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PART XXX: SOUND FIELDS IN SMALL, REGULARLY SHAPED ENCLOSURES

10.1 INTRODUCTION
The study of sound in enclosures involves not only a search into how sounds are reflected backward
and forward in an enclosure but also investigations into how to measure sound under such conditions
and the effect various materials have in absorbing and controlling this sound. Also, of great importance
in applying one’s engineering knowledge of the behavior of sound in such enclosed spaces is an
understanding of the personal preferences of listeners, whether listening in the room where the music
is produced or listening at a remote point to a microphone pickup. Psychological criteria for acoustic
design have occupied the attention of many investigators and should always be borne in mind. This
chapter is confined to physical acoustics.

Two extremes to the study of sound in enclosures can be analyzed and understood easily. At the one
extreme we have small enclosures of simple shape, such as rectangular boxes, cylindrical tubes, or
spherical shells. In these cases the interior sound field is describable in precise mathematical terms,
although the analysis becomes complicated if the walls of the enclosures are covered in whole or in
part with acoustical absorbing materials.
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At the other extremewe have very large irregularly shaped enclosures where no precise description can
be made of the sound field but where a statistically reliable statement can be made of the average
conditions in the room. This is analogous to a study that a physician might make of a particular man to
determine the number of years he will live, as opposed to a study of the entire population on
a statistical basis to determine how long a man, on the average, will live. As might be expected, the
statistical study leads to simpler formulas than the detailed study of a particular case.
10.2 STATIONARY AND STANDING WAVES
One type of small regularly shaped enclosure, the rigidly closed tube, has been discussed already in Par
IV. This case provides an excellent example of the acoustical situation that exists in large enclosures.

First, we noted that along the x axis of the tube the sound field could be described as the combi-
nation of an outward-traveling wave and a backward-traveling wave. Actually, the outward-traveling
wave is the sum of the original free-field wave that started out from the source plus the outward-going
waves that are making their second, third, fourth, and so on, round trips. Similarly, the backward-
traveling wave is a combination of the first reflected wave and of waves that are making the return leg
of their second, third, fourth, and so on, round trips. These outward- and backward-traveling waves add
in magnitude to produce what is called a stationary wave if the intensity along the tube is zero. If there
is some, but not complete, absorption at the terminating end of the tube so that power flows along the
tube away from the source (intensity not equal to zero), it is called a standing wave. In the case of
complete absorption, we have a traveling or progressive wave.
10.3 NORMAL MODES AND NORMAL FREQUENCIES
We saw from Eq. (2.70) that whenever the driving frequency is such that sin kl/ 0, the pressure in the
tube reaches a very large value. That is to say, the pressure is very large whenever

kl ¼ np (10.1)

Then, because

k ¼ 2pf

c
¼ 2p

l

we have

fn ¼ nc

2l
(10.2)

or

l

ln
¼ n

2
(10.3)

where

n ¼ 1; 2; 3; 4;.N (10.4)

fn is nth resonance (normal) frequency of the tube.
ln c/fn is nth resonance (normal) wavelength of the tube.
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Equation (10.3) tells us that the pressure is very large whenever the length of the tube equals some
integral multiple of a half wavelength (l/2).

The condition where the frequency equals nc/2l so that a very large sound pressure builds up in the
tube is called a resonance condition or a normal mode of vibration of the air space in the tube. The
frequency fn of a normal mode of vibration is called a normal frequency. There are an infinite number
of normal modes of vibration for a tube because n can take on all integral values between 0 and infinity.
We may look on the tube, or in fact on any enclosure, as a large number of acoustic resonators, each
with its own normal frequency.

In the closed-tube discussion of Part IV, we made no mention of the effect on the results of the
cross-sectional shape or size of the tube. It was assumed that the transverse dimensions were less than
about 0.1 wavelength so that no transverse resonances would occur in the frequency region of interest.

If the transverse dimensions are greater than one-half wavelength, we have a small room which, if
rectangular, can be described by the dimensions shown in Fig. 10.1. Waves can travel in the room
backward and forward between any two opposing walls. They can travel also around the room
involving the walls at various angles of incidence. If these angles are chosen properly, the waves will
return on themselves and set up stationary or standing waves. Each standing wave is a normal mode of
vibration for the enclosure.

In Sec. 7.18, we solve such a rectangular enclosure, mathematically and describe exactly the
distribution of sound as determined by the strength of a piston source in one of the walls. In this
section, however, we shall describe the simplest cases in order to gain insight into the problem.

The number of modes of vibration in a rectangular enclosure is much greater than that for the
rigidly closed tube whose diameter is small compared with a wavelength. In fact, the normal
frequencies of such an enclosure are given by the equation

fn ¼ un

2p
¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nx
lx

�2

þ
�
ny
ly

�2

þ
�
nz
lz

�2
s

(10.5)

where

fn is the nth normal frequency in Hz.
nx, ny, nz are integers that can be chosen separately. They may take on all integral values between
0 and N.
lx, ly, lz are dimensions of the room in m.
c is speed of sound in m/s.
y

x

z

0

ly

lx

lz

FIG. 10.1 Dimensions and coordinate system for a rectangular enclosure.
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As an example, let us assume that the z dimension, lz, is less than 0.1 of all wavelengths being
considered. This corresponds to nz being zero at all times. Hence,

fnx;ny;0 ¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nx
lx

�2

þ
�
ny
ly

�2
s

(10.6)

Let lx¼ 4 m and ly¼ 3 m. Find the normal frequencies of the nx¼ 1, ny¼ 1 and the nx¼ 3, ny¼ 2
normal modes of vibration. We have

f1;1;0 ¼ 344:8=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=16þ 1=9

q
¼ 71:8 Hz

and

f3;2;0 ¼ 344:8=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=16þ 4=3

q
¼ 237 Hz

The sound-pressure distribution in a rectangular box for each normal mode of vibration with
a normal frequency un is proportional to the product of three cosines:

pnx;ny;nz f cos
pnxx

lx
cos

pnyy

ly
cos

pnzz

lz
e junt (10.7)

where the origin of coordinates is at the corner of the box. It is assumed in writing Eq. (10.7) that the
walls have very low absorption. If the absorption is high, the sound pressure cannot be represented by
a simple product of cosines.

