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PART XIX: BASIC THEORY OF ELECTRODYNAMIC LOUDSPEAKERS

6.1 INTRODUCTION
An electrodynamic or moving-coil loudspeaker is an electromagnetic transducer for converting
electrical signals into sounds. When the original version of this book was published in 1954 under the
title Acoustics, the only practical amplifying device available was the vacuum tube, so output power
was expensive. Hence the efficiency of the electrodynamic loudspeaker was one of the most important
factors. As the cost of amplifier watts has decreased, there has been a steady trend towards smaller
loudspeakers coupled with ever more powerful amplifiers, which are needed to compensate for the
reduced radiating efficiency of the smaller diaphragms. Two developments have spurred this trend: the
replacement of the vacuum tube with silicon transistor and the introduction of so-called digital
amplifiers using various coding schemes, the most popular being pulse-width modulation or Class D.
Acoustics: Sound Fields and Transducers. DOI: 10.1016/B978-0-12-391421-7.00006-3
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242 CHAPTER 6 Electrodynamic loudspeakers
In mobile devices, which rely on battery power, the efficiency issue has not gone away. The most
important development for mobile devices has been the introduction of rare-earth neodymium
magnets, which have enabled significant miniaturization. One trend which has enabled loudspeakers of
all sizes to be used with smaller enclosures has been the development of high-compliance suspensions
which are stable enough not to cause rocking modes. The term “acoustic suspension” has been
dubbed [1] to describe a loudspeaker which has an enclosure so small that the air inside the enclosure is
stiffer than the suspension.

There are two principal types of loudspeakers: those in which the vibrating surface (called the
diaphragm) radiates sound directly into the air, and those in which a horn is interposed between the
diaphragm and the air. The direct-radiator type is used in most home and car entertainment, mobile
devices, and in small public-address systems. The horn type is used in more exotic hi-fi systems
(especially those using tubes), in large sound systems in theaters and auditoriums, and in music and
outdoor-announcing systems.

The principal advantages of the direct-radiator type are (1) small size, (2) low cost, and (3)
a satisfactory response over a comparatively wide frequency range. The principal disadvantages are
(1) low efficiency, (2) narrow directivity pattern at high frequencies. For use in home, car, and mobile
audio, where little acoustic power is necessary, the advantages far outweigh the disadvantages.
In theater and outdoor sound systems where large amounts of acoustic power are necessary and
where space is not important, the more efficient horn-type loudspeaker is generally used.

All the types of transduction discussed in the previous chapter on Microphones might be used for
loudspeakers. In this text, however, we shall limit ourselves to electrodynamic loudspeakers, the type
most commonly used in home, car, mobile, and professional audio.
6.2 CONSTRUCTION [2]
A cross-sectional sketch of a typical loudspeaker drive unit is shown in Fig. 6.1. The diaphragm (1) is
a cone made from a suitably light and stiff material, although most of the stiffness comes from the fact
that it is curved. In the center is a dust cap (2) which guards against metallic dust fouling themagnetic gap
and prevents sound from the back of the diaphragm leaking through to the outside world. If the loud-
speaker were mounted in a bass-reflex enclosure, such leakage could seriously reduce the Q of the port
resonance. Attached to the top of the cone is a coil former upon which the coil (3) is wound. This coil is
located in the gap of a magnetic path, comprising a pole piece (4) and pole plate (5), where the magnetic
flux is produced by a permanent magnet (6), which is held in place by a basket structure (7). The
diaphragm is supported at the rim and near the voice coil by a surround (8) and spider (9), respectively, so
that it is free to move only in an axial direction. The name “spider” originates from the early electro-
dynamic loudspeakers in which the conewas supported by a spider-like slotted disk that was anchored to
the pole-piece in place of the dust cap. Apart from this modification and the switch from electromagnets
to alnico (Aluminum-Nickel-Cobalt) permanent magnets in the 1930s and then to ferrite magnets in the
1970s (for economic reasons, not performance related), there has been very little change in the
construction of electrodynamic loudspeakers since the Rice–Kellogg [3] patent of 1924. We will refer to
the spider and surround as the suspension. In general, sound from the back of the cone exits through holes
in the basket (7), while sound from the back of the dome (2) leaks through the magnetic gap and spider
(9), which is often made from a phenolic-resin impregnated textile, before exiting through the basket.
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FIG. 6.1 Cross-sectional sketch of a direct-radiator loudspeaker assumed to be mounted in an infinite baffle.
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When an audio signal is applied to the electrical connections (10), the resulting current through
the voice coil creates a magnetomotive force which interacts with the air-gap flux of the permanent
magnet and causes a translatory movement of the voice coil and, hence, of the cone to which it is
attached. The movement of the cone in turn displaces the air molecules at its surface thus
producing sound waves. Usually the cone is sufficiently stiff at low frequencies to move as a whole.
At high frequencies, however, vibrations from the center travel outward toward the edge in the
form of waves. The results of these traveling waves and of resonances in the cone itself are to
produce irregularities in the frequency-response curve at the higher frequencies and to influence the
relative amounts of sound radiated in different directions. Unless treated, Metal cones have rela-
tively low internal damping and tend to produce high Q resonances, but at higher frequencies than
paper or polymer cones due to their high ratio of flexural rigidity to density. Care needs to be taken
in the choice of surround material and means of attachment to the coil former in order to minimize
such resonances. Paper and polymer cones have greater damping so that the compression waves
propagating through the cone from the coil are mainly absorbed at higher frequencies. This leads to
an interesting phenomenon whereby the effective radiating area of the cone decreases with
frequency, which is beneficial for maintaining a widely dispersed sound field. Eventually, only the
dust cap radiates and the stationary cone acts as a horn. We will discuss the vibration modes of the
cone later in this chapter.

In Fig. 6.1, the drive unit is shown mounted in a flat baffle (11) assumed to be of infinite extent.
Obviously this is not possible in practice, but it is an ideal configuration which simplifies our
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analysis of the drive unit. By definition, a baffle is any means for acoustically isolating the front
side of the diaphragm from the rear side. For purposes of analysis, the diaphragm may be
considered at low frequencies to be a planar piston of radius a moving with uniform velocity over
its entire surface. This is a fair approximation at frequencies for which the distance b on Fig. 6.1 is
less than about one-tenth wavelength. The piston in an infinite baffle is the only sound source which
gives a uniformly flat far-field on-axis response under constant acceleration, and this phenomenon
is explained in Sec. 6.6.
6.3 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT
Before drawing a circuit diagram for a loudspeaker, we must identify the various elements involved.
The voice coil has inductance and resistance, which we shall call LE and RE, respectively. The dia-
phragm and the wire on the voice coil have a total mass MMD. The diaphragm is mounted on flexible
suspensions at the center and at the edge. The total effect of these suspensions may be represented by
a mechanical compliance CMS and a mechanical resistance RMS¼ 1/GMS, whereGMS is the mechanical
conductance. The air cavity and the holes at the rear of the center portion of the diaphragm form an
acoustic network which, in most loudspeakers, can be neglected in analysis because they have no
appreciable influence on the performance of the loudspeaker. However, both the rear and the front side
of the main part of the diaphragm radiate sound into the open air.

An acoustic radiation impedance is assigned to each side and is designated as ZAR ¼ l/YAR, where
YAR is the acoustic radiation admittance. Thus the mechanical radiation admittance seen by each side
of the diaphragm is YMR ¼ SD

2 YAR, where SD is the effective diaphragm area. Approximate equivalent
circuits for YMR and YAR are given in Fig. 4.37c and d respectively.

We observe that one side of each flexible suspension is at zero velocity. For the mechanical
resistance this also must be true because it is contained in the suspensions. We already know from
earlier chapters that one side of the mass and one side of the radiation admittance must be
considered as having zero velocity. Similarly, we note that the other sides of the masses, the
compliance, the conductance, and the radiation admittances all have the same velocity, viz., that of
the voice coil.

From inspection we are able to draw a mechanical circuit and the electromechanical analogous
circuit using the admittance analogy. These are shown in Fig. 6.2a and b, respectively. The symbols
have the following meanings:

~eg is open-circuit voltage of the generator (audio amplifier) in volts (V).
Rg is generator resistance in electrical ohms (U).
LE is inductance of voice coil in henrys (H), measured with the voice-coil movement blocked, i.e.,

for ~uc ¼ 0.
RE is resistance of voice coil in electrical ohms (U), measured in the same manner as LE
B is steady air-gap magnetic field or flux density in Tesla (T).
l is length of wire in m on the voice-coil winding.
~i is electric current in amperes (A) through the voice-coil winding.
~fc is force in N generated by interaction between the alternating and steady mmfs, that is, ~f c ¼ Bl~i.
~uc is voice-coil velocity in m/s, that is, ~uc ¼ ~e=Bl, where ~e is the so-called counter emf.
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FIG. 6.2 (a) Mechanical circuit of direct-radiator loudspeaker; (b) electro-mechano-acoustical analogous

circuit of the admittance type; (c) electrical circuit showing static electrical impedance ZES and motional

electrical impedance ZEM; (d ) analogous circuit of the admittance type with electrical quantities referred to the

mechanical side.
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a is radius of diaphragm in m.
MMD is mass of the diaphragm and the voice coil in kg.
CMS is total mechanical compliance of the suspensions in m/N.
GMS ¼ 1/RMS is mechanical conductance of the suspension in m$N�1$s�1.
RMS is mechanical resistance of the suspensions in N$s/m.
YMR ¼ 1/ZMR ¼ GMRþ jBMR is mechanical radiation admittance in m$N�1$s�1 from one side of

the diaphragm (see Fig. 4.36). The bold G indicates that GMR varies with frequency.
ZMR ¼ RMRþ jXMR is mechanical radiation impedance in N$s/m from one side of a piston of radius

amounted in an infinite baffle (see Fig. 4.35). The boldR indicates thatRMS varies with frequency.
SD ¼ pa2 is effective area of diaphragm in m2.
~pR is pressure on the diaphragm due to the radiation load, that is, ~pR ¼ 2 ~Uc=YMR.
~Uc is volume velocity produced by the diaphragm, that is, ~Uc ¼ SD~uc.
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It should be noted that the coil inductance LE is highly nonlinear. In practice, the reactive coil
impedance does not rise linearly with frequency but is roughly proportional to the square-root of
frequency. A more accurate model [4] can be made by adding a second inductor with a resistor in
parallel with it, but in this text we shall use the simple model with a single inductor.

The circuit of Fig. 6.2b with the mechanical side brought through the transformer to the electrical
side is shown in Fig. 6.2c. Hence this represents the circuit as seen from the input terminals. It is
important for several reasons. Firstly, we have to take the electrical impedance into account when
considering the load presented by the loudspeaker to the amplifier driving it. The loading effect will
also modify the frequency response of any passive crossover network that may be used. Also, we can
calculate the parameters of a drive unit by measuring the input impedance, as will be explained in Sec.
6.10, without the need for an anechoic chamber. The mechanical admittance YM1 ¼ ~uc=~f c is zero if the
diaphragm is blocked so that there is no motion ð~uc ¼ 0Þ but has a value different from zero whenever
there is motion. For this reason the quantity ZEM ¼ B2l2YM1 is usually called the motional electrical
impedance. A quantity often found on data sheets is the electrical suspension resistance RES¼ B2l2GMS

¼ B2l2/RMS. This resistance is in series with the coil resistance RE at resonance. When the electrical
side is brought over to the mechanical side, we have the circuit of Fig. 6.2d.

