:27

2� 3:14� 39� 0:55� 0:00107

r
¼ 6:59 T$m

Knowing that the power rating Wmax is 100W, we obtain from Eq. (6.33)

SPLmax ¼ 20 log10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:27� 100

p � 6:59� 0:012� 1:18

4� 3:14� 6:27� 0:0156� 20� 10�6

�
¼ 99:6 dB SPL @ 1 m

where a drive unit in a box produces the half the pressure of one in an infinite baffle. Next use Eq.
(7.64) to check the peak displacement at low frequencies at full power:

hmax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6:27� 100

p

2� 3:14� 39� 6:59� 0:55� ð1þ 21:6=13:42Þ ¼ 15:3 mm

but at the resonance frequency fC¼ 63 Hz, the maximum displacement is QTChmax¼
0.7� 15.3¼ 10.7 mm. It turns out that the xmax value of the drive unit is 14 mm, so there should be no
problems with this design as most program material is above this frequency.

Let us now create a semi-analytical simulation model of the design of Fig. 7.18 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.19. Although it is based on the circuit of Fig. 7.6, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current ~ig from which we obtain the electrical impedance. We are ignoring the generator impedance Rg

since in the experimental setup this is negligible compared to RE. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. From the schematic we create the
transmission matrices required to represent each 2-port network as follows.

1. Coil. "
~eg
~ig

#
¼
"
1 ZE

0 1

#
$

"
~e1
~i1

#
¼ C$

"
~e1
~i1

#

where ZE¼ REþ juLE
2. Electro-mechanical transduction."

~e1
~i1

#
¼
"

0 Bl

ðBlÞ�1 0

#
$

"
~f 2

~u2

#
¼ E$

"
~f 2

~u2

#

3. Diaphragm. "
~f 2

~u2

#
¼
"
1 ZMD

0 1

#
$

"
~f 3

~u3

#
¼ D$

"
~f 3

~u3

#



Diaphragm 
radiationCoil
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E-M

2

Diaphragm

3 4

M-A

X

Y
5

=

Box

X

Y
6

==

FIG. 7.19 Semi-analytical model of example closed-box enclosure design shown in Fig. 7.18, using transmission

matrices.

The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones.
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where ZMD¼ juMMDþ RMSþ 1/(juCMS). We must exclude the radiation mass from the diaphragm so
that MMD¼MMS� 16r0a

3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
.

4. Mechano-acoustical transduction."
~f 3

~u3

#
¼
"
SD 0

0 S�1
D

#
$

"
~p4
~U4

#
¼ M$

"
~p4
~U4

#

5. Diaphragm Radiation. "
~p4
~U4

#
¼
"
1 ZA1

0 1

#
$

"
~p5
~U5

#
¼ F$

"
~p5
~U5

#

where ZA1 is the acoustic radiation impedance of the diaphragm given by Eqs. (13.116), (13.117), and
(13.118) with a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.
6. Box. "

~p5
~U5

#
¼
"

1 0

Z�1
AB 1

#
$

"
~p6
~U6

#
¼ B$

"
~p6
~U6

#
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where ZAB is given by Eq. (7.12) and

Zs ¼ Rf d

3
þ P0

jud
;

where the value of the lining flow resistance Rf is chosen such that Rf d/3¼ r0c¼ 412 rayl, which is the
impedance of free space and thus provides optimum sound absorption at higher frequencies. The
dimensions are given in Fig. 7.18 except for a1¼ b1¼

ffiffiffiffiffiffi
SD

p
.

First we evaluate ~p6 at the end of the chain:"
~eg
~ig

#
¼ A$

"
~p6

0

#

where

A ¼ C$E$D$M$F$B ¼
"
a11 a12

a21 a22

#
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FIG. 7.20 Graphs of the on-axis sound pressure level produced by the closed-box enclosure design shown in

Fig. 7.18. The dashed curves are calculated from 20 log10j~Uc=~Uref j. Solid curves are measured.



0

5

10

15

20

25

30

35

10 100 1000 10000

El
ec

tri
ca

l i
m

pe
da

nc
e 

(Ω
)

Frequency (Hz)

Measured
Calculated

FIG. 7.21 Graphs of the electrical input impedance of the closed-box enclosure design shown in Fig. 7.18.

The dashed curves are calculated from ZE¼ j~eg=~ig j ¼ a11/a21. Solid curves are measured.
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Hence ~p6 ¼ ~eg=a11. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure which, according to Eq. (7.33), is a function of
~Uc ¼ ~U5. This procedure is fairly straightforward and does not involve any matrix inversion. From
the box matrix (6), we obtain the diaphragm volume velocity:

~Uc ¼ ~U5 ¼ ~p6=ZAB

In order to plot the normalized far-field on-axis pressure, we simply divide ~Uc by a reference volume
velocity

~Uref ¼ ~egBlSD
uMMSRE

and plot 20 log10j ~Uc= ~Uref j as shown in Fig. 7.20. The output from the diaphragm is fairly
smooth apart from one small feature at 430 Hz, which is due to the fundamental vertical mode
of the box. Finally, we can obtain the input impedance from ~eg=~ig where ~ig ¼ a21~p6 and from
above ~p6 ¼ ~eg=a11. Therefore the input impedance is simply ZE¼ a11/a21, as plotted in
Fig. 7.21.
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FIG. 7.22 Bass-reflex baffle.

The port has an area Sp, and the diaphragm has an area SD. The inner end correction for the tube is included in

the magnitude of MAP.
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PART XXII: BASS-REFLEX ENCLOSURES

7.8 GENERAL DESCRIPTION
The bass-reflex enclosure is a closed box in which an opening, usually called the port, has been
made [13–22]. The area of the port is commonly made equal to or smaller than the effective area of
the diaphragm of the drive unit. A common construction of this type of loudspeaker is shown in
Fig. 7.22. When the diaphragm vibrates, part of its displacement compresses the air inside the box
and the remainder of its displacement moves air outward through the port. Thus the port is a second
“diaphragm,” driven by the back side of the loudspeaker diaphragm. The port is, at low
frequencies, equivalent to a short length of tube with an acoustic mass reactance and a series
acoustic resistance. This tube has an end correction on the inner end and a radiation impedance on
the outer, or radiating, end.

We shall assume for the remainder of this analysis that ka< 0.5. In other words, we are restricting
ourselves to the very low frequency region where the radiation from both the port and the loudspeaker
is nondirectional.
7.9 ACOUSTICAL CIRCUIT
The acoustical circuit for the box and the port is given in Fig. 7.23. The series radiation mass and
resistance on the front side of the diaphragm are, respectively, MA1 and RAR1. The mass loading



Front of
diaphragm

Back of
diaphragm

Box Port Port radiation

Diaphragm radiation

FIG. 7.23 Analogous acoustical circuit for a loudspeaker box with a port.

The volumevelocity of the diaphragm is ~Uc, that of the port is ~UP , that of the box is ~UB , and that due to leakage is ~UL.
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on the back side of the diaphragm is MAB. The resistance due to leakage through the walls of the
box, or even through a woven dust cap or gasket, is RAL. The compliance and resistance of
the lined box are CAB and RAB. The mass and resistance of the air in the port that penetrates the
side of the box, including the inner end correction, are MAP and RAP, respectively. Finally, the
series radiation mass and resistance from the front side of the port are, respectively, MA2 and
RAR2. The values of these quantities are MAB as in Eq. (7.5); RAB as in Eq. (7.7); CAB as in Eq.
(7.20); MA2 as in Eq. (7.32), but with a2 instead of a, that is, MA2¼ 0.64a2r0/(pa2

2); RAR2 as in
Eq. (7.31); and

MA1 is acoustic-radiation mass for the front side of the loudspeaker diaphragm¼ 0.2026r0/a kg/
m4. Note that we assume the loudspeaker unit is equivalent to a piston radiating from one side
only in free space.
RAR1¼ 0.01075f 2 is acoustic-radiation resistance for the front side of the loudspeaker diaphragm
in N$s/m5 (see Fig. 4.39 for ka> 1.0).
MAP¼ (tþ 0.64a2)r0/(pa2

2) is acoustic mass of the air in the port in kg/m4. This quantity includes
the inner end correction.
RAP is acoustic resistance of the air in the port in N$s/m

5. [See Eq. (4.23). Use the number (1) in the
parentheses.]
r0 is density of air in kg/m3 (normally about 1.18 kg/m3).
a2 is effective radius in m of the port in the vented enclosure. If the port is not circular, then let
a2¼

ffiffiffiffiffiffiffiffiffiffi
Sp=p

p
, where Sp is the effective area of the opening in m2.

Sp¼ pa2
2 is effective area of the port in m2.

t is length of the tube or the thickness of the wall of the enclosure in which the port is cut in m.

In case the port is composed of a number of identical small openings or tubes, the following
procedure is followed.
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Let N equal the number of such openings in the enclosure. For each opening the acoustic mass and
resistance including MA2 and RAR2 are:

MA¼ (tþ 1.7a3)r0/(pa3
2) kg/m4 [see Eq. (4.26)]

RA is acoustic resistance of each opening in N$s/m5 [see Eq. (4.25)]
a3 is effective radius of each opening in m.

The total acoustic mass and resistance for the N identical openings are:

MA2þMAP¼MA/N kg/m4

RAR2þ RAP¼ RA/N N$s/m5.

The directivity factor for a group of holes is about equal to that for a piston with an area equal to the
area within a line circumscribing the entire group of holes.
7.10 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT
The complete circuit for a loudspeaker in a bass-reflex enclosure is obtained by combining Fig. 6.4(b)
and Fig. 7.23. To do this, the acoustical radiation element of the circuit labeled “2MM1” in Fig. 6.4(b) is
removed, and the circuit of Fig. 7.23 is substituted in its place. The resulting circuit with the trans-
former removed and everything referred to the acoustical side is shown in Fig. 7.24.

If the port is closed off so that ~UP, the volume velocity of the air in the port, equals zero, then
Fig. 7.24 essentially reduces to Fig. 7.6. At very low frequencies the mass of air moving out of the
lower opening is nearly equal to that moving into the upper opening at all instants. In other words, at
very low frequencies, the volume velocities at the two openings are nearly equal in magnitude and
opposite in phase.
Box Port
Port 

radiation
Diaphragm 
radiation

Mechanical part 
of loudspeakerElectrical

FIG. 7.24 Complete electro-mechano-acoustical circuit for a bass-reflex loudspeaker.

The total force produced at the voice coil by the electric current is ~pcSD, where SD is the area of the diaphragm.

The volume velocity of the diaphragm is ~Uc, that of the port is ~UP , that of the box is ~UB , and that due to leakage is
~UL. Note that MAP includes the inner mass loading for the port.
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Summary of bass-reflex design
To determine the cut-off frequency, frequency response and the volume of the box:
If the Thiele–Small parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then QTS¼QESQMS /(QESþQMS).
From Table 7.4, select the frequency-response shape for which the QTS value is closest to that of the chosen
drive unit (or choose a drive unit whose QTS value is closest to that of the desired frequency-response shape).
From the values of f3dB /fS, fB /fS, and VAB /VAS given in the table, compute the cut-off frequency f3dB, box
resonance frequency fB, and apparent box volume VAB respectively from the Thiele-Small parameters fS and VAS.
The frequency-response shape below the first diaphragm break-up mode is shown in Fig. 7.26.
AcousticMechanicalElectrical

. 7.25 Simplification of the circuit of Fig. 7.24, where the mechanical and acoustical quantities are referred to

electrical side using the admittance type analogy.
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To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLmax at a distance r is obtained from
Eq. (6.34) to give

SPLmax ¼ 20 log10

0
@ 1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
S VASr0

REQES

s 1
A dB SPL @ 1 m

whereWmax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax.

To determine the excursion limit:
The maximum peak diaphragm displacement at frequencies well below the box resonance is obtained from Eq.
(7.101) to give

hmax ¼ 1

SDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS
REQESpfsr0

s

However, we see from Fig. 7.27 that at frequencies above the box resonance, the displacement peaks at a
smaller value. For example, the displacement peaks at 0.5hmax in the case of the 0.25 dB Chebyshev
alignment or 0.25hmax in the case of the Butterworth alignment. If this peak value is greater than the rated
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. 7.27 Plots of normalized displacement ~h=~h0 for the 4th-order bass-reflex alignments of Table 7.4.

r simplicity, we assume that QMS>> QES so that QES z QTS.
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xmax limit of the drive unit, then an alternate drive unit with a greater xmax limit should be considered. If however
the sub-resonance hmax value is greater than the rated xmax limit of the drive unit, it should be arranged for the
box resonance frequency to be placed at the lower limit of the frequency range of the program material to be
reproduced. If this is not possible, a high-pass filter should be employed to remove all content below the
box resonance frequency. Best results are obtained when the filter is designed as part of the overall
system.[16],[21],[22] If this is not possible either, then an alternate drive unit with a greater xmax limit should
be considered.

To determine the port dimensions:
The maximum peak pressure pmax in Pa is obtained from SPLmax using

pmax ¼ 2
ffiffiffi
2

p
� 10



SPLmax

20 �5

�
Pa

Determine the peak volume displacement Vmax required to produce pmax at the box resonance frequency fB,
which is obtained from Eq. (13.104) to yield

Vmax ¼ rpmax

2pfB 2r0
m3

Choose the volume of the port VP to be several times larger than Vmax but within a reasonable limit. Then
calculate the approximate length t of the port using Eq. (7.97) and the approximate cross-sectional area
SP¼ VP /t. Either choose a convenient area SP and calculate the exact length t using Eq. (7.98) or choose
a convenient length t and calculate the exact area SP using Eq. (7.99).
Study Secs. 7.16 and 7.17 (pages 342–343) for construction, adjustment, and performance.
The quantities not listed in the previous paragraph are

~eg is open-circuit voltage in V of the audio amplifier.
B is flux density in the air gap in T (1 T¼ 104 gauss).
l is length in m of voice-coil wire.
Rg is output electrical resistance in U of the audio amplifier.
RE is electrical resistance in U of the voice coil.
a is effective radius of the diaphragm in m.
MAD¼MMD/SD

2 is acoustic mass of the diaphragm and the voice coil in kg/m4.
CAS ¼ CMSSD

2 is acoustic compliance of the diaphragm suspension in m5/N.
RAS ¼ RMS /SD

2 is acoustic resistance of the diaphragm suspension in N$s/m5.
7.11 RADIATED SOUND
The port in the box of a bass-reflex baffle is generally effective only at fairly low frequencies. At those
frequencies its dimensions are generally so small it can be treated as though it were a simple source.
The loudspeaker diaphragm can also be treated as a simple source because its area is often nearly the
same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure a distance r away from the bass-reflex
loudspeaker is

~p ¼ ~p1 þ ~p2 þ ~p3 z
jur0
4pr

�
~Uce

�jkr1 � ~UPe
�jkr2 � ~ULe

�jkr3

�
(7.66)
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where

~p1, ~p2, and ~p3 are complex sound pressures, respectively, from the diaphragm, port, and leakage
outlet at distance r.
r is average distance of the point of observation from the diaphragm and the port. Note that r is
large compared with the diaphragm and port radii.
r1, r2, and r3 are actual distances, respectively, of the point of observation from the diaphragm, port,
and leakage outlet.
~Uc is complex volume velocity of the diaphragm.
~UP is complex volume velocity of the port. Note that the negative sign is used for ~UP because,
except for phase shift introduced by CAB and MAP, the air from the port moves outward when
the air from the diaphragm moves inward.
~UL is complex volume velocity of the leakage path.