If we inspect Eq. (10.7) in detail, we see that nx, ny, and nz indicate the number of planes of zero
pressure occurring along the x, y, and z coordinates, respectively. Such a distribution of sound pressure
levels can be represented by forward- and backward-traveling waves in the room. This situation is
analogous to that for the closed tube (one-dimensional case). Examples of pressure distributions for
three modes of vibration in a rectangular room are shown in Fig. 10.2. The lines indicate planes of
constant pressure extending from floor to ceiling along the z dimension. Note that nx and ny indicate the
number of planes of zero pressure occurring along the x and y coordinates, respectively.

The angles qx, qy, and qz at which the forward- and backward-traveling waves are incident upon and
reflect from the walls are given by the relations

qx ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðny=lyÞ2 þ ðnz=lzÞ2

q
nx=lx

¼ arccos
nxc

2lx fn
(10.8)

qy ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnx=lxÞ2 þ ðnz=lzÞ2

q
ny=ly

¼ arccos
nyc

2lyfn
(10.9)

qz ¼ similarly (10.10)

For the examples where nx¼ 1, ny¼ 1 and nx¼ 3, ny¼ 2, the traveling waves reflect from the x¼ 0
and x¼ lx walls at



FIG. 10.2 Sound-pressure contour plots on a section through a rectangular room.

The numbers on the plots indicate the relative sound pressure.
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ðqxÞ1;1;0 ¼ arctan
lx
ly

¼ arctan
4

3
¼ 53:1 �

ðqxÞ3;2;0 ¼ arctan
2lx
3ly

¼ arctan
8

9
¼ 41:6 �



FIG. 10.2 (continued )
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The angles of reflection at the y¼ 0 and y¼ ly walls are

ðqyÞ1;1;0 ¼ arctan
ly
lx

¼ arctan
3

4
¼ 36:9�

ðqyÞ3;2;0 ¼ arctan
3ly
2lx

¼ arctan
9

8
¼ 48:4�

The wave fronts travel as shown in (a) and (b) of Fig. 10.3. It is seen that there are two forward-
traveling waves (1 and 3) and two backward-traveling waves (2 and 4). In the three-dimensional case,
there will be four forward- and four backward-traveling waves.

When the acoustical absorbing materials are placed on some or all surfaces in an enclosure, energy
will be absorbed from the sound field at these surfaces and the sound-pressure distribution will be
changed from that for the hard-wall case. For example, if an absorbing material were put on one of the
lxlz walls, the sound pressure at that wall would be lower than at the other lxlz wall and the traveling
wave would undergo a phase shift as it reflected from the absorbing surface.

All normal modes of vibration cannot be excited to their fullest extent by a sound source placed at
other than a maximum pressure point in the room. In Fig. 10.2, for example, the source of sound can
excite only a normal mode to its fullest extent if it is at a 1.0 contour. Obviously, since the peak value of
sound pressure occurs on a 1.0 contour, the microphone also must be located on a 1.0 contour to
measure the maximum pressure.

If the source is at a corner of a rectangular room, it will be possible for it to excite every mode of
vibration to its fullest extent provided it radiates sound energy at every normal frequency. Similarly, if
a microphone is at the corner of the room, it will measure the peak sound pressure for every normal
mode of vibration provided the mode is excited.



(a) (b)

FIG. 10.3 Wave fronts and direction of travel for (a) nx[ 1, ny[ 1 normal mode of vibration; and (b) nx[ 3 and

ny[ 2 normal mode of vibration.

These represent two-dimensional cases where nz¼ 0. The numbers one and three indicate forward-traveling

waves, and the numbers two and four indicate backward-traveling waves.
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If either the source or the microphone is at the center of a rectangular room, only one-eighth of the
normal modes of vibration will be excited or detected, because at the center of the room seven-eighths
of the modes have contours of zero pressure. In Fig. 10.2, as an illustration, two out of the three normal
modes portrayed have contours of zero pressure at the center of the room. In fact, only those modes of
vibration having even numbers simultaneously for nx, ny, and nz will not have zero sound pressure at
the center.

Examples of the transmission of sound from a point source to an observation point in a model
sound chamber are shown in Fig. 10.4 and Fig. 10.5. The curves were obtained using the following
equation for the pressure at the observation point (x, y, z):

~pðx; y; zÞ ¼ � 4 r0c ~U0

lxly

XN
m¼ 0

XN
n¼ 0

k cos ðm px0=lxÞ cos ðn py0=lyÞ cos ðm px=lxÞ cos ðn py=lyÞ
kmnð1þ dm0Þð1þ d0nÞ

�
kmnZs
kr0c

cos kmnzþ j sin kmnz

cos kmnlz þ j
kmnZs
kr0c

sin kmnlz

(10.11)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
mp

lx

�2

�
�
np

ly

�2
s

(10.12)



FIG. 10.4 Comparison of two transmission curves calculated with and without an absorbing sample on a 762 by

607 mm wall of a model chamber with dimensions 762 by 607 by 406 mm. (a) bare chamber, (b) one wall absorbent

where Rfd/3 z r0c.