The circuit of Fig. 6.2d will be easier to solve if its form is modified. First we recognize the
equivalence of the two circuits shown in Fig. 6.3a and b according to Norton’s theorem (see Fig. 14.4).
Next we substitute Fig. 6.3b for its equivalent in Fig. 6.2d. Then we take the dual of Fig. 6.2d to obtain
Fig. 6.4a. (See Fig. 3.41 and Fig. 3.42).

The performance of a direct-radiator loudspeaker is directly related to the diaphragm velocity.
Having solved for it, we may compute the acoustic power radiated and the sound pressure produced at
any given distance from the loudspeaker in the far-field.
Voice-coil velocity at medium and low frequencies. The voice-coil velocity ~uc, neglecting u2L2

compared with (Rgþ RE)
2, is found from Fig. 6.4a,

~ucz
~egBl

ðRg þ REÞðRM þ jXMÞ (6.1)

where

RM ¼ B2l2

Rg þ RE
þ RMS þ 2RMR (6.2)
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FIG. 6.3 The electrical circuit (referred to the mechanical side) is shown here in two equivalent forms according to

Norton’s theorem.

The circuits are of the admittance type. (Note: The generator in (b) is of constant flow type.)



LjRR

Ble

E Eg

g

ω++ )(

~

CMS

2RMR

cu~

(a)

cf
~

Eg RR

lB

+

22

22lB

LE

MMD

Rf
~

RMS

2XMR

Electrical Mechanical 
Acoustic 
radiation 

Eg

g

RR

Ble

+

~

CMScu~(b)

cf
~

Eg RR

lB

+

22

MMD

Rf
~

RMS

2MM1

cu~

FIG. 6.4 (a) Low-frequency analogous circuit of the impedance type with electrical quantities referred to

mechanical side.

ZMR is given by Fig. 4.35. The quantity ~f c represents the total force acting in the equivalent circuit to produce the

voice-coil velocity ~uc. (b) Single-loop approximation to Fig. 6.4a valid for XMR
2>> RMR

2.
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XM ¼ uMM ¼ uMMD þ 2XMR � 1

uCMS
(6.3)

Voice-coil velocity at low frequencies. At low frequencies, assuming in addition that XMR
2 >> RMR

2 we
have from Fig. 6.4b that

ðXMÞlow f ¼ uðMMD þ 2MM1Þ � 1

uCMS
(6.4)

where

MM1 ¼ 2:67a3r0 (6.5)

is the mass in kg contributed by the air load on one side of the piston for the frequency range in which
ka< 0.5. (See Table 4.4). The quantity ka equals the ratio of the circumference of the diaphragm to the
wavelength.

The voice-coil velocity is found from Eq. (6.1), using Eqs. (6.2) and (6.4) for RM and XM,
respectively so that

~uc ¼ ~eg
BlQES

bcð f Þ (6.6)
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where bc( f ) is a dimensionless frequency response function given by

bcð f Þ ¼
j
f

fS

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.7)

The suspension resonance frequency fS is given by

fS ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p ; (6.8)

where MMS ¼ MMDþ 2MM1 is the combined diaphragm and air-load mass, and

QTS ¼
�

B2l2

Rg þ RE
þ RMS

��1 ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
: (6.9)

When f ¼ fS, the real terms in the denominator of Eq. (6.7) vanish and we see from Eq. (6.9) that the
total Q value of the suspension resonance equals QTS where QTS is the reciprocal of the effective
resistance in the mechanical circuit multiplied by the square root of the ratio of the mass to the
compliance of the diaphragm. If we define f1 and f2 as the frequencies at which the velocity is 3 dB
below its peak value, then QTS ¼ fS/( f2� f1). Therefore increasing the Q value increases the height of
the resonance peak while decreasing its width. At fS, the inertial and static reactances in Fig. 6.4b
cancel each other so that the velocity ~uc is simply the driving force (first term in Eq. (6.6)) divided by
the total resistance in the loop, as shown in Fig. 6.6b. The total Q can be separated into two parts

QTS ¼ 1

1

QES
þ 1

QMS

¼ QESQMS

QES þ QMS
(6.10)

namely the electrical Q

QES ¼ Rg þ RE

B2l2

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.11)

and the mechanical Q

QMS ¼ 1

RMS

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.12)

The normalized velocity is plotted in Fig. 6.5 using 20log10jbcj. It is a universal resonance curve.
Below the resonance frequency it has a slope of þ6 dB per octave of frequency. Above the resonance
frequency it has a slope of �6 dB per octave. The acceleration is given by the first time derivative of
the velocity

~ac ¼ ju~uc ¼ 2pfS~eg
BlQES

acð f Þ (6.13)
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where ac( f ) is a dimensionless frequency response function given by

acð f Þ ¼
� f 2

f 2S

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.14)

The displacement is given by the first time integral of the velocity

~hc ¼ ~uc
ju

¼ ~eg
2pfSBlQES

gcð f Þ (6.15)

where gc( f ) is a dimensionless frequency response function given by

gcð f Þ ¼ 1

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.16)

The normalized displacement and acceleration are also plotted in Fig. 6.5 along with the velocity. We
see that when f / fS� 1/3, the displacement is virtually constant. This is the stiffness-controlled range in
which the displacement is simply the static deflection as determined by Hooke’s law, that is, the
product of the driving force and the compliance:

~hc

���
f�1=3 fs

z
~egBl

Rg þ RE
CMS (6.17)

The displacement curve is that of a second-order low-pass filter with a 12 dB/octave slopewhen f/fS� 3.
As is seen from Eq. (6.16), the displacement in this range is proportional to 1/f 2 and the equivalent
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FIG. 6.6 Simplified forms of the circuit of Fig. 6.4a valid over limited frequency ranges.
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circuit is that shown in Fig. 6.6a. When f / fS � 3, the acceleration is virtually constant. This is the
mass-controlled range in which the acceleration is simply the driving force divided by the mass in
accordance with Newton’s second law of motion

~ac
��
f�3 fs

z
~egBl

ðRg þ REÞMMS
(6.18)

The acceleration curve is that of a second-order high-pass filter with a 12 dB/octave slopewhen f / fS� 1/3.
As can be seen fromEq. (6.16), the acceleration in this range is proportional to f 2 and the equivalent circuit
is that shown in Fig. 6.6c.
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6.4 POWER OUTPUT
The acoustic power radiated in watts from both the rear and the front sides of the loudspeaker is

W ¼
����� ~ucffiffiffi2p

�����
2

ð2RMRÞ (6.19)

Hence, assuming u2L2<< (Rgþ RE)
2, and using Eq. (6.1) for ~uc we obtain

W ¼
����� ~egffiffiffi2p

�����
2

2B2l2RMR

ðRg þ REÞ2ðR2
M þ X2

MÞ
(6.20)

Above the suspension resonance frequency, the diaphragm mass dominates so that XM>> RM where
XM z juMMS. Also, when the wavelength is small compared with the diameter of the diaphragm, we
see from Table 4.4 that

RMR ¼ u2S2Dr0
2pc

(6.21)

where

SD ¼ pa2 (6.22)

is the effective area of the diaphragm of Fig. 6.1. Inserting these into Eq. (6.20) yields

W ¼
e2gðrmsÞB

2l2S2Dr0

pðRg þ REÞ2M2
MSc

; 2f0 < f <
c

4pa
(6.23)

where

egðrmsÞ ¼
����� ~egffiffiffi2p

����� (6.24)

In this frequency range, the radiated power is fairly constant because, as the frequency increases, the
falling velocity is compensated for by the rising radiation resistance. At higher frequencies where
RMR ¼ SDr0c, we have

W ¼
2e2gðrmsÞB

2l2SDr0c

ðRg þ REÞ2u2M2
MS

; f >
5c

2pa
(6.25)

Hence the radiated power is proportional to the inverse square of the frequency when the radiation
impedance is mainly resistive and the equivalent circuit is that shown in Fig. 6.6d.
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6.5 THIELE–SMALL PARAMETERS [5]
A complete low-frequency model of a loudspeaker drive unit can be defined by just six parameters
known as the Thiele–Small parameters, which are:

RE; QES; QMS; fS; SD; and VAS:

So far, we have introduced all of these except for VAS. The parameters QES, QMS, fS, and SD are defined
by Eqs. (6.11), (6.12), (6.8), and (6.22) respectively. The parameter VAS is the equivalent suspension
volume. In other words, it is the volume of air having the same acoustic compliance as the suspension
and is defined as

VAS ¼ CASr0c
2 ¼ CMSS

2
Dr0c

2 (6.26)

The use of this parameter will make more sense when we consider the performance of the loudspeaker
with an enclosure of volume VB, which in its simplest approximation is an extra compliance in the loop
of Fig. 6.4b. Straight away, we can say that mounting the drive unit in a box of volume VB ¼ VAS will
result in a total compliance that is half that of the drive unit in free space or an infinite baffle. Hence,
the suspension resonance frequency will be raised by a factor of O2. From these six parameters, we can
furnish our equivalent circuit of Fig. 6.4b with all the required element values:

CMS ¼ VAS

S2Dr0c
2

(6.27)

Then from Eq. (6.8)

MMS ¼ 1

ð2pfSÞ2CMS

(6.28)

and from Eq. (6.12)

RMS ¼ 1

QMS

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.29)

Inserting Eq. (6.28) into Eq. (6.11) yields

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RE

2pfSQESCMS

s
(6.30)

where we have ignored Rg because this is not a drive unit parameter. Finally MMD ¼ MMS� 2MM1,
where MM1 is given by Eq. (6.5). Another parameter that is commonly found in loudspeaker data
sheets, although it is not a Thiele–Small parameter, is the maximum (linear) displacement or xmax. It is
a difficult parameter to specify in any meaningful way because it depends on how much distortion can
be tolerated and varies with frequency [6].
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6.6 SOUND PRESSURE PRODUCED AT DISTANCE r
We show in Eq. (13.104) that the far-field on-axis pressure produced by a plane circular piston in an
infinite baffle is given by

~pðrÞ ¼ �jfr0 ~Uc
e�jkr

r

¼ �r0SD~ac
e�jkr

2pr

(6.31)

where ~ac is given by Eqs. (6.8), (6.9), and (6.13) so that

~pðrÞ ¼ � ~egBlSDr0
ðRg þ REÞMMS

$
e�jkr

2pr
ac (6.32)

The frequency response is then given by ac in Eq. (6.14). In other words, the frequency response is
proportional to the cone acceleration and remains flat above the suspension resonance.