Also, the complex volume velocity necessary to compress and expand the air in the box is

~UB ¼ ~Uc � ~UP � ~UL (7.67)

If we now let r1¼ r2¼ r3¼ r by confining our attention to a particular point in space in front of the
loudspeaker where this is true, we get

~p z
jur0
4pr

ð ~Uc � ~UP � ~ULÞe�jkr (7.68)

Since ~Uc � ~UP � ~UL ¼ ~UB, we have simply that

���~p���z fr0

��� ~UB

���
2r

(7.69)

Amazing as it seems, the sound pressure produced at faraway points equidistant from cone and port of
a bass-reflex loudspeaker is directly proportional to the volume velocity necessary to compress and
expand the air inside the box!

At very low frequencies, where the reactance of CAB is very high, ~Uc becomes nearly equal to ~UP,
and ~UL becomes insignificant so that the pressure, measured at points r¼ r1¼ r2¼ r3 approaches zero.
In fact, the two sources ~Uc and ~UP behave like a dipole so that the radiated sound pressure decreases by
a factor of 4 for each halving of frequency. In addition, if we are below the lowest resonance frequency
of the circuit of Fig. 7.24, the diaphragm velocity ~Uc halves for each halving of frequency. Hence, in
this very low frequency region, the sound pressure decreases by a factor of 16, which is 24 dB, for each
halving of frequency. In other words, the slope is 4th order. Note that this decrease is greater than that
for a loudspeaker in a closed box or in an infinite baffle.
7.12 ALIGNMENTS FOR PREDETERMINED FREQUENCY-RESPONSE SHAPES
As with the loudspeaker in a closed-box enclosure, we can choose a predetermined frequency-response
shape and engineer the loudspeaker accordingly using an alignment table, which we shall generate in
this section. In the interest of simplifying our analysis, let us redraw Fig. 7.24 to be as shown in
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Fig. 7.25, referring the mechanical and acoustical quantities to the electrical side. Furthermore, we
have assumed that at low frequencies we can ignore RAR1 and RAR2 and that the effects of the box and
port resistances, RAB and RAP respectively, can be accounted for by adjusting the value of RAL. It has
been found in practice that RAL is the dominant source of damping of the box resonance.[17] The new
quantities shown on that circuit are defined as follows:

MMS ¼ MMD þ S2DðMA1 þMABÞ (7.70)

MAT ¼ MA2 þMAP (7.71)

This circuit is exactly that which appears across the generator, which makes it easier to evaluate the
electrical input impedance. Also, it looks more like an electrical filter network. The electrical and
mechanical sections form a 1st-order band-pass filter, which in conjunction with the 1st-order time
derivative in Eq. (7.69) given by the frequency term f, produces a net 2nd-order high-pass filter. The
acoustical section forms a second 2nd-order high-pass filter so that the overall response is 4th-order.
However, these two 2nd-order filters do not operate in isolation but are coupled to a degree which
depends upon their relative resonance frequencies and the size of the box. Hence we shall introduce
a coupling factor VAS/VAB during the following analysis, commonly known as the compliance ratio.
As the volume of the box VAB is increased relative to the suspension equivalent volume VAS, the
amount of coupling is weakened. Deriving the transfer function for such a complicated circuit as that
shown in Fig. 7.25 can be very laborious, but in Chapter 14, a computer method is presented which
can be applied using a mathematical software tool with symbolic computation, such as Maple or
Mathematica. The circuit of Fig. 7.25 is used as the first worked example and it is shown in Eq.
(14.79) that

~pðrÞ ¼ ~egBlSDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.72)

where the frequency-response function G(s) is given by

GðsÞ ¼ s4

s4 þ P3s3 þ P2s2 þ P1sþ P0
(7.73)

and the coefficients of the denominator polynomial in s¼ ju are given by

P3 ¼ uS

QTS
þ uB

QL
(7.74)

P2 ¼
�
1þ VAS

VAB

�
u2
S þ u2

B þ uSuB

QTSQL
(7.75)

P1 ¼ uSu
2
B

QTS
þ u2

SuB

QL
(7.76)

P0 ¼ u2
Su

2
B (7.77)
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where uS is the angular suspension resonant-frequency in an infinite baffle given by

uS ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p (7.78)

QES is the electrical Q factor

QES ¼ uS
Rg þ RE

ðBlÞ2 MMS (7.79)

QMS is the mechanical Q factor

QMS ¼ uS
1

RMS
MMS (7.80)

QTS is the total Q factor

QTS ¼ QESQMS

QES þ QMS
(7.81)

uB is the angular resonant-frequency of the box and port (including end corrections) given by

uB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MATCAB

p (7.82)

QL is the acoustical Q factor due to box and port losses

QL ¼ uBRALCAB (7.83)

VAB is the apparent box volume, including the lining, which is related to the acoustic compliance by

VAB ¼ r0c
2CAB (7.84)

and VAS is the suspension equivalent volume

VAS ¼ S2Dr0c
2CMS (7.85)

In order to solve Eqs. (7.74) to (7.77) for uS, uB,QTS, and VAS/VAB, we first eliminateQTS from Eqs.
(7.74) and (7.76) and insert uS

2¼ P4/uB
2 from Eq. (7.77), which gives

u4
B

QL
� P3u

3
B þ P1uB � P0

QL
¼ 0 (7.86)

which is a quartic equation that has to be solved for uB. Although there are four roots to the
polynomial, only one produces a full set of parameters (uB, uS, QTS, and VAS/VAB) which are pos-
itive and real. Then from Eqs. (7.77), (7.74), and (7.75) respectively we obtain the other three
quantities:

uS ¼
ffiffiffiffiffi
P0

p
uB

(7.87)

QTS ¼ QLuS

P3QL � uB
(7.88)
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VAS

VAB
¼ P2 � u2

B

u2
S

� uB

QTSQLuS
� 1 (7.89)

Let a pre-defined 4th-order frequency-response function be given by

GðsÞ ¼ s4�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

� (7.90)

which has a value of 1=
ffiffiffi
2

p
or� 3 dB when u¼ 1. The values of u1, u2, Q1, and Q2 for a number of

frequency response shapes are given in Table 7.3, which are calculated from the formulas given in
Appendix I. Because the suspension and box resonance frequencies are the same in the Butterworth
alignment, the two complex-conjugate pole pairs lie on a semicircle in the complex plane with angles
of p/4 between them. We shall see in Sec. 7.15 that these coincident resonance frequencies are useful
when it comes to evaluating QL. We may create a range of sub-Butterworth alignments with such
coincident resonance frequencies by multiplying the angles between the poles and the negative real
axis by a scaling factor B, which has values between 0 and 1. When B¼ 0, we have the synchronous
alignment in which all four poles are coincident and real. These sub-Butterworth alignments are
generated by solving the quartic equation U4 + 2(a + b)U3 + 2(1 + 2ab)U2 + 2(a + b)U � 1¼ 0 for U,
where a¼ cosBp/4 and b¼ cos3Bp/4. Although there are four solutions for U, only one is real and
positive. Then u1¼u2¼

ffiffiffiffi
U

p
, Q1¼ 0.5secBp/8, and Q2¼ 0.5sec3Bp/8.

Equating the denominator of Eq. (7.90) with that of Eq. (7.73) gives

P3 ¼ u1

Q1
þ u2

Q2
(7.91)

P2 ¼ u2
1 þ u2

2 þ
u1u2

Q1Q2
(7.92)

P1 ¼ u1u
2
2

Q1
þ u2

1u2

Q2
(7.93)

P0 ¼ u2
1u

2
2 (7.94)
Table 7.3 Resonance frequencies and Q values for various 4th-order frequency-response shapes

Frequency-response shape u1 Q1 u2 Q2

Synchronous (B = 0) 0.4350 0.5000 0.4350 0.5000

Sub-Butterworth (B = 0.6) 0.5634 0.5142 0.5634 0.6575

Bessel (close to B = 0.77) 0.6992 0.5219 0.6237 0.8055

Sub-Butterworth (B = 0.9) 0.8482 0.5329 0.8482 1.0233

Butterworth (B = 1) 1.0000 0.5412 1.0000 1.3066

Chebyshev with 0.01 dB ripple 1.2870 0.5746 1.0356 1.7237

Chebyshev with 0.1 dB ripple 1.5370 0.6188 1.0519 2.1829

Chebyshev with 0.25 dB ripple 1.6900 0.6573 1.0574 2.5361

Chebyshev with 0.5 dB ripple 1.8310 0.7051 1.0600 2.9406



Table 7.4 4th-order alignments for bass-reflex enclosures for QL¼ 7

Frequency-response
shape f3dB/fS VAB/VAS QTS fB/fS

Synchronous (B = 0) 2.2990 0.2899 0.2593 1.0000

Sub-Butterworth (B = 0.6) 1.7748 0.4028 0.3010 1.0000

Bessel (close to B = 0.77) 1.4941 0.5242 0.3312 0.9735

Sub-Butterworth (B = 0.9) 1.1790 0.6914 0.3689 1.0000

Butterworth (B = 1) 1.0000 0.9422 0.4048 1.0000

Chebyshev with 0.01 dB
ripple

0.8143 1.5511 0.4572 0.8838

Chebyshev with 0.1 dB
ripple

0.6963 2.3308 0.5120 0.7839

Chebyshev with 0.25 dB
ripple

0.6374 2.9747 0.5553 0.7259

Chebyshev with 0.5 dB
ripple

0.5894 3.7464 0.6073 0.6742
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Then after inserting these values for P0 to P3 into Eqs. (7.86) to (7.89), we can generate the alignments
given in Table 7.4.

Shown in Fig. 7.26 are frequency responses generated from Table 7.4 using Eq. (7.73). The
frequency scale is normalized using fS as the reference point because this is a fixed parameter of the
loudspeaker drive unit. We see that the Chebyshev alignments give greater low-frequency extension at
the cost of increased box size.
7.13 PORT DIMENSIONS
Knowing the Thiele–Small parameters of the drive unit (RE, QES, QMS, fS, SD, and VAS) we choose
a suitable alignment from Table 7.4, which gives us the required box volume VAB and resonance
frequency fB. The total acoustic mass of the port including end corrections and assuming that it behaves
as a flanged tube at one end only is given by

MAT ¼ r0

SP



t þ 0:84

ffiffiffiffiffi
SP

p �
(7.95)

Otherwise, if it is flanged at both ends, the correction factor is changed from 0.84 to 0.96, or to
0.72 if unflanged at both ends. The volume of air in the port VP, which is simply the product of its
cross-sectional area SP and its length t, should be chosen to be several times greater than the
amount of air it has to displace in order to produce the maximum sound pressure at full power.
Hence

SP ¼ VP=t (7.96)
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Inserting Eqs. (7.84), (7.95), and (7.96) into Eq. (7.82) but ignoring the end-correction factor yields the
following approximate equation for the port length t:

tz
c

uB

ffiffiffiffiffiffiffiffi
VP

VAB

r
(7.97)

in which case the approximate cross-sectional area SP is given by Eq. (7.96). However, we may wish to
choose a more convenient area SP and readjust the length t accordingly using the following exact
formula:

t ¼ SPc
2

VABu
2
B

� 0:84
ffiffiffiffiffi
SP

p
(7.98)

or we may wish to choose a length t and calculate the exact area SP using

SP ¼ 0:842V2
ABu

4
B

4c4

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2t

0:842VABu
2
B

s !2

(7.99)

7.14 DIAPHRAGM DISPLACEMENT
From the circuit of Fig. 7.25 we can derive the diaphragm volume velocity ~Uc from which we obtain
the diaphragm displacement:

~h ¼ ~Uc=ð juSDÞ

¼ uS~eg
BlQES

�
s2 þ ðuB=QLÞsþ u2

B

s4 þ P3s3 þ P2s2 þ P1sþ P0

� (7.100)

At very low frequencies, the loudspeaker is virtually open at the back because the acoustic impedances
of the box and port present very little opposition. Hence the low-frequency displacement ~h0 is
determined purely by the mechanical compliance CMS of the suspension:

~h
��
u/0

¼ ~h0 ¼ ~eg
BlQESuS

¼ CMSBl
~eg
RE

ði:e: Hooke’s law where Bl
~eg
RE

¼ ~f Þ (7.101)

This makes a useful reference point with which to normalize the displacement curves which are shown
in Fig. 7.27 for the alignments of Table 7.4. We see that the Chebyshev alignments, which give greater
low-frequency extension, not only require a larger box size, but also require a loudspeaker drive unit
with a greater excursion limit xmax.
7.15 ELECTRICAL INPUT IMPEDANCE AND EVALUATION OF QL
Also from the circuit of Fig. 7.25 we can derive the electrical input impedance ZE as seen across the
loudspeaker terminals:
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ZE ¼ ~egRE

~eg � Bl ~Uc=SD

¼ RE

�
1þ uSs

QES

�
s2 þ ðuB=QLÞsþ u2

B

s4 þ E3s3 þ E2s2 þ E1sþ E0

�� (7.102)

where the denominator polynomial coefficients are given by

E3 ¼ uS

QMS
þ uB

QL
(7.103)

E2 ¼
�
1þ VAS

VAB

�
u2
S þ u2

B þ uSuB

QMSQL
(7.104)

E1 ¼ uSu
2
B

QMS
þ u2

SuB

QL
(7.105)

E0 ¼ u2
Su

2
B (7.106)

The coefficients E0 to E3 differ from the coefficients P0 to P3 of Eqs. (7.74) to (7.77) respectively in
that QTS is replaced by QMS. Normalized impedance curves are plotted in Fig. 7.28 for the alignments
of Table 7.4. When comparing these curves with the impedance of a loudspeaker in an infinite baffle,
as shown in Fig. 6.8, we see that the peak at fS due to the parallel resonance ofMMS with CMS has been
split into two peaks with a minima in between at fB due to the series resonance ofMATwith CAB. For the
Synchronous, Bessel, and Butterworth alignments where fB¼ fS, the two peaks are symmetrical either
side of fB. However, in the case of the Chebyshev alignments the peaks are asymmetrical with the
smaller peak occurring below fB which indicates that the low-frequency response is extended at the
cost of extra power.

The minima at fB is particularly useful for checking the tuning of the port. Furthermore, in the case
of alignments where fB¼ fS, (e.g. Synchronous, Bessel, and Butterworth) we can simplify Eq. (7.102)
at f¼ fB to give the impedance at the box resonance dip:

ZE

���
u¼us¼uB

¼ ZEB ¼ RE

0
BB@1þ

1

QESQL

VAS

VAB
þ 1

QMSQL

1
CCA (7.107)

from which we obtain

QL ¼ VAB

VAS

�
1

QESððZEB=REÞ � 1Þ �
1

QMS

�
(7.108)

which enables us to measure the QL value for the box and port resonance. See Sec. 7.17.
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FIG. 7.28 Plots of normalized electrical impedance magnitude jZE=REj for the 4th-order bass-reflex alignments of

Table 7.4.