The source was in one corner (lx, ly, lz), and the observation point was diagonally opposite (0, 0 ,0). The plots are

of 20 log10ðlx ly ~pðx; y ; zÞ=ðr0c ~U0ÞÞ, where ~pðx ; y ; zÞ is calculated from Eq. (10.11). This result has also been

verified experimentally [14].
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FIG. 10.5 Same as Fig. 10.4, except that the point of observation is in the center of the room (lx /2, ly /2, lz /2).

(a) bare chamber, (b) one wall absorbent.
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and k¼u/c¼ 2p/l, which is derived in the same way as we derive the 2-port network for a bass-reflex
enclosure in Part XXIV, except that the rectangular pistons are replaced by a point source of volume
velocity ~U0 at a point (x0, y0, lz) described by the Dirac delta function

dðx� x0Þ dðy� y0Þ:
The absorbing material at z¼ 0 has a specific impedance Zs, which is related to the flow resistance Rf of
the material by

Zs ¼ Rf d

3
þ P0

j ud
(10.13)

where d is the thickness for the material, which is subtracted from lz. The eightfold increase in the
number of modes of vibration that were excited with the source at the corner over that with the source
at the center is apparent. It is apparent also that the addition of sound-absorbing material decreases the
height of resonance peaks and smoothes the transmission curve, particularly at the higher frequencies,
where the sound-absorbing material is most effective.
10.4 STEADY-STATE AND TRANSIENT SOUND PRESSURES
Sound pressure at normal modes. When a source of sound is turned on in a small enclosure, such as
that of Fig. 10.1, it will excite one or more of the stationary-wave possibilities, i.e., normal modes of
vibration in the room. Let us assume that the source is constant in strength and is of a single frequency
and that its frequency coincides with one of the normal frequencies of the enclosure. The sound pressure
for that normal mode of vibration will build up until the magnitude of its rms value (averaged in time
and also in space by moving the microphone backward and forward over a wavelength) equals [14]

jpnj ¼ K

kn
(10.14)

where

K is source constant determined principally by the strength and location of the source and by the
volume of the room.
kn is damping constant determined principally by the amount of absorption in the room and by the
volume of the room. The more absorbing material that is introduced into the room, the greater kn
becomes, and the smaller the value of the average pressure. The value of kn is inversely proportional
to the value of Qn.

Blocked-tube impedance and equivalent circuit. In order to illustrate what happens when the driving
frequency does not necessarily coincide with the normal frequency, we shall simplify the problem by
considering only those modes of vibration which occur in one direction only. Hence we may model the
room as a one-dimensional tube. Furthermore, although absorption mainly occurs at boundary
surfaces, we may simplify the problem even further by assuming that it occurs everywhere. Also, we
assume the acoustic resistance to have the same value at all frequencies, although this is unlikely in
practice. However, if the variation of resistance with frequency is known, the resistance value at each
normal frequency may be used to improve accuracy.

According to Eq. (2.72), the specific impedance ZT of a blocked tube is given by
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ZT ¼ �jZs cot kl (10.15)

which is expanded using Eq. (43) from Appendix II:

ZT ¼ �jZs
XN
n¼0

ð2� d0nÞkl
ðklÞ2 � n2p2

(10.16)

where from Eqs. (2.80), (2.84), and (2.85), the complex wavenumber k and characteristic impedance
Zs are given by

k ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P0

�
r0 þ

Rf

ju

�s
(10.17)

Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

�
r0 þ

Rf

ju

�s
(10.18)

where P0 is the static pressure, r0 is the density of air, and Rf is the flow resistance per unit length of the
filling material. Hence, the impedance of the tube may be written

ZT ¼ 1

C0s
þ
XN
n¼ 1

Zn (10.19)

where each impedance term is represented by a parallel resonance circuit in which

Zn ¼ 1

Cn
$

sþ Rn

Ln

s2 þ Rn

Ln
sþ 1

LnCn

(10.20)

where s = u and the specific compliance Cn, mass Ln, and resistance Rn element values are given by

C0 ¼ l

P0
; Cn ¼ l

2P0
; Ln ¼ 2r0l

n2p2
; Rn ¼ 2Rf l

n2p2
(10.21)

or

Zn ¼ 1

Cn
$

sþ un

Qn

s2 þ un

Qn
sþ u2

n

(10.22)

where the angular normal frequency un and Qn values are given by

un ¼ 1ffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼ npc

1=
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼ npr0cffiffiffi

g
p

Rf l
(10.23)

The equivalent circuit for a blocked tube using this impedance expansion is shown in Fig. 10.6a.
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Alternatively, we may use the expansion of Eq. (42) from Appendix II for the admittance:

ZT ¼ �j
Zs

tan kl
¼
 XN

n¼0

Yn

!�1

(10.24)

where

Yn ¼
1

Ln
s

s2 þ Rn

Ln
sþ 1

LnCn

(10.25)

and

Cn ¼ 2l�
nþ 1

2

�2

p2P0

; Ln ¼ r0l

2
; Rn ¼ Rf l

2
(10.26)

so that
(a)

L1

(b)

R1

C1

L2

R2

C2

C0 L0

R0

C0

L1

R1

C1

L2

R2

C2

FIG. 10.6 Equivalent circuits for the impedance ZT of a blocked tube using an impedance expansion (a) and an

admittance expansion (b).
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un ¼ 1ffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼

�
nþ 1

2

�
pc

l
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼

�
nþ 1

2

�
pr0cffiffiffi

g
p

Rf l
(10.27)

The equivalent circuit for a blocked tube using this admittance expansion is shown in Fig. 10.6b. In
general we use the impedance expansion to calculate the time response of the pressure as a function of
an input velocity and the admittance expansion to calculate the time response of the velocity as
a function of an input pressure.
Open-tube impedance and equivalent circuit. Although we shall only consider the decay of sound in
a blocked tube, the equivalent circuit of an open tube is derived here just for completeness as it is
frequently encountered in the field of acoustics.

