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14.1 A BRIEF HISTORY
Two types of circuit simulation technique evolved during the 1960s and early 1970s. One was the
nodal method, as used by CANCER [1] (Computer Analysis of Non-Linear Circuits Excluding
Radiation), for example, which was the forerunner of SPICE (Simulation Program with Integrated
Circuit Emphasis), pioneered by University of California-Berkeley. The other was the state variable
approach, as used by SCEPTRE [2] (System for Circuit Evaluation and Prediction of Transient
Radiation Effects), developed by IBM. In a nodal analysis, the node voltages and branch currents in the
circuit are calculated for every frequency step. By contrast, in a state variable analysis, a set of
frequency-dependent transfer functions are derived between the various sources and outputs within the
circuit. From this single analysis, both frequency domain and time domain responses can be obtained.
Hence, when the state variable method first appeared, it was hailed as the future of circuit simulation
[3]. However, as the number of elements in integrated circuits increased during 1970s onwards, the
state variable method proved too unwieldy and fell into disuse. Almost every circuit simulation tool
available today uses some form of nodal analysis.
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634 CHAPTER 14 State variable analysis of circuits
14.2 WHAT IS STATE VARIABLE ANALYSIS?
The idea is to express the required information relating to the circuit or system response in terms of
a first-order differential matrix equation. If the state vector is properly defined, it is always possible to
write the equation in the proper form for linear systems. The state variable (or state vector if there is
more than one) is that whose linearly independent parameters can describe the present state or any
possible future state of the system. The state vector x satisfies the standard state equation [4]

_x ¼ A$xþ B$u (14.1)

where x is the state vector and u is the input vector. The output equation is

y ¼ C$xþ D$u (14.2)

The most convenient choice of state vector is one having parameters that describe the energy stored
by different elements of the system. In electrical circuits, the parameters are normally chosen to be
the capacitor voltages and inductor currents, thus allowing independently specifiable initial condi-
tions [5]. Also, the output vector is normally chosen to be the voltages at the various nodes in the
circuit. In this text, the input vector will contain the current sources and voltage sources. Equations
(14.1) and (14.2) can be solved in general terms so that any system obeying the state equation can be
described by a state vector at any instant in time. The most flexible method for solving Eqs. (14.1)
and (14.2) is the Faddeev–Leverrier algorithm which enables either numerical or symbolic
computation.
14.3 WHY USE STATE VARIABLE ANALYSIS?
Acoustical models have a relatively small numbers of elements, so that in most cases the state variable
method can be applied without computational problems. There are a number of motivations for using
such a method:

The transfer function can be part of a DSP-based real-time model of the system for monitoring
parameters such as voice-coil temperature or displacement so that they can be dynamically limited.
The model can be used as a basis for response equalization.
The poles and zeros of the system can be mapped in order to investigate its stability or sensitivity to
component tolerances.
The advent of symbolic handling in mathematical computer tools enables an algebraic transfer
function to be generated in terms of the circuit element labels (e.g., L1, C2, R4, etc.). This
enables us to examine the dependency of the poles and zeros on individual circuit elements.
If we have a previously optimized transfer function, such as a Chebyshev or Butterworth polynomial,
we can even go a stage further and equate the coefficients of the circuit transfer function polynomial
with those of the optimized polynomial in order to obtain a set of simultaneous equations which can
then be solved for each circuit element value. Hence an optimum circuit design can be obtained in
one operation without any further iteration. This approach has been used with considerable success
to create loudspeaker design “look-up” tables known as loudspeaker alignments (see Secs. 7.6 and
7.12), although these used to be worked out by hand [6,7].
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14.4 WHAT ARE THE RESTRICTIONS?
In state variable analysis, there are some topological restrictions as follows

A loop must not contain capacitors only. A small resistance must be added to the path and this is
known as “de-Q-ing”, as shown in Fig. 14.1.
A node must not be the junction of inductors only. A large resistance must also join the node and is
usually connected in parallel with one of the inductors, as shown in Fig. 14.1.
The previous two restrictions apply to all state variable programs. One, which is unique to the
simple node voltage method described here, affects current-controlled (voltage or current)
sources. An ideal current-controlled source has, by definition, zero input resistance.
Unfortunately, this would result in the voltage at both input nodes being equal and therefore no
longer independent of each other. Hence, a small resistance must be included across the input
terminals so that the source effectively becomes a voltage-controlled one where the input
current is simply the input voltage divided by the added resistance. The implementation of this
is described in Sec. 14.12.

It should be noted that, in the case of a symbolically computed transfer function, the resistors that have
been added due to the above restrictions can be set to zero in the final transfer function and will
therefore have no influence over the final result.
14.5 SOME BASIC CIRCUIT THEORY
We will define a branch as the path through a single circuit element and a node as the point where two
or more branches are connected. Then a loop is a set of branches connected end to end which form
FIG. 14.1 “De-Q-ing” of all-capacitive loops and all-inductive nodes.
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a closed circular path. Circuit elements considered here will be limited to resistors, capacitors,
inductors, and voltage or current sources, together with their mechanical and acoustic analogies. In the
case of sources, however, we will also consider some special types known as controlled sources, which
each contain two isolated branches, one for the input, or controlling parameter, and one for the output,
or controlled parameter. Firstly, though we need to state three key governing rules relating to circuits in
general:

Kirchhoff’s current law (KCL) states that the sum of all the currents flowing into any node is equal
to the sum of the currents flowing out of that node.
Kirchhoff’s voltage law (KVL) states that the sum of the voltages around any loop must be zero.
Ohm’s law states that the current i flowing through any passive branch is equal to the voltage e
across the branch divided by the impedance Z of the circuit element in that branch, that is,
i ¼ e/Z.