We let QMS¼ 9QTS so that QES¼ 1.125QTS.
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7.16 PERFORMANCE
With the formulas and charts just given, it is possible to calculate the response of the loudspeaker in
a bass-reflex enclosure. A complete example is given after Sec. 7.17.

From Fig. 7.25, we see that for frequencies below uB, radiation from the port (proportional to
� ~UP) is out of phase with the radiation from the diaphragm (proportional to ~Uc). As a result, the
response at very low frequencies is usually not enhanced by the addition of the port. Above the
resonance frequency uB, radiation from the port is in phase with that from the diaphragm, with
a resulting enhancement over the closed-baffle response. The amount of the increase in response
generally averages about 3 dB over a frequency range of one to two octaves.

An important reason for using a bass-reflex enclosure is that the loudspeaker produces less
distortion at frequencies of around uB for a given acoustic power radiated than would be the case if the
box were closed. The assumption on which this statement is made is that the motion of the air in the
port is distortionless even though the amplitude of vibration is large. This is true generally because
there is no suspension or magnetic circuit in the port in which nonlinear effects can occur. However, in
order to avoid turbulence, the port should be as smooth as possible with filleted edges at each end.
A large loudspeaker diaphragm usually is superior to a small one because the amplitude of its motion is

less, thereby reducing nonlinear distortion.
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One disadvantage of a bass-reflex enclosure is that the port can produce pipe modes at higher
frequencies and these cannot be damped using absorbentmaterial without negating the benefit of the port.
However, their effect can bemitigated by locating the mouth of the port on the rear of the box so that they
are less audible at the front. At the box resonance, the wavelength is usually very large compared to the
box dimensions, so the small resulting phase difference between the outputs of the port and diaphragm
will have little effect on the performance. [39]

An advantage of a bass-reflex enclosed loudspeaker is that, where room space is a factor, a properly
tuned bass-reflex system helps to offset the effect of the small box volume.
7.17 CONSTRUCTION AND ADJUSTMENT NOTES
Bear in mind that many drive units nowadays are designed for use in “air-suspension” closed-box
enclosures and can be identified by their very low resonance frequencies. In a bass-reflex design the
high compliance of their suspensions could lead to excessive diaphragm excursion below the box
resonance frequency.

The box should be very rigid in order to resist vibration. The joints should be tight-glued and the
larger panels should be braced by gluing reinforcing strips to them. The access side should be screwed
on securely with strips of sealing material such as neoprene. Most drive units are now supplied with
sealing gaskets.

When the cabinet has been completed and the loudspeaker has been installed, the correctness of
the tuning may be determined by connecting an audio oscillator with an output impedance about 100
times that of the loudspeaker to the electrical terminals. Next, connect a voltmeter across the
loudspeaker terminals. Then vary the frequency of the oscillator in order to find the minimum
reading between the two peaks (see Fig. 7.28). This should occur at the calculated frequency uB if
the design is correct. The ratio of the voltage reading at this frequency to that at some very low
frequency, where it reaches an absolute minimum, gives the ratio ZEB/RE from which we can
calculate QL using Eq. (7.108).

The resonance frequency uB of the enclosure can be adjusted by varying the length of the port.
A typical value ofQL is around 7. If it is much lower than this, there is probably a problem with leakage
caused by a poor seal. In order to find the source of leakage, block the port and drive the loudspeaker
(with minimum source impedance) at a very low frequency and listen around the box for any turbulent
“hissing” sounds.

Example 7.3. Bass-reflex enclosure design. In the previous part we discussed in detail the design
of a closed-box baffle for a low-frequency (woofer) loudspeaker. We presented methods for the
determination of its physical constants, and we showed a comparison between measurements and
calculations.

In this part we shall use the same loudspeaker drive unit as part of a pair with double the box
volume, so that each unit “sees” the same volume as before. If a pair of 8 U drive units is used, this
provides a choice of 4 U or 16 U loads for parallel or series combinations respectively. A port will be
introduced into the box that resonates with the box compliance to the same frequency as the
mechanical or driver part of the circuit of Fig. 7.25, that is,

uS ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p
:
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Your brief is to design a compact floor-standing loudspeaker that can produce 105 dB SPL @ 1 m so
that it will be suitable for a medium to large listening area. In other words, the low frequencies will not
be augmented by room modes. Therefore the frequency response should be a flat as possible down to 41
Hz, the lowest note on a bass guitar. In order to give the widest possible dispersion and for cosmetic
reasons, the drive unit should not be too large. A suitable drive unit is the Bandor type 100DW/8A used
in the previous closed-box example. In order to reach the required SPL we will need to use two of these,
one above the other, which doubles the radiating area without increasing the width and therefore
maintains the horizontal directivity pattern. From actual measurements (see Sec 6.10) the Thiele-Small
parameters are:

RE¼ 6.27 U
QES¼ 0.522
QMS¼ 1.9
fS¼ 37 Hz
SD¼ 120 cm2

VAS¼ 24 L

If we re-use the same volume per drive unit as the closed-box design, then VAB = 13.42 L. Hence VAB/
VAS = 13.42/24 = 0.56, which from Table 7.4 would suggest the use of a Bessel alignment where VAB/
VAS = 0.52 and the frequency response is plotted in Fig. 7.26. At fS = 37 Hz, the response is - 7.4 dB
with the - 3 dB point at 1.49fS = 55 Hz. However, The QTS value of

QTS ¼ QESQMS

QES þ QMS
¼ 0:41

is somewhat higher than the optimum value of 0.33 given by Table 7.4 for a Bessel alignment. This
may be corrected by using an amplifier with a negative output impedance of Rg = -1.45 U (due to
positive current feedback [42]). However, for the purpose of this analysis, we shall proceed with an
"underdamped" Bessel alignment by setting Rg = 0.

VAB ¼ 2� 0:5242� 24 ¼ 25:2 L

From Eq. (6.48) we can calculate the reference efficiency, noting that on one hand a loudspeaker in
a box is half as efficient as one radiating from both sides in an infinite baffle, but on the other, this is
compensated for by having two of them:

Eff ¼ 100
8� 3:142 � 0:024� 373

0:522� 3453
¼ 0:448%

In order to calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27), (6.28), and
(6.30) respectively

CMS ¼ 0:024

0:0122 � 1:18� 3452
¼ 1:19 mm=N

MMS ¼ 1

ð2� 3:14� 37Þ2 � 0:00119
¼ 0:0156 kg
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Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:27

2� 3:14� 37� 0:522� 0:00119

r
¼ 6:59 T$m

Knowing that the power rating Wmax is 100W, we obtain from Eq. (6.33)

SPL max ¼ 20 log10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:27� 100

p � 6:59� 0:012� 1:18

2� 3:14� 6:27� 0:0156� 20� 10�6

�
¼ 105:6 dB SPL @ 1 m

where two drive units in a box produce the same pressure as a single one in an infinite baffle. Next use
Eq. (7.101) to check the peak displacement at low frequencies at full power:

hmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6:27� 100

p

6:59� 0:522� 2� 3:14� 37
¼ 44:3 mm

but from Fig. 7.27 we see that for the Bessel alignment the maximum above fS frequency is 0.126 times
this value, or 5.6 mm. It turns out that the xmax value of the drive unit is 14 mm, with a linear limit of 4.5
mm, so there should be no problems with this design. Now we turn to the port dimensions, but first we
must calculate the volume displacement Vmax required from the maximum pressure pmax (See
“Summary of Bass-reflex Design”, p. 334).

pmax ¼ 2� 1:414� 10
105:6�7:4

20
�5 ¼ 2:3 Pa

so that from Eq. (6.35)

Vmax ¼ 1� 2:3

2� 3:14� 372 � 1:18
¼ 0:23 L

Let the volume of the port be ten times the maximum volume displacement, or VP¼ 10Vmax¼ 2.3 L.
From Table 7.4, the box resonance frequency is fB¼ 0.9735fS¼ 36 Hz. The approximate length of the
port excluding end effects is obtained from Eq. (7.97):

tz
345

2� 3:14� 36

ffiffiffiffiffiffiffiffiffi
2:3

25:2

r
¼ 46:1 cm

so that the approximate cross-sectional area is

SP ¼ VP=t ¼ 0:0023=0:461 ¼ 50 cm2; say 15 cm� 3:4 cm ¼ 51 cm2

Then the actual length is calculated from Eq. (7.98):

t ¼ 0:0051� 3452

0:0252 � ð2� 3:14� 36Þ2 � 0:84�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0051

p
¼ 41:1 cm

We let the lining material occupy one quarter of the total box volume so that VM¼ VB/4¼ VA/3
because VB¼ VAþVM. We already know that VAB¼ VAþ gVM¼ 25.2 L where g¼ 1.4. Hence

VA ¼ 25:2

1þ 1:4=3
¼ 17:2 L
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FIG. 7.29 Example of bass-reflex enclosure design.
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and VM¼ 17.2/3¼ 5.7 L so that VB¼ 17.2þ 5.7¼ 22.9 L. Hence the compliance of the air in the box is
CAA¼VA/(gP0)¼ 0.0172/(1.4� 105)¼ 1.23� 10�7 and the lining material CAM¼ VM/P0¼ 0.0061/
105¼ 6.1� 10�8 so that the apparent compliance is CAB¼ CAAþ gCAM¼ 1.23� 10�7þ
6.1� 10�8¼ 1.84� 10�7. The box and port dimensions are shown in Fig. 7.29. The internal widthW is
15 cm, which is the smallest width that will accommodate the drive units. The acoustic center of the two
drive units is about one third of the internal height from the top so as not to coincide with the anti-nodes
of the first or second vertical modes. The box contains one 63.5 by 15 by 6.4 cm piece of lining material.
Let us now calculate the box and port losses. If the flow resistance is Rf¼ 200 rayl/cm, then acoustic
resistance of the lining material with a depth of 6.4 cm becomes

RAM ¼ 6:4� 200

3� 0:635� 0:15
¼ 4480 N$s=m5

so that the box resistance from Eq. (7.7) is

RAB ¼ 4480�
1þ 17:2

1:4� 6:1

�2

þð2� 3:14� 36� 4480� 1:23� 10�7Þ2
¼ 492 N$s=m5

from which we obtain QA due to absorption within the box:

QA ¼ 1

uBRABCAB
¼ 1

2� 3:14� 36� 492� 1:84� 10�7
¼ 49
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The resistance of the port is given by Eq. (4.23):

RAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3:14� 36� 1:18� 1:86� 10�5

p

0:15� 0:034

 
0:411ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:15� 0:034=3:14
p þ 2

!
¼ 238 N$s=m5

from which we obtain Qp of the port:

Qp ¼ 1

uBRAPCAB
¼ 1

2� 3:14� 36� 238� 1:84� 10�7
¼ 101

These Q values are very high, which supports the commonly held view that leakage losses dominate.
Unfortunately, the effect of leakage cannot be determined until the loudspeaker and its enclosure are
assembled and measured. A common value of QL due to all losses is around 7.

Let us now create a semi-analytical simulation model of the design of Fig. 7.29 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.30. Although it is based on the circuit of Fig. 7.24, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current ~ig from which we obtain the electrical impedance. We are ignoring the generator impedance Rg
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FIG. 7.30 Semi-analytical model of example bass-reflex enclosure design shown in Fig. 7.29 using transmission
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series, replace ½RE, ½LE, and Bl with 2RE, 2LE, and 2Bl.
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since in the experimental setup this is negligible compared to RE. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. Here the two drive units are connected
in parallel so that the net coil resistance RE is halved. If the drive units are connected in series, replace
½RE, ½LE, and Bl with 2RE, 2LE, and 2Bl. From the schematic we create the transmission matrices
required to represent each 2-port network as follows.

1. Coil.

"
~eg
~ig

#
¼
2
4 1

1

2
ZE

0 1

3
5$
"
~e1
~i1

#
¼ C$

"
~e1
~i1

#

where ZE¼ REþ juLE.
2. Electro-mechanical transduction.

"
~e1
~i1

#
¼
"
0 Bl

ðBlÞ�1 0

#
$

"
~f 2

~u2

#
¼ E$

"
~f 2

~u2

#

3. Diaphragm. "
~f 2

~u2

#
¼
"
1 2ZMD

0 1

#
$

"
~f 3

~u3

#
¼ D$

"
~f 3

~u3

#

where ZMD¼ juMMDþ RMSþ 1/( juCMS). We must exclude the radiation mass from the diaphragm so
that MMD¼MMS� 16r0a

3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
:

4. Mechano-acoustical transduction.

"
~f 3

~u3

#
¼
"
2SD 0

0 ð2SDÞ �1

#
$

"
~p4
~U4

#
¼ M$

"
~p4
~U4

#

5. Diaphragm radiation. "
~p4
~U4

#
¼
"
1 ZA1

0 1

#
$

"
~p5
~U5

#
¼ F$

"
~p5
~U5

#

where ZA1 is the acoustic radiation impedance of the diaphragm, taking into account the mutual
radiation impedance, given by Eqs. (13.334) and (13.339) where ZA1¼ (Z11þ Z12)/SD and
a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.
6. Leak. "

~p5
~U5

#
¼
"
1 0

R�1
AL 1

#
$

"
~p6
~U6

#
¼ L$

"
~p6
~U6

#
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where the leakage resistance is given by

RAL ¼ QL=ð2pfBCABÞ ¼ 7=ð2� 3:14� 36� 1:84� 10�7Þ ¼ 168; 200 N$s=m5:

7. Box. "
~p6
~U6

#
¼
"
b11 b12

b21 b22

#
$

"
~p7
~U7

#
¼ B$

"
~p7
~U7

#

The mechanical z-parameters of the 2-port network for the bass-reflex enclosure are given by
Eq. (7.131) in Sec. 7.18. We obtain the acoustical z-parameters by dividing through by apaqbpba
to yield

Zpq ¼ r0c

�
1

lxly

Zs
r0c

þ j tan klz

1þ j
Zs
r0c

tan klz

þ 8ly
p2bpbqlx

� PN
n¼ 1

k

n2k0n
cos

�
npyp
ly

�
cos

�
npyq
ly

�
sin

�
npbp
2ly

�
sin

�
npbq
2ly

� k0nZs
kr0c

þ j tan k0nls

1þ j
k0nZs
kr0c

tan k0nls

þ 2lx
p2apaqly

XN
m¼ 1

k

m2 km0
sin

�
mpap
lx

�
sin

�
mpaq
lx

� km0Zs
kr0c

þ j tan km0lz

1þ j
km0Zs
kr0c

tan km0lz

þ 16lxly
p4apaqbpbq

XN
m¼ 1

XN
n¼ 1

k

m2n2kmn
sin

�
mpap
lx

�
sin

�
mpaq
lx

�
cos

�
mpyp
ly

�

� cos

�
npyq
ly

�
sin

�
npbp
2ly

�
sin

�
npbq
2ly

� kmnZs
kr0c

þ j tan kmnlz

1þ j
kmnZs
kr0c

tan kmnlz

9>>=
>>;

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
2m p

lx

�2

�
�
n p

ly

�2
s

and

Zs ¼ Rf d

3
þ P0

jud
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where the value of the lining flow resistance Rf is chosen such that Rfd /3¼ r0c¼ 412 rayl, which is the
impedance of free space and thus provides optimum sound absorption at higher frequencies. Then the
transmission-matrix parameters for the box are given by b11¼ z11/z21, b12¼ (z11z22� z12z21)/z21,
b21¼ 1/z21, and b22¼ z22/z21. The dimensions are given in Fig. 7.29 except for a1¼ b1¼

ffiffiffiffiffiffi
SD

p
.