According to Eq. (2.60) with ZT¼ 0, the specific impedance ZT of an open tube is given by

ZT ¼ jZs tan kl (10.28)

which is expanded using Eq. (42) from Appendix II:

ZT ¼
XN
n¼ 0

Zn (10.29)

where

Zn ¼ 1

Cn
$

sþ Rn

Ln

s2 þ Rn

Ln
sþ 1

LnCn

(10.30)

and

Cn ¼ l

2P0
; Ln ¼ 2r0l�

nþ 1

2

�2

p2

; Rn ¼ 2Rf l�
nþ 1

2

�2

p2

(10.31)

or

Zn ¼ 1

Cn
$

sþ un

Qn

s2 þ un

Qn
sþ u2

n

(10.32)

where

un ¼ 1ffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼

�
nþ 1

2

�
pc

1=
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼

�
nþ 1

2

�
pr0cffiffiffi

g
p

Rf l
(10.33)

The equivalent circuit for an open tube using this impedance expansion is shown in Fig. 10.7a.
Alternatively, we may use the expansion of Eq. (43) from Appendix II for the admittance:
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FIG. 10.7 Equivalent circuits for the impedance ZT of an open tube using an impedance expansion (a) and an

admittance expansion (b).
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ZT ¼ j
Zs

cot kl
¼

0
BB@

1

L0

sþ R0

L0

þ
XN
n¼1

Yn

1
CCA

�1

(10.34)

where

Yn ¼
1

Ln
s

s2 þ Rn

Ln
sþ 1

LnCn

(10.35)

and

Cn ¼ 2l

n2p2P0
; L0 ¼ r0l; Ln ¼ r0l

2
; R0 ¼ Rf l; Rn ¼ Rf l

2
(10.36)
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so that

un ¼ 1ffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼ npc

l
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼ npr0cffiffiffi

g
p

Rf l
(10.37)

The equivalent circuit for an open tube using this admittance expansion is shown in Fig. 10.7b.
Resonance curve. When the driving frequency does not coincide with the normal frequency, the
pressure for that particular mode of vibration builds up according to a standard resonance curve as
shown in Fig. 10.8. The maximum value of the resonance curve is given by

Zn
��
u¼un

¼ ðQn þ jÞQnRn

zQ2
nRn; Qn � 3

(10.38)

The width of the resonance curve at the half-power (3 dB down) points is equal to [1]

f}� f z
fn
Qn

(10.39)

When driven by an excitation velocity u0, the magnitude of the sound pressure pn for a single mode as
a function of frequency is given by

jpnj ¼ u0jZnj ¼ u0
Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2
nu

2 þ u2
n

Q2
nðu2

n � u2Þ2 þ u2
nu

2

s
(10.40)

where u is the angular driving frequency and un is the angular normal frequency given approximately
by Eq. (10.5).
FIG. 10.8 Resonance curve for a normal mode of vibration with Qn[ 3.

Sound pressure level vs. the ratio of frequency to fn.
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Obviously, if the driving frequency lies between two normal frequencies, or if kn is large so that the
resonance curve is broad, more than one normal mode of vibration will be excited significantly, each to
the extent shown by Eq. (10.40). Because the phase above a normal frequency is opposite to that below
it, there will be a cancellation at some frequency between a pair of adjacent normal frequencies,
leading to a minimum impedance value. These minimum impedance frequencies correspond to the
resonance frequencies un in the admittance expansion.
Transient response. When the source of sound is turned off, each normal mode of vibration
behaves like an electrical parallel-resonance circuit in which energy has been stored initially. The
pressure for each normal mode of vibration will decay exponentially at its own normal frequency
as shown in Fig. 10.9. In order to simulate the decay of sound, let us apply an impulse to our tube
model, rather like a hand clap in a room. We simply take the expression for the impedance of each
mode given by Eq. (10.22) and apply the inverse Laplace transform given by Table 6.2 in Sec. 6.17
to obtain

pnðtÞ ¼ u0ZnðtÞ ¼ u0
Cn

e�un t cos qn
sin ðqn þ unt sin qnÞ

sin qn
(10.41)

where cos qn¼ 1/(2Qn). If only one mode of vibration is excited, the decay is as shown in Fig. 10.9a.
Stated differently, on a log pn scale vs. time, the magnitude of the rms sound pressure level decays
linearly with time.

If two or more modes of vibration are decaying simultaneously, beats will occur because each
has its own normal frequency (Fig. 10.9b). However, as we superimpose an ever greater number of
modes, the waveform becomes a series of impulses (Fig. 10.9c), as we would expect, due to the
original impulse being reflected at each end of the tube and thus making multiple round journeys
along it. In a real room, as opposed to a simple one-dimensional tube, early reflections would
behave in a similar manner, being distinct and thus specular in nature. However, later reflections
resulting from random reflections off multiple surfaces tend to cluster together and are termed
diffuse.