By a passive branch, we mean one that does not contain any sources, but is limited to resistors,
capacitors or inductors so that

Z ¼

8><
>:

R; where R is the resistance

1=ðjuCÞ; where C is the capacitance

juL; where L is the inductance

(14.3)

and u is the angular frequency. From here on we will use the shorthand

s ¼ ju ¼ j2pf (14.4)

In a time-domain analysis

s ¼ d

dt
(14.5)

The three rules listed above will enable us to evaluate any circuit.
14.6 GRAPH THEORY
An electrical circuit in its most elementary form can be represented as a graph. This abstraction
enables us to explore the properties of a circuit and to derive some very useful relationships. Fig. 14.2
1 2 3

4

A

D
E

B

C

FIG. 14.2 Graph.



Table 14.1 Currents in graph

Node A B C D E

1 þ1 0 0 0 þ1

2 �1 þ1 0 þ1 0

3 0 �1 þ1 0 0

4 0 0 �1 �1 �1
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shows an example of a graph, where the nodes are labeled 1 to 4 and the branches are labeled A to E.
The arrows show the directions of current flow.

Next, we tabulate the graph using þ1 to denote the node from which the current in each branch
flows and�1 to denote the node to which it flows (see Table 14.1). If we make node 4 the reference, we
can delete the last row and rewrite the table as a matrix:

A ¼

2
64

1 0 0 0 1

�1 1 0 1 0

0 �1 1 0 0

3
75 (14.6)

Kirchhoff’s current law can be expressed in terms of A as

A$i ¼ 0 (14.7)

where i is a column vector of the currents in each branch. This represents the equations

iA þ iE ¼ 0

iB � iA þ iD ¼ 0

iC � iB ¼ 0:

(14.8)

Also, if we take the transpose of A

At ¼

2
6666664

1 �1 0

0 1 �1

0 0 1

0 1 0

1 0 0

3
7777775

(14.9)

so that each row represents a branch and the column entries show which nodes each branch spans, we
can write

e ¼ At$v (14.10)
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which represents the equations

eA ¼ v1 � v2

eB ¼ v2 � v3

eC ¼ v3

eD ¼ v2

eE ¼ v1

(14.11)

where eA to eE are the branch voltages and v1 to v3 are the node voltages relative to the reference node
(node 4). Equations (14.7) and (14.10) will be used later for automation.
14.7 WORKED EXAMPLE NO. 1: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT
In order to show how the various matrices are constructed by a computer program, we will
familiarize ourselves with the state variable method by means of an example, which we
will follow through by hand. The equivalent electrical circuit for a loudspeaker in a bass-
reflex enclosure is shown in Fig. 14.3, using the admittance analogy for the mechanical and
acoustical circuits, which are all referred to the electrical domain. The circuit elements are
given by

R1 ¼ Rg þ RE (14.12)

R2 ¼ ðBlÞ2
RMS

(14.13)

R3 ¼
�
Bl

SD

�2 1

RAL
(14.14)
R1 R3

L1 L2

C2

C11
~e

3
~v

R2

4
~v1

~v 2
~v

FIG. 14.3 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure.
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C1 ¼ MMS

ðBlÞ2 (14.15)

C2 ¼
�
SD
Bl

�2

MAT (14.16)

L1 ¼ ðBlÞ2CMS (14.17)

L2 ¼
�
Bl

SD

�2

CAB (14.18)

~v1 ¼ sBl~x (14.19)

~v4 ¼ Bl

SD
~UB (14.20)

~pðrÞ ¼ s
r0 ~UB

4pr
(14.21)

and from Part XXII the parameters are:

~e1 ¼ ~eg, the input voltage in V.
RE is resistance of voice coil in U.
B is steady air-gap flux density in T.
l is length of wire in meters on the voice-coil winding.
~x is voice-coil displacement in m.
a is radius of diaphragm in m.
MMS is mass of the diaphragm and voice coil, including radiation mass on both sides,
in kg.
CMS is total mechanical compliance of the suspensions in m/N.
RMS is mechanical resistance of the suspensions in N$s/m.
SD is effective area of diaphragm in m2.
MAT is acoustic mass of air in the port in kg/m4, including end corrections.
CAB is acoustic compliance of the box in m5/N.
RAL is combined acoustic resistance of air in port, box interior, and leakage in N$s/m5.
~UB is net volume velocity in m3/s.
~pðrÞ is on-axis pressure in N/m2 at a distance r (in m) from the diaphragm.
r0 is ambient density of air in kg/m3.