8. Port. "
~p7
~U7

#
¼
"
cos kpt jZp sin kpt

jZ�1
p sin kpt cos kpt

#
$

"
~p9
~U9

#
¼ P$

"
~p8
~U8

#

where the port wave number kP and characteristic impedance ZP are obtained from Eqs. (4.215) and
(4.217) respectively. The port is assumed to be large enough to ignore boundary slip and thermal
conduction so that we only consider the viscous flow losses to obtain kP¼ux/c¼ 2pfx/c, ZP¼ r0cx/SP,
and SP¼a2b2 where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2J1ðkVaPÞ

kVaPJ0ðkVaPÞ

s
; ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2=p

p
; and kV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jp2fr0=m

p

where m¼ 1.86� 10�5 m2/s is the viscosity coefficient for air at 20�C.
9. Port radiation. "

~p8
~U8

#
¼
"
1 0

Z�1
A2 1

#
$

"
~p9
~U9

#
¼ R$

"
~p9
~U9

#

In this case, the port outlet is rectangular and close to the floor so that ZA2 may be given by the
impedance of a rectangular piston in an infinite baffle using Eqs. (13.326) and (13.327), where
ZA2¼ (Rsþ jXs)/(a2b2).

First we evaluate ~p9 at the end of the chain:"
~eg
~ig

#
¼ A$

"
~p9

0

#

where

A ¼ C$E$D$M$F$L$B$P$R ¼
"
a11 a12

a21 a22

#

Hence ~p9 ¼ ~eg=a11. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure, which according to Eq. (7.69) is a function of

~UB ¼ ~Uc � ~UL � ~Up ¼ ~U6 � ~U8:

This procedure is fairly straightforward and does not involve any matrix inversion. From the port
radiation matrix (9), we obtain

~UP ¼ ~U8 ¼ ~p9=ZA2
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and working back further to the box matrix (7) we obtain

"
~p6
~U6

#
¼ N$

"
~p9

0

#

where

N ¼ B$P$R ¼
"
n11 n12

n21 n22

#

so that

~Uc � ~UL ¼ ~U6 ¼ n21~p9

and therefore

~UB ¼ ~Uc � ~UL � ~UP ¼ ~U6 � ~U8 ¼ ðn21 � 1=ZA2Þ~eg=a11

The port volume velocity is given by

~UP ¼ ~U8 ¼ ~eg=ða11ZA2Þ

and the diaphragm volume velocity by

~Uc � ~UL ¼ ~U6 ¼ n21~eg=a11

In order to plot the normalized far-field on-axis pressure, we simply divide ~UB by a reference volume
velocity

~Uref ¼ 2~egBISD
uMMSRE

and plot 20 log10j ~UB= ~Uref j as shown in Fig. 7.31. The port and diaphragm volume velocities,

20 log10

��� ~UP= ~Uref

��� and 20 log10

���
 ~Uc � ~ULÞ= ~Uref

���;
respectively, are plotted separately in Fig. 7.32. Although the effects of box and port modes are clearly
seen in the calculated response of Fig. 7.31, most of the irregularities are emanating from the mouth of
the port as is seen from Fig. 7.32. By contrast, the output from the diaphragm is fairly smooth apart
from one small feature at 220 Hz, which is due to the fundamental vertical mode of the box. At 375,
750, and 1125 Hz we see the 1st, 2nd, and 3rd port modes respectively. The effect of these will be
mitigated somewhat by mounting the port on the rear of the enclosure as is seen from the measured
response of Fig. 7.31. Finally, we can obtain the input impedance from ~eg=~ig where ~ig ¼ a21~p9 and
from above ~p9 ¼ ~eg=a11. Therefore the input impedance is simply ZE¼ a11/a21, as plotted in
Fig. 7.33.
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FIG. 7.31 Graphs of the on-axis sound pressure level produced by the bass-reflex enclosure design shown in

Fig. 7.29.

The dashed curves are calculated from 20 log10j ~UB= ~Uref j. Solid curves are measured.
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PART XXIII: 2-PORT NETWORK FOR SMALL ENCLOSURES

In this part we shall use the 2-port network theory, introduced in Sec. 3.10 and Fig. 4.43, to create
a z-parameter matrix that describes a bass-reflex enclosure in which the rear of the loudspeaker dia-
phragm connects to one port and the bass-reflex port connects to the other. Absorbent lining material is
located on the internal wall opposite the diaphragm and bass-reflex port. This matrix is valid for all
wavelengths since it is based on eigenfunction expansions of the internal modes.

For a closed-box enclosure, we simply set the velocity at the bass-reflex port to zero so that we are
left with 1-port network or impedance at the rear of the diaphragm, which is given by the first element
of the matrix z11.

7.18 2-PORT NETWORK FOR A BASS-REFLEX ENCLOSURE
A sketch of the bass-reflex enclosure is shown in Fig. 7.34. In order to make the problem solvable, we
assume that the loudspeaker and port apertures, represented by piston 1 and piston 2, are rectangular
and planar, which should give a reasonable approximation when they are circular, in which case their
radii are given by
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FIG. 7.32 Graphs of the on-axis sound pressure level produced by port and diaphragm of the bass-reflex enclosure

design shown in Fig. 7.29.

The dashed curves are calculated from 20 log10j ~UP= ~Uref j and 20 log10jð ~Uc � ~ULÞ= ~Uref j for the port and

diaphragm respectively. Solid curves are measured.
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r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1b1=p

p
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2=p

p
:

To further simplify the problem, we have acoustic lining only on the rear surface of the enclosure. For
a bass-reflex enclosure it is not desirable to have too much lining because that will produce excessive
losses as the air passes through it and thus negate the advantage of having a port. If the force and
velocity at piston 1 are given by ~F1 and ~u1 respectively and the force and velocity at piston 2 by ~F2 and
~u2, then "

~F1

~F2

#
¼
"
z11 z12

z21 z22

#"
~u1

~u2

#
(7.109)

where the mechanical self impedance z11 of piston 1 is the ratio of the force to velocity at piston 1 with
piston 2 blocked:

z11 ¼
~F1

~u1

���
~u2¼0

(7.110)
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FIG. 7.34 Sketch of the bass-reflex enclosure as a 2-port network.
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FIG. 7.33 Graphs of the electrical input impedance of the bass-reflex enclosure design shown in Fig. 7.29, where

the two drive units are connected in parallel.

The dashed curves are calculated from ZE¼ j~eg=~ig j ¼ a11/a21. Solid curves are measured.
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Similarly the mechanical self impedance z22 of piston 2 is the ratio of the force to velocity at piston 2
with piston 1 blocked:

z22 ¼
~F2

~u2

���
~u1¼0

(7.111)

which is obtained by interchanging “1” and “2” in the expression for z11. In a passive network such as
this, the mutual impedances z12 and z21 are equal and given by

z12 ¼
~F1

~u2

���
~u1 ¼ 0

¼ z21 ¼
~F2

~u1

���
~u2 ¼ 0

(7.112)

If for simplicity we let ~u1 ¼ ~u2 ¼ ~u0, the pressure field inside the enclosure due to an applied
velocity ~u0 at either piston is given by

~pðx; y; zÞ ¼ r0c~u0
XN
m¼ 0

XN
n¼ 0

ðAmne
�jkmnz þ Bmne

jkmnzÞ cosðmpx=lx Þ cos ðnpy=ly Þ (7.113)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
mp

lx

�2

�
�
np

ly

�2
s

(7.114)

The boundary condition of zero pressure gradient at the perfectly rigid side walls (x¼ 0, x¼ lx,
y¼ 0, y¼ ly) is accounted for by the cosine expansions in m and n. In other words, only standing
waves whose wavelengths are integer or half-integer divisions of lx and ly can exist in the x and y
directions respectively. The term with the coefficient Bmn represents plane waves traveling from the
pistons in the negative z direction, and the term with the coefficient Amn represents reflected plane
waves traveling in the positive z direction. The strengths of the reflections depend on the value of
the specific impedance Zs in the plane z¼ 0. The unknown expansion coefficients Amn and Bmn are
found by applying the boundary conditions at the pistons in the front baffle (z¼ lz) and at the
rear wall (z¼ 0), which is terminated in a specific impedance Zs. The velocity in the z direction is
given by

~uzðx; y; zÞ ¼ 1

�jkr0c

v

vz
~pðx; y; zÞ

¼ 1

k
~u0
XN
m¼ 0

XN
n¼ 0

kmn
�
Amne

�jkmnz � Bmne
jkmnz
	
cos ðmpx=lxÞ cos

�
npy=ly

	 (7.115)

At z¼ 0,

~pðx; y; 0Þ ¼ �Zs~uzðx; y; 0Þ (7.116)
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so that

Bmn ¼ kmnZs þ kr0c

kmnZs � kr0c
Amn (7.117)

In order to evaluate the pressure field due to a velocity ~u0 at piston 1, we set the following boundary
conditions at z¼ lz:

~uzðx; y; lzÞ ¼

8>>>>>><
>>>>>>:

~u0;
lx
2
� a1

2
� x � lx

2
þ a1

2
; y1 � b1

2
� y � y1 þ b1

2

0; 0 � x <
lx
2
� a1

2
;

lx
2
þ a1

2
< x � lx

0; 0 � y < y1 � b1
2
; y1 þ b1

2
y � ly

(7.118)

After inserting Eq. (7.117) into Eq. (7.115), we then multiply through by cos(ppx/lx) and cos(qpy/ly)
and integrate over x and y as follows:

~uzðx; y; lzÞ ¼ 2

k
~u0
XN
m¼ 0

XN
n¼ 0

kmnAmn
kr0c cos kmnlz þ jkmnZs sin kmnlz

kr0c� kmnZs

�
Zlx
0

cos ðmpx=lxÞ cos ðppx=lxÞdx
Zly
0

cos ðnpy=lyÞ cos ðqpy=lyÞdy

¼ ~u0

Zðlxþa1Þ=2

ðlx�a1Þ=2
cos ðppx=lxÞdx

Zy1þb1=2

ðy1�b1Þ=2
cos ðqpy=lyÞdy

(7.119)

Using the property of orthogonality such that only terms with p ¼ m and q ¼ n are non-zero, together
with the integral solutions

Zlx
0

cos2ðmpx=lxÞdx ¼
(

lx; m ¼ 0

lx=2; m ¼ 1; 2; $$$
(7.120)

Zly
0

cos2ðnpy=lyÞdy ¼
(

ly; n ¼ 0

ly=2; n ¼ 1; 2; $$$
(7.121)

Zðlxþa1Þ=2

ðlx�a1Þ=2
cos ðmpx=lxÞdx ¼

8<
:

a1; m ¼ 0

2lx
mp

cos

�
mp

2

�
sin

�
mpa1
2lx

�
; m ¼ 1; 2; $$$

(7.122)
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Zðy1þb1Þ=2

ðy1�b1Þ=2
cos ðnpx=lyÞdy ¼

8<
:

b1; n ¼ 0

2ly
np

cos

�
npy1
ly

�
sin

�
npb1
2ly

�
; n ¼ 1; 2; $$$

(7.123)

we obtain

A00 ¼ a1b1
2lxly

r0c� Zs
r0c cos klz þ jZssin kls

(7.124)

A0n ¼ 2a1k

nplxk0n
cos

�
npy1
ly

�
sin

�
npb1
2ly

�
kr0c� k0nZs

kr0c cos k0nlz þ jk0nZs sin k0nlz
(7.125)

Am0 ¼ 2b1k

mplykm0
cos


mp
2

�
sin

�
mpa1
2lx

�
kr0c� km0Zs

kr0c cos km0lz þ jkm0Zs sin km0lz
(7.126)

Amn ¼ 8k

p2mnkmn
cos


mp
2

�
sin

�
mpa1
2lx

�
cos

�
npy1
ly

�
sin

�
npb1
2ly

�

� kr0c� kmnZs
kr0c cos kmnlz þ jkmnZs sin kmnlz

(7.127)

The mechanical self impedances are given by

Z11 ¼ 1

�~u0

Zðlxþa1Þ=2

ðlx�a1Þ=2

Zy2þb1=2

y1�b1=2

~pðx; y; lzÞdydx (7.128)

Z22 ¼ 1

�~u0

Zðlxþa2Þ=2

ðlx�a2Þ=2

Zy2þb2=2

y2�b2=2

~pðx; y; lzÞdydx (7.129)

and the mechanical mutual impedance by

Z12 ¼ Z21 ¼ 1

�~u0

Zðlxþa2Þ=2

ðlx�a2Þ=2

Zy2þb2=2

y2�b2=2

~pðx; y; lzÞdydx (7.130)

Both of these are found using the integral solutions of Eqs. (7.122) and (7.123), where we note that
cos(mp/2)¼ 0 for odd values ofm and therefore replace mwith 2m. Furthermore all of the impedances
z11, z12, z21, and z22 can be expressed by the single equation
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Zpq ¼ r0c

(
apaqbpbq

lxly

Zs
r0c

þ j tan klz

1þ j
Zs
r0c

tan klz

þ 8apaqly
p2lx

� PN
n¼ 1

k

n2k0n
cos

�
npyp
ly

�
cos

�
npyq
ly

�
sin

�
npbp
2ly

�
sin

�
npbq
2ly

� k0nZs
kr0c

þ j tan k0nls

1þ j
k0nZs
kr0c

tan k0nls

þ 2bpbqlx
p2ly

XN
m¼ 1

k

m2km0
sin

�
mpap
lx

�
sin

�
mpaq
lx

� km0Zs
kr0c

þ j tan km0lz

1þ j
km0Zs
kr0c

tan km0lz

þ 16lxly
p4

XN
m¼ 1

XN
n¼ 1

k

m2n2kmn
sin

�
mpap
lx

�
sin

�
mpaq
lx

�
cos

�
npyp
ly

�

� cos

�
npyq
ly

�
sin

�
npbp
2ly

�
sin

�
npbq
2ly

� kmnZs
kr0c

þ j tan kmnlz

1þ j
kmnZs
kr0c

tan kmnlz

9>>=
>>;

(7.131)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
2mp

lx

�2

�
�
np

ly

�2
s

(7.132)

PART XXIV: TRANSMISSION-LINE ENCLOSURES

7.19 TRANSMISSION-LINE ENCLOSURES

7.19.1 General Description

A transmission-line enclosure has a duct or tube between the back of the loudspeaker diaphragm and
the outside world, which is usually folded in order to save space. There are two approaches as shown in
Fig. 7.35a and Fig. 7.35b. In the first, the duct has a uniform cross-sectional area over much of its
length and is usually designed to enhance the bass response around its fundamental resonance
frequency rather like a bass-reflex enclosure. Unlike a bass-reflex enclosure where the dimensions of
the enclosure and port are usually small compared to the wavelength, the transmission line is long
enough for there to be significant phase shift between the diaphragm and outlet at low frequencies.
Hence, when the wavelength is four times the length of the transmission line, there is a 90� phase shift
within it which leads to maximum air displacement at the opening (resonance anti-node) but minimum
displacement at the loudspeaker diaphragm (resonance node). This leads to a significant enhancement
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a spiral. The diaphragm has an area SD.
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of the bass performance in the region of the quarter-wavelength resonance frequency. The problem,
however, is how to attenuate the output of the transmission line at frequencies where it cancels the
sound from the front of the loudspeaker diaphragm even if the standing waves within it are well
damped using absorbent filling material. However, many products now contain a digital signal
processor which can be used to equalize the resulting lumpy frequency response.
Summary of transmission-line design

To determine the cutoff frequency, frequency response, and the volume of the box:

If the Thiele–Small parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive unit are not supplied by the
manufacturer, they may be measured according to Sec. 6.10. Then QTS¼QESQMS /(QESþ QMS).
If we assume that the drive unit will behave more or less as if it were mounted in an infinite baffle, we can select
the frequency-response shape from Table 7.2 for which the QTC value is closest to the QTS value of the chosen
drive unit (or choose a drive unit whose QTS value is closest to that of the desired frequency-response shape).
From the value of f3dB/fC in the table, compute the cutoff frequency f3dB assuming that fC z fS.
The frequency-response shape below the first diaphragm break-upmode but above the transmission-line cut-off
frequency fT is shown in Fig. 7.16. Below fT, the roll-of increases from 2nd-order (12 dB/octave) to 3rd-order
(18 dB/octave).