In this illustration, each mode has the same decay constant (un/2Qn¼ Rf /2r0) because the specific
flow resistance per unit length Rf has been assumed to be independent of frequency. However, it is very
possible that each will have its own decay constant, dependent upon the position of the absorbing
materials in the room.

In actual measurements of sound in rooms, it is quite common to use fast Fourier transforms (FFTs)
to create waterfall plots of the sound-pressure decay against both time T and frequency f, which in this
case is obtained as follows:

pnð f ; TÞ ¼ u0
Cn

ZTþdt

T�dt

�
0:54� 0:46 cos

t � T þ dt

dt
p

�
e�un t cos qn

sin ðqn þ unt sin qnÞ
sin qn

e j2pft dt

(10.42)

where the integration is performed over a sliding interval or “window” of width 2dt centered on
the time of interest T. The term in parenthesis is the Hamming window function, which mini-
mizes any unwanted frequency components that may otherwise appear in the spectrum due to the
finite integral limits. In this way we can plot the variation of the frequency spectrum with time
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FIG. 10.9 (a) Sound-pressure decay curve for the first mode of vibration. (b) Sound-pressure decay curve for the

first two modes of vibration. (c) Sound-pressure decay curve for the first ten modes of vibration in a blocked tube,

where l = 3.5 m and Rf = 10 rayls/m.
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and thus see how the individual normal modes of vibration decay relative to each other, as shown
in Fig. 10.10.

In summary, we see that when a sound source of a given frequency is placed in an enclosure, it will
excite one or more of the infinity of resonance conditions, called normal modes of vibration. Each of
those normal modes of vibration has a different distribution of sound pressures in the enclosure, its



FIG. 10.10 Waterfall plot of sound-pressure decay in a tube in which l[ 3.5 m, Rf[ 10 rayls/m, dt[ 0.5 s, and

the first five modes are summed in the calculation.

The 0th mode is ignored because it simply gives a constant change in pressure.
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own normal frequency, and its own damping constant. The damping constant determines the maximum
height and the width of the steady-state sound-pressure resonance curve.

In addition, when the source of sound is turned off, the sound pressure associated with
each mode of vibration decays exponentially with its own normal frequency and at a rate deter-
mined by its damping constant. The room is thus an assemblage of resonators that act indepen-
dently of each other when the sound source is turned off. The larger the room and the higher the
frequency, the nearer together will be the normal frequencies and the larger will be the number of
modes of vibration excited by a single-frequency source or by a source with a narrow band of
frequencies.
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10.5 EXAMPLES OF RECTANGULAR ENCLOSURES
Example 10.1. Determine the normal frequencies and directional cosines for the lowest six normal
modes of vibration in a room with dimensions 5 by 4 by 3 m.

Solution. From Eq. (10.5) we see that

f1;0;0 ¼ 348:8=2� 1=5 ¼ 34:9 Hz

f0;1;0 ¼ 348:8=2� 1=4 ¼ 40:4 Hz

f1;1;0 ¼ 348:8=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=25þ 1=16

q
¼ 55:8 Hz

f2;0;0 ¼ 348:8=2� 2=5 ¼ 69:8 Hz

f2;1;0 ¼ 348:8=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=25þ 1=16

q
¼ 82:3 Hz

f0;0;1 ¼ 348:8=2� 1=3 ¼ 58:1 Hz

From Eqs. (10.8) to (10.10) we find the direction cosines for the various modes as follows:

ð1; 0; 0Þ mode : qx ¼ 0; qy ¼ 90�; qz ¼ 90�

ð0; 1; 0Þ mode : qx ¼ 90�; qy ¼ 0�; qz ¼ 90�

ð1; 1; 0Þ mode : qx ¼ arc cos
348:8

2� 5� 55:8
¼ 51:3�

qy ¼ arc cos
348:8

2� 4� 55:8
¼ 38:6�

qz ¼ 90�

ð2; 0; 0Þ mode : qx ¼ 0; qy ¼ 90�; qz ¼ 90�

ð2; 1; 0Þ mode : qx ¼ arc cos
2� 348:8

2� 5� 82:3
¼ 32:1�

qy ¼ arc cos
348:8

2� 4� 82:3
¼ 58:0�

qz ¼ 90�

ð0; 0; 1Þ mode : qx ¼ 90�; qy ¼ 90�; qz ¼ 0�

Example 10.2. A rectangular room with dimensions lx¼ 3 m, ly¼ 4 m, and lz¼ 5 m is excited by
a sound source located in one corner of the room. The sound pressure level developed is measured at
another corner of the room. The sound source produces a continuous band of frequencies between 450
and 550 Hz, with a uniform spectrum level, and a total acoustic-power output of 1 watt. When the
sound source is turned off, a linear decay curve (log p vs. t) is obtained which has a slope of 30 dB/s.
(a) Determine graphically the number of normal modes of vibration excited by the source; (b)
determine the approximate angle of incidence of the traveling-wave field involving the walls at x¼ 0
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and x¼ lx in each of the principal groupings of normal frequencies shown in the graphical
construction.

Solution. (a). A graphical solution to Eq. (10.5) is given in Fig. 10.11. The frequency of any
given normal mode of vibration is the distance from the origin of coordinates to one of the black
spheres shown. That frequency will be made up of three components given by cnx/2lx, cny/2ly,
and cnz/2lz. Notice that along the vertical coordinate the normal frequencies occur in increments
of 348:8=6; along the right-hand axis in increments of 348:8=8 and along the remaining axis
FIG. 10.11 Normal frequency diagram, drawn to scale for a 3 by 4 by 5 m rectangular room with hard walls.