Because it is a low-frequency model, the coil inductance LE and radiation resistance RAR have been
ignored. The values ~v1, ~v2, ~v3, and ~v4 are the voltages at nodes 1, 2, 3, and 4 respectively with respect to
ground (node 0). Now we can create the net list, shown in Table 14.2, which completely describes the



Table 14.2 Net list for worked example No. 1

Element From node To node

~e1 1 0

R1 1 2

R2 2 0

R3 3 4

C1 2 0

C2 2 3

L1 2 0

L2 4 0
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circuit. From the net list we can create what is generally known as the A matrix [8], which is
a mathematical representation of the circuit connectivity:
4

3

2

1

  

10001–000

001–01000

0111011–0

00000011

node                 ~
21213211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=A

LLCCRRRe

(14.22)

(14.22)
Note that we have omitted the row for the reference node zero, which is redundant in the computations
that follow. This A matrix can then be partitioned into four matrices AS, AR, AC, and AL representing
the connectivity of the sources, resistors, capacitors, and inductors respectively:

     

4

3

2

1

10

00

01

00

,

00

10

11

00

,

100

100

011

001

, 

0

0

0

1
node                                                      ~

21213211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= LCRS

LLCCRRRe

AAAA
(14.23)

(14.23)

We will show how to use these matrices in due course.
Now let us return to the circuit of Fig. 14.3. The state variables are the capacitor voltages denoted

by ~VC1, ~VC2 and inductor currents denoted by ~IL1, ~IL2, using the upper case. The capacitor currents and
inductor voltages are denoted by ~iC1, ~iC2 and ~vL1, ~vL2 respectively, using the lower case to indicate that
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they are not state variables. The voltage source current is ~ie1 and the node voltages are ~v1, ~v2, ~v3, and ~v4.
The first step of the analysis is to apply KCL at each of the nodes:

At node 1

~ie1 ¼ ~v2 � ~v1
R1

(14.24)
At node 2

~v1 � ~v2
R1

¼ ~v2
R2

þ ~IL1 þ ~iC1 þ ~iC2 (14.25)

At node 3

~iC2 ¼ ~v3 � ~v4
R3

(14.26)

At node 4

~v3 � ~v4
R3

¼ ~IL2 (14.27)

For the voltage source

~v1 ¼ ~e1 (14.28)
Next we apply KVL to the capacitors and inductors:

For C1

~v2 ¼ ~VC1 (14.29)

For C2

~v2 � ~v3 ¼ ~VC2 (14.30)

For L1

~v2 ¼ ~vL1 (14.31)

For L2

~v4 ¼ ~vL2 (14.32)

It should be noted that the number of independent equations must equal the number of inde-
pendent variables. In this case, there are four state variables ~VC1; ~VC2; ~IL1; and ~IL2, and hence
four KVL equations related to them. However, although there are four node voltages and hence
four KCL equations, one of them (~v1) is equal to the input voltage [see Eq. (14.28)] and is
therefore not independent. Hence we have had to introduce an extra variable, namely, the input
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current ~ie1. We now rearrange Eqs. (14.24) to (14.32) into the following set of simultaneous
equations:

~v1
R1

� ~v2
R1

þ ~ie1 ¼ 0

� ~v1
R1

þ
�
1

R1
þ 1

R2

�
~v2 þ ~iC1 þ ~iC2 ¼ �~IL1

~v3
~R3

� ~v4
R3

� ~iC2 ¼ 0

� ~v3
R3

þ ~v4
R3

¼ �~IL2

~v1 ¼ ~e1

~v2 ¼ ~VC1

~v2 � ~v3 ¼ ~VC2

~v2 � ~vL1 ¼ 0

~v4 � ~vL2 ¼ 0

(14.33)

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows

M$v ¼ N$w (14.34)

where
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

−−

+−

−

=

100001000

010000010

000000110

000000010

000000001

00000
11

00

00100
11

00

0011000
111

0000100
11

~   ~  
~

   
~

   
~

     ~        ~            ~           ~  

33

33

211

11

212114321

RR

RR

RRR

RR

vviiivvvv LLCCe

M
, 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

2

1

1

4

3

2

1

~

~

~

~

~
~

~

~

~

L

L

C

C

e

v

v

i

i

i

v

v

v

v

v  (14.35)

(14.35)
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⎥
⎥
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢
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⎢
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⎢
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⎢
⎢

⎣

⎡

−

−

=

00000

00000

00010

00001

10000

01000

00000

00100

00000

~   
~

  
~

  
~

 
~

12121

N

eIIVV LLCC

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1

2

1

2

1

~

~

~

~

~

e

I

I

V

V

L

L

C

C

w
(14.36)
Each row ofM and each column of N must have at least one entry. Now let us partition the matrix
M as follows:
M ¼
"
M11 M12

M21 M22

#
(14.37)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

+−

−

=

10000

01000

00000

00000

00000

1000

0010

0110

0010

0001

00000

00100

00110

00001

      

11
00

11
00

00
111

00
11

~  ~  
~

  
~

  
~~         ~        ~             ~

2221

12

33

33

211

11

11

212114321

MM

MM

RR

RR

RRR

RR

vviiivvvv LLCCe

(14.38)
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On inspection of Eqs. (14.23) and (14.38), it becomes apparent that

M12 ¼ ½AS AC 0 � (14.39)

and

M21 ¼

2
64
At
S

At
C

At
L

3
75 (14.40)

because they simply represent the nodes across which the voltage sources, capacitors, and inductors
are connected. For example, ~iC2 in column 3 ofM12 leaves node 2 (hence the “1” in row 2) and enters
node 3 (hence the “�1” in row 2). Also, matrixM22 just contains a negative unity matrix representing
the inductors as follows:

M22 ¼
"
0 0

0 �I

#
(14.41)

Finally, matrixM11 for the resistors is a little more complicated. We recall that it was constructed using
KCL, which can be expressed in terms of the A matrix, using Eq. (14.7) as follows

