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State variable analysis of circuits
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14.1 A BRIEF HISTORY

Two types of circuit simulation technique evolved during the 1960s and early 1970s. One was the
nodal method, as used by CANCER [1] (Computer Analysis of Non-Linear Circuits Excluding
Radiation), for example, which was the forerunner of SPICE (Simulation Program with Integrated
Circuit Emphasis), pioneered by University of California-Berkeley. The other was the state variable
approach, as used by SCEPTRE [2] (System for Circuit Evaluation and Prediction of Transient
Radiation Effects), developed by IBM. In a nodal analysis, the node voltages and branch currents in the
circuit are calculated for every frequency step. By contrast, in a state variable analysis, a set of
frequency-dependent transfer functions are derived between the various sources and outputs within the
circuit. From this single analysis, both frequency domain and time domain responses can be obtained.
Hence, when the state variable method first appeared, it was hailed as the future of circuit simulation
[3]. However, as the number of elements in integrated circuits increased during 1970s onwards, the
state variable method proved too unwieldy and fell into disuse. Almost every circuit simulation tool
available today uses some form of nodal analysis.
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14.2 WHAT IS STATE VARIABLE ANALYSIS?

The idea is to express the required information relating to the circuit or system response in terms of
a first-order differential matrix equation. If the state vector is properly defined, it is always possible to
write the equation in the proper form for linear systems. The state variable (or state vector if there is
more than one) is that whose linearly independent parameters can describe the present state or any
possible future state of the system. The state vector x satisfies the standard state equation [4]

x =Ax+B-u (14.1)
where x is the state vector and u is the input vector. The output equation is
y =Cx+D-u (14.2)

The most convenient choice of state vector is one having parameters that describe the energy stored
by different elements of the system. In electrical circuits, the parameters are normally chosen to be
the capacitor voltages and inductor currents, thus allowing independently specifiable initial condi-
tions [5]. Also, the output vector is normally chosen to be the voltages at the various nodes in the
circuit. In this text, the input vector will contain the current sources and voltage sources. Equations
(14.1) and (14.2) can be solved in general terms so that any system obeying the state equation can be
described by a state vector at any instant in time. The most flexible method for solving Eqs. (14.1)
and (14.2) is the Faddeev-Leverrier algorithm which enables either numerical or symbolic
computation.

14.3 WHY USE STATE VARIABLE ANALYSIS?

Acoustical models have a relatively small numbers of elements, so that in most cases the state variable
method can be applied without computational problems. There are a number of motivations for using
such a method:

The transfer function can be part of a DSP-based real-time model of the system for monitoring
parameters such as voice-coil temperature or displacement so that they can be dynamically limited.
The model can be used as a basis for response equalization.

The poles and zeros of the system can be mapped in order to investigate its stability or sensitivity to
component tolerances.

The advent of symbolic handling in mathematical computer tools enables an algebraic transfer
function to be generated in terms of the circuit element labels (e.g., L1, C2, R4, etc.). This
enables us to examine the dependency of the poles and zeros on individual circuit elements.

If we have a previously optimized transfer function, such as a Chebyshev or Butterworth polynomial,
we can even go a stage further and equate the coefficients of the circuit transfer function polynomial
with those of the optimized polynomial in order to obtain a set of simultaneous equations which can
then be solved for each circuit element value. Hence an optimum circuit design can be obtained in
one operation without any further iteration. This approach has been used with considerable success
to create loudspeaker design “look-up” tables known as loudspeaker alignments (see Secs. 7.6 and
7.12), although these used to be worked out by hand [6,7].
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14.4 WHAT ARE THE RESTRICTIONS?

In state variable analysis, there are some topological restrictions as follows

A loop must not contain capacitors only. A small resistance must be added to the path and this is
known as “de-Q-ing”, as shown in Fig. 14.1.

A node must not be the junction of inductors only. A large resistance must also join the node and is
usually connected in parallel with one of the inductors, as shown in Fig. 14.1.

The previous two restrictions apply to all state variable programs. One, which is unique to the
simple node voltage method described here, affects current-controlled (voltage or current)
sources. An ideal current-controlled source has, by definition, zero input resistance.
Unfortunately, this would result in the voltage at both input nodes being equal and therefore no
longer independent of each other. Hence, a small resistance must be included across the input
terminals so that the source effectively becomes a voltage-controlled one where the input
current is simply the input voltage divided by the added resistance. The implementation of this
is described in Sec. 14.12.

It should be noted that, in the case of a symbolically computed transfer function, the resistors that have
been added due to the above restrictions can be set to zero in the final transfer function and will
therefore have no influence over the final result.

14.5 SOME BASIC CIRCUIT THEORY

We will define a branch as the path through a single circuit element and a node as the point where two
or more branches are connected. Then a loop is a set of branches connected end to end which form
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FIG. 14.1 “De-Q@-ing” of all-capacitive loops and all-inductive nodes.
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a closed circular path. Circuit elements considered here will be limited to resistors, capacitors,
inductors, and voltage or current sources, together with their mechanical and acoustic analogies. In the
case of sources, however, we will also consider some special types known as controlled sources, which
each contain two isolated branches, one for the input, or controlling parameter, and one for the output,
or controlled parameter. Firstly, though we need to state three key governing rules relating to circuits in
general:

Kirchhoff’s current law (KCL) states that the sum of all the currents flowing into any node is equal
to the sum of the currents flowing out of that node.