To determine the maximum sound pressure level (SPL):
If the loudspeaker is to be used near a wall or a rigid planar surface, which is large compared to the longest
wavelength to be reproduced, then the maximum sound pressure SPLmax at a distance r is obtained from
Eq. (6.34) to give

SPLmax ¼ 20 log10

0
@ 1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
s VAS r0

REQES

s 1
AdB SPL @ 1m

whereWmax is the maximum rated input power. Otherwise, if it is to be used in the free field, subtract 6 dB from
SPLmax.
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To determine the excursion limit:
The maximum peak diaphragm displacement at frequencies well below the suspension resonance is obtained
from Eq. (7.101) to give

hmax ¼ 1

SDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS
REQESpfS r0

s

If this value is greater than the rated xmax limit of the drive unit, then a high-pass filter should be employed to
remove all content below the suspension resonance frequency. If this is not possible, then an alternate drive
unit with a greater xmax limit should be considered

To determine the transmission-line dimensions and filling material:
Determine the flow velocity u from Eq. (7.137) and the flow resistance of the filling material from Eq. (7.8).
Calculate the length lT of the transmission-line using Eq. (7.138). Choose a convenient mouth area SM to fit
around the back of the drive unit and choose a throat area ST which is about 4-8 times smaller. The volume
of the transmission line VT is then given by Eq. (7.139).
Calculate the specific acoustic resistance RST of the filling material from Eq. (7.140) and the transmission-line
cut-off frequency from Eq. (7.141).
The cut-off frequency should be less than one half of the suspension resonance frequency fS. If it is not, then
consider a different filling material with a higher flow resistance Rf. Alternatively, increase the length lT of the
transmission line or reduce the throat area ST or both.

If we wish to design a stand-alone loudspeaker with a smooth frequency response, the tapered
transmission line shown in Fig. 7.35b is preferable. Although a horn is commonly used as a high-pass
filter because it increases the radiated volume velocity above its cut-off frequency, here we have an
inverted parabolic horn which, as we shall see, acts as a high-pass filter because it attenuates the
volume velocity radiated from its outlet or throat. In order to obtain the smoothest possible response, it
is tuned to roll-off well below the fundamental resonance frequency of the drive unit, which in turn
behaves as though it is mounted in large sealed enclosure except that the filling material may damp the
fundamental resonance slightly. The low-frequency roll-off of a loudspeaker with a transmission-line
enclosure has a 2nd-order slope initially, increasing to 3rd-order below the transmission-line cut-off
frequency.

We shall assume for the remainder of this analysis that ka< 0.5. In other words, we are restricting
ourselves to the very low frequency region where the radiation from both the port and the loudspeaker
is nondirectional. Hence we can draw the simplified model of Fig. 7.36.
7.19.1.1 Acoustical circuit
The acoustical circuit for the transmission line and radiation is given in Fig. 7.36. The series radiation
mass and resistance on the front side of the diaphragm are, respectively,MA1 and RAR1. Unlike with the
bass-reflex enclosure, we omit leakage losses as we shall assume that the losses within the lining
material will dominate over all others. Finally, the series radiation mass and resistance from the throat
of the transmission line are, respectively, MA2 and RAR2. The values of these quantities are MA2 as in
Eq. (7.32), but with aT instead of a, that is,

MA2 ¼ 0:2026r0=aT;
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FIG. 7.36 Analogous acoustical circuit for a loudspeaker box with a transmission line, which is a reverse
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Fig. 7.35 (b) it is parabolic.

The volume velocity of the diaphragm is ~Uc and that of the transmission-line throat outlet is ~UT .
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RAR2 as in Eq. (7.31); and

MA1 is acoustic-radiation mass for the front side of the loudspeaker diaphragm¼ 0.2026r0/a
kg/m4. Note that we assume the loudspeaker unit is equivalent to a piston radiating from one
side only in free space.
RAR1¼ 0.01075f 2 is acoustic-radiation resistance for the front side of the loudspeaker diaphragm
in N$s/m5 (see Fig. 4.39 for ka> 1.0).
r0 is density of air in kg/m3 (normally about 1.18 kg/m3).
aT is effective radius in m of the transmission-line throat. If it is not circular, then let aT¼

ffiffiffiffiffiffiffiffiffiffiffi
ST=p

p
,

where ST is the effective area of the throat opening in m2.
SM¼ paM

2 is effective cross-sectional area of the transmission-line mouth in m2.
ST¼ paT

2 is effective cross-sectional area of transmission-line throat outlet in m2.
lT is length of the transmission line in m.
7.19.1.2 Electro-mechano-acoustical circuit
The complete circuit for a loudspeaker with a transmission-line enclosure is obtained by
combining Fig. 6.4(b) and Fig. 7.36. To do this, the acoustical radiation element of the circuit
labeled “2MM1” in Fig. 6.4(b) is removed, and the circuit of Fig. 7.36 is substituted in its place.
The resulting circuit with the transformer removed and everything referred to the acoustical side is
shown in Fig. 7.37.
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The total force produced at the voice coil by the electric current is ~pcSD, where SD is the area of the diaphragm.

The volume velocity of the diaphragm is ~Uc and that of the transmission-line throat outlet is ~UT .
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The quantities not listed in the previous paragraph are

~eg is open-circuit voltage in V of the audio amplifier.
B is flux density in the air gap in T (1 T¼ 104 gauss).
l is length in m of voice-coil wire.
Rg is output electrical resistance in U of the audio amplifier.
RE is electrical resistance in U of the voice coil.
a is effective radius of the diaphragm in m.
MAD¼MMD/SD

2 is acoustic mass of the diaphragm and the voice coil in kg/m4.
CAS¼ CMSSD

2 is acoustic compliance of the diaphragm suspension in m5/N.
RAS¼ RMS/SD

2 is acoustic resistance of the diaphragm suspension in N$s/m5.

If the outlet of the transmission line is closed off so that ~UT equals zero, then Fig. 7.37 essentially
reduces to Fig. 7.6. At very low frequencies the mass of air moving out of the lower opening is nearly
equal to that moving into the upper opening at all instants. In other words, at very low frequencies, the
volume velocities at the two openings are nearly equal in magnitude and opposite in phase.

7.19.1.3 Radiated sound
The outlet in the box of a transmission-line baffle is generally effective only at fairly low frequencies.
At those frequencies its dimensions are generally so small it can be treated as though it were a simple
source. The loudspeaker diaphragm can also be treated as a simple source because its area is often
nearly the same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure a distance r away from the transmission-
line loudspeaker is

~p ¼ ~p1 þ ~p2z
jur0
4pr

ð ~Uc~e
�jkr1 � ~UTe

�jkr2Þ; (7.133)

where

~p1 and ~p2 are complex sound pressures, respectively from the diaphragm and transmission-line
outlet at distance r.
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r is average distance of the point of observation from the diaphragm and the transmission-line
outlet. Note that r is large compared with the diaphragm and port radii.
r1 and r2 are actual distances, respectively of the point of observation from the diaphragm and
transmission-line outlet.
~Uc is complex volume velocity of the diaphragm.
~UT is complex volume velocity of the transmission-line outlet. Note that the negative sign is used
for ~UT because, except for phase shift introduced by the transmission line, the air from its throat
outlet moves outward when the air from the diaphragm moves inward.

Also, the complex volume velocity necessary to compress and expand the air inside the transmission-
line is

~UB ¼ ~Uc � ~UT : (7.134)

If we now let r1¼ r2¼ r by confining our attention to a particular point in space in front of the
loudspeaker where this is true, we get

~pz
jur0
4pr

ð ~Uc � ~UTÞe�jkr: (7.135)

Since ~Uc � ~UT ¼ ~UB, we have simply that

���~p���z fr0

��� ~UB

���
2r

: (7.136)

As with the bass-reflex enclosure, the sound pressure produced at faraway points equidistant from cone
and outlet of a transmission-line loudspeaker is directly proportional to the volume velocity necessary
to compress and expand the air inside the transmission-line.

At very low frequencies, where the wavelength is much greater than the length lT of the trans-
mission line, ~Uc becomes nearly equal to ~UT , and the pressure, measured at points r¼ r1¼ r2
approaches zero. In fact, the two sources behave like a dipole so that the radiated sound pressure
decreases by a factor of 2 for each halving of frequency. In addition, if we are below the lowest
resonance frequency of the circuit of Fig. 7.37, the diaphragm velocity ~Uc halves for each halving of
frequency. Hence, in this very low frequency region, the sound pressure decreases by a factor of 8,
which is 18 dB, for each halving of frequency. In other words, the slope is 3rd order. Note that this
decrease is greater than that for a loudspeaker in a closed box or in an infinite baffle (which is 2nd-
order) but less than that for a loudspeaker in a vented box (which is 4th-order). The effect is
somewhat similar to mounting the loudspeaker in a very large flat open-baffle (which is also 3rd-
order).

The flow resistance Rf of the filling material, given by Eq. (7.8) is dependent upon the flow velocity
u and is therefore nonlinear. The problem is that the flow velocity varies with frequency and with
position along the tapered transmission line. This could lead to a very complicated analysis, but if we
make sure that there is enough attenuation within the transmission line for the radiation from the throat
outlet not to interfere too much with the direct radiation from the diaphragm, we need not worry too
much about the accuracy of the model. The flow resistance will mainly affect the damping of the
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fundamental resonance of the drive unit over a relatively small range of frequencies. Therefore we set
the rms velocity value to that of the diaphragm at resonance at its maximum displacement:

uz
usxmaxffiffiffi

2
p : (7.137)

We then obtain the flow resistance Rf from Eq. (7.8). Usually, we set the length lT to be one quarter of
the wavelength at the suspension resonance frequency fS so that

lT ¼ c

4fs
: (7.138)

This rather naı̈ve formula assumes the free-space speed of sound c whereas in the lossy filling material
it is somewhat slower [see Eqs. (2.80) and (2.82) for the speed of sound in a material with flow
resistance Rf]. However, this is largely compensated for by the fact that the resonance in a tapered duct
is not a true quarter-wavelength one, but rather occurs when lT¼ al/(2p), where J0(a)¼ 0, or lT¼ l/
2.61274 (assuming ST << SM). The volume occupied by the transmission line is

VT ¼ ST þ SM
2

lT : (7.139)

By examining the asymptotic low-frequency behavior of the tapered transmission line, we find that its
specific resistance RST, as seen from the mouth, is

RST ¼ SM
SM � ST

lTRf ln
SM
ST

: (7.140)

If the filling material has ample overall specific resistance (> 400 rayls) we can use the following
empirical formula for the transmission-line cut-off frequency

fT z
2P0

3RSTlT
: (7.141)

7.19.1.4 Performance
With the information just given, it is possible to calculate the response of the loudspeaker in
a transmission-line enclosure. A complete example is given in the next section.

From Fig. 7.37, we see that, for frequencies below uT, radiation from the transmission-line outlet
(proportional to � ~U0) is out of phase with the radiation from the diaphragm (proportional to ~Uc). As
a result, the response at very low frequencies is usually not enhanced by the transmission-line. Above
the cut-off frequency uT, radiation from the throat is in phase with that from the diaphragm at some
frequencies but out of phase at others. However, because the radiation from the throat is attenuated, it
has relatively little influence on the overall response. Consequently, a transmission line enclosure
behaves somewhat like a large open baffle, and the need for a reasonably stiff suspension is even
greater than in the case of a bass-reflex enclosure. A large loudspeaker diaphragm usually is superior to
a small one because the amplitude of its motion is less, thereby reducing nonlinear distortion.

At low-frequencies, the wavelength is usually very large compared to the box dimensions if the
transmission line is folded, so the small resulting phase difference between the outputs of the trans-
mission line and diaphragm will have little effect on the performance.
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An advantage of a transmission-line loaded loudspeaker is that the build-up of pressure inside the
enclosure is much less than inside a closed-box or even a bass-reflex enclosure above the box reso-
nance. Therefore, pressure waves from the rear of the diaphragm are less likely to couple to the walls of
the enclosure and cause unwanted vibrations.

Example 7.4. Transmission-line enclosure design. In the previous part we discussed in detail the
design of a bass-reflex baffle for a low-frequency (woofer) loudspeaker. We presented methods for the
determination of its physical constants, and we showed a comparison between measurements and
calculations.

In this part we shall use a single full-range unit loaded at the rear with a transmission line. The brief
here is to design a compact loudspeaker for domestic use with extended bass response at moderate
listening levels in an enclosure no larger than 2½ liters. We aim to produce 86 dB SPL@ 1 m using just
2 Wof input power, or 92 dB SPL from a stereo pair. We wish to extend the frequency response down to
140Hz.We assume that the loudspeakerwill be placed near awall in order to support the low frequencies.