The fact that the on-axis frequency response remains flat, even though the radiated power decreases
when the wavelength is small in comparison to the circumference of the piston, may seem slightly
surprising. However, what we have not taken into account here is the spatial distribution of the radiated
sound pressure which becomes increasingly narrow at high frequencies. Although we are not dealing
with an ideal flat piston and have not included the effect of the coil inductance, Eq. (6.32) is useful for
defining the voltage sensitivity of a loudspeaker within its working frequency range between the
suspension resonance and cone break-up (which we will discuss later in this chapter). It shows that for
a given coil resistance RE, the sensitivity is increased by maximizing the Bl factor and diaphragm area
SD while minimizing the total moving mass MMS, which includes the radiation mass MMR, although it
is usually very small in comparison toMMD. These requirements are usually in conflict with each other,
so it is not possible to optimize all of them in a practical design. Since the most common nominal
impedance of a loudspeaker is 8 U, the rms generator voltage eg(rms) is usually taken as O8 or 2.83 Vrms

in order to deliver 1 Wof power into an 8 U load. Hence, Eq. (6.32) can then be used to give the power
sensitivity which is usually expressed in dB SPL [relative to 20 mPa, see Eq. (1.18)] forWE ¼ 1 Wat r
¼ 1 m, so that

Sensitivity ¼ 20 log10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE

p
BlSDr0

2prðRg þ REÞMMS � 20� 10�6

�
dB SPL=W=m (6.33)

where Znom is the nominal electrical impedance of the drive unit. Theoretically, it is the average value
over the loudspeaker’s working frequency range, but in practice it is about 10–30% greater than RE so
that at some frequencies, especially those below resonance, more than 1 W will be supplied at the
nominal voltage. Alternatively, by combining Eqs. (6.8), (6.11), (6.26), and (6.33) we may conve-
niently express the sensitivity in terms of the Thiele–Small parameters VAS and QES:

Sensitivity ¼ 20 log10

 
1

rc� 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE2pf

3
S VASr0

ðRg þ REÞQES

s !
dB SPL=W=m (6.34)
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Sometimes we wish to determine how far a diaphragm must travel to produce a target sound pressure
level or SPL. From Eqs. (1.18) and (6.31) we obtain

hpeak ¼
ffiffiffi
2

p
r � 10

�
SPL
20 � 5

�
pf 2r0SD

(6.35)

Low frequencies. From Eq. (13.101) we see that the magnitude of the pressure at a point in free space
a distance r from either side of the loudspeaker in an infinite baffle is that of a point source multiplied
by a directivity function:

~pðr; qÞ ¼ �jka2r0c~uc
e�jkr

2r
DðqÞ; (6.36)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

: (6.37)

A piston whose diameter is less than one-third wavelength (ka< 1.0) is essentially nondirectional at
low frequencies, that is D(q) z 1 for any value of q. Hence, we can approximate it by a hemisphere
whose volume velocity is ~Uc ¼ SD~uc. It is assumed in writing this equation that the distance r is great
enough so that it is situated in the “far-field”. Assuming a loss-free medium, the total radiated power
distributed over a spherical surface in the far field is

W ¼ 4pr2I ¼ 4pr2

r0c

�����~pðrÞffiffiffi2p
�����
2

(6.38)

where I is the intensity at distance r in W/m2. From this we see for a point source radiating to both sides
of an infinite baffle (or free space) that

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Wr0c

4pr2

r
(6.39)

It is worth noting that it only takes 1 W of acoustic power to produce 6.7 Pa or 109 dB SPL at 1 m,
which is as loud as a pneumatic drill! The fact that it takes much more than 1 W of input power to
achieve this with a loudspeaker is due to the low efficiency of most loudspeakers.
Medium frequencies. At medium frequencies, where the radiation from the diaphragm becomes
directional but yet where the diaphragm vibrates as one unit, i.e., as a rigid piston, the pressure
produced at a distance r depends on the power radiated and the directivity factor Q.

The directivity factor Qwas defined in Chapter 4 as the ratio of the intensity on a designated axis of
a sound radiator to the intensity that would be produced at the same position by a point source radiating
the same acoustic power.

For a directional source in an infinite baffle such as we are considering here,

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1Qr0c

4pr2

r
(6.40)
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where

W1 is acoustic power in W radiated from one side of the loudspeaker.
Q is directivity factor for one side of a piston in an infinite plane baffle. Values of Q are found from
Fig. 4.30. Note thatW1 equalsW/2 and, at low frequencies where there is no directionality, Q ¼ 2,
so that Eq. (6.40) reduces to Eq. (6.39) at low frequencies.

We see from Eq. (6.40) that, as frequency increases, Q increases while W1 decreases. In other
words, the reduction in radiated power is compensated for by the concentration of the radiated sound
pressure over a decreasing beam width. The transition is so smooth that the frequency response
remains flat. This can also be explained by the fact that the on-axis sound pressure is due to an infinite
number of point sources over the surface of the piston, the radiation from which arrives in phase, where
the frequency response of each point source is flat.
6.7 FREQUENCY-RESPONSE CURVES
A frequency-response curve of a loudspeaker is defined as the variation in sound pressure or acoustic
power as a function of frequency, with some quantity such as voltage or electrical power held constant.
In order to calculate the full frequency response, we refer to Fig. 6.4 but using Eqs. (13.116) to
(13.118) for the exact acoustic radiation impedance. The total impedance in the loop with all quantities
referred to the mechanical side is

ZMT ¼ B2l2

Rg þ RE þ juLE
þ juMMD þ RMS þ 1

juCMS

þ2SDr0c

�
1� J1ð2kaÞ

ka
þ j

H1ð2kaÞ
ka

� (6.41)

where k ¼ u/c. The diaphragm velocity is then given by the driving force divided by the total
impedance

ucðrmsÞ ¼
���� egðrmsÞBl
ðRg þ RE þ juLEÞZMT

���� (6.42)

We than calculate the on-axis pressure using

prmsðrÞ ¼ r0 f SDucðrmsÞ
r

(6.43)

and

SPL ¼ 20log10

 
prmsðrÞ
pref

!
(6.44)

where pref ¼ 20 mPa rms. The on-axis pressure of a typical 100 mm loudspeaker in an infinite baffle is
plotted in Fig. 6.7. For this application, the mass of the cone is made as light as possible and the
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compliance of the suspension as high as possible consistent with mechanical stability. The high
frequency response is aided by means of a concentric secondary or “whizzer” cone.
6.8 ELECTRICAL INPUT IMPEDANCE
If we ignore the radiation resistance, which is a negligibly small part of the input impedance, and add
the radiation mass to the mechanical mass so that MMS ¼ MMDþ 2MM1, we can write the electrical
input impedance ZE from inspection of Fig. 6.2:

ZE ¼ ZES þ ZEM ¼ RE þ juLE þ
�
ju

MMS

B2l2
þ 1

B2l2GMS
þ 1

juB2l2CMS

��1

¼ RE þ juLE þ B2l2

RMS

0
BBB@

j

QMS
$
f

fS

1� f 2

f 2S
þ j

QMS
$
f

fS

1
CCCA

(6.45)

The electrical impedance curve of a typical 100 mm loudspeaker in an infinite baffle is plotted in
Fig. 6.8. The peak at 125 Hz coincides with the suspension resonance frequency fS. If we ignore the
effect of the coil inductance LE, the input impedance at fS is approximately ZE¼ REþ RESwhere RES¼
B2l2/RMS (¼REQMS/QES). Therefore a high peak indicates a large Bl factor or small mechanical
damping resistance or both. At high frequencies, the impedance rises due to the increasing contribution
of the coil inductance LE. At very low frequencies, the impedance approaches the DC resistance RE

asymptotically, which in this case is 7 U.
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6.9 EFFICIENCY
Medium frequencies. The efficiency of a loudspeaker is defined as 100 times the ratio of the acoustic
power radiated to the power supplied by the electrical generator. In the medium frequency range
between the suspension resonance and the point where the coil inductance starts to contribute to the
electrical impedance, the power supplied by the generator is approximately

WE z
e2gðrmsÞ
RE

(6.46)

where we are assuming that Rg<< RE. Using W from Eq. (6.23), the reference efficiency Eff is then
given by

Eff ¼ 100
W

WE
z 100

B2l2S2Dr0
pREM

2
MSc

; 2f0 < f <
c

4pa
(6.47)

Not surprisingly, if we compare this with Eq. (6.32), we find that the same parameters which contribute
to a high sound pressure level also make for an efficient loudspeaker, namely high field strength, low
mass and a large radiating area. By combining Eqs. (6.8), (6.11), (6.26), and (6.47) we obtain
a convenient expression for the reference efficiency in terms of Thiele–Small parameters:

Eff ¼ 100
W

WE
z 100

8p2VAS f
3
S

QESc3
; 2f0 < f <

c

4pa
(6.48)

At resonance. When f ¼ fS, the cone velocity is at a maximum value which is found by letting XM ¼
0 in Eq. (6.1) so that
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~uc ¼ ~egBl

ðRg þ REÞRM
(6.49)

From Eqs. (6.19) and (6.21),

W ¼
e2gðrmsÞB

2l2u2
SS

2
Dr0

pcðRg þ REÞ2R2
M

(6.50)

The input power at resonance, assuming RMS>> 2RMR, is given by

WE ¼
e2gðrmsÞ

Rg þ RE þ ðB2l2Þ=RMS
(6.51)

Then the efficiency at resonance, assuming RE>> Rg, is given by

EffS ¼ 100
W

WE
¼ 100

B2l2u2
SS

2
Dr0

pcðB2l2 þ RERMSÞRMS
(6.52)

Noting that QMS ¼ uS MMS/RMS and QES ¼ uS MMS RE /(Bl)
2, we obtain

EffS ¼ 100
W

WE
¼ 100

QESQ
2
MSB

2l2S2Dr0
ðQES þ QMSÞpREM

2
MSc

(6.53)

Comparing this with Eq. (6.47) and using the relationship of Eq. (6.10) yields the following rela-
tionship between the efficiency at resonance EffS and the mid-band reference efficiency Eff :

Ef f S

Ef f
¼ QTSQMS (6.54)

All frequencies. The power supplied by the generator at all frequencies is

WE ¼ e2gðrmsÞ<
�

1

ZE

�
(6.55)

where the electrical impedance ZE is given by Eq. (6.45). The radiated power is given by Eq. (6.19)
where the cone velocity is given by Eq. (6.42) and RMR by

RMR ¼ SDr0c

�
1� J1ð2kaÞ

ka

�
(6.56)

from Eq. (13.117). Hence

Eff ¼ 100
W

WE
¼ 100

���� Bl

ðRE þ juLEÞZMT

����2 2SDr0c

<ð1=ZEÞ
�
1� J1ð2kaÞ

ka

�
(6.57)

where ZMT is given by Eq. (6.41). The efficiency of a typical 100 mm loudspeaker in an infinite baffle
is plotted in Fig. 6.7. Not surprisingly, the loudspeaker is most efficient at the suspension resonance
fS where the input impedance is also at a maximum so that relatively little current is drawn. The
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efficiency falls off at high frequencies due to diaphragm and coil inertia, where most of the input power
is dissipated in heating the voice coil.

6.10 MEASUREMENT OF THIELE–SMALL PARAMETERS
Before embarking upon a loudspeaker enclosure design, we need to know the six Thiele–Small
parameters that will be used to calculate the low-frequency response of our chosen drive unit in the
enclosure. Most drive unit manufacturers now provide these on their datasheets, but if they are not
available, we have to measure them. Even if they are available, production tolerances are such that we
cannot always expect our computed frequency response to match the measured one unless the model
used for computation is based on parameters obtained from the measured sample. In this section, it is
shown how to obtain the Thiele–Small parameters purely by measuring the electrical input voltage at
different frequencies using a multimeter and a calibrated variable-frequency oscillator.