Kirchhoft’s voltage law (KVL) states that the sum of the voltages around any loop must be zero.
Ohm’s law states that the current i flowing through any passive branch is equal to the voltage e
across the branch divided by the impedance Z of the circuit element in that branch, that is,
i=elZ

By a passive branch, we mean one that does not contain any sources, but is limited to resistors,
capacitors or inductors so that

R, where R is the resistance
Z = { 1/(jwC), where C is the capacitance (14.3)
JjwL, where L is the inductance
and o is the angular frequency. From here on we will use the shorthand
s = ju = j2nf (14.4)
In a time-domain analysis

4
Cdt

The three rules listed above will enable us to evaluate any circuit.

(14.5)

14.6 GRAPH THEORY

An electrical circuit in its most elementary form can be represented as a graph. This abstraction
enables us to explore the properties of a circuit and to derive some very useful relationships. Fig. 14.2

FIG. 14.2 Graph.




14.6 Graph theory

Table 14.1 Currents in graph

Node A B (o3 D

1 +1 0 0 0 +1
2 -1 +1 0 +1 0
3 0 —1 +1 0 0
4 0 0 -1 —1 -1

637

shows an example of a graph, where the nodes are labeled 1 to 4 and the branches are labeled A to E.

The arrows show the directions of current flow.

Next, we tabulate the graph using +1 to denote the node from which the current in each branch
flows and — 1 to denote the node to which it flows (see Table 14.1). If we make node 4 the reference, we

can delete the last row and rewrite the table as a matrix:
1 0O 0 0 1
A=1|-1 1 01 0
0O -1 1 0 0
Kirchhoff’s current law can be expressed in terms of A as

Ai=0

where i is a column vector of the currents in each branch. This represents the equations

ia+ig =0
ip—ia+ip =0

ic—ip = 0.

Also, if we take the transpose of A

1 -1 0
o 1 -1
Al=10 0 1
0 1 0
1 0 0

(14.6)

(14.7)

(14.8)

(14.9)

so that each row represents a branch and the column entries show which nodes each branch spans, we

can write

e =Alv

(14.10)
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which represents the equations
€A = V1 — V2

éep — V) — V3

ec = v3
ep = Vo
er — V]

(14.11)

where ey4 to e are the branch voltages and v| to v3 are the node voltages relative to the reference node

(node 4). Equations (14.7) and (14.10) will be used later for automation.

14.7 WORKED EXAMPLE NO. 1: LOUDSPEAKER IN AN ENCLOSURE WITH

A BASS-REFLEX PORT

In order to show how the various matrices are constructed by a computer program, we will
familiarize ourselves with the state variable method by means of an example, which we
will follow through by hand. The equivalent electrical circuit for a loudspeaker in a bass-
reflex enclosure is shown in Fig. 14.3, using the admittance analogy for the mechanical and
acoustical circuits, which are all referred to the electrical domain. The circuit elements are

given by
Ri = Ry +Rg
Bl)?
L
Rus

~ R, Nz 2 V;

’ TCI

FIG. 14.3 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure.

(14.12)

(14.13)

(14.14)
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C, = B (14.15)
G = (%)ZMAT (14.16)
Ly = (BI)*Cys (14.17)
L, = <%>2CAB (14.18)
V| = sBIX (14.19)
vy = %UB (14.20)
(r) = s% (14.21)

and from Part XXII the parameters are:

€] = &g, the input voltage in V.

Rp is resistance of voice coil in Q.

B is steady air-gap flux density in T.

[ is length of wire in meters on the voice-coil winding.

X is voice-coil displacement in m.

a is radius of diaphragm in m.

Mys is mass of the diaphragm and voice coil, including radiation mass on both sides,
in kg.

Cys is total mechanical compliance of the suspensions in m/N.

Rys is mechanical resistance of the suspensions in N-s/m.

Sp is effective area of diaphragm in m?.

M7 is acoustic mass of air in the port in kg/m?, including end corrections.

Cyp is acoustic compliance of the box in m’/N.

R4 is combined acoustic resistance of air in port, box interior, and leakage in N-s/m°.
Uy is net volume velocity in m?/s.

p(r) is on-axis pressure in N/m? at a distance r (in m) from the diaphragm.

po is ambient density of air in kg/m>.

Because it is a low-frequency model, the coil inductance Lg and radiation resistance Rqp have been
ignored. The values v, v, v3, and v, are the voltages at nodes 1, 2, 3, and 4 respectively with respect to
ground (node 0). Now we can create the net list, shown in Table 14.2, which completely describes the
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Table 14.2 Net list for worked example No. 1

Element From node To node
€1 1 0

R; 1 2

R, 2 0

Ra 3 4

Cq 2 0

Co 2 3

L 2 0

Ly 4 0

circuit. From the net list we can create what is generally known as the A matrix [8], which is
a mathematical representation of the circuit connectivity:

e R R, R, C, C, L L,node
1 1.0 0 0 0 0 Of1
A 0-11 01 1 1 0f2 (14.22)
000 1 0-100(3
00 0-10 0 01)4

Note that we have omitted the row for the reference node zero, which is redundant in the computations
that follow. This A matrix can then be partitioned into four matrices Ag, Ag, Ac, and A; representing
the connectivity of the sources, resistors, capacitors, and inductors respectively:

e, R, R, R, C, C, L, L, node

1 1 0 O 0 0 0 0f1

0 -11 0 11 1 0]2 (14.23)
Ag=| |,A, = Ap = AL =

0 0 0 1 0 -1 0 0|3

0 0 0 -1 0 0 0 1[4

We will show how to use these matrices in due course.