Most of the vertical lines are omitted to avoid confusion.

After Hunt, Beranek, and Maa, [14] Analysis of Sound Decay in Rectangular Rooms, J. Acoust. Soc. Am., 11: 80–94 (1939).
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in increments of 348:8=10. On the layer labeled N0, there are 53 normal frequencies. The total
number of normal frequencies between 450 and 550 Hz for this room is 507. The average
frequency is 500 Hz.

Solution. b. The qx angles of incidence can be divided into ten principal groups as shown in
Fig. 10.11. The angles are as follows:

qxð0; ny; nzÞz 90�

qxð1; ny; nzÞz cos�1

�
345=6$1=500

�
z 83�

qxð2; ny; nzÞz cos�1

�
2:345

6:500

�
z 77�

qxð3; ny; nzÞz cos�1 ð0:345Þz 70�

qxð4; ny; nzÞz cos�1 ð0:46Þz 63�

qxð5; ny; nzÞz cos�1 ð0:575Þz 55�

qxð6; ny; nzÞz cos�1 ð0:69Þz 46�

qxð7; ny; nzÞz cos�1 ð0:805Þz 36�

qxð8; ny; nzÞz cos�1 ð0:92Þz 23�

qxð9; ny; nzÞz cos�1 ð0:995Þz 6�

PART XXXI: SOUND IN LARGE ENCLOSURES

10.6 BASIC MATTERS
When a sound source, having components that extend over a band of frequencies, radiates sound
into a large irregular enclosure, a microphone that is moved about will experience fluctuations in
sound pressure. The maxima and minima of these fluctuations will lie much closer together in
such an enclosure than in a small or regular enclosure because there are a large number of room
resonances in all bands except for the very lowest frequency bands. Thus, in these enclosures, the
mean-square sound pressure can be determined by moving the microphone back and forth over
a short distance. The sound field is largely a superposition of plane waves traveling in all
directions with equal probability. This condition is called a diffuse sound field. In order to avoid
the influence of the direct sound, this condition is experienced at a reasonable distance from the
source.

The number of reflections from surfaces in such a room per second is equal to c/d where d is the
mean free path of the wave and c is the speed of sound. By actual measurements in rooms of varying
shapes and sizes it has been found that mean free path is equal to

d ¼ 4V

S
m (10.43)



Surface with α

FIG. 10.12 Path of a sound wave with energy density D 0 as it travels distances of 4V/S and reflects off surfaces with

average absorption coefficient a.
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where V is the volume of the room in m3 and S is the total area of the surfaces of the room in m2. If,
after establishing a steady-state sound field, the source of sound is turned off, the sound energy stored
in the enclosure will decrease with each reflection (See Fig. 10.12) according to

DðnÞ ¼ D 0ð1� aÞn (10.44)

where D0 is the steady-state energy density before the source was turned off, n is the
number of reflections that have occurred, and a is the sound absorption coefficient, which is taken to be
averaged for all angles of incidence. By replacing n with ct/d¼ (cS/4V)t the decay formula is

DðtÞ ¼ D 0ð1� aÞðcs=4VÞt ¼ D 0e�ðcs=4VÞð�lnð1�aÞÞt (10.45)

where ln is the logarithm to the base e. In a reverberant sound field, the energy density is proportional
to the mean-square sound pressure. Hence

p2avðtÞ ¼ p2avð0Þe�ðcs=4VÞð�lnð1�aÞÞt (10.46)

Because 10log10 of the exponential function equals

10ðcS=4VÞðlog10ð1� aÞÞt;
where we have used the relationship log10 x¼ log10 e$ln x, the sound pressure level decays at the rate
of

� 10 cS

4V
log10ð1� aÞ dB=s (10.47)

10.7 THE REVERBERATION EQUATIONS
The reverberation time of the enclosure is defined as the time required for the sound pressure level to
fall 60 dB. Thus, the well-known Eyring equation [2], which gives the reverberation time T for an
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energy drop of 60 dB, is obtained from Eq. (10.47), with S¼ Stot¼
P

Si, where Si’s are areas of
particular surfaces in the room, such as audience area and ceiling area:

T ¼ 24V

�cStot log10ð1� aeyÞ s (10.48)

where, V¼ volume of room in m3, Stot¼ area of all surfaces in the room, and aey is the average sound
absorption coefficient for the surfaces Si as shown in Fig. 10.12. The Eyring equation is usually
presented with either the natural logarithm or log10 in the denominator and with c taken as 343.5 m/s at
20�C so that

T ¼ 0:161V

Stot
�� lnð1� aeyÞ

� ¼ 0:161V

Stot
�� 2:30 log10ð1� aeyÞ

� s (10.49)

Note that if the surfaces are perfectly absorbing, i.e., aey¼ 1.0, the reverberation time T goes to zero.
The Sabine equation [3] was derived by Wallace Sabine from measurements he made in a number

of rooms at Harvard University:

T ¼ 0:161V

Stotatot
s ðmetric unitsÞ (10.50)

T ¼ 0:049V

Stotatot
s ðEnglish unitsÞ (10.51)

Note that, in the Sabine equation, T only goes to zero if atot approaches infinity. Even today, most
published data on acoustical materials and the absorption of audiences and the like have been obtained
using the Sabine equation, partly because the formula is simpler to use and partly because for aey less
than 0.26, atot is decreasingly less than 0.3.