During the tests, the electrodynamic loudspeaker is preferably mounted in a baffle such as the IEC
268-5 baffle [7], which is the standard baffle used by manufacturers. We see from Fig. 12.28 that if the
outer diameter of the baffle is at least four times that of the loudspeaker, the radiation mass or reactive
load is that of a piston in an infinite baffle. It should be borne in mind that if the loudspeaker is
measured without any baffle, the radiation mass is halved which will result in a small error that can be
corrected. It is not essential to perform the tests in an anechoic chamber: A large room that is not too
noisy or reverberant will suffice. A variable-frequency source of sound with an output impedance Rg

greater than 20 times the nominal impedance of the loudspeaker is connected to the loudspeaker
terminals. An AC voltmeter is then connected across the terminals. The value of Rg should include both
the inherent output impedance of the generator and any external resistor connected to in order to make
up the desired impedance. The value of eg(rms) is that measured by the meter before the loudspeaker is
connected. Some AC meters are only designed to work at around 50–60 Hz, so it is worth checking to
see if the reading varies with frequency with the loudspeaker disconnected. If it does, the open-circuit
readings should be used to calibrate the measurements to the loudspeaker. The parameters are then
determined as follows.
Measurement of suspension resonance frequency fS. In order to measure fS, the frequency is varied
until a maximum meter reading is obtained (see Fig. 6.9). From Fig. 6.2 and Fig. 6.8, we see that
maximum electrical loudspeaker impedance corresponds to maximum mechanical admittance, which
in turn occurs at the resonance frequency fS or uS. The reading obtained at this frequency is emax.
Measurement of QMS and QES. The minimum reading emin in Fig. 6.8 is found by reducing the
frequency until the voltage reading no longer changes. Increase the frequency again until the voltage
Rg

eg(rms) e(rms)

Loudspeaker 
drive unit 

AC meter 

Signal 
generator 

FIG. 6.9 Circuit for determining the Thiele–Small parameters of a loudspeaker.
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reading gives a value of emid ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emaxemin

p
. The frequency at this point is fL. Then increase the frequency

beyond fS (maximum voltage reading) until the voltage reading gives a value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emaxemin

p
for a second

time. The frequency at this point is fU. Note that fS ¼
ffiffiffiffiffiffiffiffi
fLfU

p
. The mechanical Q is then given by

QMS ¼ fS
fU � fL

�
eg � emin

eg � emax

� ffiffiffiffiffiffiffiffiffi
emax

emin

r
(6.58)

and the electrical Q by

QES ¼
�
1� emax

eg

�
eminQMS

emax � emin
(6.59)

If the signal generator is a current source, then eg / N and the bracketed terms become unity. These
equations assume that the effect of the coil inductance LE at around fS is negligible.
Measurement of RE. The electrical resistance of the voice coil is measured with a milliohm meter.
Measurement of SD. The effective area of the diaphragm can be determined by coupling its front side
to a closed box. The volume of air V0 enclosed in the space bounded by the diaphragm and the sides of
the box must be determined accurately. Then a slant manometer for measuring air pressure is con-
nected to the airspace. The cone is then displaced a known distance x meters, the manometer is read,
and the incremental pressure p is determined. Then,

p ¼ P0

V0
x SD (6.60)

or

SD ¼ P0

V0

p

x
(6.61)

where P0 is the ambient pressure. The pressures P0 and p both must be measured in the same units,
and V0/x should be determined in m2.

Usually, SD can be determined accurately enough for most calculations from Fig. 6.1, that is, SD ¼
pa2. In order to determine the effective radius a more accurately, we assume that the displacement of
the surround(8) decreases linearly between its inner and outer edges which have radii a1 and a2
respectively. Then the effective radius is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a1a2 þ a22

3

s
(6.62)

and the hence the effective area by

SD ¼ p

3
ða21 þ a1a2 þ a22Þ (6.63)

Measurement of VAS. The equivalent suspension volume VAS [see Eq. (6.26)] can be obtained in two
ways. Either we add mass to the diaphragm and observe the change in resonance frequency or we add
stiffness in the form of a sealed enclosure. The first method is simplest and is suitable for most
loudspeakers. However, in the case of micro speakers used in mobile devices, it is impractical to attach
masses as the risk of destabilizing the diaphragm is too great.
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The added mass is usually a rod of non-ferrous metal (e.g., enameled copper wire or solder)
bent into a circle or spiral and attached to the diaphragm using tape or blu tack� so that it does
not bounce.

If the original resonance frequency was fS and the resonance frequency after addition of a massMx

kg is f 0S, then

fS ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p (6.64)

and

f 0S ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMMS þMxÞCMS

p (6.65)

where CMS is mechanical compliance of the suspension in m/N. Simultaneous solution of (6.64) and
(6.65) yields

MMS ¼ Mx

ðfS=f 0SÞ2 � 1
(6.66)

Combining this with Eqs. (6.27) and (6.28) yields

VAS ¼
 
1� f 02S

f 2S

!
S2Dr0c

2

ð2pf 0SÞ2Mx

(6.67)

Alternatively, if the drive unit is mounted in a sealed enclosure of known volume VB, then the new
resonance frequency is given by

fC ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMS þ CMB

MMCCMSCMB

r
(6.68)

where CMB is the mechanical stiffness due to the air in the enclosure given by

CMB ¼ VB

S2Dr0c
2

(6.69)

Due to the air mass loading within the box, the total moving mass may be modified slightly, in which
case we denote a new value MMC and a new electrical QEC:

QEC ¼ RE

B2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMCðCMS þ CMBÞ

CMSCMB

s
(6.70)

Simultaneous solution of Eqs. (6.11), (6.64), (6.68), and (6.70) yields

CMS ¼
�
fCQEC

fSQES
� 1

�
CMB (6.71)
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Hence from Eq. (6.27)

VAS ¼
�
fCQEC

fSQES
� 1

�
VB (6.72)

In Chapter 7 of this book, on Loudspeaker Enclosures, design charts are presented from which it is
possible to determine, without laborious computation, the sound pressure from a direct-radiator loud-
speaker as a function of frequency including the directivity characteristics. Methods for determining the
constants of box and bass-reflex enclosures are also presented. If the reader is interested only in learning
how to choose a baffle for a loudspeaker, he or she may proceed directly to Chapter 7. The next part deals
with the factors in design that determine the overall response and efficiency of the loudspeaker.
6.11 EXAMPLES OF LOUDSPEAKER CALCULATIONS
Example 6.1. Given the efficiency of Eq. (6.47) for a loudspeaker in an infinite baffle, determine the
reference sound pressure equivalent to the efficiency assuming that the directivity factor Q (for
radiation to one side) equals 2.

Solution. The sound pressure at distance r, assuming no directivity, is related to the acoustic power
radiated to one side as follows [see Eqs. (6.40) and (6.46)]:

prmsðrÞ ¼ ffiffiffiffiffiffiffiffiffi
r0cI

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0cW1

2pr2

r

where

I is intensity at distance r
W1 ¼ W/2 is total acoustic power radiated from one side of the diaphragm.

The reference sound pressure is

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
r0c

2pr2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eff

200
WE

r

¼ egðrmsÞr0BlSD
2prREðMMD þ 2MM1Þ

which is that given by Eq. (6.32) in the pass-band where ac z 1 and it is assumed that Rg<< RE.
Example 6.2. As an example of the efficiency to be expected from an electrodynamic loudspeaker of
conventional design mounted in an infinite baffle and radiating directly from both sides of the baffle,
let us calculate the reference efficiency Eff from Eq. (6.48) for the case of a commercial loudspeaker
with an advertised diameter of 10 cm. Also, let us calculate the ratio of the efficiency at the suspension
resonance frequency to the reference efficiency. The values of the six Thiele–Small parameters are:

RE ¼ 7 U
QES ¼ 2.2
QMS ¼ 5
fS ¼ 125 Hz
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SD ¼ 56 cm2

VAS ¼ 0.002 m3 (2 Liters)

Also

a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p ¼ 42.22 mm

QTS ¼ QESQMS

QES þ QMS
¼ 1:528

r0, density of air ¼ 1.18 kg/m3

c, speed of sound ¼ 344.8 m/s.

Solution. From Eq. (6.48), we obtain

Eff ¼ 100
8� ð3:14Þ2 � 0:002� ð125Þ3

2:2� ð344:8Þ3 ¼ 0:342%

For radiation from one side of the loudspeaker only, divide this figure by 2. Hence only 0.171% of the
available electrical power is radiated to one side of the diaphragm at mid to low frequencies. This
illustrates the statement made at the beginning of the chapter that the efficiency of this type of
loudspeaker is usually low.

For our example, the transition frequency at which the loudspeaker starts to become more direc-
tional and the efficiency decreases rapidly occurs when ka lies approximately between 1 and 2. For our
example ka ¼ 1 corresponds to a frequency of

f ¼ c

2pa
¼ 344:8

2p� 0:04222
¼ 1:3 kHz

Obviously, a smaller diaphragm of lighter weight would result in this transition extending to
a higher frequency. However, a reduction in the mass MMD occasioned by a smaller diaphragm will
cause an increase in the first resonance frequency with a resulting loss in bass response. A further
disadvantage of a smaller diaphragm is that, for a given sound pressure, a greater voice-coil velocity ~uc
is needed. A longer air gap and a larger magnet structure must therefore he provided.

From Eq. (6.54), we obtain the efficiency at the suspension resonance:

Ef f S ¼ 1:528� 5� 0:342 ¼ 2:61%

Hence, the ratio EffS/Eff equals 7.64, and efficiency at fS equals 1.3% for radiation from one side only.
PART XX: DESIGN FACTORS AFFECTING DIRECT-RADIATOR
LOUDSPEAKER PERFORMANCE

A loudspeaker generally is designed to provide an efficient transfer of electric power into acoustic
power and to effect this transfer uniformly over as wide a frequency range as possible. To accomplish
this, the voice coil, diaphragm, and amplifier must be properly chosen. The choice of the elements and
their effect on efficiency, directivity, and transient response are discussed here.
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6.12 MAGNET SIZE
A cross-sectional sketch of a typical micro speaker is shown in Fig. 6.10. In this discussion, it is
assumed that the coil fills the gap in the magnetic path without any air spaces and that it has the same
permeability as free space. For the sake of argument, the wire cross-section might be rectangular so
that any gap width or length could accommodate an integer number of turns or layers respectively. It is
also assumed that the reluctances of the pole pieces are negligible in comparison with that of the gap,
so these are ignored. The radii of the diaphragm, magnet, and coil are a, am, and ac respectively.

Suppose the solid curve in Fig. 6.11 to represent the demagnetizing portion of the hysteresis loop
for a magnetizing force Hsat obtained with the coil gaps in Fig. 6.10 closed, where BR is the remanent
flux density. To neutralize the residual magnetism, it is necessary to apply, by means of a suitable field
winding, a demagnetizing magneto-motive force J in ampere-turns. If HC is the coercive force and lm
the length of the magnet, then J ¼ HClm. Therefore J may be termed the inherent magneto-motive
force for maintaining the remanent flux density BR.

With the coil gaps in Fig. 6.10 closed, let us reduce the magnetic field strength fromHsat to zero and
then increase it toH1 in the reverse direction, so that the flux density is reduced to B1. The net magneto-
motive force available to produce this flux density in the magnet is HClm�H1lm or in other words, the
difference between the inherent MMF and applied MMF.