Now let us return to the circuit of Fig. 14.3. The state variables are the capacitor voltages denoted
by Va, ch and inductor currents denoted by I, Ll I, 12, using the upper case. The capacitor currents and
inductor voltages are denoted by i lcl, zcz and vy 1, vy respectively, using the lower case to indicate that
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they are not state variables. The voltage source current is i,1 and the node voltages are v, V2, v3, and v4.
The first step of the analysis is to apply KCL at each of the nodes:

At node 1
= vy — Vi
= 14.24
lel R ( )
At node 2
‘7] - ‘72 ‘72 = g g
= =+1 14.25
R R +1p +ict +ic2 ( )
At node 3
- V3 — V4
= = 14.26
ic2 R, ( )
At node 4
V3 — Vg -
=7 14.27
R 2 ( )
For the voltage source
Vv = € (14.28)
Next we apply KVL to the capacitors and inductors:
For C]
= Ve (14.29)
For C,
= = Ve (14.30)
For L,
vy = V1 (14.31)
For L,
V4 = Vo (14.32)

It should be noted that the number of independent equations must equal the number of inde-
pendent variables. In this case, there are four state variables Vc1, ch,lu, and ILz, and hence
four KVL equations related to them. However, although there are four node voltages and hence
four KCL equations, one of them (v;) is equal to the input voltage [see Eq. (14.28)] and is
therefore not independent. Hence we have had to introduce an extra variable, namely, the input
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current i,;. We now rearrange Eqgs. (14.24) to (14.32) into the following set of simultaneous

equations:

A VI S
R R + 1ol
LIy (LR R I
- — 4= i icy = —
R, &R Vo +ict +ic2 Ll
V3 V4 -
I S )
B R c2
V3 V4 -~
_vsva 14.33
& TR 12 ( )
Vi = e
T = Ve

Vo—v3 = Ve
vo—vr1 =0

va—vip =0

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows

where

o _w‘__”‘r—i =1

=
I
(e}

S O O O =

M-v =N-w (14.34)
gl 1’73 \74 zl Z;'l 2;:2 VLI ‘7L2
L 0 0 10 0 0 O -~
R, Vi
1 1 v
—t— 0 0 o1 1 0 O 2
R, R, Vv,
0 RL - RL 00 -1 0 O v,
31 ) 3 V= l:l (14.35)
0 -—— — 0 0 0 0 O =
R, R, iCl
0 0 0 00 0O O O ics
1 0 0 00 0 0 O Vi,
1 -1 0 00 0O 0 O V., ]
1 0 0 00 0 -1 0
0 0 1 00 0 0 -1
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1
1

‘76'1‘7('2 ILl IL'Z El

(0 0 0 0 O]

00 -1 0 0 -

00 0 0 0 Ve

00 0 -10 Ves (14.36)
N=lo 0 0 o 1| w=|T,

10 0 0 0 I,

01 0 0 0 =

00 0 0 0

00 0 0 0

Each row of M and each column of N must have at least one entry. Now let us partition the matrix
M as follows:

M;; Mp
M = (14.37)
M;; My
where
i;I ‘72 ‘7? V4 Tel ;;‘l 2‘;2 i}(Ll UL2
e
Rl R]
1 1 1 1 0 0 00O
- —+— 0 0 |1
M, = R Rk M, = 0 00
0 0 1 00 -1 00
R, R, 00 0 00
0 0 _L i (14.38)
L Ry Ry |
1 0 0 O 000 0 O
01 0 O 000 0 O
M, =[0 1 -1 0 M, =[0 00 0 0
01 0 O 00 0 -1 0
00 0 1 000 0 -1
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On inspection of Egs. (14.23) and (14.38), it becomes apparent that

M, = [As Ac O] (14.39)
and
A
M, = |AL (14.40)
AL

because they simply represent the nodes across which the voltage sources, capacitors, and inductors
are connected. For example, ico in column 3 of My, leaves node 2 (hence the “1” in row 2) and enters
node 3 (hence the “—1” in row 2). Also, matrix M»; just contains a negative unity matrix representing
the inductors as follows:

M 00 (14.41)
2 = 0 _1 .
Finally, matrix M for the resistors is a little more complicated. We recall that it was constructed using
KCL, which can be expressed in terms of the A matrix, using Eq. (14.7) as follows

Arig = 0 (14.42)

where ig is a column vector of the resistor currents. However, we wish to replace the resistor currents
with the node voltages as in Eq. (14.38). First, we use the relationship of Eq. (14.10):

er = AL-v (14.43)
in order to express the resistor voltages in terms of node voltages. Multiplying this by an admittance
matrix

1/R; 0 0

Ye=]| 0 1/R O (14.44)
0 0 1/R;
gives us the resistor currents
ir = Yr-eg = Yg-Ak-v (14.45)

Finally, inserting Eq. (14.45) into Eq. (14.42) yields the node voltages

Ag-Yg-AL-v = 0 (14.46)
which gives
1 0 Vi
o 1/Ri 0 0 1 -1 0 i 0
— vV
0 1R, 0 |-lo0 1 0o of-]°|=]o0 (14.47)
0 O V3
0 0 1/Rs] 0 0 1 -1] | 0
0 0 -1 A
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or

— - 0 0
Ry Ry R
1 1 1 Vi
N e R
poar = |0 (14.48)
0 0 1 1 V3
o Tl 0
R31 f3 By
0 0 - —
L R; Rz |
Therefore
M = Ag-Yr-Aj (14.49)
Similarly, we can partition N as follows:
N N
N o | R (14.50)
No;1 N
where
‘76‘1 ‘7C2 iLl TLZ El
[0 0 0 0 [0]
00 -1 0 0
N, = N, =
00 0 O 0
fO 00 -1 :O— (14.51)
00 0O 1]
1 0 0O 0
N, =0 1 0 0} N, =0
00 0O 0
|10 0 0 0 10]
On inspection of Egs. (14.23) and (14.51), it becomes apparent that
N = [0—AL] (14.52)

We note that from Eq. (14.36),

X
w = [ ] (14.53)
u
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where X is the state variable vector in Eqgs. (14.1) and (14.2) given by