AR$iR ¼ 0 (14.42)

where iR is a column vector of the resistor currents. However, we wish to replace the resistor currents
with the node voltages as in Eq. (14.38). First, we use the relationship of Eq. (14.10):

eR ¼ At
R$v (14.43)

in order to express the resistor voltages in terms of node voltages. Multiplying this by an admittance
matrix

YR ¼

2
64
1=R1 0 0

0 1=R2 0

0 0 1=R3

3
75 (14.44)

gives us the resistor currents

iR ¼ YR$eR ¼ YR$A
t
R$v (14.45)

Finally, inserting Eq. (14.45) into Eq. (14.42) yields the node voltages

AR$YR$A
t
R$v ¼ 0 (14.46)

which gives2
66664

1 0 0

�1 1 0

0 0 1

0 0 �1

3
77775$

2
64
1=R1 0 0

0 1=R2 0

0 0 1=R3

3
75$

2
64
1 �1 0 0

0 1 0 0

0 0 1 �1

3
75$

2
666664
~v1

~v2

~v3

~v4

3
777775 ¼

2
64
0

0

0

3
75 (14.47)
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or 2
666666666664

1

R1
� 1

R1
0 0

� 1

R1

1

R1
þ 1

R2
0 0

0 0
1

R3
� 1

R3

0 0 � 1

R3

1

R3

3
777777777775
$

2
666664
~v1

~v2

~v3

~v4

3
777775 ¼

2
64
0

0

0

3
75 (14.48)

Therefore

M11 ¼ AR$YR$A
t
R (14.49)

Similarly, we can partition N as follows:

N ¼
"
N11 N12

N21 N22

#
(14.50)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤
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⎢
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⎢

⎣

⎡

=
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

0

0

0

0

1

     ,

0000

0000

0010

0001

0000

0

0

0

0

,

1000

0000

0100

0000

~~
  

~
  

~
  

~

2221

1211

12121

NN

NN

eIIVV LLCC

(14.51)
On inspection of Eqs. (14.23) and (14.51), it becomes apparent that

N11 ¼ ½ 0�AL � (14.52)

We note that from Eq. (14.36),

w ¼
"
x

u

#
(14.53)
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where x is the state variable vector in Eqs. (14.1) and (14.2) given by

x ¼

2
66666664

~VC1

~VC2

~IL1

~IL2

3
77777775

(14.54)

and u is the input vector in Eqs. (14.1) and (14.2) given by

u ¼
h
~e1

i
(14.55)

We note also from Eq. (14.35),

v ¼
"
y

s$E$x

#
(14.56)

where y is the output vector in Eq. (14.2) containing the node voltages

y ¼

2
666666664

~v1

~v2

~v3

~v4

~ie1

3
777777775

(14.57)

and E is a diagonal matrix containing the capacitor and inductor values, which relates the capacitor
currents and inductor voltages in v to the state variables (or capacitor voltages and inductor currents) in
w using ohms law as follows:

2
6666664

~iC1

~iC2

~vL1

~vL2

3
7777775

¼ s

2
666664

C1 0 0 0

0 C2 0 0

0 0 L1 0

0 0 0 L2

3
777775$

2
6666664

~VC1

~VC2

~IL1

~IL2

3
7777775

¼ s$E$x (14.58)

We now rewrite Eq. (14.34) as

v ¼ M�1$N$w (14.59)
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Referring to Fig. 14.3, we can see from this matrix how the node voltages are made up. For example,
row 1 gives us ~v1 ¼ ~e1 and row 4 gives us

~v4 ¼ ~VC1
� ~VC2 � R3~IL2:

Similarly, the remaining rows give us the voltage source and capacitor currents and inductor voltages.
By comparing Eq. (14.60) with the system of equations (14.1) and (14.2), we can partition the matrix
thus: "

y

s$E$x

#
¼ M�1$N$

"
x

u

#
¼

"
C D

E$A E$B

#
$

"
x

u

#
(14.61)
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Using

E�1 ¼

2
66664
1=C1 0 0 0

0 1=C2 0 0

0 0 1=L1 0

0 0 0 1=L2

3
77775 (14.63)

gives

A ¼ E�1$E$A ¼

2
666664
� 1

C1

�
1

R1
þ 1

R2

�
0 �1=C1 �1=C1

0 0 0 �1=C2

1=L1 0 0 0

1=L2 �1=L2 0 �R3=L2

3
777775; (14.64)

B ¼ E�1$E$B[

2
6666666664

1

C1R1

0

0

0

3
7777777775

(14.65)

Now we have furnished Eqs. (14.1) and (14.2) with A, B, C, and D, we can solve them using the
Faddeev–Leverrier algorithm.
14.8 SOLUTION OF THE WORKED EXAMPLE USING THE FADDEEV–
LEVERRIER ALGORITHM [9]
The transfer function fi,j between the j th (voltage or current) source i th node voltage is a rational
polynomial of the form

fi;j ¼
PN

n¼ 1 Qnði; jÞsN�n

sN þPN
n¼ 1 PnsN�n

(14.66)

except when the i th output voltage node is also that of the j th voltage source such that D(i,j) ¼ 1, in
which case we add sN to the numerator of Eq. (14.66) so that it becomes unity. The polynomial
coefficients are calculated using the following procedure:



14.8 Solution of the worked example using the Faddeev–Leverrier algorithm 649
F1 ¼ I;

G1 ¼ A;

P1 ¼ �TrðG1Þ;

Fn ¼ Gn�1 þ Pn�1:I;

Gn ¼ A$Fn;