Next, let us gradually pull the pole-pieces apart and at the same time reduce the demagnetizing
current in the field coil so as to keep the flux density constant at B1. Suppose the procedure to be
continued until the current has been reduced to zero and suppose lg in Fig. 6.10 to be the corresponding
gap length. Since this gap has been introduced without any change of flux density in the magnet, it
follows that the magneto-motive force now available to send the flux f across the gap is thereforeH1lm,
ac
am

lm

wg

lg

a

1. Dome (diaphragm) 
2. Permanent magnet 
3. Basket 
4. Surround 
5. Sound hole 

4
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2

FIG. 6.10 Cross-sectional sketch of a micro speaker.
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FIG. 6.11 A typical demagnetization curve.
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namely that neutralized by the negative magneto-motive force of the field coil before the gap was
introduced. The flux f across the gap is given by

f ¼ B1pa
2
m ¼ Bg � 2pacwg (6.73)

where B1 is the flux density in the magnet and Bg is the flux density in the gap. Also, the magneto-
motive force required to send flux across the gap is given by

Jg ¼ Bglg
m0

; (6.74)

where m0¼ 4p� 10�7 H/m is the permeability of free space, but it was shown that the magneto-motive
force required to send flux across the gap is given by H1lm. Therefore

H1lm ¼ Bglg
m0

: (6.75)

From Eqs. (6.73) and (6.75) it follows that the volume Vm of the magnet is given by

Vm ¼ pa2mlm

¼ Bg � 2pacwg

B1
$
Bglg
H1m0

¼ 2pacwglgB
2
g

m0B1H1

(6.76)

From Eq. (6.76), it is evident that for a given flux density in the given dimensions of the gap, the
volume of the magnet is a minimum when the product B1H1 is a maximum. The variation of this
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product with H in the magnet core is shown in Fig. 6.11 as a dashed curve from which it follows that
the volume of the magnet is a minimum when it is operated at magneto-motive force Hmax. The value
of the product (BH)max, also known as the maximum energy product, for a magnetic material is the best
criterion of its suitability for use as a permanent magnet and the volume is then given by

Vm ¼ 2pacwglgB
2
g

m0ðBHÞmax

(6.77)

Notice that

Vg ¼ 2pacwglg (6.78)

is the volume occupied by the gap. Also, let us assume that the field in the pole pieces is in saturation so
that Bg¼ Bsat. This prevents the field from varying significantly with the driving current in the coil and
thus improves linearity. Hence the magnet volume can be written as

Vm ¼ B2
sat

m0ðBHÞmax

Vg (6.79)

If the demagnetization curvewere perfectly linear, thevalues ofHmax andBmaxwould be exactly half of the
values of the coercivity and remanence respectively, which are more commonly found in manufacturer’s
data than Hmax and Bmax. However, due to nonlinearity a factor of 2/3 should give a reasonably good
FIG. 6.12 Demagnetization curves for a commercial NdFeB magnet at 5 different temperatures ranging from 25�C to

125�C. Upper curves are intrinsic values and lower curves are actual values including applied field.
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estimate for many materials, although neodymium iron boron (NdFeB)magnets [8] are remarkably close
to ideal, as can be seen in Fig. 6.12. The upper curves are the intrinsic B versus H values which show the
flux density excluding the flux due to the external applied field, and the lower curves are the actual
“normal” B versus H values including the total net flux. It should be noted that the intrinsic coercivity is
slightly greater than the actual coercivity. Commercial neodymium iron boron (NdFeB) magnets are
denoted by a grade which specifies the maximum energy product in mega-gauss-oersteds and the
minimum intrinsic coercivity in kilo-oersteds. For example, a Grade N4811 NdFeB magnet has
amaximum energy productBHmax of 48MGOe and aminimum intrinsic coercivityHci of 11 kOe. For our
calculations, it is more convenient to use MKS units, in which case the conversions can be made using

1 G ¼ 10�4 T (6.80)

1 Oe ¼ 103

4p
A=m (6.81)

Hence, a Grade N4811 NdFeB magnet has a maximum energy product BHmax of 382 kTA/m and
a minimum intrinsic coercivity Hci of 875 kA/m.
6.13 VOICE-COIL DESIGN
Effect of coil size on efficiency. Let us now reconsider Eq. (6.47) to see how to maximize the effi-
ciency in terms of the actual coil dimensions. The resistance RE can be expressed in terms of the mass
of the voice-coil winding MMC by writing

RE ¼ k l

p a2w
(6.82)

where

k is resistivity of voice-coil conductor in units of U$m. The value of k for different materials is
given in Table 6.1.
aw is radius of wire in m.
l is length of voice-coil winding in m.

We also note that the volume occupied by the coil wire is

Vw ¼ pa2wl (6.83)

where for simplicity we are assuming that the space occupied by the coil former and insulation is
negligible compared with the conductor. Inserting Eqs. (6.82) and (6.83) into Eq. (6.47) yields

Eff z 100
VwB

2S2Dr0
pkM2

MSc
; 2f0 < f <

c

4pa
(6.84)

We now define the total moving mass by

MMS ¼ M0
MS þMMC (6.85)



Table 6.1 Resistivity and density of various metals

Metal element
Resistivity k,
10L6 U$m

Density rw,
103 kg/m3 krw

2 , U$kg2/m5 Ranking

Aluminum 0.0283 2.70 0.206 6

Antimony 0.417 6.6 18.2 21

Bismuth 1.190 9.8 114.2876 27

Cadmium 0.075 8.7 5.68 14

Calcium 0.046 1.54 0.109 4

Carbon 8.0 2.25 40.5 25

Cesium 0.22 1.9 0.794 8

Chromium 0.026 6.92 1.25 9

Cobalt 0.097 8.71 7.36 19

Copper 0.0172 8.7 1.30 10

Gold 0.0244 19.3 9.09 20

Iridium 0.061 22.4 30.6 24

Iron 0.1 7.9 6.24 18

Lead 0.220 11.0 26.6 23

Lithium 0.094 0.534 0.0268 1

Magnesium 0.046 1.74 0.139 5

Manganese 0.050 7.42 2.75 12

Mercury 0.958 13.5 174 28

Molybdenum 0.057 10.2 5.93 15

Nickel 0.078 8.8 6.04 16

Platinum 0.10 21.4 45.8 26

Potassium 0.071 0.87 0.0537 3

Silver 0.0163 10.5 1.80 11

Sodium 0.046 0.97 0.0433 2

Tin 0.115 7.3 6.13 17

Titanium 0.032 4.5 0.648 7

Tungsten 0.055 19.0 19.9 22

Zinc 0.059 7.1 2.97 13

268 CHAPTER 6 Electrodynamic loudspeakers
where M’MS is the combined mass of the diaphragm and radiation load excluding the coil, and MMC is
the mass of the coil given by

MMC zVwrw ¼ p

4
Vgrw (6.86)

where rw is the density of the voice-coil wire in kg/m3 (see Table 6.1). Inserting Eqs. (6.85) and (6.86)
into Eq. (6.84) yields

Eff z 100
VwB

2S2Dr0

pkðVwrw þM0
MSÞ2c

; 2f0 < f <
c

4pa
(6.87)
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In order to find the optimum coil volume, we differentiate with respect to Vw and set the result to zero:

v

vVw
Eff ¼ 100

ðM0
MS � VwrwÞB2S2Dr0

pkðVwrw þM0
MSÞ3c

¼ 0 (6.88)

so that the optimum coil volume is given by

Vw ¼ M0
MS=rw (6.89)

Hence, the optimum mass for the coil is that of the diaphragm (less the coil) combined with the
radiation mass. If the coil wire has a circular cross-section, then the gap volume is Vg ¼ 4Vw/p,
otherwise for a square cross-section Vg ¼ Vw. Let us suppose for the sake of argument that we can
make the diaphragm as light as we wish and that it remains perfectly rigid. Then settingM’MS ¼MMC

gives

Eff z 100
2B2S2Dr0
p2kr2wVgc

; 2f0 < f <
c

4pa
MMSzMMC (6.90)

From this equation we see that the efficiency is independent of the coil resistance, number of turns, or
wire diameter. It is only dependent on the volume of the gap and the properties of the conductor,
namely the resistivity k and the density rw. The product krw

2 which appears in the denominator of Eq.
(6.90) is given in Table 6.1 for various materials and ranked in ascending order. Unfortunately, the top-
ranked four materials—lithium, sodium, potassium, and calcium—are not practicable for loudspeakers
because they are highly reactive metals. Although copper is the material most commonly used in voice
coils, there are many instances where aluminium has been successfully deployed to give increased
efficiency and sensitivity. The problem in microspeakers is that aluminium lead out wires are some-
what brittle and liable to break after repeated flexing, although an alloy could be used. We have already
deduced in Eq. (6.79) that the size of the magnet VM is directly related to that of the magnetic gap VG.
Hence, reducing the gap volume not only makes the loudspeaker more efficient, but also reduces the
required magnet size and therefore saves cost and weight.
Number of turns and wire diameter. The length l of the coil wire is

l ¼ 2pacN (6.91)

where N is the number of turns and the cross-sectional area Sw of the wire is

Sw ¼ p a2w ¼ pwglg
4N

(6.92)

Inserting Eqs. (6.91) and (6.92) into Eq. (6.82) for the coil resistance and solving for N yields

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wglgRE

8ack

r
(6.93)

Then the wire radius is given by

aw ¼
ffiffiffiffiffiffiffiffiffi
wglg
4N

r
¼
�

Vgk

4pRE

�1=4

(6.94)
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from Eqs. (6.78), (6.82), and (6.91). Therefore, we conclude that, whilst reducing the coil volume is
beneficial for efficiency and reducing the magnet size, there is a limit to how much the volume can be
reduced because eventually the wire becomes so thin that it is difficult to manufacture with any
reasonable tolerance. Also, smaller coils are more difficult to cool, although with the increased effi-
ciency they should not run so hot. Interestingly, the efficiency and wire radius are both independent of
the coil geometry, and only dependent on its volume. This means there is a certain amount of flexibility
regarding the diameter d or length lg of the coil. Ideally, we would like to maximize lg as this would
also maximize the linear displacement xmax. In microspeakers, however, the gap length cannot be
increased too much as the thickness of the component is an important factor in the design of the host
product, especially if it is a mobile device. It is obvious from Eq. (6.94) that thinner wire is needed for
high impedance loudspeakers in which RE is large. However, reducing RE usually results in greater
losses in the amplifier and associated power source, so it is rarely less than about 3 U.

6.14 DIAPHRAGM BEHAVIOR
The simple theory using the method of equivalent circuits, which we have just derived, is not valid
above some frequency between 300 and 1000 Hz. In the higher frequency range the cone no longer
moves as a single unit, and the diaphragm mass MMD and also the radiation impedance change. These
changes may occur with great rapidity as a function of frequency. As a result, no exact mathematical
treatment is available by which the performance of a loudspeaker can be predicted in the higher
frequency range, unless the geometry is very simple, as in the case of a shallow spherical shell [9].
Cones are often approximated by concentric rings [10] or finite element models. Modern finite element
models include the magnetic path and non-linear behavior [11].