Ve
Ve
Iy

I

and u is the input vector in Eqgs. (14.1) and (14.2) given by

u= [51}

We note also from Eq. (14.35),

vV =

y
s'E-x

(14.54)

(14.55)

(14.56)

where y is the output vector in Eq. (14.2) containing the node voltages

(14.57)

and E is a diagonal matrix containing the capacitor and inductor values, which relates the capacitor
currents and inductor voltages in v to the state variables (or capacitor voltages and inductor currents) in

w using ohms law as follows:

icl ci 0 0 0
ic2 0 C 0 0
L1 “lo o Ly 0
Vo 0 0 0 L

We now rewrite Eq. (14.34) as
v=M"!Nw

iL2

= s-E-x (14.58)

(14.59)
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or

0 0 O 0 1
1 0 O 0 0
1 -1 0 0 0
1 -1 0 —-R, 0
y 1 0o 0o o -2Lirx (14.60)
s-E-x| lR‘ | IR‘ u
-— 0 -1 -1 —
Rl RZ Rl
0 0 O 1 0
1 0 O 0 0
! -1 0 -R, 0 |

Referring to Fig. 14.3, we can see from this matrix how the node voltages are made up. For example,
row 1 gives us ¥; = €| and row 4 gives us
Vg = Ve, —Vea — R3lpo.

Similarly, the remaining rows give us the voltage source and capacitor currents and inductor voltages.
By comparing Eq. (14.60) with the system of equations (14.1) and (14.2), we can partition the matrix
thus:

y . C D X
- M !.N- — . (14.61)
s'E-x u E-A E-B u
where
‘7(‘ 1 NC 2 TL 1 TL 2 El
[0 0 0 0] [ 1]
1 0O 0 O 0
C= 1 -1 0 O . D= 0
I -1 0-R, 0
! 0O 0 O —L
»RT | | R, (14.62)
I D 1
R] RZ Rl
E-A= 0 0 O I [E.B=|0
1 0 0 0 0
1 -1 0 =R, 0



648 CHAPTER 14 State variable analysis of circuits

Using
/e, 0 0 0
0 1/C 0 0
E! = /C2 (14.63)
0O 0 1/Li 0
o 0 0 1/L
gives

1<1+1) 0 —1/c —1/C

CCI\Rl Ry
A=E'"EA= 0 0 0 -1/C |, (14.64)
1/L, 0 0 0
1/Ly —1/L, 0  —R3/L,
SR
CiR;
B-—E'EB=]| ° (14.65)
0
L O -

Now we have furnished Eqs. (14.1) and (14.2) with A, B, C, and D, we can solve them using the
Faddeev-Leverrier algorithm.

14.8 SOLUTION OF THE WORKED EXAMPLE USING THE FADDEEV-
LEVERRIER ALGORITHM [9]

The transfer function f;; between the j™ (voltage or current) source i™ node voltage is a rational
polynomial of the form

SN O, j)sN

WY B (14.66)

fij =

except when the i™ output voltage node is also that of the j™ voltage source such that D(i,j) = 1, in
which case we add s" to the numerator of Eq. (14.66) so that it becomes unity. The polynomial
coefficients are calculated using the following procedure:
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Fy I,
G = A,
Py = —Tr(Gy),
F, = G, 1 + Py 1, (14.67)
G, = A'F,,
P — Tr(Gy)
n

Qn(i7j) = [C'Fn'B‘FD'Pn]i:/'

where Tr( ) denotes the trace of the matrix and I is the identity matrix. In our worked example of
Fig. 14.3, we obtain for node 4:

V4 01(4,1)s°
_ V4 _ 14.68
far e s*+Pis?+ Pys?+ P3s+ Py ( )
where
Ri+Ry R3
P = =3 14.69
' RiRC T L ( )
1 1 1 Ry +RyR3
Py — 3 14.70
2= 06 L TG T RRG L (14.70)
R +R 1 R
py = 15 =3 (14.71)
RR,C,C>Ly | LiCy Ly
Py (14.72)
T LICLLCo ‘
1 BI)?
01(4,1) = (B1) (14.73)

RiCi  Re(Muyp + SZ,MaR)
from Eq. (14.15). For node 2 we have

% 2. 1)s° 2,1)s? 2,1
fo = 2 2 QBT+ B2 )5+ 05(2, s (14.74)
e 5T+ P1s° + Pys“ + P3s + Py

where the denominator coefficients are the same as for f4 1, but the numerator coefficients are

1
R Cy

01(2,1) = (14.75)
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1 R3
2.1) = = 14.76
Q2( 5 ) R1C1 L2 ( )
03(2,1) = L 1 (14.77)
O T RCLGLy :

14.9 FAR-FIELD ON-AXIS PRESSURE

The far-field on-axis pressure is calculated from the voltage at node 4 by combining Egs. (14.20) and
(14.21):

PoSD

s47rBlr V4 (14.78)

p(r) =

Also, it is convenient to express the polynomial coefficients in terms of the Thiele—Small parameters
which are the standard specifications for loudspeaker drive units:

- e1BISppg s
= 14.79
p(r) 4rREMys \s* + P1s3 4+ Pys? + P3s + Py ( )
where
wg wp
Pl =—+4—= (14.80)
"o o
Py — (1 +VAS>M§+M§+ Wswh (14.81)
Vs OrsOr
2 2
py — O89B | YsYB (14.82)
Ors or
Py = wiw} (14.83)
where
wg 1s the angular suspension resonant-frequency in an infinite baffle given by
1 1
ws (14.84)

VLG /MysCus
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Qgs is the electrical Q factor