A suitable drive unit is the Peerless 2½-inch “Tymphany” type 830985. The Thiele–Small
parameters are:

RE¼ 3.7 U
QES¼ 0.83
QMS¼ 3.46
fS¼ 140 Hz
SD¼ 22 cm2

VAS¼ 0.472 L

Then

QTS ¼ QESQMS

QES þ QMS
¼ 0:67:

From Eq. (6.48) we can calculate the reference efficiency

Eff ¼ 100
8� 3:142 � 472� 10�6 � 1403

0:83� 344:83
¼ 0:3%:

In order to calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27), (6.28), and
(6.30) respectively:

CMS ¼ 472� 10�6

0:00222 � 1:18� 344:82
¼ 0:695 mm=N;

MMS ¼ 1

ð2� 3:14� 140Þ2 � 695� 10�6
¼ 0:0019 kg;

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:7

2� 3:14� 140� 0:83� 695� 10�6

r
¼ 2:7 T$m:
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We obtain from Eq. (6.33)

SPL2W ¼ 20 log10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:7� 2

p � 2:7� 0:0022� 1:18

2� 3:14� 3:7� 0:0019� 20� 10�6

�
¼ 86:7 dB SPL @ 1 m:

Next we use Eq. (6.35) to check the peak displacement at fS for 86 dB SPL:

hpeak ¼
ffiffiffi
2

p � 1� 10

�
86
20�5

	
p� 1402 � 1:18� 0:0022

¼ 1:8 mm:

However, QTS¼ 0.66 so that at resonance the actual displacement is 0.66� 1.8¼ 1.2 mm and the
sound pressure is 86þ 20log100.66¼ 82.4 dB SPL. It turns out that the xmax value of the drive unit is
2 mm, so there should be no problems with this design provided that the input power is limited to just
2 Wat low frequencies. For the purpose of evaluating the flow resistance of the filling material, we take
the flow velocity u from Eq. (7.137) as follows:

uz
2p140� 0:0012ffiffiffi

2
p ¼ 0:75 m=s:

Suppose that our filling material, which in this case is lamb’s wool, has a porosity 4¼ 0.98 and an
average fiber diameter of 50 mm. From Eq. (7.8) we obtain the flow resistance:

Rf ¼ 4� 1:86� 10�5 � 0:02

0:98� 502 � 10�12

0
BB@ 1� 4

p
� 0:02

2þ ln
1:86� 10�5 � 0:98

2� 50� 10�6 � 1:18� 0:75

þ 6

p
� 0:02

1
CCA

¼ 1433 rayls=m:

Now we turn to the transmission-line dimensions. Let us make the length lT equal to one quarter
wavelength at fS from Eq. (7.138), so that

lT ¼ 344:8

4� 140
¼ 0:62 m:

For convenience, we make the mouth area a square large enough to fit the diameter of the drive unit:

SM ¼ 7 cm� 7 cm ¼ 49 cm2

and

ST ¼ SM=4 ¼ ¼ 12:25 cm2;

which from Eq. (7.139) makes the total volume

VT ¼
�
12:25þ 49

	� 10�4

2
� 0:62 ¼ 1:9� 10�3 m3 or 1:9 L:
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From Eq. (7.140) this gives a specific resistance value of

RST ¼ 49

49� 12:25
� 0:62� 1433� ln

49

12:25
¼ 1642 rayls:

Now from Eq. (7.141) we can calculate the cut-off frequency

fT z
2� 105

3� 1642� 0:62
¼ 65:5 Hz;

which is well below the suspension resonance frequency fS of the drive unit.
Let us now create a semi-analytical simulation model of the design of Fig. 7.38 using 2-port

networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 7.39. Although it is based on the circuit of Fig. 7.37, a gyrator has been inserted between the
electrical elements and the mechanical ones, which enables us to calculate more easily the generator
current ~ig from which we obtain the electrical impedance. We are ignoring the generator impedance Rg

since in the experimental setup this is negligible compared to RE. The dashed boxes are lumped-
element 2-port networks and the solid boxes are analytical ones. From the schematic we create the
transmission matrices required to represent each 2-port network as follows.

1. Coil. "
~eg
~ig

#
¼
"
1 ZE

0 1

#
$

"
~e1
~i1

#
¼ C$

"
~e1
~i1

#

where ZE¼ REþ juLE.
2. Electro-mechanical transduction.

"
~e1
~i1

#
¼
"
0 Bl

ðBlÞ�1 0

#
$

"
~f 2

~u2

#
¼ E$

"
~f 2

~u2

#

3.5 cm 

44.5 cm 

7 cm 

9 cm 

7 cm 

9 cm 

3.5 cm 

11 cm 

“Throat” 

Absorbent 
lining 

FIG. 7.38 Example of transmission-line enclosure design.
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3. Diaphragm.

"
~f 2

~u2

#
¼
"
1 ZMD

0 1

#
$

"
~f 3

~u3

#
¼ D$

"
~f 3

~u3

#

where ZMD¼ juMMDþ RMSþ 1/( juCMS). We must exclude the radiation mass from the diaphragm so
that MMD¼MMS� 16r0a

3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
.

4. Mechano-acoustical transduction.

"
~f 3

~u3

#
¼
"
SD 0

0 S�1
D

#
$

"
~p4
~U4

#
¼ M$

"
~p4
~U4

#

5. Diaphragm radiation.

"
~p4
~U4

#
¼
"
1 ZA1

0 1

#
$

"
~p5
~U5

#
¼ D$

"
~p5
~U5

#
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where ZA1 is the acoustic radiation impedance of the diaphragm given by Eqs. (13.116), (13.117), and
(13.118) with a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.
6. Transmission line. Distributed parameter model:

"
~p5
~U5

#
¼ 1

a11a22 � a12a21

"
a22 a12

a21 a11

#
$

"
~p6
~U6

#
¼ T$

"
~p6
~U6

#

where

a11 ¼ �p

2
kxMðJ0ðkxTÞY1ðkxMÞ � J1ðkxMÞY0ðkxTÞÞ

a12 ¼ j
ZST
SM

p

2
kxMðJ0ðkxTÞY0ðkxMÞ � J0ðkxMÞY0ðkxTÞÞ

a21 ¼ j
ST
ZST

p

2
kxMðJ1ðkxTÞY1ðkxMÞ � J1ðkxMÞY1ðkxTÞÞ

a22 ¼ ST
SM

p

2
kxMðJ1ðkxTÞY0ðkxMÞ � J0ðkxMÞY1ðkxTÞÞ

where

xT ¼ STlT=ðSM � STÞ and xM ¼ SMlT=ðSM � STÞ:
For ZST and k, we use Eqs. (7.10) and (7.11) respectively. The ratio of the throat volume velocity to the
mouth volume velocity

~UT= ~Uc ¼ ~U6= ~U5 ¼ 1=a11

is plotted in Fig. 7.40, assuming that the pressure at the throat is virtually zero. We see that the volume
velocity rolls off smoothly above fT¼ 65.5 Hz.

7. Throat radiation. "
~p6
~U6

#
¼
"
1 0

Z�1
A2 1

#
$

"
~p7
~U7

#
¼ R$

"
~p7
~U7

#

In this case, the throat outlet is rectangular and close to a large planar surface so that ZA2 may be given
by the impedance of a rectangular piston in an infinite baffle using Eqs. (13.326) and (13.327), where

ZA2 ¼ ðRs þ jXsÞ=ST :
First we evaluate ~p7 at the end of the chain:"

~eg
~ig

#
¼ A$

"
~p7

0

#



FIG. 7.40 Graph of the volume velocity attenuation produced by the transmission-line enclosure design shown in

Fig. 7.38. Curve is calculated from 20 log10j~UT=~Ucj.
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where

A ¼ C$E$D$M$F$T$R ¼
"
a11 a12

a21 a22

#

Hence ~p7 ¼ ~eg=a11. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure, which according to Eq. (7.136) is a function of

~UB ¼ ~Uc � ~UT ¼ ~U5 � ~U6:

This procedure is fairly straightforward and does not involve any matrix inversion. From the outlet
radiation matrix (7), we obtain

~UT ¼ ~U6 ¼ ~p7=ZA2

and working back further to the transmission-line matrix (6) we obtain

"
~p5
~U5

#
¼ N$

"
~p7

0

#

where

N ¼ T$R ¼
"
n11 n12

n21 n22

#
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so that

~Uc ¼ ~U5 ¼ n21~p7

and therefore

~UB ¼ ~Uc � ~UT ¼ ~U5 � ~U6 ¼ ðn21 � 1=ZA2Þ~eg=a11

The throat volume velocity is given by

~UT ¼ ~U6 ¼ ~eg=ða11ZA2Þ
and the diaphragm volume velocity by

~Uc ¼ ~U5 ¼ n21~eg=a11

In order to plot the normalized far-field on-axis pressure, we simply divide ~UB by a reference volume
velocity

~Uref ¼ ~egBISD
uMMSRE

and plot 20 log10j ~UB= ~Uref j as shown in Fig. 7.41. The throat and diaphragm volume velocities,

20 log10

��� ~UT= ~Uref

��� and 20 log10

��� ~Uc= ~Uref

���
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FIG. 7.41 Graphs of the on-axis sound pressure level produced by the transmission-line enclosure design shown in

Fig. 7.38.

The dashed curves are calculated from 20 log10j ~UB= ~Uref j. Solid curves are measured.
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FIG. 7.42 Graphs of the on-axis sound pressure level produced by throat and diaphragm of the transmission-line

enclosure design shown in Fig. 7.38.

The dashed curves are calculated from 20 log10j ~UT = ~Uref j and 20 log10j ~Uc= ~Uref j for the transmission-line

outlet and diaphragm respectively. Solid curves are measured.
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FIG. 7.43 Graphs of the electrical input impedance of the transmission-line enclosure design shown in Fig. 7.38.

The dashed curves are calculated from ZE¼ j~eg=~ig j ¼ a11/a21. Solid curves are measured.
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respectively, are plotted separately in Fig. 7.42. Individually, the outputs from the diaphragm and
throat are very smooth, but their combined output shown in Fig. 7.41 does exhibit some very small 1
dB ripples which will be hardly audible. Finally, we can obtain the input impedance from ~eg=~ig where
~ig ¼ a21~p7 and from above ~p7 ¼ ~eg=a11. Therefore the input impedance is simply ZE¼ a11/a21, as
plotted in Fig. 7.43.

PART XXV: MULTIPLE DRIVE UNITS

7.20 CROSSOVER FILTERS
Many high-fidelity sound systems employ two or more loudspeaker drive units. One, called a woofer
covers the low-frequency range while the other, called a tweeter, covers the high frequency range.
Sometimes, a third unit or squawker is included to cover the midrange. An electrical network, called
a crossover network, is used to divide the output energy from the amplifier into the different frequency
regions covered by the multiple drive units. Here we shall concentrate on two-way crossovers as the
same rules can be applied when designing loudspeakers with three or more drive units.
Classical crossover filters. Fig. 7.44 shows an outline schematic of a 2-way loudspeaker with
a classical crossover network. The woofer is fed via a nth-order low-pass filter and the tweeter via
a nth-order high-pass filter. The transfer functions of the low-pass and high-pass filters are Ln (s) and
Hn(s) respectively where s¼ ju is the complex frequency. These filters are designed such that when
their outputs are summed, they form all-pass filters Fn(s)¼ Ln (s)þHn(s), that is jFn(s)j ¼ 1 at all
frequencies, although the phase varies except in the case of n¼ 1. Furthermore, the input impedance is
R at all frequencies, so that the power dissipation is uniform. Low-pass filter circuits of orders n¼ 1 to
6 are shown in Fig. 7.45 along with their transfer functions. The complementary high-pass filter
circuits and transfer functions are shown in Fig. 7.46. The filters in these figures are labeled B1, B12,
and so forth, where the B stands for Butterworth and the superscript denotes the number of cascaded
sections. The even-order filters are commonly referred to as Linkwitz–Riley [23, 24] and are often
favored because the woofer and tweeter are in phase at the crossover frequency, whereas in the case of
odd-order filters they are 90� out of phase, as is seen from the Nyquist plots of Fig. 7.47. This is cited as
reducing the chances of off-axis nulls occurring in the directivity pattern around the cross-over
nth-order 
high-pass 
filter Hn(s)

nth-order  
low-pass 
filter Ln(s)

Tweeter

Woofer

FIG. 7.44 Outline schematic of a 2-way loudspeaker with a classical crossover network.
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FIG. 7.45 Classical low-pass crossover filters: (a) 1st-order; (b) 2nd-order; (c) 3rd-order; (d) 4th-order; (e) 5th-

order; (f ) 6th-order.

In each case, the inductor and capacitor values are given by L¼R/u0 and C¼ 1/(u0R) respectively, where

u0¼ 2pf0 is the crossover frequency and R is the coil resistance of the woofer. The labels B1, B32 and so forth

are the names of the transfer functions where B stands for Butterworth and the number is the order of the

function. Note that the square in B32 means that it is equivalent to two cascaded 3rd-order Butterworth filters,

making a net 6th-order filter.
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frequency [25], although this also largely depends upon the ratio of the wavelength to drive unit
spacing. Obviously, the drive unit spacing should be as small as possible.

On the other hand, odd-order filters have a constant power response [26], regardless of drive unit
spacing, and the coil inductance of the woofer can be included as part of the last inductor in the filter,
thus eliminating the need for a Zobel network for correcting the load impedance as well as giving
greater accuracy. All-pass filters need not be symmetrical [27–29]. If we include the low-frequency
roll-off of the tweeter in its high-pass filter transfer function, the overall order of the filter is increased
by 2. It would be making the low-pass filter to the woofer unnecessarily complicated to increase its
order by the same amount.
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FIG. 7.46 Classical high-pass crossover filters: (a) 1st-order; (b) 2nd-order; (c) 3rd-order; (d) 4th-order; (e) 5th-

order; (f) 6th-order.

In each case, the inductor and capacitor values are given by L¼R/u0 and C¼ 1/(u0R) respectively, where

u0¼ 2pf0 is the crossover frequency and R is the coil resistance of the tweeter. Note that in the case of the 2nd-

and 6th-order functions, the tweeter terminals must be reversed. The labels B1, B32 and so forth are the

names of the transfer functions where B stands for Butterworth and the number is the order of the function.

Note that the square in B32 means that it is equivalent to two cascaded 3rd-order Butterworth filters, making

a net 6th-order filter.
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High-pass crossover filters which take into account the native response of the tweeter. Classical
crossover filters make two assumptions about the loudspeaker drive units. First, they assume that
the load impedance is a constant resistance at all frequencies. Second, they assume that the
frequency responses of the drive units are flat with zero phase shift in the crossover frequency
range. If we were to select drive units and crossover frequencies such that these assumptions were
approximately true, we would end up with more drive units than necessary in a complicated and
expensive design, because each unit would be working over only part of its usable frequency
range.
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3rd-order high-pass filter with a series capacitor. The simplest high-pass filter is just a series
capacitor, as shown in Fig. 7.48. Using the same methodology as in Secs. 7.6 and 7.12, we can write the
following expression for the radiated sound:

~pðrÞ ¼ ~egBISDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.142)

where the 3rd-order frequency-response function G(s) is given by

GðsÞ ¼ s3

s3 þ P2s2 þ P1sþ P0
(7.143)

and the coefficients of the denominator polynomial in s¼ ju are given by

P2 ¼ uC

QTC
þ uE (7.144)

P1 ¼
�
uC þ uE

QMC

�
uC (7.145)

P0 ¼ u2
CuE (7.146)

where uC is the angular resonant-frequency of the tweeter in its closed-box enclosure, QMC is its
mechanical Q factor, QTC is its total Q factor, and uE is the cut-off frequency of the electrical filter
comprising the external capacitor C and coil resistance RE:

uE ¼ 1

REC
(7.147)

The electrical Q factor is given by

QEC ¼ QMCQTC

QMC � QTC
(7.148)

The transfer function of a 3rd-order Butterworth high-pass filter is shown in Fig. 7.46(c) so that

P2 ¼ 2u0 (7.149)
FIG. 7.47 Nyquist plots for classical crossover filters in the complex plane: (a) 1st-order; (b) 2nd-order;

(c) 3rd-order; (d) 4th-order; (e) 5th-order; (f) 6th-order.