A detailed study of one particular loudspeaker is reported here as an example of the behavior of the
diaphragm [12]. The diaphragm is a felted paper cone, about 170 mm in effective diameter (see
Fig. 6.13), having an included angle of 118�. The sound-pressure-level response curve for this
loudspeaker measured on the principal axis is shown in Fig. 6.14.
Clamping edge 

Rim thickness: 0.25 mm 

0.76 

0.76 1.6R

2.4R

4.0R

147Dia

172Dia

186Dia

31°

FIG. 6.13 Detail of the edge of a felted-paper loudspeaker cone from a 200 mm loudspeaker.

After Corrington, Amplitude and Phase Measurements on Loudspeaker Cones, Proc. IRE, 39: 1021–1026

(1951).



-16

-12

-8

-4

0

4

8

12

16

20

24

10000100010010
Frequency (Hz)

S
ou

nd
 p

re
ss

ur
e 

le
ve

l (
dB

 re
 re

fe
re

nc
e 

pr
es

su
re

) Sound pressure

Impedance

3.2 Ω

4

3
1  2

5

7

6

8

λ     2λ  3λ

2

3λ

2

5λ2

λ

FIG. 6.14 On-axis response of a 200 mm diameter loudspeaker mounted in an infinite baffle.

After Corrington, Amplitude and Phase Measurements on Loudspeaker Cones, Proc. IRE, 39: 1021–1026 (1951).
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This particular loudspeaker has, in addition to its fundamental resonance, other peaks and dips in
the response at points 1 to 8 as indicated on the curve. The major resonance at 90 Hz is the
principal suspension resonance fS and has the relative amplitude given by 20 log QTS from Eq.
(6.14). Immediately above that is a fairly flat region. At point 1, which is located at 420 Hz, the
cone breaks up into a resonance of the form shown by the first sketch in Fig. 6.15. Here, there are
four nodal lines on the cone extending radially, and four regions of maximum movement. As
indicated by the plus and minus signs, two regions move outward while two regions move inward.
The net effect is a pumping of air back and forth across the nodal lines. The cone is also vibrating
as a whole in and out of the page. The net change in the output is an increase of about 5 dB relative
to that which it would be if the cone were perfectly rigid. A similar situation exists at point 2 at 500
Hz, except that the number of nodal lines is increased from 4 to 6. At point 3, 650 Hz, the vibration
becomes more complex. Nodal lines are no longer well defined, and the speaker vibrates in such
a way that the increase in pressure level is again about 5 dB.

For point 4 at 940 Hz, a new type of vibration has become quite apparent. The diaphragm moves in
phase everywhere except at the rim. Looking at the rim construction shown in Fig. 6.13 and at the
vibration pattern of Fig. 6.15(4), we can deduce what happens. The center part of the cone vibrates at
a fairly small amplitude while the main part of the cone has a larger amplitude. At the 147 mm
diameter the amplitude of vibration is very small. At this point the corrugation has a large radius
(4 mm). As the cone moves to and fro, the paper tends to roll around this curve, and this excites the
2.4 mm corrugation that follows into violent oscillation at its resonance frequency. The rim resonance



FIG. 6.15 Nodal pattern of the cone of the loudspeaker whose response curve is given in Fig. 6.14. The shaded and

dashed lines indicate lines of small amplitude of vibration. The (D) and (L) signs indicate regions moving in

opposite directions, i.e., opposite phases.

After Corrington, op. cit., with changes.
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is 180� out of phase with respect to the main part of the cone. However, the main part of the cone has
a high amplitude produced by the rocking motion around the 147 mm diameter, and because of its
greater area, only part of its effect in producing a high sound level is canceled out by the rim motion.
The net result is a peak in output (see point 4 of Fig. 6.14).

At point 5, 1100 Hz, a sharp decrease in response is observed. The decrease seems to be the result
of a movement of the nodal line toward the apex of the cone, and a reduction of the amplitude of the
(þ) portion. Here, the effect is a pumping of air back and forth across the nodal line, with a cancel-
lation in output. This vibration is very characteristic, and at the time such motion occurs, the response
drops vigorously.

As frequency is increased, the loudspeaker breaks up into still different characteristic modes of
vibration. As shown in Fig. 6.15, case 6, several nodal lines appear concentric to the rim of the
loudspeaker. When these occur, a large increase in output is obtained, as shown at point 6 of Fig. 6.14.
As frequency is increased, other such resonances occur, with more nodal lines becoming apparent.
These nodal lines are the result of waves traveling from the voice coil out to the edge of the cone and
being reflected back again. These outwardly and inwardly traveling waves combine to produce
a standing-wave pattern that will radiate a maximum of power at some particular angle with the
principal axis of the loudspeaker.

In order to reduce standing-wave patterns of the type shown in cases 6, 7, and 8 of Fig. 6.15, it is
necessary that a termination of proper mechanical impedance be placed at the outer edge of the dia-
phragm. This terminationmust be one that absorbs waves traveling outward from the center of the cone so
that nowave is reflected back. In practical design, a synthetic foamor rubber supporting edge is frequently
employed. A rubber supporting edge is also effective in reducing the rim resonance. The resulting effect is
to produce a more uniform response in the frequency region between 700 and 1500 Hz of Fig. 6.14.

The finite delay time it takes for higher frequency waves, which may be transverse or longitudinal,
to travel through the cone from the edge of the voice coil to an absorbent surround has the effect of
widening the directivity pattern, although the non-planar geometry of the cone also has this effect (see
Sec. 12.10), but due to a phase advance towards the rim as opposed to a phase delay. In theory the two
effects could be arranged to cancel each other so that the cone would act largely as a planar source,
which would produce a maximally flat axial response, albeit with cup resonances and an increasingly
narrow beam-width at high frequencies.

Often a highly damped cone material is chosen, such as paper, so that the waves propagating within
it are absorbed at high frequencies. Consequently an ever decreasing portion of the cone radiates at
high frequencies until the sound is coming mainly from the edge of the coil. If the mass of the coil were
negligible compared to that of the cone, the moving mass would also progressively decrease with
frequency and the radiated power would remain constant. Furthermore, the shrinking radiating area
would maintain a wide directivity pattern as well as a flat on-axis response. Although this sounds like
an ideal solution, greatest efficiency is actually obtained by making the coil and diaphragm masses
equal (see Eq. (6.89)), so there is a limit to how much the total mass can decrease with frequency.
6.15 DIRECTIVITY CHARACTERISTICS
The response curve of Fig. 6.7 and the information of the previous three paragraphs reveal that, above
the frequency where ka ¼ 2 (usually between 800 and 2000 Hz), a direct-radiator loudspeaker can be
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expected to radiate less and less power. The rate at which the radiated power would decrease, if the
cone were a rigid piston, is between 6 and 12 dB for each doubling of frequency. This decrease in
power output is not as apparent directly in front of the loudspeaker as at the sides because of directivity.
That is to say, at high frequencies, the cone directs a larger proportion of the power along the axis than
in other directions. Also, the decrease in power is overcome in part by the resonances that occur in the
diaphragm, as we have seen from Fig. 6.14.
Directivity patterns for typical loudspeakers. Typical directivity patterns for a 5-inch-diameter
direct-radiator loudspeaker, mounted in one of the two largest sides of a closed box having the
dimensions 285 by 189 by 178 mm, were shown in Fig. 4.31. These data are approximately correct for
loudspeakers of other diameters if the frequencies beneath the graphs are multiplied by the ratio of
5 inch to the diameter of the loudspeaker in inches.

Comparison with the directivity patterns for a flat rigid piston in a sphere, as shown in Fig. 12.23,
reveals that the directivity patterns for a flat piston are different from those for an actual loudspeaker.
This difference results from the cone angle, the speed of propagation of sound in the cone relative to
that in the air, and the resonances in the cone. In this connection, it is interesting to see how the speed
varies with frequency in an actual cone.
Speed of propagation of sound in cone. Let us define the average speed of propagation of sound in
the cone as the distance between the apex and the rim, divided by the number of wavelengths in that
distance, multiplied by the frequency in cycles per second. For the particular 200 mm loudspeaker of
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Fig. 6.13 to Fig. 6.15, the phase shift and the average speed of propagation of the sound wave from the
apex to the rim of the cone are given in Fig. 6.16. At low frequencies the cone moves in phase so that
the speed can be considered infinite. At high frequencies the speed asymptotically approaches that in
a flat sheet of the same material, infinite in size.
Intensity level on designated axis. We have stated already that at high frequencies a loudspeaker
diaphragm becomes directional. In order to calculate the enhancement of the sound pressure on the axis of
the loudspeaker as comparedwith that indicated byEqs. (4.65) and (4.66) for an omnidirectional source, it
is convenient to use the concepts of directivity factor and of directivity index as defined in Part XII (pages
163 to 168). For example, wemight wish to know the intensity (or the sound pressure level) on the axis of
the loudspeaker, given the efficiency response and the directivity factor. This is done as follows.

The intensity as a function of frequency on the axis of symmetry of the loudspeaker divided by the
electrical power available is equal to the product of (1) the efficiency response characteristic, (2) the
directivity factor, and (3) 1/4pr2, where r is the distance at which the intensity is being measured. In
decibels, we have

10 log10
Iax
WE

¼ 10 log10 Eff � 20þ DI� 10 log10 4pr
2 (6.95)

where

Iax ¼ jpaxj2=r0c is intensity in watts per square meter on the designated axis at a particular
frequency.
pax is sound pressure level in Pa measured on the designated axis at a particular frequency.
Eff ¼100W/WE is ratio of total acoustic power radiated by the front side of the loudspeaker to the
power supplied by the electrical generator.

and where DI is given by Eq. (4.138) and Fig. 4.30. Note that, for the piston in an infinite baffle, the DI
at low frequencies is 3 dB because the power is radiated into a hemisphere, and that the last term of
Eq. (6.95) is the area of a sphere, in decibels.