R, + R
Qs = wsRICl = ws—= QEMMS (14.85)
(BI)
Qus 1s the mechanical Q factor
1
Ous = wsRC1 = wsR—MMS (14.86)
MS
Qs is the total Q factor
Ors = 2E5Qus (14.87)
Oks + Qums

wp is the angular resonant-frequency of the box and port (including end corrections)
given by

1 1
“B = VI Cy - VMarCag (1489
Oy is the acoustical Q factor due to box and port losses
oL = wBI% = wpRALCaB (14.89)
Vp is the box volume which is related to the acoustic compliance by
Ve = vPoCap (14.90)
and Vyg is the suspension equivalent volume
Vas = S%)’YPOCMS (14.91)

There are just six Thiele—-Small parameters which completely define a loudspeaker: Rg, Qgs, Qus, fs,

Sp, and Vyg, where
| RegvPo
Bl = Spy/|——— (14.92)
OrswsVas
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14.10 WORKED EXAMPLE NO. 2: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING THE NORTON EQUIVALENT SOURCE

In order to illustrate the use of current sources in state-variable analysis, we will use Norton’s theorem
in order to convert the voltage source from the previous example into a current source, as shown in
Fig. 14.4. It can be seen that a node is removed in the process.

Proof. Suppose we connect a resistor Ry between the output terminal and ground. In the case of the
voltage source, the load current is /(R + Ry). Therefore, the output voltageis &g = éRr/(R + Rr).In
the case of the current source, the output voltage is &y = i(R//R;) = iRRy/(R + Ry). Hence, it can
be seen that the two output voltages are equal when i = é/R.

Thus the circuit of Fig. 14.3 can be redrawn as shown in Fig. 14.5. The revised net list is shown in
Table 14.3, and the A matrix becomes

R

111 0 1 1 1 0]2 (14.93)
A=|0 0 0 1 0 -1 0 0|3

000 -100 014

which can be partitioned into four matrices: Ag, Ag, Ac, and Ay representing the connectivity of the
sources, resistors, capacitors, and inductors respectively:

¢
R—‘ R R, R, C C, L, L, node
1
1 1 1 0 I 1 1 02 (14.94)
A;=|0,A,=|0 0 1|A.=[0 —-1[A,=|0 0|3
0 0 0 -1 0 O 0 1|4

FIG. 14.4 Norton’s theorem.
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A

R; v

’ TCI

FIG. 14.5 Equivalent electrical circuit of loudspeaker in hass-reflex enclosure using Norton equivalent source.

Now let us return to the circuit of Fig. 14.5. As before, the first step of the analysis is to apply KCL at
each of the nodes:

At node 2
ey v vy - - -
LRI DI N =0 14.95
R1+R1+R2+ L1 ticit +ic2 ( )
At node 3
T V3 — V4
= 14.96
ic2 R ( )
At node 4
V3 — V4 ~
M 14.97
R 12 ( )
Next we apply KVL to the capacitors and inductors:
For C,
v, = Ve (14.98)
For C,
-7 = Ve (14.99)

Table 14.3 Net list for worked example No. 2
Element From node To node

& /R1
R;
Rz
Rs
Cy
Cz
L
Lo

A DD NN ONDDNDDN
O O wo ko oo




654 CHAPTER 14 State variable analysis of circuits

For L,
vy = Vg1 (14.100)

For L,
V4 = Vo (14.101)

We now rearrange Eqgs. (14.95) to (14.101) into the following set of simultaneous equations:

1 1. ~ ~ el -
ot oo |2 tict tica = - — 1

R Ry Ry
V3 V4 =
B4 -0
R R ic2
B
Ry R; (14.102)
i = Ve

V2 —V3 = Ve
Vo —vp =0
va — vy =0

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M-v — N-w (14.103)
where
‘72 ‘7"5 V4 ;;‘] ;;7 VL] ‘7L2
1 1 ] o
—+— 0 0O 1 1 0 0 5
Rl RZ ~2
V.
0 Loty 10 o z
R, R, Vy
1 1 v=|T (14.104)
M=| © -—— — 0 0 0 0 for
R, R, oy
1 0 0 0 0 0 0 -
VLI
1 -1 0O 0 0 0 0 g
LVi2 |
1 0 0 0 0 -1 0
0 0 1 0 0 0 -]
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1§
1§
1§

Cl ‘7C2 ILI 11‘2 gl/Rl

[0 0 -1 0 1]

00 0 0 0 [V, ]

00 0 -10 Ves (14.105)
N=[1 0 0 0 0] .w=|T,

01 0 00 I,

00 0 0 0 2, /R, |

00 0 0 0]

If we delete the first and middle rows and columns of matrix M in Eq. (14.35), which represent the
voltage source node voltage and current respectively, it can be seen that it is the same matrix M as in
Eq. (14.104). Likewise, if we delete the first and middle rows of matrix N in Eq. (14.36), it can be seen
that it is the same matrix N as in Eq. (14.105). Exactly the same method as before is used to solve
Eq. (14.103), resulting in the same expressions for the node voltages.

