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PART VI: MECHANICAL CIRCUITS

3.1 INTRODUCTION
The subject of electro-mechano-acoustics (some-times called dynamical analogies) is the application
of electrical-circuit theory to the solution of mechanical and acoustical problems. In classical
mechanics, vibrational phenomena are represented entirely by differential equations. This situation
existed also early in the history of telephony and radio. As telephone and radio communication
developed, it became obvious that a schematic representation of the elements and their interconnec-
tions was valuable. Unlike a mechanical drawing, a schematic representation simply shows how the
individual circuit elements are connected, or their topology, rather than where they are physically
located. One of the most celebrated examples outside the field of engineering is the map of the London
Underground, which was designed by an electrical engineer [1] who realized that passengers simply
wanted a clear diagram of how to get from one place to another without the geographical details of the
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66 CHAPTER 3 Electro-mechano-acoustical circuits
route. Schematic diagrams made it possible for engineers to visualize the performance of a circuit
without laboriously solving its equations. Such a study would have been hopelessly difficult if only the
equations of the system were available.

There is another important advantage of a schematic diagram besides its usefulness in visualizing
the system. Often one has a piece of equipment for which one desires the differential equations. The
schematic diagram may then be drawn from visual inspection of the equipment. Following this, the
differential equations may be formed directly from the schematic diagrams. Most engineers are trained
to follow this procedure rather than to attempt to formulate the differential equations directly.

Schematic diagrams have their simplest applications in circuits that contain lumped elements, i.e.,
where the only independent variable is time. Such elements are valid when the wavelength greatly
exceeds the dimensions of the component. In other words, lumped element models are models with
zero space dimensions. In distributed systems, which are common in acoustics, there may be as many
as three space variables and a time variable. Here, a schematic diagram becomes more complicated to
visualize than the differential equations, and the classical theory comes into its own again. There are
many problems in acoustics, however, in which the elements are lumped and the schematic diagram
may be used to good advantage.

Four principal requirements are fulfilled by the methods used in this text to establish schematic
representations for acoustic and mechanical devices. They are as follows.

The methods must permit the formation of schematic diagrams from visual inspection of devices.
They must be capable of such manipulation as will make possible the combination of electrical,
mechanical, and acoustical elements into one schematic diagram.
They must preserve the identity of each element in combined circuits so that one can recognize
immediately a force, voltage, mass, inductance, and so on.
They must use the familiar symbols and the rules of manipulation for electrical circuits.

Several methods that have been devised fulfill one or two of the above four requirements, but not all four.
A purpose of this chapter is to present a new method for handling combined electrical, mechanical, and
acoustic systems. It incorporates the good features of previous theories and also fulfills the above four
requirements. The symbols used conform with those of earlier texts wherever possible. [2–6]

Note that a simple procedure for conversion of admittance-type circuits to impedance-type circuits
is given in Part IX, Sec. 3.8.
3.2 PHYSICAL AND MATHEMATICAL MEANINGS OF CIRCUIT ELEMENTS
The circuit elements we shall use in forming a schematic diagram are those of electrical-circuit theory.
These elements and their mathematical meaning are tabulated in Table 3.1 and should be learned at this
time. There are generators of two types. There are five types of circuit elements: resistance, capacitance,
inductance, transformation, and gyration. There are three generic quantities: (a) the drop across the circuit
element; (b) the flow through the circuit element; and (c) the magnitude of the circuit element. [7]

Attention should be paid to the fact that the quantity ~a is not restricted to voltage ~e, nor ~b to
electrical current ~i. In some problems ~a will represent force ~f , or velocity ~u, or pressure ~p, or volume
velocity ~U. In those cases ~b will represent, respectively, velocity ~u, or force ~f , or volume velocity ~U, or
pressure ~p. Similarly, the quantity c might be any appropriate quantity such as mass, compliance,



Table 3.1 Mathematical and physical significance of symbols

Symbol Name

Meaning

Transient Steady-state

Constant-drop generator The drop ~a is independent of what is connected to the
generator. Its internal impedance is zero so that if one of
any number of generators in a circuit is switched off, it is
replaced by a short circuit. The arrow points to the positive
terminal of the generator.

Constant-flow generator The flow ~b is independent of what is connected to the
generator. Its internal impedance is infinity so that if one of
any number of generators in a circuit is switched off, it is
replaced by an open circuit. The arrows point in the
direction of positive flow.