Black solid curves show the low-pass transfer functions Ln(s), gray solid curves the high-pass transfer functions

Hn(s), and black dotted curves the resultant all-pass transfer functions Fn(s)¼ Ln(s)þHn(s), where s¼ ju

is the complex frequency and n is the order of the crossover. Note that for the 1st-order crossover, there is no

dotted curve because the resultant is alwaysþ 1, marked by a pentagram. Black dots indicate the crossover

frequencies at which u¼ u0 and arrows show the direction of increasing frequency. The maximum phase shift of

Fn(s) is 0 for n¼ 1, p for n¼ 2, 2p for n¼ 3, 4, 5, and 3p for n¼ 6.
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FIG. 7.48 3rd-order high-pass filter in which the native response of tweeter provides the 2nd-order part of the

transfer function and the series capacitor provides the 1st-order part.
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P1 ¼ 2u2
0 (7.150)

P0 ¼ u3
0 (7.151)

where u0 is the angular crossover frequency. Equating Eqs. (7.144) to (7.146) with Eqs. (7.149) to
(7.151) and solving for u0, uE, and QTC gives

u3
0 � 2QMCuCu

2
0 þ QMCu

2
C ¼ 0 (7.152)

which has to be solved for u0. Then

uE ¼ u3
0

u2
C

(7.153)

and

QTC ¼ uC

2u0 � uE
(7.154)

Numerical values for these solutions are given in Table 7.5. A tweeter unit should be chosen which has
QMC and QEC values that match, as closely as possible, those in one of the rows of the table,
Table 7.5 Parameters for 3rd-order Butterworth high-pass crossover filter using a series
capacitor

QMC QEC QTC f0/fC fE/fC

1.0 N 1.0000 1.0000 1.0000

1.2 4.1510 0.9309 0.8921 0.7099

1.5 2.3729 0.9191 0.8318 0.5754

2.0 1.7039 0.9201 0.7892 0.4916

3.0 1.3392 0.9259 0.7564 0.4327

4.0 1.2112 0.9297 0.7424 0.4091

5.0 1.1457 0.9322 0.7346 0.3964

10 1.0343 0.9374 0.7202 0.3735

N 0.9428 0.9428 0.7071 0.3535
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remembering that the QEC value will be modified by any series resistance added to match the sensi-
tivity of the tweeter to that of the woofer. Then the crossover frequency f0 is given as a multiple of fC.
For example, if the QMC and QEC values are 2 and 1.7 respectively and the resonance frequency is
fC¼ 2 kHz, we use the 4th row of Table 7.5 to arrive at a crossover frequency of

f0 ¼ 0:7892� 2 ¼ 1:56 kHz

and an electrical cut-off frequency of

fE ¼ 0:4916� 2 ¼ 0:98 kHz

If the coil resistance is 6 U, the value of the capacitor is then given by

C ¼ 1

2pfERE
¼ 1

2� 3:14� 980� 6
¼ 27 mF

Unfortunately, choosing a tweeter to use with this type of filter is not so easy, as few manufacturers
provide much information about their tweeters, which is strange considering that woofers now come
with a full set of Thiele–Small parameters practically as standard (Thiele–Small parameters are dis-
cussed in Sec. 6.5). Let this be considered as a plea to manufacturers to rectify the situation and
provide all the data necessary to design the crossover filter.

Note that for higher values of QMC, the crossover frequency f0 is about half an octave below the
resonance frequency fC. Hence the working range of the tweeter is extended. In fact many commercial
closed-box loudspeakers have a capacitor in series with the woofer in order to augment the bass
response [30]. However, this advantage is reduced as QMC approaches unity.
4th-order high-pass filter with a series capacitor and shunt inductor. The 4th-order high-pass filter
is shown in Fig. 7.49. Using the same methodology as in Secs. 7.6 and 7.12, we can write the following
expression for the radiated sound:

~pðrÞ ¼ ~egBISDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.155)

where the 4th-order frequency-response function G(s) is given by

GðsÞ ¼ s4

s4 þ P3s3 þ P2s2 þ P1sþ P0
(7.156)
C
Tweeter 

L

FIG. 7.49 4th-order high-pass filter in which the native response of tweeter provides one 2nd-order part of the

transfer function and the series capacitor and shunt inductor provide the other.
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and the coefficients of the denominator polynomial in s¼ ju are given by

P3 ¼ uC

QTC
þ uE

QE
(7.157)

P2 ¼ u2
C þ u2

E þ uCuE

QMCQE
(7.158)

P1 ¼
�
uE

QTC
þ uC

QE

�
uCuE (7.159)

P0 ¼ u2
Cu

2
E (7.160)

where uC is the angular resonant-frequency of the tweeter in its closed-box enclosure, QMC is its
mechanical Q factor, QTC is its total Q factor, and uE is the cut-off frequency of the electrical filter
comprising the external capacitor C and inductor L:

uE ¼ 1

LC
(7.161)

The electrical Q factor of the filter is given by

QE ¼ uEREC (7.162)

The electrical Q factor of the tweeter is given by

QEC ¼ QMCQTC

QMC � QTC
(7.163)

The transfer function of a 4th-order Linkwitz-Riley or B22 high-pass filter is shown in Fig. 7.46(d),
so that

P3 ¼ 2
ffiffiffi
2

p
u0 (7.164)

P2 ¼ 4u2
0 (7.165)

P1 ¼ 2
ffiffiffi
2

p
u3
0 (7.166)

P0 ¼ u4
0 (7.167)

where u0 is the angular crossover frequency. Equating Eqs. (7.157) to (7.160) with Eqs. (7.164) to
(7.167) and solving for u0, uE, and QTC gives

u6
0 � 3u2

Cu
2
0 þ

2
ffiffiffi
2

p
u3
Cu

3
0

QMC
� 3u4

Cu
2
0 þ u6

C ¼ 0 (7.168)
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which has to be solved for u0. Then

uE ¼ u2
0

uC
(7.169)

QE ¼ u2
0u

2
C

QMCð4u2
0u

2
C � u2

0 � u2
CÞ

(7.170)

and

QTC ¼ QEu
2
C

u0ð2
ffiffiffi
2

p
QEuC � u0Þ

(7.171)

Numerical values for these solutions are given in Tables 7.6 and 7.7. In Table 7.6, the crossover
frequency f0 if below the tweeter’s resonance frequency fC and in Table 7.7 f0 is above fC. The latter is
Table 7.6 Solution 1 parameters for 4th-order Linkwitz–Riley (B22) high-pass crossover filter
using a series capacitor and shunt inductor

QMC QEC QTC f0/fC fE/fC QE

1/O2 N 0.7071 1.0000 1.0000 0.7071

1.0 3.2743 0.7660 0.6666 0.4444 0.7660

2.0 1.3924 0.8209 0.5712 0.3263 0.8209

3.0 1.1604 0.8368 0.5506 0.3031 0.8368

4.0 1.0703 0.8444 0.5415 0.2932 0.8444

5.0 1.0224 0.8489 0.5363 0.2876 0.8489

10 0.9380 0.8576 0.5266 0.2773 0.8576

N 0.8660 0.8660 0.5176 0.2679 0.8660

In this solution the crossover frequency f0 is below the tweeter resonance frequency fC.

Table 7.7 Solution 2 parameters for 4th-order Linkwitz–Riley (B22) high-pass crossover filter
using a series capacitor and shunt inductor

QMC QEC QTC f0/fC fE/fC QE

1/O2 N 0.7071 1.0000 1.0000 0.7071

1.0 3.2743 0.7660 1.5001 2.2502 0.7660

2.0 1.3924 0.8209 1.7506 3.0646 0.8209

3.0 1.1604 0.8368 1.8161 3.2985 0.8368

4.0 1.0703 0.8444 1.8468 3.4107 0.8444

5.0 1.0224 0.8489 1.8646 3.4767 0.8489

10 0.9380 0.8576 1.8989 3.6061 0.8576

N 0.8660 0.8660 1.9318 3.7321 0.8660

In this solution the crossover frequency f0 is above the tweeter resonance frequency fC.
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a safer solution as it is less likely to lead to excessive diaphragm excursion or a dip in the input
impedance. A tweeter unit should be chosen which has QMC and QEC values that match, as closely as
possible, those in one of the rows of the table, remembering that the QEC value will be modified by any
series resistance added to match the sensitivity of the tweeter to that of the woofer. Then the crossover
frequency f0 is given as a multiple of fC. For example, if the QMC and QEC values are 3 and 1.2
respectively and the resonance frequency is fC¼ 2 kHz, we use the 4th row of Table 7.7 to arrive at
a crossover frequency of

f0 ¼ 1:8161� 2 ¼ 3:63 kHz

and an electrical cut-off frequency of

fE ¼ 3:2985� 2 ¼ 6:60 kHz

If the coil resistance is 6 U, the value of the capacitor is then given by

C ¼ QE

2pfERE
¼ 1

2� 3:14� 6600� 6
¼ 3:9 mF

and the value of the inductor is given by

L ¼ 1

ð2pfEÞ2C
¼ 1

ð2� 3:14� 6600Þ2 � 3:9� 10�6
¼ 150 mH

Effect of phase delay of 2nd-order crossover on time-domain response to square waves. Although
we have already discounted the use of a 2nd-order crossover when taking into account the frequency
response of the tweeter, this serves as a relatively simple example of what the phase delay of
a crossover does to the shape of a square wave. Obviously, the effects will only be more pronounced in
higher order crossover filters. A square wave W(t) can be described by an infinite series of sinusoidal
waves:

WðtÞ ¼ 4

p

XN
n¼ 0

sin unt

2nþ 1
(7.172)

where un¼ (2nþ 1)u are odd harmonics. According to Table 6.2, the Laplace transform of the square
wave is

WðsÞ ¼ 4

p

XN
n¼ 0

un

ð2nþ 1Þðs2 þ u2
nÞ

(7.173)

Thus the frequency domain response of the 2nd-order filter to a square wave is

GðsÞ ¼ ðL2ðsÞ þ H2ðsÞÞ$WðsÞ

¼ F2ðsÞ$WðsÞ ¼ u2
0 � s2

ðu0 þ sÞ2 $
4

p

XN
n¼ 0

un�
2nþ 1

	�
s2 þ u2

n

	 (7.174)
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In other words, G(s) is the sum of the outputs of the low-pass and high-pass filters and thus constitutes
an all-pass filter. Taking the inverse Laplace transform then gives us the time-domain response to
a square wave:

gðtÞ ¼ 1

2pj

ZgþjN

g�jN

GðsÞestds ¼ 4

p

XN
n¼ 0

2u0un

�
e�u0t � cosunt

	þ �u2
0 � u2

n

	
sinunt�

2nþ 1
	�
u2
0 þ u2

n

	 (7.175)

The distortion of a square wave produced by the phase delay of a 2nd-order all-pass crossover filter is
shown in Fig. 7.50, where the square wave frequency is f¼ 1 kHz and the crossover frequency is f0¼ 4
kHz. Clearly, the output waveform is radically different from the input one.

What we have is an imperfect time delay filter. If it were ideal, the phase would increase linearly
with frequency in Fig. 7.47 so that it would keep wrapping round indefinitely, whereas in reality it
stops at p for n ¼ 2, 2p for n ¼ 3, 4, 5 and 3p for n ¼ 6. Hence the time delay s decreases above the
crossover frequency according to

s ¼ :F2ðsÞ
u

¼ �2

u
arctan

u

u0

The effect of this is to delay the low frequencies relative to the high ones so that the sound from the
tweeter arrives at the listener before that from the woofer.

The audibility of phase distortion has provoked a lively debate over the years [31–35], but why not
design the loudspeaker correctly in the first place so that there need not be any doubt about its
accuracy? As we shall see in the next section, the solution to this problem need not be complicated if
we approach it holistically and take into account all the factors that affect the response of the loud-
speaker, including the baffle effect.
Crossover filters with zero phase shift. In the previous section we studied the waveform distortion
produced by classical crossover networks. We also saw that the simplest high-pass filter H(s) is a series
capacitor (see Fig. 7.48). Let us now take its transfer function and deduce what low-pass filter L(s)
when summed with it will produce an output which is real and constant at all frequencies, that is,
simply unity:

LðsÞ þ HðsÞ ¼ 1 (7.176)

where

HðsÞ ¼ s3

ðsþ u0Þðs2 þ u0sþ u2
0Þ

(7.177)

Hence

LðsÞ ¼ 1� HðsÞ ¼ u0

sþ u0
$
2s2 þ 2u0sþ u2

0

s2 þ u0sþ u2
0

(7.178)
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FIG. 7.50 Distortion of a square wave produced by the phase delay of a 2nd-order all-pass crossover filter, where

the output voltage is the sum of the output voltages of the low-pass and high-pass filters.