14.11 WORKED EXAMPLE NO. 3: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING A TRANSFORMER AND GYRATOR

The equivalent circuit shown in Fig. 14.6 is essentially the same as that shown in Fig. 14.3, except that
the mechanical and acoustical sections are in their own respective domains and the acoustical section is
shown using the impedance analogy instead of the electrical one. A transformer separates the
mechanical domain from the electrical one, while the gyrator performs the dual functions of separating
the acoustical domain from the mechanical one as well as providing the transition from admittance to
impedance analogies. The elements are now given by

t = BI (14.106)

gip = g1s = Sp (14.107)

v, Ry, T A G, v,

L]-I-Cl

81r 815

T

FIG. 14.6 Equivalent electrical circuit of loudspeaker in bass-reflex enclosure using transformer and gyrator.
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R, = Rg
R 1

) = —

Rys

R3 = RaL

Ci = Muyp + ShMag

Cy = Cap
Ly = Cus
Ly, = Myp
V1 = e
vy = sBIx

_ _ 1 -
V4 —P—E
~ _ poU
p(r) = 2nr

(14.108)

(14.109)

(14.110)
(14.111)
(14.112)
(14.113)
(14.114)
(14.115)
(14.116)

(14.117)

(14.118)

(14.119)

Of course, the above quantities, except for R, are no longer electrical, but it is convenient for the
purpose of the following analysis to keep them as electrical terms. In the computer program, it is not
important what units are used, so long as they are consistent. The net list can be written as shown in
Table 14.4, from which the following A matrix is created:

™
=
I\

c o o -
c o L~
o - o o

R3 TIP TIS GIP GIS Cl C
00000GO0O
0100000
00110710
1000101

, L, L, node
0 0f1
0 0|2 (14.120)
1 0|3
0 1]4
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which can be partitioned into six matrices: Ag, Ag, AT, Ag, Ac, and Ay representing the connectivity of
the sources, resistors, transformers, gyrators, capacitors, and inductors respectively:

El Rl RZ R3 7—‘lP 7—‘15 GIP GlS Cl CZ Ll L2

1 1 0 0 0 0 0 0 0 0 0 0

0 -1 0 O 1 0 0 0 0 0 0 0 (14.121)
AS: »AR: ’AT: ’AG: ’AC: ’AL:

0 0O 1 0 0 1 1 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1 0 1

Now let us return to the circuit of Fig. 14.6. As before, the first step of the analysis is to apply KCL at
each of the nodes. The primary and secondary currents of the transformer T are denoted by iz1p and
iT1s respectively. Likewise, the primary and secondary currents of the gyrator G; are denoted by igp
and igis respectively.

At node 1

i = Vzglvl (14.122)

At node 2

N-v2 _ s (14.123)

Table 14.4 Net list for worked example No. 3

Element From node To node
e
Ry
Ra
Rs
Tip
TWS
Gip
Gis
Cq
Co
Ly
Lo

A WO PO DONPNMO=2 =2

O OO O OO0 0oOooNOo
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At node 3
ry 173 4 ~ T
—Iiris = R_2+1L1 +ic1 +iGip (14.124)
At node 4
s o ‘74 = T
—igls = R_3+1L2 +ic (14.125)

For the transformer 77, we have the following pair of equations that define the voltage and current
cross-coupling:

V2 = 1V3 (14.126)
irs = —tirp (14.127)

For the gyrator G;, we have the following pair of equations that define the forward and reverse
coupling via the mutual conductances g;p and gg respectively:

—iGis = g1PV3 (14.128)
iGip = g15V4 (14.129)

For the voltage source
v = é. (14.130)

Next we apply KVL to the capacitors and inductors:

For C;

= Ve (14.131)
For C,

Vs = Ve (14.132)
For L;

U3 = T (14.133)
For L,

V4= Vo (14.134)
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We now rearrange Eqs. (14.122) to (14.134) into the following set of simultaneous equations:

1 1 Y 0
—_— _— 1l =
RUVTR T

1 1 ~
— v+ —V i =0
R V] +R1 Vo +IT1P

1. N N
— V3 +iris +icip +ict = —Ip
R

1 ~ v v =g
—4 +igis tica = —1Ip
R3

Vo —tivz = 0

tirip +iris = 0

(14.135)

I
o

- 1 -
V3 +—IGIS
81pP

_ I
vy ——igip = 0
818

V1 = €]
vz = Vi
vy = Ve

vi—vr =0

V4 —vp =0

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M-v = Nw (14.136)
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where

lGlS lel

lCl lC2 VLI vL2

lGlP

LTIP '{TIS

(14.137)

lcy

lC2

Vi

VLZ

Vs

Irp
S V= g
lgip
lgis

0
0
0

1 00 O
000 O

0
0
0

010 O

S0 0

2

R

3

0

0 0

0

0
0
0
0
0
0
0
0

000 O
-1

0
0

81p

000 O

000 O

000 O

0
0
0
0
0
0

—8is

0 0

000 O

000 O

000 O

-1

0 00
000 O

(14.138)

r 1

5,0, 5 9 ¢
I N N AY
L

|

[
B

0 0
-1

-1

0 0

0
0
0
0
0
1

0 0 O
0
0
0
0
0
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Now let us partition the matrix M as follows:
M Mp; M
M= | My My My
Ms Mz Mss

where
{;l ‘72 173 \74 ;lP 'Z;IS i, i,
(R -R™ 0 0 0 0] [0 0
M, = —Rll Rll 0,1 0 M, = Lo M, = 00
0 0 R 0 0 1 10
| 0 0o 0 R 0 0] 0 1
M [0 1 -y 0} M 0 O"M [0 o0
oo o o 2oy 1% oo
[0 0 1 0] [0 0] 0 g,
000 1 0 0 -gs O
1 000 00 0 0
M, ={0 0 1 0 M, ={0 0[M,=| 0 0
000 1 00 0 0
0010 0 0 0 0
0 0 0 1 [0 0] | 0 0

On inspection of Eqgs. (14.121) and (14.140), it becomes apparent that

M, = Ar

M3 = [A¢ As Ac 0]
and
Ag
A
Ac
Al

S O O O O O oo o o o~

lGlP lGlS l('l lCl

0

S O O O O O O o o o = O

lC2 le VLZ

0

- o O

S O O O O O o o o

o 0000 © o o o oo

[
O P

)

OOIOOO
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(14.139)

(14.140)

(14.141)

(14.142)