Resistance-type element a ¼ bc ~a ¼ ~bc

Capacitance-type element a ¼ 1

c

Z
b dt ~a ¼

~b

juc

Inductance-type element a ¼ c
db

dt
~a ¼ juc~b

Transformation-type
element

a ¼ cg

b ¼ d

c

a

b
¼ c2

g

d

~a ¼ c~g

~b ¼
~d

c

~a

~b
¼ c2

~g

~d

Gyration-type element

c1a ¼ d

b ¼ c2g

a

b
¼ 1

c1c2

d

g

c1~a ¼ ~d

~b ¼ c2~g

~a

~b
¼ 1

c1c2

~d

~g
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inductance, resistance, etc. The physical meaning of the circuit elements c depends on the way in

which the quantities ~a and ~b are chosen, with the restriction that
~a�ffiffiffi
2

p $
~bffiffiffi
2

p has the dimension of power

in all cases. The complete array of alternatives is shown in Table 3.2.
An important idea to fix in your mind is that the mathematical operations associated with a given

symbol are invariant. If the element is of the inductance type, for example, the drop ~a across it is equal
to the time derivative of the flow ~b through it multiplied by its size c. Note that this rule is not always
followed in electrical-circuit theory because there conductance and resistance are often indiscrimin-
ately written beside the symbol for a resistance-type element. The invariant operations to be associated
with each symbol are shown in columns 3 and 4 of Table 3.1.

An infinite impedance generator is a flow generator in the impedance analogy and a drop generator
in the admittance analogy. Conversely, a zero impedance generator is a drop generator in the
impedance analogy and a flow generator in the admittance analogy. A drop generator “hates” short
circuits for obvious reasons. A flow generator “hates” open circuits because when the flow is blocked,
the drop rises to infinity. In fact a flow generator can be approximated by a very large drop generator
with a very large series resistance whose value is the drop divided by the desired flow.

The transformation element is ideal in that it neither creates nor dissipates power. Hence the dot
product ~a�$~b on the primary side is always equal to ~g�$~d on the secondary side. It is also reversible,
Table 3.2 Values for a, b, and c in electrical, mechanical, and acoustical circuits

Element Electrical

Mechanical Acoustical

Admittance
analogy

Impedance
analogy

Impedance
analogy

Admittance
analogy

~a ~e ~u ~f ~p ~U

~b ~i ~f ~u ~U ~p

c ¼ RE c ¼ 1

RM
¼ YM c ¼ RM c ¼ RA c ¼ 1

RA
¼ YA

c ¼ CE c ¼ MM c ¼ CM c ¼ CA c ¼ MA

c ¼ L c ¼ CM c ¼ MM c ¼ MA c ¼ CA

c ¼ ZE ¼ ~e
~i

c ¼ YM ¼ ~u
~f

¼ 1

ZM

c ¼ ZM ¼
~f

~u

¼ 1

YM

c ¼ ZA ¼ ~p
~U

¼ 1

YA

c ¼ YM ¼
~U

~p

¼ 1

ZA
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unlike, for example, an amplifier. If the transformation ratio is c:1, as illustrated in Table 3.1, then you
divide the drop ~a on the primary side to obtain the drop ~g on the secondary side. Conversely, if the
transformation ratio is 1:c, then you multiply the drop ~a on the primary side to obtain the drop ~g on the
secondary side. Of course, to conserve power, the opposite operation is performed on the flow, so that it
increases by the same ratio that the drop decreases or vice versa.

The gyration element is used to convert an admittance-type circuit to an impedance-type one or
vice versa. This means that the flow ~d on the secondary side is equal to the drop ~a on the primary side
multiplied by the forward mutual conductance c1. Likewise, the flow ~b on the primary side is equal to
the drop ~g on the secondary side multiplied by reverse mutual conductance c2. The forward and reverse
mutual conductances c1 and c2 respectively may have different values in which case energy is either
consumed (as in an amplifier) or dissipated. In this text, it will be used exclusively as an energy
conserving element in passive transducers, in which case c1¼ c2¼ c.
3.3 MECHANICAL ELEMENTS
Mechanical-circuit elements need not always be represented by electrical symbols. Since one
frequently draws a mechanical circuit directly from inspection of the mechanical device, more obvious
forms of mechanical elements are sometimes useful, at least until the student is thoroughly familiar
with the analogous circuit. We shall accordingly devise a set of “mechanical” elements to be used as an
introduction to the elements of Table 3.1.

In electrical circuits, a voltage measurement is made by attaching the leads from a voltmeter
across the two terminals of the element. Voltage is a quantity that we can measure without breaking
into the circuit. To measure electric current, however, we must break into the circuit because this
quantity acts through the element. In mechanical devices, on the other hand, we can measure the
velocity (or the displacement) without disturbing the machine by using a capacitive or inertially
operated vibration pickup to determine the quantity at any point on the machine. It is not velocity but
force that is analogous to electric current. Force cannot be measured unless one breaks into the
device.

It becomes apparent then that if a mechanical element is strictly analogous to an electrical element
it must have a velocity difference appearing between (or across) its two terminals and a force acting
through it. Analogously, also, the product of the rms force f in N and the in-phase component of the rms
velocity u in m/s is the power in W. We shall call this type of analogy, in which a velocity corresponds
to a voltage and a force to a current, the admittance-type analogy. It is also known as the “inverse”
analogy.

Many texts teach in addition a “direct” analogy. It is the opposite of the admittance analogy in that
force is made to correspond to voltage and velocity to current. In this text we shall call this kind of
analogy an impedance-type analogy. To familiarize the student with both concepts, all examples will
be given here both in admittance-type and impedance-type analogies. Table 3.3 shows a comparison of
the symbolic representation of elements in each analogy.