Pn ¼ � TrðGnÞ
n

Qnði; jÞ ¼ ½C$Fn$Bþ D$Pn�i;j

(14.67)

where Tr( ) denotes the trace of the matrix and I is the identity matrix. In our worked example of
Fig. 14.3, we obtain for node 4:

f4;1 ¼ ~v4
~e1

¼ Q1ð4; 1Þs3
s4 þ P1s3 þ P2s2 þ P3sþ P4

(14.68)

where

P1 ¼ R1 þ R2

R1R2C1
þ R3

L2
(14.69)

P2 ¼ 1

L1C1
þ 1

L2C1
þ 1

L2C2
þ R1 þ R2

R1R2C1

R3

L2
(14.70)

P3 ¼ R1 þ R2

R1R2C1C2L2
þ 1

L1C1

R3

L2
(14.71)

P4 ¼ 1

L1C1L2C2
(14.72)

Q1ð4; 1Þ ¼ 1

R1C1
¼ ðBlÞ2

REðMMD þ S2DMARÞ
(14.73)

from Eq. (14.15). For node 2 we have

f2;1 ¼ ~v2
~e1

¼ Q1ð2; 1Þs3 þ Q2ð2; 1Þs2 þ Q3ð2; 1Þs
s4 þ P1s3 þ P2s2 þ P3sþ P4

(14.74)

where the denominator coefficients are the same as for f4,1, but the numerator coefficients are

Q1ð2; 1Þ ¼ 1

R1C1
(14.75)
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Q2ð2; 1Þ ¼ 1

R1C1

R3

L2
(14.76)

Q3ð2; 1Þ ¼ 1

R1C1

1

C2L2
(14.77)

14.9 FAR-FIELD ON-AXIS PRESSURE
The far-field on-axis pressure is calculated from the voltage at node 4 by combining Eqs. (14.20) and
(14.21):

~pðrÞ ¼ s
r0SD
4pBlr

~v4 (14.78)

Also, it is convenient to express the polynomial coefficients in terms of the Thiele–Small parameters
which are the standard specifications for loudspeaker drive units:

~pðrÞ ¼ ~e1BlSDr0
4prREMMS

�
s4

s4 þ P1s3 þ P2s2 þ P3sþ P4

�
(14.79)

where
P1 ¼ uS

QTS
þ uB

QL
(14.80)

P2 ¼
�
1þ VAS

VB

�
u2
S þ u2

B þ uSuB

QTSQL
(14.81)

P3 ¼ uSu
2
B

QTS
þ u2

SuB

QL
(14.82)

P4 ¼ u2
Su

2
B (14.83)
where

uS is the angular suspension resonant-frequency in an infinite baffle given by

uS ¼ 1ffiffiffiffiffiffiffiffiffiffi
L1C1

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p (14.84)
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QES is the electrical Q factor

QES ¼ uSR1C1 ¼ uS
Rg þ RE

ðBlÞ2 MMS (14.85)

QMS is the mechanical Q factor

QMS ¼ uSR2C1 ¼ uS
1

RMS
MMS (14.86)

QTS is the total Q factor

QTS ¼ QESQMS

QES þ QMS
(14.87)

uB is the angular resonant-frequency of the box and port (including end corrections)
given by

uB ¼ 1ffiffiffiffiffiffiffiffiffiffi
L2C2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MATCAB

p (14.88)

QL is the acoustical Q factor due to box and port losses

QL ¼ uB
L2
R3

¼ uBRALCAB (14.89)

VB is the box volume which is related to the acoustic compliance by

VB ¼ gP0CAB (14.90)

and VAS is the suspension equivalent volume

VAS ¼ S2DgP0CMS (14.91)

There are just six Thiele–Small parameters which completely define a loudspeaker: RE, QES, QMS, fS,
SD, and VAS, where

Bl ¼ SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
REgP0

QESuSVAS

r
(14.92)
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14.10 WORKED EXAMPLE NO. 2: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING THE NORTON EQUIVALENT SOURCE
In order to illustrate the use of current sources in state-variable analysis, we will use Norton’s theorem
in order to convert the voltage source from the previous example into a current source, as shown in
Fig. 14.4. It can be seen that a node is removed in the process.

Proof. Suppose we connect a resistor RL between the output terminal and ground. In the case of the
voltage source, the load current is ~e=ðRþ RLÞ. Therefore, the output voltage is ~e0 ¼ ~eRL=ðRþ RLÞ. In
the case of the current source, the output voltage is ~e0 ¼ ~iðR==RLÞ ¼ ~iRRL=ðRþ RLÞ. Hence, it can
be seen that the two output voltages are equal when ~i ¼ ~e=R.