(14.143)

because they simply represent the nodes across which the transformers, gyrators, voltage sources,
capacitors, and inductors are connected. Also, matrix M33 contains a negative unity matrix repre-
senting the inductors plus some off-diagonal terms for the forward and reverse mutual conductances of
the gyrator. The matrices Mj; and My, represent the voltage and current transfer characteristics

respectively of the transformer. We note that



662 CHAPTER 14 State variable analysis of circuits

Al 0 100 (14.144)
1o 01 0 ‘

The first row of My is obtained by multiplying the second row of A%. (which represents the secondary
voltage) by —¢ and then adding it to the first row (which represents the primary voltage). This gives us
the voltage relationship of Eq. (14.126). The second row of My is simply null. If there is more than
one transformer, the same process is repeated for each successive pair of rows. The first row of Mp; is
null with the second row giving the current transfer ratio. Matrices Mj3 and M3, are both null. Finally,
matrix My is given by

M|, = Ag-Yg-Ak (14.145)

as before. Also, matrix N is constructed in exactly the same way as before and the same method is used
to solve Eq. (14.136).

14.12 WORKED EXAMPLE NO. 4: LOUDSPEAKER IN AN ENCLOSURE WITH
A BASS-REFLEX PORT USING CONTROLLED SOURCES

The equivalent circuit shown in Fig. 14.7 is essentially the same as that shown in Fig. 14.6, except
for two modifications which, as we shall see, do not affect its operation. First, the transformer has
been replaced by the combination of a current-controlled current source (CCjp) in the forward
direction and a voltage-controlled voltage source (VVp) in the reverse direction such that the
current source represents Eq. (14.127) and the voltage source Eq. (14.126). Second, the gyrator has
been replaced by two voltage-controlled current sources: one in the forward direction (VCi)
representing Eq. (14.128) and the other in the reverse direction representing Eq. (14.129). Because
the nodal method used here prevents the connection of a short-circuit between two nodes, a small
value resistor (R4) is connected between the current-sensing terminals of the current-controlled
current source CCj. In the case of a symbolic transfer function, R4 can be set to zero in the final
solution.

Although it is simpler to use transformers and gyrators directly, the purpose of this circuit is
illustrative since it is quite common to encounter acoustical systems with active components, for
example loudspeakers with current or motional feedback, where the amplifier can be represented as

5, R CCy (1) VCy (=g1p)

|

VG (g15)

FIG. 14.7 Equivalent electrical circuit of loudspeaker in hass-reflex enclosure using controlled sources.
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a controlled source. After using Norton’s theorem to replace the voltage source ¢; with a current source
¢1/Ry, the new net list can now be written as shown in Table 14.5, from which the following A matrix

is created:
e, R R, R, R, VV,,VV,CC,CC,VC,,6VC,VC,,VC,s C, C, L, L, node
1 1. 00 0 O 0 O 0 0 0 0 0 0 0 0 01
0O -100 1 0 O 1 0 0 0 0 0 00 0 0]2 (14.146)
A=(0 0 1 0 01 0 0 -1 1 0 0 1 1 01 0f3
o o0 o1 0 0O 0 O 0 0 1 1 0 01 0 1|4
O 0 00 -1 0 1 -1 0 0 0 0 0 0 0 0 05

which can be partitioned into six matrices: Ag, Agr, Ar, Ag, Ac, and Ay representing the
connectivity of the sources, resistors, transformers, gyrators, capacitors, and inductors
respectively:

Table 14.5 Net list for worked example No. 4

Element From node To node
€

R4
Ra
Rs
Rq
Wip
Wis
CCqp
CCis
VCip
VCis
VCop
VCos
Cy
Co
Ly

Ly

A OO OPAAPPOCONMOOOLON DW= =
O O OO OO0 O0OWwWwOoOLt oo ooNOo
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' R, R, R; R, VWip VVIS CCIP
1l I 00 0 0 0 0
0 -1 0 0 1 0 0 1

A, =[0[,A,=[0 1 0 0A,,=|1[A,,=[0} A, =]|0]
0 0O 01 0 0 0 0

0 0O 0 0 -1 0 1 -1 (14.147)

CCis VC,, VCyp VCys VCys ¢ G, L L,

0 00 00 00 00

0 00 0 0 0 0 0 0

A =[-1Ayep=|1 O[A,=|0 1[A.=|1 O[A,=|1 O

0 0 1 1 0 0 1 0 1

0 00 00 00 00

Now let us return to the circuit of Fig. 14.7. As before, the first step of the analysis is to apply KCL at
each of the nodes. The secondary current of the voltage-controlled voltage source VVj is denoted by
lTVVlS~ Similarly, the secondary current of the current-controlled current source CCj is denoted by
iccis. Likewise, the secondary currents of the voltage-controlled current sources VC; and VC, are
denoted by ivers and iyeas respectively.

At node 1
i = 92R_1ﬁl (14.148)

At node 2

vy — 7V Vo — ¥

1R1 2 _ 2R4 ) (14.149)

At node 3
iccis = Z—Z'FiLl +ic1 + iveas (14.150)

At node 4
Zvc1s+lz—‘;+iu +ic2 =0 (14.151)

At node 5
LSS (14.152)

R4
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For the current-controlled current source CCj, we have the following cross-coupled current
relationship:

Ty — Vs
R4

iccls = 1 (14.153)

For the voltage-controlled voltage source VV|, we have the following cross-coupled voltage
relationship:

s = 1173 (14.154)

For the voltage-controlled current sources VC| and VC,, we have the following pair of equations that
define the forward and reverse coupling via the mutual conductances g;p and g;g respectively:

ivcls = g1pV3 (14.155)
ivcas = g1sv4 (14.156)

For the voltage source
V] = €] (14.157)

Next we apply KVL to the capacitors and inductors:

For C,

v = Vei (14.158)
For G,

"= Ve (14.159)
For L;