It is possible to derive the absorption coefficients in one equation from the absorption coefficients
in the other equation [4]. In the Sabine equation, let

atot ¼
P

as;iSi
Stot

(10.52)

where, as,i is the Sabine absorption coefficient for a particular area Si, and Stot¼ SSi.
In the Eyring equation, let

aey ¼
P

ae;iSi
Stot

(10.53)

where ae,i is the Eyring absorption coefficient for a particular area Si.
Then, we find

aey

atot
¼
P

ae;iSiP
as;iSi

(10.54)

Hence

ae;i ¼ ðaey=atotÞas;i: (10.55)



Table 10.1 Measured values of air attenuation constantm (multiplied by 4) in m�1 as a function
of frequency, temperature, and relative humidity

Relative humidity Temperature �C (�F) 2000 Hz 4000 Hz 6300 Hz 8000 Hz

30% 15� (59�)
20� (68�)
25� (77�)
30� (86�)

0.0147
0.0122
0.0111
0.0114

0.0519
0.0411
0.0335
0.0292

0.1144
0.0937
0.0759
0.0633

0.1671
0.1431
0.1178
0.0975

50% 15� (59�)
20� (68�)
25� (77�)
30� (86�)

0.0096
0.0092
0.0101
0.0119

0.0309
0.0258
0.0234
0.0234

0.0712
0.0577
0.0489
0.0443

0.1102
0.0896
0.0748
0.0655

70% 15� (59�)
20� (68�)
25� (77�)
30� (86�)

0.0081
0.0088
0.0105
0.0131

0.0231
0.0208
0.0208
0.0231

0.0519
0.0437
0.0396
0.0391

0.0808
0.0671
0.0586
0.0548
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10.8 AIR ABSORPTION
As a sound wave travels from one reflection to another in a room, some energy is lost in the air itself.
Such absorption in all but very large rooms is appreciable only at frequencies above 1000 Hz. When
the reverberation equations are corrected to account for air absorption, they read as follows.

Eyring Equation, metric units:

T ¼ 0:161V

Stot
�� lnð1� aeyÞ

�þ 4mV
¼ 0:161V

Stot
�� 2:30 log10ð1� aeyÞ

�þ 4mV
: (10.56)

Sabine Equation, metric units:

T ¼ 0:161T

Stotatot þ 4mV
; (10.57)

where m is the energy attenuation constant in units of reciprocal length. Measured values of 4m under
some typical atmosphere conditions are shown in Table 10.1.
10.9 TOTAL STEADY SOUND-PRESSURE LEVEL
We are now in a position to incorporate the direct sound field from a source into the energy equations
and calculate the total steady-state sound pressure level.
Direct steady-state sound pressure. The space-average sound pressure in a room (determined by
moving a microphone back and forth over at least one wavelength) at a distance r from a small
directional source radiating W watts is
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p2ðrÞ ¼ r0cW

4pr2
Q N2=m4; (10.58)

where Q is the directivity index (not in decibels) (see Sec. 4.16).
Reverberant steady-state sound pressure. The sound power absorbed by the first reflection is Wa,
hence the power remaining for the reverberant field is Wr¼W(1 � a). Let t0 be the length of time it
takes for the sound to travel one mean-free-path length:

t 0 ¼ 4V

cS
s: (10.59)

Let the steady-state value of the reverberant energy density be Dr
0. Then, the total energy per second

removed from the room is

Dr
0Va
t 0

¼ Wr; (10.60)

which yields, where pr
2¼Dr

0r0c2,

p2r ¼ 4r0cW

Sa
ð1� aÞ N2=m4: (10.61)

Total steady-state sound pressure. Combining Eqs. (10.58) and (10.61) yields

p2ðrÞ ¼ Wr0c

�
Q

4pr2
þ 4ð1� aÞ

Sa

	
N2=m4; (10.62)

The restrictions on this equation are that a not be too large and the mean free path is about 4V/S. The
absorption coefficient a is the Eyring coefficient.
10.10 OPTIMUM REVERBERATION TIME
The following formula [5–10] gives the average optimum reverberation time T for a given auditorium
volume V based on subjective results:

log10V ¼ 5:72þ log10T � 2:43ffiffiffiffi
T

p ; (10.63)

which is solved numerically for T and plotted in Fig. 10.13.
10.11 SOUND STRENGTH G
It is now customary in auditorium acoustics to express Eq. (10.61) in terms of Sound Strength G
[11]. Sound Strength G, in decibels, is the ratio of the sound energy that comes from
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a nondirectional source (Q¼ 1) measured at a distance r in the auditorium, to the same sound
energy from the same source but measured in an anechoic chamber at r¼ 10 m. Thus, the
reference sound pressure is

p2ref ¼ Wr0c

4p �100
(10.64)

Division of Eq. (10.62) by (10.64) and taking 10 log to get decibels, yields the Sound Strength G:

G ¼ 10 log10

�
100

r2
þ 1600pð1� atotÞ

Stotatot

�
dB: (10.65)

The reason atot is used here instead of aey is because it has been found that if RT is measured in an
actual hall and if Sa is determined from the Sabine formula (RT¼ 0.016V/Satot) and this value for Sa
is used in the G equation to calculate G, the calculated G equals the actual measured values of G in the
hall very closely (when using the reverberation method of calibrating the standard dodecahedral
source) (see Fig. 10.14). If the Eyring equation is used, this means that the [�2.30log(1 – aey)] must be
used and not just aey, to calculateG. If aey is used, the calculatedGwill be about 2.5 dB higher than the
measured G.