Thus the circuit of Fig. 14.3 can be redrawn as shown in Fig. 14.5. The revised net list is shown in
Table 14.3, and the A matrix becomes
4

3
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which can be partitioned into four matrices: AS, AR, AC, and AL representing the connectivity of the
sources, resistors, capacitors, and inductors respectively:
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FIG. 14.4 Norton’s theorem.
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FIG. 14.5 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure using Norton equivalent source.
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Now let us return to the circuit of Fig. 14.5. As before, the first step of the analysis is to apply KCL at
each of the nodes:

At node 2

~e1
R1

þ ~v2
R1

þ ~v2
R2

þ ~IL1 þ ~iC1 þ ~iC2 ¼ 0 (14.95)

At node 3

~iC2 ¼ ~v3 � ~v4
R3

(14.96)

At node 4

~v3 � ~v4
R3

¼ ~IL2 (14.97)
Next we apply KVL to the capacitors and inductors:

For C1

~v2 ¼ ~VC1 (14.98)

For C2

~v2 � ~v3 ¼ ~VC2 (14.99)
Table 14.3 Net list for worked example No. 2

Element From node To node

~e1=R1 2 0

R1 2 0

R2 2 0

R3 3 4

C1 2 0

C2 2 3

L1 2 0

L2 4 0
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For L1

~v2 ¼ ~vL1 (14.100)

For L2

~v4 ¼ ~vL2 (14.101)

We now rearrange Eqs. (14.95) to (14.101) into the following set of simultaneous equations:�
1

R1
þ 1

R2

�
~v2 þ ~iC1 þ ~iC2 ¼ ~e1

R1
� ~IL1

~v3
R3

� ~v4
R3

� ~iC2 ¼ 0

� ~v3
R3

þ ~v4
R3

¼ �~IL2

~v2 ¼ ~VC1

~v2 � ~v3 ¼ ~VC2

~v2 � ~vL1 ¼ 0

~v4 � ~vL2 ¼ 0

(14.102)

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M$v ¼ N$w (14.103)
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If we delete the first and middle rows and columns of matrix M in Eq. (14.35), which represent the
voltage source node voltage and current respectively, it can be seen that it is the same matrix M as in
Eq. (14.104). Likewise, if we delete the first and middle rows of matrix N in Eq. (14.36), it can be seen
that it is the same matrix N as in Eq. (14.105). Exactly the same method as before is used to solve
Eq. (14.103), resulting in the same expressions for the node voltages.
14.11 WORKED EXAMPLE NO. 3: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING A TRANSFORMER AND GYRATOR
The equivalent circuit shown in Fig. 14.6 is essentially the same as that shown in Fig. 14.3, except that
the mechanical and acoustical sections are in their own respective domains and the acoustical section is
shown using the impedance analogy instead of the electrical one. A transformer separates the
mechanical domain from the electrical one, while the gyrator performs the dual functions of separating
the acoustical domain from the mechanical one as well as providing the transition from admittance to
impedance analogies. The elements are now given by

t1 ¼ Bl (14.106)

g1P ¼ g1S ¼ SD (14.107)
R1 

L1 C1 R2 

1
~v  

3
~v  

L2 R3 

4
~v  
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t1 :1 
2
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g1P g1S 

U
~

 

T1 G1 

1
~e  

FIG. 14.6 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure using transformer and gyrator.
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R1 ¼ RE (14.108)

R2 ¼ 1

RMS
(14.109)

R3 ¼ RAL (14.110)

C1 ¼ MMD þ S2DMAR (14.111)

C2 ¼ CAB (14.112)

L1 ¼ CMS (14.113)

L2 ¼ MAP (14.114)

~v1 ¼ ~e1 (14.115)

~v2 ¼ sBl~x (14.116)

~v3 ¼ ~u ¼ s~x (14.117)

~v4 ¼ ~p ¼ 1

sC2

~U (14.118)

~pðrÞ ¼ s
r0 ~U

2p r
(14.119)

Of course, the above quantities, except for R1, are no longer electrical, but it is convenient for the
purpose of the following analysis to keep them as electrical terms. In the computer program, it is not
important what units are used, so long as they are consistent. The net list can be written as shown in
Table 14.4, from which the following A matrix is created:
4
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2

1

  

101010001000

010101100100
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000000000011
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which can be partitioned into six matrices: AS, AR,AT, AG, AC, andAL representing the connectivity of
the sources, resistors, transformers, gyrators, capacitors, and inductors respectively:
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Now let us return to the circuit of Fig. 14.6. As before, the first step of the analysis is to apply KCL at
each of the nodes. The primary and secondary currents of the transformer T1 are denoted by ~iT1P and
~iT1S respectively. Likewise, the primary and secondary currents of the gyrator G1 are denoted by ~iG1P
and ~iG1S respectively.

At node 1

~ie1 ¼ ~v2 � ~v1
R1

(14.122)

At node 2

~v1 � ~v2
R1

¼ ~iT1P (14.123)
Table 14.4 Net list for worked example No. 3

Element From node To node

~e1 1 0

R1 1 2

R2 3 0

R3 4 0

T1P 2 0

T1S 3 0

G1P 3 0

G1S 4 0

C1 3 0

C2 4 0

L1 3 0

L2 4 0
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At node 3

� ~iT1S ¼ ~v3
R2

þ ~IL1 þ ~iC1 þ ~iG1P (14.124)
At node 4

� ~iG1S ¼ ~v4
R3

þ ~IL2 þ ~iC2 (14.125)

For the transformer T1, we have the following pair of equations that define the voltage and current
cross-coupling:

~v2 ¼ t1~v3 (14.126)

~iT1S ¼ �t1~iT1P (14.127)

For the gyrator G1, we have the following pair of equations that define the forward and reverse
coupling via the mutual conductances g1P and g1S respectively:

� ~iG1S ¼ g1P~v3 (14.128)

~iG1P ¼ g1S~v4 (14.129)

For the voltage source

~v1 ¼ ~e1: (14.130)

Next we apply KVL to the capacitors and inductors:

For C1

~v3 ¼ ~VC1 (14.131)

For C2

~v4 ¼ ~VC2 (14.132)

For L1

~v3 ¼ ~vL1 (14.133)