Expressed in terms of the sound pressure level on the designated axis re 20 mPa, Eq. (6.95) becomes
[see Eq. (6.40)]

SPL re 20 mPa; ¼ 20 log10
pax

0:00002
¼10 log10 WE

þ10 log10 Eff þ DI� 10 log10 4pr
2

þ10 log10r0cþ 74 dB

(6.96)

6.16 TRANSFER FUNCTIONS AND THE LAPLACE TRANSFORM
If we substitute s ¼ ju in Eq. (6.14) we obtain

acðsÞ ¼ s2

s2 þ uS

QTS
sþ u2

S

(6.97)
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where s is the imaginary frequency variable. The roots of the denominator polynomial are known as
poles. If QTS � 0.5, the roots of the denominator polynomial are real and given by

s ¼ �uS

 
1

2QTS
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Q2
TS

� 1

s !
(6.98)

If QTS> 0.5, the roots of are complex and given by

s ¼ �uS

 
1

2QTS
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.99)

or expressed as magnitude and phase as

s ¼ �uS:� arccos ð1=ð2QTSÞÞ:
The dotted curves in Fig. 6.17 are plotted from Eq. (6.97), but solid lines are linear approximations

plotted from the poles or roots of the denominator polynomial. The locus of these poles is shown in
Fig. 6.18. The arrows on the negative real axis show the direction in which the poles move as QTS is
increased. When QTS ¼ 0.5, the poles are real and coincident at �uS. When QTS> 0.5 they become
a complex conjugate pair and follow the arrows on the semi-circular path. If there were no damping
such that QTS ¼ N, the poles would lie on the imaginary axis.
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A more general transfer function is represented by

FðsÞ ¼ QNs
N þ QN�1s

N�1 þ/þ Q2s
2 þ Q1sþ Q0

PMsM þ PM�1sM�1 þ/þ P2s2 þ P1sþ P0
¼
PN

n¼0Qns
nPM

m¼0Pmsm
(6.100)

which includes N zeros in the numerator as well as M poles in the denominator. Although we are
unlikely to encounter zeros when dealing with larger loudspeakers, they do occur in cellphone designs
which are generally more complicated, having small sound holes with viscous losses. Certainly, when
we consider loudspeakers in bass-reflex enclosures or with auxiliary filters we will encounter higher
order denominator polynomials. After solving the denominator and numerator polynomials for the
poles pm and zeros qn respectively, we can rewrite the transfer function as

FðsÞ ¼ ðsþ q1Þðsþ q2Þ/ðsþ qN�1Þðsþ qNÞ
ðsþ p1Þðsþ p2Þ/ðsþ pM�1Þðsþ pMÞ ¼

QN
n¼1ðsþ qnÞQM
m¼1ðsþ pmÞ

(6.101)

This is a convenient form which enables us to tailor the frequency response by manipulating the roots
of the denominator polynomial and to calculate the transient response by means of the inverse Laplace
transform.
6.17 TRANSIENT RESPONSE
The design of a loudspeaker enclosure and the choice of amplifier impedance eventually must be based
on subjective judgments as to what constitutes “quality” or perhaps simply on listening “satisfaction.”
It is believed by many observers that a flat sound-pressure-level response over at least the frequency
range between 70 and 7000 Hz is found desirable by most listeners. Some observers believe that the
response should be flat below 1000 Hz but that between 1000 and 4000 Hz it should be about 5 dB
higher than its below-1000-Hz value. Above 4000 Hz, the response should return to its low-frequency
value. It is also believed by some observers that those loudspeakers which sound best generally
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reproduce tone bursts [13] well, although this requirement is better substantiated in the literature for
the high frequencies than for the low.

An important factor determining the transient response of the circuits of Fig. 6.4 is the amount of
damping of the motion of the loudspeaker diaphragm that is present. For a given loudspeaker, the
damping may be changed (1) by choice of the amplifier impedance Rg, or (2) by adjustment of the
resistive component of the impedance of the enclosure for the loudspeaker, or (3) by choosing a drive
unit with a smaller QTS value, or (4) by any combination of (1) to (3). The amplifier impedance may be
adjusted using negative current feedback to increase QTS or positive current feedback to reduce it. The
latter provides a negative output impedance which is subtracted from RE.

Before we can apply the transform to Eq. (6.101), we must split the expression into a sum of partial
fractions, each containing a single factor in its denominator:

FðsÞ ¼ A1

sþ p1
þ A2

sþ p2
þ/þ AM�1

sþ pM�1
þ AM

sþ pM
¼
XM
m¼ 1

Am

sþ pm
(6.102)

This is achieved using a technique known as the residues theorem. The residues Am are found from the
formula

Am ¼ ðsþ pmÞFðsÞ
���
s/�pm

(6.103)

For the expression of Eq. (6.97) this gives

acðsÞ ¼ s2

ðsþ p1Þðsþ p2Þ

¼ ð1Þ þ p21
ðp2 � p1Þðsþ p1Þ þ

p22
ðp1 � p2Þðsþ p2Þ

(6.104)

The extra unity term in parentheses comes from the fact that the numerator polynomial is of the same
order as the denominator. However, we shall drop it from subsequent handling. IfM< N, then this term
vanishes anyway. The poles p1 and p2 are given by

p1 ¼ uS

 
1

2QTS
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.105)

p2 ¼ uS

 
1

2QTS
þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.106)

In order to obtain the response in the time domain, we apply the inverse Laplace transform:

f ðtÞ ¼ L�1ðFðsÞÞ ¼ 1

2pj

ZgþjN

g-jN

FðsÞestds (6.107)



Table 6.2 Laplace transforms of various functions of time

f(t)
d(t) H(t) sin ut cos ut e�ut 1� e�ut ae�at � be�bt

a� b
1� ae�bt � be�at

a� b

F(s)
1

1

s

u

s2 þ u2

s

s2 þ u2

1

sþ u

u

sðsþ uÞ
s

ðsþ aÞðsþ bÞ
ab

sðsþ aÞðsþ bÞ
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where g is an arbitrary positive constant chosen so that the contour of integration lies to the right of all
singularities in F(s). The Laplace transform is a variant of the Fourier transform that converts
a function of time to one of imaginary frequency as opposed to real frequency.

FðsÞ ¼ Lð f ðtÞÞ ¼ 1

2pj

ZN
0

f ðtÞe�stds (6.108)

Table 6.2 shows the Laplace transforms of some input waveforms that we may wish to use to
investigate the time response of a loudspeaker system with its associated enclosure and electrical
filters.

We see that the Laplace transform of an infinite impulse at t¼ 0, which is represented by the Dirac
delta function d (t), is simply unity. Therefore applying the inverse Laplace transform directly to the
frequency response function in s will give us the infinite impulse response of the system. Applying
the inverse Laplace transform to Eq. (6.104) is fairly straightforward since according to Table 6.2 the
1/(sþ pm) terms become exponents:

acðtÞ ¼ p21
ð p2 � p1Þ e

�p1t þ p22
ð p1 � p2Þ e

�p2t (6.109)

If we wish to evaluate the time response to an input wave form other than an infinite impulse, we may
multiply Eq. (6.104) by the Laplace transform of the waveform before applying the inverse Laplace
transform. For example, if we wished to evaluate the response to a Heaviside step function H(t), which
represents a step from 0 to 1 at t ¼ 0, we could multiply Eq. (6.104) by 1/s before applying the inverse
Laplace transform. Alternatively, we could convolve the impulse response of Eq. (6.109) with the
Heaviside step function in the time domain using the convolution integral:

acðtÞ � HðtÞ ¼
ZN

�N

acðxÞHðt � xÞdx

¼ p1e
�p1t � p2e

�p2t

p1 � p2

¼

8>>><
>>>:

sinðq� uStsin qÞ
sin q

e�uStcos q; QTS > 0:5

sinhðq� uStsinh qÞ
sinh q

e�uStcosh q; QTS � 0:5

(6.110)
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where

cos q ¼ 1

2QTS
; sin q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s
; QTS > 0:5 (6.111)

cosh q ¼ 1

2QTS
; sinh q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Q2
TS

� 1

s
; QTS � 0:5 (6.112)

which gives the same result as multiplying Eq. (6.104) by 1/s before applying the inverse Laplace
transform. Hence the impulse response is a powerful expression which can be used to predict the
response to any input waveform.

We see from Eq. (6.110) that whenQTS> 0.5, the time response to a step function has an oscillatory
component represented by the sine and cosine functions of uSt and a decaying component represented
by the exponent term which contains the decay constant uS/(2 QTS). The response to a step function is
plotted in Fig. 6.19 with fS¼ 50 Hz. The black curve forQTS¼ 3 gives an undershoot value of 62% and
ringing for several cycles, each about 20 ms in duration. They grey curve for QTS ¼ 0.3 shows just
6.4% undershoot and no ringing.

An input waveform of particular interest is that of a finite tone burst* of frequency u0 and duration
t0 involves a somewhat more complicated expression:

FðtÞ ¼ ð1� Hðt � t0ÞÞsinu0t (6.113)

which yields the pressure waveform

acðtÞ � FðtÞ ¼ �
u4 þ u4

S þ 2u2u2
S cos2q

	�1

�
cscq�uu3
S sinðuSt sin qÞ þ u3uS sinðuSt sin q� 2qÞ	e�uSt cos q þ Hðt � t0Þ

�
cscq sinut0�u4
SsinðuSðt � t0Þsin q� qÞ þ u2u2

SsinðuSðt � t0Þsin q� 3qÞ	
�cscq cosut0

�
uu3

Ssin ðuSðt � t0Þsin qÞ þ u3uSsinðuSðt � t0Þsin q� 2qÞ	�
�e�uSðt�t0ÞcosðqÞ þ ð1� Hðt � t0ÞÞ

�
2u3uS cos q cosut þ u2ðu2 � u2

SÞsinut
	�

(6.114)

We see from Fig. 6.20 that the beginning of the tone burst excites the suspension resonance frequency
which is superimposed upon the tone burst even though the tone-burst frequency is three times higher
than that of the suspension resonance. As a result, the tone takes a while to settle before it is switched off,
at which point the suspension resonance is triggered again before finally decaying. Hence, loudspeakers
with a high QTS tend to produce bass with a “one-note” quality. Not only is the suspension resonance
frequency boosted in the frequency response, but it also adds overhang to transients at other frequencies.

It is known that the reverberation time in the average living room is about 0.5 s, which corresponds
to a decay constant of 13.8 s�1. Psychological studies also indicate that if a transient sound in a room
has decreased to less than 0.1 of its initial value within 0.1 s, most listeners are not disturbed by the
*A tone burst is a wave-train pulse that contains a number of waves of a frequency.
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“overhang” of the sound. This corresponds to a decay constant of 23 s�1, which is a more rapid decay
than occurs in the average living room. Although criteria for acceptable transient distortion have not
been established for loudspeakers, it seems reasonable to assume that if the decay constant for
a loudspeaker is greater than four times this quantity, i.e., greater than 92 s�1, no serious objection will
be met from most listeners to the transient occurring with a tone burst. Accordingly, the criterion that is
suggested here as representing satisfactory transient performance is

uS

2QTS
> 92 s�1 (6.115)
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Equation (6.110) reveals that, the greater uS/(2 QTS), the shorter the transient. Equation (6.115) should
be construed as setting a lower limit on the amount of damping that must be introduced into the system.
It is not known how much damping ought to be introduced beyond this minimum amount.

In the next chapter we shall discuss the relation between the criterion of Eq. (6.115) and the
response curve with baffle.

Each of the diaphragm resonances (e.g., points 1 to 8 in Fig. 6.14) has associated with it a transient
decay time determined from an equation like Eq. (6.110). In order to fulfill the criterion of Eq. (6.115),
it is usually necessary to damp the loudspeaker cone and to terminate the edges so that a response curve
smoother than that shown in Fig. 6.14 is obtained. With the very best direct-radiator loudspeakers,
much smoother response curves are obtained. The engineering steps and the production control
necessary to achieve low transient distortion and a smooth response curve may result in a high cost for
the completed loudspeaker.
6.18 NONLINEARITY [14]
There are a number of nonlinear mechanisms in electrodynamic loudspeakers which give rise to
harmonic distortion. They tend to be dominant at different frequencies. In some cases the non-linearity
is a function of input current and in others of displacement, or even both. An overview is given in
Table 6.3.
Suspension compliance. The purpose of the suspension [see (9) in Fig. 6.1] is to provide a linear
restoring force that moves the coil back to its rest position and to ensure that it is correctly centered.
Table 6.3 Overview of nonlinearities in electrodynamic loudspeakers

Nonlinearity As a function of Frequency range Mechanism

Compliance CMS Displacement x Below fS Nonlinear restoring force

Force factor Bl Displacement x, current i Low frequencies (where
x is greatest)

Nonlinear force, f ¼ Bli

Displacement x, velocity u Nonlinear damping, e ¼ Blu

Coil inductance LE Displacement x High freq. modulated by
low freq.