V) = v (14.160)
For L,

V3 = Vo (14.161)
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We now rearrange Eqs. (14.148) to (14.161) into the following set of simultaneous equations:

1 1 -
EVI —EV2+lg] =0
1 " 1 n 1\ . 1 _ 0
—_—y JR— —_— Vy — —V pry
R VT\R TR)ERD
1 ~ re rd rd 4
—Vv3 —iccis +iveas T ict = —1Ip
Ry
1 ~ v v =4
—Wtiyeis tica = —I
R3
L5 + L5 + iy 0
——Vy+—V5+1 =
R 2 R 5 +iyvis
vs —tvy = 0
1. 1. .
_hs o h —0 (14.162)
R V2+R4 vs +iccis
3 — —iycis = 0
8g1p

- 1 -
Vg ——iycas = 0
818

vV = €]
3 = Vi
Ve = Ve

v3—vp =0

V4 —vp =0

where all sources and state variables are shown on the right hand side and the remaining unknown
parameters are shown on the left. These equations can be written in matrix form as follows:

M-v = N-w (14.163)
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where

2 Z2 2.3 o
S U TR 2 TS S T S —_ = o =
EashE Tl 2 8 R RS Dl
L J
Il
>
o
N e e e e R R
~vuOOOOOOOOOOOOl_O
L oo o ~oocooco0oo0 oo
oo ~ooco0oo0oo0ococ oo oo
b — O 0 00000000 C oo
Q Ta
P OO -0 00 0o g0 o0 oo
185 |
e TS
Sooco—~0co0co0 o oo o oo0
1S |
Y <
S oo Tooofooooooo
.S T
2
S OO0 00 —~0 0o oo oo oo
[
" T —
> O xg OOl - O O O O o O O
|
Y coolroco 0 0c 0 -0 O — O —
~w300,200‘_1101001010
T
o T K T« —
» x + oo O OO0 oo o oo
T _
- T
- = O O 000 o0 —~0 o0 o O

(14.164)

(14.165)

r

121
s
L

]
~

1

Sy

J

I
z

0 O
-1

-1

0 0

0

00 O
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Now let us partition the matrix M as follows:
M;; M;; Mg
M= |M; My My (14.166)
Mz Ms Mss

where
;I 32 VS ;4 ;5 7VVIS 7CClS ?VCIS 7VC2S ?el ?Cl 7C2 ;LI VLZ
(R R/ o 0o 0 | 0 0] (0 01 000 0]
—R7" R'+RY 0 0 —R 0 0 0000000
M =| 0 0 Ry 0 0 [Mj,=[0 —1|M;;={0 1 0 1 0 0 0
0 0 0 Ry 0 0 0 1000100
0 ~R}' 0 0 R, 1 0 (000000 0]
0 0 -t 01 0 0 00 00O0O0 O
M, = My, = -1 My; =
0 -1 0 01 0 t'R, 000000 O
0 0 1 0 0] [0 0] (g7 0 0.0 0 0 0
00010 00 0 gs 00000
1 0000 0 0 0 0 00000
M; =(0 0 1 0 O M;, =|0 O Ms;=| 0 0O 0 0 0 0 0
00010 0 0 0 0 00000
001 00 0 0 0 0 00 0-10
0 0 0 1 0] [0 0] [0 0 0 0 0 0-1]
(14.167)
On inspection of Eqgs. (14.147) and (14.167), it becomes apparent that
M, = [Ayys Accs] (14.168)
M3 = [Aycs As Ac 0] (14.169)
and
Alycp
At
My, = K (14.170)
AC

Al
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because they simply represent the nodes across which the controlled sources, voltage sources,
capacitors, and inductors are connected. Also, matrix M33 contains a negative unity matrix repre-
senting the inductors plus some diagonal terms for the mutual conductances of the voltage-controlled

current sources. The first row of My, represents the transfer characteristic of the voltage-controlled
voltage source from Eq. (14.154):

t
Ayys — tlAVVP

My = (14.171)

t
_ACCP

The second row of M»; in combination with the second row of M;, gives the current transfer char-
acteristic of the current-controlled current source from Eq. (14.153), where the parameter 1 'Ry in My
may be regarded as an equivalent mutual conductance between the input voltage and output current.
The first row of Mj; is null as are also the matrices M»3 and Ms;. Finally, matrix My is given by

M), = Ag-Yg-Al (14.172)

as before. Also, matrix N is constructed in exactly the same way as before and the same method is used
to solve Eq. (14.163).

14.13 GYRATOR COMPRISING TWO CURRENT-CONTROLLED VOLTAGE
SOURCES

As a footnote, the only controlled source which has not been considered in the above worked examples
is the current-controlled voltage source. A gyrator is shown in Fig. 14.8a. In Sec. 14.12, the gyrator
used in Sec. 14.11 was replaced with a pair of voltage-controlled current sources as shown in
Fig. 14.8b. Alternatively, a gyrator can be replaced by a pair of current-controlled voltage sources as
shown in Fig. 14.8c. In each case, the governing equations are

is = gpvp (14.173)

ip = gsis (14.174)

(a) (b) i (c)
Vp ip —81p i Vs v, }; =g

Ve Ip Iy Vs

T”j IR RS

18

.|||—|
i
I
e
T e

.|||—
.|||—|
il

FIG. 14.8 The gyrator (a) can be replaced by a pair of voltage-controlled current sources (b) or a pair of current-
controlled voltage sources (c).
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The configuration of Fig. 14.8c can be formulated in matrix system of equations in exactly the same
way as a voltage-controlled voltage source (see Sec. 14.12) where the voltage gains of the forward and
reverse controlled sources are —(Rpgp)_l and (RSgS)_1 respectively.
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