For L2

~v4 ¼ ~vL2 (14.134)
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We now rearrange Eqs. (14.122) to (14.134) into the following set of simultaneous equations:

1

R1
~v1 � 1

R1
~v2 þ ~ie1 ¼ 0

� 1

R1
~v1 þ 1

R1
~v2 þ ~iT1P ¼ 0

1

R2
~v3 þ ~iT1S þ ~iG1P þ ~iC1 ¼ �~IL1

1

R3
~v4 þ ~iG1S þ ~iC2 ¼ �~IL1

~v2 � t1~v3 ¼ 0

t1~iT1P þ ~iT1S ¼ 0

~v3 þ 1

g1P
~iG1S ¼ 0

~v4 � 1

g1S
iG1P ¼ 0

~v1 ¼ ~e1

~v3 ¼ ~VC1

~v4 ¼ ~VC2

~v3 � ~vL1 ¼ 0

~v4 � ~vL2 ¼ 0

(14.135)

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M$v ¼ N$w (14.136)
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Now let us partition the matrix M as follows:

M ¼

2
64
M11 M12 M13

M21 M22 M23

M31 M31 M33

3
75 (14.139)

where
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On inspection of Eqs. (14.121) and (14.140), it becomes apparent that

M12 ¼ AT (14.141)

M13 ¼ ½AG AS AC 0 � (14.142)

and

M31 ¼

2
66664
At
G

At
S

At
C

At
L

3
77775 (14.143)

because they simply represent the nodes across which the transformers, gyrators, voltage sources,
capacitors, and inductors are connected. Also, matrix M33 contains a negative unity matrix repre-
senting the inductors plus some off-diagonal terms for the forward and reverse mutual conductances of
the gyrator. The matrices M21 and M22 represent the voltage and current transfer characteristics
respectively of the transformer. We note that
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At
T ¼

"
0 1 0 0

0 0 1 0

#
(14.144)

The first row ofM21 is obtained by multiplying the second row of At
T (which represents the secondary

voltage) by �t and then adding it to the first row (which represents the primary voltage). This gives us
the voltage relationship of Eq. (14.126). The second row of M21 is simply null. If there is more than
one transformer, the same process is repeated for each successive pair of rows. The first row ofM22 is
null with the second row giving the current transfer ratio. MatricesM23 andM32 are both null. Finally,
matrix M11 is given by

M11 ¼ AR$YR$A
t
R (14.145)

as before. Also, matrix N is constructed in exactly the same way as before and the same method is used
to solve Eq. (14.136).
14.12 WORKED EXAMPLE NO. 4: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING CONTROLLED SOURCES
The equivalent circuit shown in Fig. 14.7 is essentially the same as that shown in Fig. 14.6, except
for two modifications which, as we shall see, do not affect its operation. First, the transformer has
been replaced by the combination of a current-controlled current source (CC1) in the forward
direction and a voltage-controlled voltage source (VV1) in the reverse direction such that the
current source represents Eq. (14.127) and the voltage source Eq. (14.126). Second, the gyrator has
been replaced by two voltage-controlled current sources: one in the forward direction (VC1)
representing Eq. (14.128) and the other in the reverse direction representing Eq. (14.129). Because
the nodal method used here prevents the connection of a short-circuit between two nodes, a small
value resistor (R4) is connected between the current-sensing terminals of the current-controlled
current source CC1. In the case of a symbolic transfer function, R4 can be set to zero in the final
solution.

Although it is simpler to use transformers and gyrators directly, the purpose of this circuit is
illustrative since it is quite common to encounter acoustical systems with active components, for
example loudspeakers with current or motional feedback, where the amplifier can be represented as
R1

L1 C1R2
5

~v

3
~v

L2R3

4
~v

C2

2
~v

U
~

CC1 (t1)

R4

1
~v

VV1 (t1) VC2 (g1S)

VC1 (−g1P)

1
~e

FIG. 14.7 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure using controlled sources.
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a controlled source. After using Norton’s theorem to replace the voltage source ~e1 with a current source
~e1=R1, the new net list can now be written as shown in Table 14.5, from which the following A matrix
is created:

5

4

3

2

1

  

0000   0   0   0   0   0  1−  1  010000

1010   0   1   1   0   0  0  0  001000

0101   1   0   0   1   1−  0  0  100100

0000   0   0   0   0   0  1  0  010010

0000   0   0   0   0   0  0  0  000011
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(14.146)
which can be partitioned into six matrices: AS, AR, AT, AG, AC, and AL representing the
connectivity of the sources, resistors, transformers, gyrators, capacitors, and inductors
respectively:
Table 14.5 Net list for worked example No. 4

Element From node To node

~e1 1 0

R1 1 2

R2 3 0

R3 4 0

R4 2 5

VV1P 3 0

VV1S 5 0

CC1P 2 5

CC1S 0 3

VC1P 3 0

VC1S 4 0

VC2P 4 0

VC2S 3 0

C1 3 0

C2 4 0

L1 3 0

L2 4 0
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Now let us return to the circuit of Fig. 14.7. As before, the first step of the analysis is to apply KCL at
each of the nodes. The secondary current of the voltage-controlled voltage source VV1 is denoted by
~iVV1S. Similarly, the secondary current of the current-controlled current source CC1 is denoted by
~iCC1S. Likewise, the secondary currents of the voltage-controlled current sources VC1 and VC2 are
denoted by ~iVC1S and ~iVC2S respectively.