Inductance varies with
position of coil relative to
pole-piece

Displacement x, current i Ditto Extra reluctance force, ff i 2

Current i High frequencies Nonlinear permeability of
steel

Coil resistance RE Current i All frequencies Resistance increases with
temp.

Young’s modulus
E of cone material

Strain ε At normal vibration
mode frequencies of
cone

Stress s is nonlinear function
of strain, s ¼ Eε. For large
amplitude vibrations, further
nonlinearity caused by
change in geometry.

Doppler effect Displacement x High freq. modulated by
low freq.

Variable time shift t ¼ x/c in
propagated sound causes
freq. modulation distortion
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However, from Fig. 6.21a we see that for large excursions, the suspension becomes stiffer as it
stretches and so the compliance becomes nonlinear, typically in an asymmetrical manner, as shown in
Fig. 6.21b. It is also common for hysteresis losses to prevent the coil from returning to the same
position as before. In order to combat this, a “regressive” spider design [15] has been proposed in
which the corrugations diminish in height with increasing radius.
Force factor. If the coil length hc is equal to the gap length hg (see Fig. 6.22a), the force factor
decreases as soon as the coil starts to move in the x direction because the part of the coil which is
then outside the gap experiences a much smaller force. This typically produces the dashed curve
shown in Fig. 6.22b. In order to improve linearity and to extend the maximum excursion, the length
of the coil is often extended beyond the length of the gap and this is known as overhang. This
typically produces the solid curve shown in Fig. 6.22b. Alternatively, it can be shorter, which is
known as underhang. One disadvantage of overhang is that the ratio of force factor Bl to moving
mass MMS is decreased, which tends to reduce efficiency somewhat (see Eq. (6.47)). Although
f

x
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FIG. 6.21 (a) Sketch of suspension at center and extreme end positions and (b) non-linear force vs. displacement

curve (solid curve) with ideal linear curve (dashed line).

0

1

2

3

4

5

-8 -6 -4 -2 0 2 4 6 8
Displacement x (mm)

hc

hg

x

Overhang (hc hg)

Equal-length (hc = hg)

(a) (b)

Fo
rc

e 
fa

ct
or

 B
l (

T.
m

)

FIG. 6.22 (a) Sketch of a coil of lengh hc in a magnetic gap of length hg and (b) force factor vs. displacement curves

with hc [ hg (dashed line) and hc > hg (solid line).
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force-factor nonlinearity is most noticeable at low frequencies, where the coil excursion is greatest, if
the QTS value of the drive unit is fairly high then the distortion has a minimum at the suspension
resonance frequency. In other words, the peak at the resonance frequency has a filtering effect on the
distortion harmonics. By the same token, distortion harmonics of frequencies in the roll-off region
(below resonance) are augmented.
Coil inductance. Like the force factor Bl, the coil inductance LE also varies according to the position
of the coil in the gap, albeit in a somewhat less symmetrical manner. In fact the inductance is greatest
when the coil is in its innermost position and completely surrounded by iron, as we see from Fig. 6.23.
Conversely it is smallest when the coil is in its outermost position and partly surrounded by air, which
has a much smaller relative permeability than iron. Although the inductance alone would only affect
the high frequencies, the fact that the excursion is greatest at low frequencies means that the effect of
the nonlinearity is for the low frequencies to modulate the high frequencies.

Not only does the inductance vary with coil position x, but it also varies with current i. The flux
density B varies in a nonlinear fashion with the magnetizing force H (see Fig. 6.11) and hence in turn
with the current i. In order to minimize this effect, the pole piece and pole plate are normally saturated
as much as possible so that there is relatively little variation of B with H. Also, the inclusion of
a shorting ring around the pole piece, as shown in Fig. 6.23, reduces the variation of LE with both x and
i. It is usually made of aluminum and behaves like a short-circuited secondary winding of a trans-
former in which the voice coil forms the primary.

A third nonlinear mechanism due to the coil inductance is the reluctance force. This was actually
the driving force used in the receivers of early telephone handsets. In the receiver, an electromagnet
would actuate a steel plate in close proximity to it. Then the first loudspeakers were simply receivers
with horns attached. Although the transduction was inherently nonlinear, the vibrations of the plate
were small enough for the distortion not to be too serious. However, in a modern dynamic speaker,
such a driving force is an undesirable byproduct of the principal transduction mechanism.
Coil resistance. As the power dissipated by the coil is increased, its temperature also increases, which
leads to an increase in resistance. At very low frequencies, the temperature increases during every half
cycle of the input signal, thus leading to odd harmonic distortion. At higher frequencies, the thermal
inertia of the coil smoothes out the temperature variations so that instead we have a phenomenon
known as power compression whereby the rise in coil resistance temporarily reduces the sensitivity of
Large LE

x

Small LE

Shorting ring 

FIG. 6.23 Sketch of a coil in two extreme positions along its journey back and forth in the x direction.

In the innermost position, the inductance LE is greatest and in the outermost position it is smallest. The inclusion

of the shorting ring minimizes the amount of variation of LE.
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the loudspeaker. The use of a current-source amplifier [16] with motional feedback to provide damping
has been proposed in order to minimize this effect. Alternatively, a ferrofluid [17] may be suspended
within the magnetic gap. This will effectively conduct heat away from the coil to the pole plate, which
acts as a heat sink. Another advantage is that the magnetic fluid reduces the width of the gap to the
diameter of the coil wire plus the thickness of the former. A slight disadvantage is that viscosity of the
fluid increases mechanical damping and hence reduces QMS. Ideally, in order to maintain maximum
efficiency at resonance, we would prefer all of the damping to be provided electrically so that QTS z
QES and QMS>>QES.
Young’s modulus of cone material. At low to mid frequencies, the cone should move as a perfectly
rigid piston in which case there is no flexing and the nonlinear stress versus strain relationship should
have no effect whatsoever. However, at higher frequencies, vibration modes within the cone will occur
and the motion is likely to be nonlinear depending on the amplitude. This can be mitigated by ensuring
that either the cone material has sufficient internal damping or that the radial waves are absorbed
by a lossy surround. One should also use a crossover which diverts the higher frequencies to anoth-
er drive unit.
Doppler effect. Suppose that a loudspeaker reproduces two tones simultaneously, one at a sufficiently
low frequency to produce significant excursion and the other at a much higher frequency. As the cone
moves towards the listener during a positive half-cycle of the low note, the pitch of the high note
will be raised by a small amount. Also, as the cone moves away from the listener during a negative
half-cycle, the pitch will be lowered. This is the same phenomenon that causes the apparent
frequency of a siren to change when an ambulance drives past. Hence, the low note frequency
modulates the high note. In practice, the effect is usually minimized through careful choice of
crossover frequency [18].

Example 6.3. If the circular gap in the permanent magnet has a radial length of 0.2 cm,
a circumference of 8 cm, and an axial length of 1.0 cm, determine the energy stored in the air gap if the
flux density is 10,000 gauss.

Solution

Volume of air gap ¼ ð0:002Þð0:08Þð0:01Þ ¼ 1:6� 10�6 m3

Flux density ¼ 1 T:

From books on magnetic devices, we find that the energy stored is

W ¼ B2V

2m

where the permeability m for air is m0 ¼ 4p� 10�7 H/m. Hence, the air-gap energy is

W ¼ ð1Þð1:6� 10�6Þ
ð2Þð4p� 10�7Þ ¼ 2

p
¼ 0:636 J

Example 6.4. A 5-inch loudspeaker is mounted in one of the two largest sides of a closed box having
the dimensions 285 by 189 by 178mm. Determine and plot the relative power available efficiency and
the relative sound pressure level on the principal axis.
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Solution. Typical directivity patterns for this loudspeaker are shown in Fig. 4.31. The directivity
index on the principal axis as a function of frequency is shown in Fig. 4.32. It is interesting to note that
the transition frequency from low directivity to high directivity is about 1 kHz. Since the effective
radius of the radiating cone for this loudspeaker is about 0.055 m, ka at this transition frequency is

ka ¼ 2pfa

c
¼ 1000p� 0:13

344:8
¼ 1:18

or unity, as would be expected from our previous studies. The transition from the circuit of Fig. 6.6(c)
[where we assumed that u2MM1

2>><MR
2 and u2L2<< (Rgþ RE)

2] to Fig. 6.6(d) also occurs at about
ka¼ 1. Now let us model the loudspeaker as a spherical cap in a sphere. From the box dimensions, the
equivalent radius R of the equivalent sphere is

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð285� 189� 178Þ

4p

3

r
¼ 132 mm

Since the effective radius a of the cap is 55 mm, the half-angle of the cap is given by a ¼ arcsin(55/
132) ¼ 25�. The directivity patterns of a cap of half-angle 30� are shown in Fig. 6.24. Considering the
approximate nature of the model, these directivity patterns are remarkably consistent with those shown
in Fig. 4.31 for the actual loudspeaker. One advantage of this model is its simplicity since Eq. (12.59)
for the directivity pattern is in the form of a fast-converging expansion.
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FIG. 6.24 Plots of the directivity patterns of a typical 5-inch-diameter loudspeaker in a closed-box baffle using an

oscillating spherical cap in a sphere as a model.
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Now, let us determine the sound pressure level on the principal axis of the loudspeaker, using Eqs.
(12.58) and (12.61) together with

~uc ¼ Bl

ðRE þ juLEÞjuMMS
~eg

which is derived from Fig. 6.4(a) assuming that above resonance MMS dominates the loop impedance.
Also, let us assume that the amplifier impedance is very low. The results are given by the dashed curve
in Fig. 6.25. Above 200 Hz the pressure level starts to rise due to the baffle effect of the enclosure,
although the amount of lift is limited by the coil inductance which starts to have effect at around the
same point. The cupped shape of the diaphragm helps to maintain a wide directivity pattern at higher
frequencies, but the radiated power is falling off, so the sound pressure must also start to fall (unlike
with a flat piston where the concentration of sound on its axis maintains a level output). The fact that
the model uses a convex dome as opposed to a concave cone will introduce errors but a quick
comparison of Fig. 12.28 with Fig. 12.32 for a convex and a concave dome respectively shows that the
trends are broadly similar. Hence we see a second-order or 12 dB/octave high-frequency roll-off due to
the compounded effect of the diaphragm inertia and coil inductance. Also at higher frequencies, cone
resonances occur, as we said before, and the typical response curve of Fig. 6.14 is obtained.

In order to calculate the efficiency, let us assume that it is mounted in an infinite baffle and that one-
half the power is radiated to each side.

The efficiency, from one side of the loudspeaker, is given by Eq. (6.57) divided by 2, where for the
frequency range well above resonance we have used the approximations

ZMT z juMMS and ZE zRE þ juLE:

From this we obtain the solid curve of Fig. 6.25a. It is seen that, above f ¼ 1000 Hz, the efficiency
drops off.
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FIG. 6.25 Graphs of the computed efficiency and sound pressure level measured on the principal axis of a typical

5-inch-diameter loudspeaker in a closed-box baffle.
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