The square wave frequency is 1 kHz and the crossover frequency is 4 kHz.
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The first part of this transfer function is just simple 1st-order low-pass filter. The second part is
a shelf with a 6 dB boost at frequencies above the crossover frequency u0. As it happens, such
a boost is provided by the baffle effect whereby the woofer acts as a point source when the
wavelength is large compared with the dimensions of the box but behaves like a piston in an
infinite baffle when the wavelength is small. Comparing Eq. (7.178) with Eq. (7.38) for the on-
axis response of a closed-back piston in free space, we deduce that the ideal crossover
frequency is

f0 ¼ c=ð2paÞ (7.179)
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It should be noted that the methods developed in this chapter are by no means perfect, because of the
assumptions we have made about the baffle effect and the drive units behaving as perfectly rigid flat
pistons. However, computer algorithms have been developed [36] which can optimize the crossover
component values taking into account the measured responses of the drivers.
Example 7.4. Crossover for woofer of Example 7.2. In this example we shall implement a 3rd-order
Butterworth high-pass filter using a series capacitor. Because the tweeter will be mounted in a sphere,
we shall design a network to compensate for the 6 dB lift associated with a point source in a sphere (see
Fig. 7.14). The low-pass section will be designed to give an all-pass overall response with zero phase
shift, as discussed in the previous section. Hence the low-pass section will use just a series inductor
together with the 6 dB lift due to the baffle effect, using a closed-back piston as a model (see Fig. 7.15).
Since the woofer occupies almost the full width of the box, we will take a as 9.4 cm which, using Eq.
(7.179), gives us a crossover frequency of

f0 ¼ 344:8=ð2� 3:14� 0:094Þ ¼ 584 Hz

Hence the value of the series inductance needed is

L1 ¼ RE

2pf0
¼ 6:27

2� 3:14� 584
¼ 1:71 mH

However, the coil inductance is 0.71 mH, so to make up the difference we will use an inductor with
a value of 1.71� 0.71¼ 1.0 mH. Next we need to choose a tweeter suitable for a crossover frequency
of 584 Hz. The SEAS model 27TTFNC/GW has a resonance frequency of fC¼ 750 Hz and its 27 mm
titanium dome has a very high stiffness to mass ratio, which gives an extended flat frequency response.
The effective area of the dome is SD¼ 7 cm2. The maximum sound pressure of the woofer has already
been specified as 99 dB SPL at a distance of r¼ 1 m. At the crossover frequency f0, the sound pressure
produced by the tweeter is 3 dB less than this, that is 96 dB SPL, and decreases at a rate of
18 dB/octave below f0. The peak displacement at f0 is obtained from Eq. (6.35), except that here we
double the result because at f0 the tweeter is radiating omnidirectionally rather than into half-space
from an infinite baffle

hpeak ¼ 2
ffiffiffi
2

p
r � 10

SPL
20

�5

pf 2r0SD
¼ 2� 1:414� 1� 10

96
20

�5

3:14� 5842 � 1:18� 7� 10�4
¼ 2mm

Although this is stretching the tweeter to its absolute limit, this limit is unlikely to be reached under
normal listening conditions as, at frequencies above and below f0, the displacement is reduced. Using
the method described in Sec. 6.10 for measuring the Thiele–Small parameters, we estimate the Q
factors from the manufacturer’s impedance curve to be

QEC ¼ 1:2

QMC ¼ 2:1

Also, the quoted sensitivity is 91.5 dB SPL in a baffle at 1 m with an input voltage of 2.83 Vrms or 85.5
dB SPL in free space. However, the woofer has a sensitivity of 80.2 dB SPL in free space, so the
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tweeter needs a series resistance to match its sensitivity to that of the woofer. If RE¼ 4.9 U, then the
series resistor value is

R1 ¼ RE

�
10ðTweeter Senitivity�Woofer SensitivityÞ=20 � 1

	
¼ 4:9� �10ð85:5�80:2Þ=20 � 1

	 ¼ 4:1 U z 3:9 U

This will modify the value of QEC as follows:

QEC ¼
�
1þ R1

RE

�
QEC ¼

�
1þ 3:9

4:9

�
� 1:2 ¼ 2:2

The values ofQMC and Q
0
EC are close enough to those of the 4th row of Table 7.5 for us to establish the

optimum crossover and electrical cut-off frequencies f0 and fE respectively:

f0 ¼ 0:789� fC ¼ 0:789� 750 ¼ 592 Hz

fE ¼ 0:492� fC ¼ 0:492� 750 ¼ 369 Hz

from which we determine the series capacitor value:

C1 ¼ 1

2pfEðRE þ R1Þ ¼ 1

2� 3:14� 369� ð4:9þ 3:9Þ ¼ 49 mFz 47 mF

Happily, the value of f0 practically coincides with that which we determined from Eq. (7.179) at
the beginning of this example. Finally, we need to correct for the 6 dB lift in the response of the
tweeter due to the baffle effect. We will simplify this by mounting the tweeter on a wooden
sphere so that we can model it as a point source on a sphere of radius R¼ 7.5 cm. We then
equalize the 6 dB lift using the shelf filter involving L2 in parallel with R2. In order to produce a 6
dB cut, we set

R2 ¼ R1 þ RE ¼ 3:9þ 4:9 ¼ 8:8 Uz 8:2 U

Then the transfer function of the point source on a sphere (producing a 6 dB lift) is the inverse of the
transfer function of the shelf filter:

Dð0Þ ¼ 2sþ R2=L2
sþ R2=L2

Comparing this with Eq. (7.36) for the point source on a sphere yields

L2 ¼ R2R

2c
¼ 8:2� 0:075

2� 344:8
¼ 0:89 mH z 1 mH

Thus the 6 dB transition takes place between f1¼ R2/(2pL2)¼ 1.3 kHz and f2¼ R2/(pL2)¼ 2.6
kHz, which is far enough above the crossover frequency of f0¼ 592 Hz for this network not to
interfere significantly with the operation of the crossover network. The network is shown in
Fig. 7.51.



FIG. 7.52 Section view of a Blade UniQ two-way drive unit.

The tweeter is located at the center of the woofer behind a “tangerine” phase plug and has its own independent

voice coil. Note that the woofer diaphragm is driven half way along its radius in order to eliminate the first radial

mode together with its odd-order harmonics.

Courtesy of KEF.

Tweeter 

L2

R2 R1
C1

Woofer 
L1

FIG. 7.51 Crossover network of Example 7.4 with a crossover frequency of f0[ 592 Hz.

The values of the crossover circuit elements are R1¼ 3.9 U (25 W), R2¼ 8.2 U (15 W), L1¼ L2¼ 1 mH, and

C1¼ 50 mF. The woofer is a Bandor type 100DW/8A mounted in a closed-box baffle as described in Example 7.2

and shown Fig. 7.18. The tweeter is a SEAS type 27TTFNC/GW mounted in a 15 cm diameter sphere.
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7.21 DUAL CONCENTRIC DRIVE UNITS
A difficulty with mounting a woofer and tweeter side by side or one above the other is that the path that
the sound has to travel from each of the loudspeakers to a listener will be different in different parts of
the listening room. Hence, in the vicinity of the crossover frequencies, cancellation of the sound will
result at some parts of the room, and addition will occur at others.

To avoid this effect, the loudspeakers are sometimes mounted concentrically i.e., the tweeter is
placed behind and on the axis of the woofer (see Fig. 7.52). In this arrangement, the diaphragm of the
woofer acts as a horn and the tweeter usually has a phase plug in front of it. Horn loudspeakers will be
discussed in greater detail in Chapter 9.

References
[1] Small RH. Closed-Box Loudspeaker Systems Part I: Analysis. J Audio Eng Soc 1972;20(10):798–808.
[2] Small RH. Closed-Box Loudspeaker Systems Part II: Synthesis. J Audio Eng Soc 1973;21(1):11–8.
[3] Backman J. Improvement of One-Dimensional Loudspeaker Models, in the 123rd AES Convention 2007.

paper no. 7253.
[4] Attenborough K. Acoustical Characteristics of Porous Materials. Phys Rep 1982;82(2):179–227.
[5] Zarek JHB. Sound Absorption in Flexible Porous Materials. J Sound Vib 1978;61(2):205–34.
[6] Delany ME, Bazley EN. Acoustical Properties of Fibrous Absorbent Materials. Appl Acoust 1970;3:

105–16.
[7] Miki Y. Acoustical Properties of Porous Materials, Modification of Delany-Bazley Models. J Acoust Soc

Jpn 1990;11:19–24(E).
[8] Sides DJ, Attenborough K, Mulholland KA. Application of a Generalized Acoustic Propagation Theory of

Fibrous Absorbents. J Sound Vib 1971;19:49–64.
[9] At 1000 Hz, a wavelength at 22�C is about 35 cm; at 500 Hz, 70 cm; at 2000 Hz, 17.5 cm; and so on.
[10] Backman J. Computation of Diffraction for Loudspeaker Enclosures. J Audio Eng Soc 1989;37(5):

353–62.
[11] Vanderkooy J. A Simple Theory of Cabinet Edge Diffraction. J Audio Eng Soc 1991;39(12):923–33.
[12] Svensson UP. Line Integral Model of Transient Radiation from Planar Pistons in Baffles. Acta Acust Acust

2001;87:307–15.
[13] Thuras AL. U.S. Patent No. 1,869,178. Sound Translating Device July, 1932 (filed 1930).
[14] Locanthi BN. Applications of Electric Circuit Analogies to Loudspeaker Design Problems, IRE Trans.

Audio, PGA-6: 15 (1952); republished in. J Audio Eng Soc 1971;19(9):778–85.
[15] Novak JF. Performance of enclosures for high-compliance loudspeakers. J Audio Eng Soc 1959;7(1):

29–37.
[16] Thiele AN. Loudspeakers in Vented Boxes, Proc. IREE 22: 487 (1961); republished in J Audio Eng Soc

1971;19(5):382–92 and 1971;19(6):471–83.
[17] Small RH. Vented-Box Loudspeaker Systems Part I: Small-Signal Analysis. J Audio Eng Soc

1973;21(5):363–72.
[18] Small RH. Vented-Box Loudspeaker Systems Part II: Large-Signal Analysis. J Audio Eng Soc

1973;21(6):438–44.
[19] Small RH. Vented-Box Loudspeaker Systems Part III: Synthesis. J Audio Eng Soc 1973;21(7):549–54.
[20] Small RH. Vented-Box Loudspeaker Systems Part IV: Appendices. J Audio Eng Soc 1973;21(8):635–9.
[21] Mellow TJ. A New Set of Fifth and Sixth-Order Vented-Box Loudspeaker System Alignments using

a Loudspeaker-Enclosure Matching Filter: Part I, in the 112th AES Convention 2002. paper no. 5505.



7.21 Dual concentric drive units 389
[22] Mellow TJ. A New Set of Fifth and Sixth-Order Vented-Box Loudspeaker System Alignments using
a Loudspeaker-Enclosure Matching Filter: Part II, in the 112th AES Convention 2002. paper no. 5506.

[23] Linkwitz SH. Active Crossover Networks for Noncoincident Drivers. J Audio Eng Soc 1976;24(1):2–8.
[24] Linkwitz SH. Passive Crossover Networks for Noncoincident Drivers. J Audio Eng Soc 1978;28(3):

149–50.
[25] Bullock III RM. Loudspeaker-Crossover Systems: An Optimal Crossover Choice. J Audio Eng Soc

1982;30(7/8):486–95.
[26] Vanderkooy J, Lipshitz SP. Power Response of Loudspeakers with Noncoincident Drivers – the Influence

of Crossover Design. J Audio Eng Soc 1986;34(4):236–44.
[27] Hawksford MOJ. Asymmetric All-Pass Crossover Alignments. J Audio Eng Soc 1993;41(2):123–34.
[28] Thiele AN. Passive All-Pass Crossover System of Order 3 (Low Pass)þ 5 (High Pass), Incorporating

Driver Parameters. J Audio Eng Soc 2002;50(12):1030–8.
[29] Thiele AN. Implementing Asymmetrical Crossovers. J Audio Eng Soc 2007;55(10):819–32.
[30] Recklinghausen DR. Low-Frequency Range Extension of Loudspeakers. J Audio Eng Soc 1985;33(6):

440–6.
[31] Mathes RC, Miller RL. Phase Effects in Monaural Perception. J Acoust Soc Am 1947;19(5):780–97.
[32] Craig JH, Jeffress LA. Effect of Phase on the Quality of a Two-Component Tone. J Acoust Soc Am 1962;

34(11):1752–60.
[33] Cabot RC, Mino MG, Dorans DA, Tackel IS, Breed HE, Detection. of Phase Shifts in Harmonically

Related Tones. J Audio Eng Soc 1976;24(7):568–71.
[34] J.R. Ashley, Group and Phase Delay Requirements for Loudspeaker Systems, Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing (Denver, CO, 1980 Apr. 9–11), 1980;3:1030–33.
[35] Lipshitz SP, Pocock M, Vanderkooy J. On the Audibility of Midrange Phase Distortion in Audio Systems.

J Audio Eng Soc 1982;30(9):580–95.
[36] Schuck PL. Design of Optimized Loudspeaker Crossover Networks Using a Personal Computer. J Audio

Eng Soc 1986;34(3):124–42.
[37] Villchur EM. Problems of bass reproduction in loudspeakers. J Audio Eng Soc 1957;5(3):122–6.
[38] See IEC 60268–5, ed. 3.1, "Sound system equipment - Part 5: Loudspeakers," available from http://

webstore.iec.ch/. For example, for a nominal 8-in (200 mm) diameter loadspeaker, the baffle size
would be 1.65 m long by 1.35 m wide, with the loadspeaker offset from the center by 22.5 cm lengthways
and 15 cm widthways.

[39] Thiele AN. Estimating the loudspeaker response when the vent output is delayed. J Audio Eng Soc
2002;50(3):173–5.

[40] Wright JR. The virtual loudspeaker cabinet. J Audio Eng Soc 2003;51(4):244–7.
[41] Venegas R, Umnova O. Acoustical properties of double porosity granular materials. J Acoust Soc Am.

2011;130(5):2765–76.
[42] Werner RE. Effect of negative impedance source on loudspeaker performance. J Audio Eng Soc

1957;29(3):335–40.

http://webstore.iec.ch/
http://webstore.iec.ch/

	7. Loudspeaker systems
	Part XXI: Simple enclosures
	7.1 Brief summary of common loudspeaker systems
	Loudspeaker in closed box
	Air-suspension loudspeaker system
	Bass-reflex loudspeaker system
	Transmission-line enclosures

	7.2 Unbaffled direct-radiator loudspeaker
	7.3 Infinite baffle
	7.4 Finite-sized flat baffle
	7.5 Open-back cabinets
	7.6 Closed-box baffle [1,2]
	Analogous circuit
	Values of electrical-circuit elements
	Values of the mechanical-circuit elements
	Impedance of closed box with absorbent lining
	Sound propagation in homogeneous absorbent materials [3]
	Impedance of closed box with or without absorbent lining at all frequencies
	Unlined closed box at low frequencies
	Location of loudspeaker drive unit in box
	Effect of box compliance on resonance frequency and Q
	Values of radiation (front-side) impedance
	Very large box (approximating infinite baffle)
	Small to medium-sized box (less than 200 L)
	Radiation equation
	Diaphragm volume velocity U˜c
	Reference volume velocity and sound pressure
	Radiated sound pressure for ka<1
	Alignments for pre-determined frequency-response shapes
	Setting the value of QTC and determination of the total box volume VT
	Cone displacement

	7.7 Measurement of baffle constants
	Measurement of CAB
	Measurement of RAB

	Part XXII: Bass-reflex enclosures
	7.8 General description
	7.9 Acoustical circuit
	7.10 Electro-mechano-acoustical circuit
	7.11 Radiated sound
	7.12 Alignments for predetermined frequency-response shapes
	7.13 Port dimensions
	7.14 Diaphragm displacement
	7.15 Electrical input impedance and evaluation of QL
	7.16 Performance
	7.17 Construction and adjustment notes
	Part XXIII: 2-port network for small enclosures
	7.18 2-port network for a bass-reflex enclosure
	Part XXIV: Transmission-line enclosures
	7.19 TRANSMISSION-LINE ENCLOSURES
	7.19.1 General Description
	7.19.1.1 Acoustical circuit
	7.19.1.2 Electro-mechano-acoustical circuit
	7.19.1.3 Radiated sound
	7.19.1.4 Performance


	Part XXV: Multiple drive units
	7.20 Crossover filters
	Classical crossover filters
	High-pass crossover filters which take into account the native response of the tweeter
	3rd-order high-pass filter with a series capacitor
	4th-order high-pass filter with a series capacitor and shunt inductor
	Effect of phase delay of 2nd-order crossover on time-domain response to square waves
	Crossover filters with zero phase shift

	7.21 Dual concentric drive units
	References