At node 1

~ie1 ¼ ~v2 � ~v1
R1

(14.148)

At node 2

~v1 � ~v2
R1

¼ ~v2 � ~v5
R4

(14.149)

At node 3

~iCC1S ¼ ~v3
R2

þ ~IL1 þ ~iC1 þ ~iVC2S (14.150)

At node 4

~iVC1S þ ~v4
R3

þ ~IL2 þ ~iC2 ¼ 0 (14.151)

At node 5

~v2 � ~v5
R4

¼ ~iVV1S (14.152)
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For the current-controlled current source CC1, we have the following cross-coupled current
relationship:

~iCC1S ¼ t1
~v2 � ~v5
R4

(14.153)

For the voltage-controlled voltage source VV1, we have the following cross-coupled voltage
relationship:

~v5 ¼ t1~v3 (14.154)
For the voltage-controlled current sources VC1 and VC2, we have the following pair of equations that
define the forward and reverse coupling via the mutual conductances g1P and g1S respectively:

~iVC1S ¼ g1P~v3 (14.155)

~iVC2S ¼ g1S~v4 (14.156)
For the voltage source

~v1 ¼ ~e1 (14.157)

Next we apply KVL to the capacitors and inductors:

For C1

~v2 ¼ ~VC1 (14.158)

For C2

~v3 ¼ ~VC2 (14.159)
For L1

~v2 ¼ ~vL1 (14.160)
For L2

~v3 ¼ ~vL2 (14.161)
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We now rearrange Eqs. (14.148) to (14.161) into the following set of simultaneous equations:

1

R1
~v1 � 1

R1
~v2 þ ~ie1 ¼ 0

� 1

R1
~v1 þ

�
1

R1
þ 1

R4

�
~v2 � 1

R4
~v5 ¼ 0

1

R2
~v3 � ~iCC1S þ ~iVC2S þ ~iC1 ¼ �~IL1

1

R3
~v4 þ ~iVC1S þ ~iC2 ¼ �~IL2

� 1

R4
~v2 þ 1

R4
~v5 þ ~iVV1S ¼ 0

~v5 � t1~v3 ¼ 0

� t1
R4

~v2 þ t1
R4

~v5 þ iCC1S ¼ 0

~v3 � 1

g1P
~iVC1S ¼ 0

~v4 � 1

g1S
~iVC2S ¼ 0

~v1 ¼ ~e1

~v3 ¼ ~VC1

~v4 ¼ ~VC2

~v3 � ~vL1 ¼ 0

~v4 � ~vL2 ¼ 0

(14.162)

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M$v ¼ N$w (14.163)
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Now let us partition the matrix M as follows:

M ¼

2
64
M11 M12 M13

M21 M22 M23

M31 M31 M33

3
75 (14.166)

where
(14.167)
On inspection of Eqs. (14.147) and (14.167), it becomes apparent that

M12 ¼ ½AVVS ACCS� (14.168)

M13 ¼ ½AVCS AS AC 0� (14.169)

and

M31 ¼

2
66664
At
VCP

At
S

At
C

At
L

3
77775 (14.170)
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because they simply represent the nodes across which the controlled sources, voltage sources,
capacitors, and inductors are connected. Also, matrix M33 contains a negative unity matrix repre-
senting the inductors plus some diagonal terms for the mutual conductances of the voltage-controlled
current sources. The first row of M21 represents the transfer characteristic of the voltage-controlled
voltage source from Eq. (14.154):

M21 ¼
"
AVVS � t1A

t
VVP

�At
CCP

#
(14.171)

The second row of M21 in combination with the second row of M22 gives the current transfer char-
acteristic of the current-controlled current source from Eq. (14.153), where the parameter t1

�1R4 inM22

may be regarded as an equivalent mutual conductance between the input voltage and output current.
The first row of M22 is null as are also the matrices M23 and M32. Finally, matrix M11 is given by

M11 ¼ AR$YR$A
t
R (14.172)

as before. Also, matrix N is constructed in exactly the same way as before and the same method is used
to solve Eq. (14.163).
14.13 GYRATOR COMPRISING TWO CURRENT-CONTROLLED VOLTAGE
SOURCES
As a footnote, the only controlled source which has not been considered in the above worked examples
is the current-controlled voltage source. A gyrator is shown in Fig. 14.8a. In Sec. 14.12, the gyrator
used in Sec. 14.11 was replaced with a pair of voltage-controlled current sources as shown in
Fig. 14.8b. Alternatively, a gyrator can be replaced by a pair of current-controlled voltage sources as
shown in Fig. 14.8c. In each case, the governing equations are

~iS ¼ gP~vP (14.173)

~iP ¼ gS~vS (14.174)
Pv~  

g1P g1S 
Sv~  

Si
~  

Pi
~  

g1S
−1 g1S 

Sv~  
Si
~  Pv~  

Pi
~  −g1P

−1 
Pi
~  Pv~  

Sv~  
Si
~  −g1P 

RS 

RP 

(a) (b) (c)

FIG. 14.8 The gyrator (a) can be replaced by a pair of voltage-controlled current sources (b) or a pair of current-

controlled voltage sources (c).
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The configuration of Fig. 14.8c can be formulated in matrix system of equations in exactly the same
way as a voltage-controlled voltage source (see Sec. 14.12) where the voltage gains of the forward and
reverse controlled sources are �(RPgP)

�1 and (RSgS)
�1 respectively.
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