The second term in Eq. (10.65) would seem to indicate that the reverberant sound field is uniform in
an auditorium, but sound pressure levels measure larger in the front part of an auditorium than toward
the rear (see next section). This term actually indicates the average of the sound pressure levels
determined from measurements at a large number of positions in the auditorium (with r large enough
that the first term does not appreciably influence the second).
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10.12 EARLY AND REVERBERANT SOUND IN CONCERT HALLS
It can be shown that the second term of Eq. (10.65) may be divided into two parts, one for early sound
(that arriving within 80 ms of the direct sound) and the other for late (reverberant) sound (after 80 ms),
both varying with distance r [12]. These equations are

Eearly ¼ 31200T

V
e�0:04r=T ð1� e�1:11=TÞ; (10.66)

Ereverberant ¼ 31200T

V
e�0:04r=T ðe�1:11=TÞ: (10.67)

As an example, these equations, with V¼ 20,000 m3 and T¼ 2 s, are plotted in Fig. 10.15. Zero on
the ordinate is set for the direct sound with r¼ 10 m. For r between 10 and 40 m, the top curve predicts
the difference inG(total) to be 3.8 dB. Measurements made in nine shoebox-shaped halls, with average
V¼ 16,500 m3 and T¼ 2.5 s, found that for r between 10 and 40 m,G(total) drops about 2 dB, while in
eleven surround halls, with average V¼ 23,000 m3 and T¼ 2.2 s, it drops by about 5 dB. The quantity
of 3.8 dB above for V¼ 20,000 m3 and T¼ 2 s is correctly between these two numbers.
Also, measurements show that the levels drop off faster if the reverberation times are less than about



6

5

4

3

2
Le

ve
l (

dB
)

Source-receiver distance (m)

Early

Total

Late

Direct

Early reflected

1

0

0 10 20 30 40

-1

-2

-3

-4

-5

FIG. 10.15 Calculation of the component values of G with V[ 20,000 m3 and T[ 2 s.

The reference sound pressure level at 10 m distance is 0 dB. “Total” at top is the sum of “Direct”, “Early

Reflected” and “Late”. “Early” is the sum of “Direct” and “Early Reflected”. “Early reflected” is from Eq. (10.66)

and “Late” is from Eq. (10.67).

From Barron [12].

476 CHAPTER 10 Sound in enclosures
1.5 s—the drop-off rate significantly increasing (nearer the drop in direct sound level) as RT’s become
less than 0.7 s.
10.13 DISTANCE FOR EQUALITY OF DIRECT AND REVERBERANT SOUND
FIELDS
We will define the distance rrev at which the reverberant field takes over as the distance at which the
direct and reverberant fields are equal. Hence

rrev ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QStotatot

pð1� atotÞ

s
: (10.68)

The total absorbent area Stot and absorption coefficient atot are both related to the volume of the
auditorium. On average [7]

Stot ¼ 2:2V2=3: (10.69)
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Let us also assume the reverberation time is the optimum value given by Eq. (10.63) and plotted in
Fig. 10.13, and that we have a point source with Q¼ 1. From Eq. (10.48),

aey ¼ 1� 10�24V=ðcstotTÞ: (10.70)

We can now deduce the distance rrev, which is shown in Fig. 10.16.
We note that rrev will be greater for sources which are more directional than a point source (Q> 1).

It is common to use directional loudspeakers such as horns or column arrays in more reverberant
spaces where satisfactory speech intelligibility is needed. The reference distance is generally taken as
10 m which is valid for even the larger concert halls.
10.14 SOUND LEVELS FOR SPEECH AND MUSIC
When designing a sound system for a specific auditorium, we need to know how much sound
pressure is required to produce realistic volumes for music or speech or both. The second column
of Table 10.2 shows the maximum peak SPL at 10 m from various sources. However, conversa-
tional speech at such a distance is too quiet so the third column gives an SPL value adjusted for
a distance of 1 m, which is more natural. The orchestra is adjusted for a distance of 3 m, which
represents a good seat a few rows back from the stage. For speech the crest factor (the difference
between the maximum peak SPL and average rms SPL) is about 13 dB. For music it is about
20 dB.



Table 10.2 Maximum peak sound pressure levels due to various sound sources [16]

Sound source
Maximum peak SPL (dB)
at 10 m from source

Maximum peak SPL (dB)
adjusted for 1 m
(conversational speech)
and 3 m (others)

Conversational speech [17]
Declamatory speech [17]
Large orchestra [18]

56
67.5
92

76
78
102.5
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FIG. 10.17 Peak acoustic powerW versus auditorium volume V for various sound sources. Optimum reverberation

time T is assumed (see Fig. 10.13). The maximum peak sound pressure levels are given in Table 10.2.
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Knowing the required pressure from the third column of Table 10.2, Stot from Eq. (10.69), and aey
from Eq. (10.70), we can evaluate the acoustic power required [13] from Eq. (10.62) as follows:

W ¼ 4� 10ðSPL=10Þ�10

r0c

 
Q

4pr2ref
þ 4ð1� aeyÞ

Stotaey

!�1

; (10.71)

where rref¼ 10 m and the SPL value is taken from the third column of Table 10.2. The maximum peak
acoustic power is plotted against auditorium volumes in Fig. 10.17. Of course, the required amplifier
output power will depend upon the choice of loudspeaker. For example, a living room with a volume of
60 m3 will require a stereo amplifier with a power rating of 6 W per channel to reproduce a large
orchestra if the loudspeakers have an efficiency of 1%. If loudspeakers with an efficiency of 10% can
be employed, the power rating of the amplifier can be reduced to 0.6 W per channel.
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