Mechanical impedance ZM, and mechanical admittance YM. The mechanical impedance is the
complex ratio of force to velocity at a given point in a mechanical device. We commonly use the
symbol ZM for mechanical impedance, where the subscript M stands for “mechanical.” The unit is
N$s/m, or mechanical ohm.



Table 3.3 Conversion from admittance-type analogy to impedance-type analogy, or vice versa

Element

Mechanical analogies Acoustical analogies

Admittance
type

Impedance
type

Admittance
type

Impedance
type

Infinite impedance
generator (impedance
analogy) and zero
admittance generator
(admittance analogy)

Zero impedance generator
(impedance analogy) and
infinite admittance
generator (admittance
analogy)

Dissipative element –
resistance (impedance
analogy) and conductance
(admittance analogy)

Mass element

Compliant element

Impedance element
(impedance analogy) and
admittance element
(admittance analogy)

Transformation element –
converts from one
impedance to another and
is useful for coupling
between electrical,
mechanical or acoustical
domains

Mech. to acous. (admittance type) Mech. to acous. (impedance type)
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Table 3.3 Conversion from admittance-type analogy to impedance-type analogy, or vice
versa—cont’d

Element

Mechanical analogies Acoustical analogies

Admittance
type

Impedance
type

Admittance
type

Impedance
type

Gyration element –
converts an admittance
circuit to an impedance
one or vice versa and is
useful for coupling
between electrical,
mechanical or acoustical
domains

Mech. (admittance) to acous. (imp.) Mech. (imp.) to acous. (admittance)
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In the admittance analogy, the mechanical admittance is the inverse of the mechanical impedance.
It may also be referred to as the mechanical mobility, but we shall use the more commonly used term
admittance. It is the complex ratio of velocity to force at a given point in a mechanical device. We
commonly use the symbol YM for mechanical admittance. The unit is m$N�1$s�1, or mechanical
siemens (S).
Mass MM. Mass is that physical quantity which when acted on by a force is accelerated in direct
proportion to that force. The unit is kg. At first sight, mass appears to be a one-terminal quantity
because only one connection is needed to set it in motion. However, the force acting on a mass and the
resultant acceleration are reckoned with respect to the earth (inertial frame) so that in reality the second
terminal of mass is the earth.

The mechanical symbol used to represent mass is shown in Fig. 3.1 The upper end of the mass
moves with a velocity ~u with respect to the ground. The R-shaped configuration represents the “second”
terminal of the mass and has zero velocity. The force can be measured by a suitable device inserted
between the point 1 and the next element or generator connecting to it.

Mass MM obeys Newton’s second law that

f ðtÞ ¼ MM
duðtÞ
dt

; (3.1)
MMu~

1
f~

FIG. 3.1 Mechanical symbol for a mass.
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where f(t) is the instantaneous force in N, MM is the mass in kg, and u(t) is the instantaneous velocity
in m/s.

In the steady state [see Eqs. (2.36) to (2.44)], with an angular frequency u equal to 2p times the
frequency of vibration, we have the special case of Newton’s second law,

~f ¼ juMM~u; (3.2)

where j ¼ ffiffiffiffiffiffiffi�1
p

as usual.
The admittance-type analogous symbol that we use as a replacement for the mechanical symbol in

our circuits is a capacitance type. It is shown in Fig. 3.2a. The mathematical operation invariant for this
symbol is found from Table 3.1. In the steady state we have

~a ¼
~b

juc
or ~u ¼

~f

juMM
: (3.3)

This equation is seen to satisfy the physical law given in Eq. (3.2). Note the similarity in appearance of
the mechanical and analogous symbols in Fig. 3.1 and Fig. 3.2a. In electrical circuits the time integral
of the current through a capacitor is charge. The analogous quantity here is the time integral of force,
which is momentum.

The impedance-type analogous symbol for a mass is an inductance. It is shown in Fig. 3.2b. The
invariant operation for steady state is ~a ¼ juc~b or ~f ¼ juMM~u. It also satisfies Eq. (3.2). Note,
however, that in this analogy one side of the mass element is not necessarily grounded; this often leads
to confusion. In electrical circuits the time integral of the voltage across an inductance is flux-turns.
The analogous quantity here is momentum.
Mechanical compliance CM. A physical structure is said to be a mechanical compliance CM if, when
it is acted on by a force, it is displaced in direct proportion to the force. The unit is m/N. Compliant
elements usually have two apparent terminals.

The mechanical symbol used to represent a mechanical compliance is a spring. It is shown in
Fig. 3.3. The upper end of the element moves with a velocity ~u1 and the lower end with a velocity ~u2.
The force required to produce the difference between the velocities ~u1 and ~u2 may be measured by
breaking into the machine at either point 1 or point 2. Just as the same current would be measured at
either end of an element in an electrical circuit, so the same force will be found here at either end of the
compliant element.
MMu~

f
~

MMf
~

u~

Admittance - type 

(a) (b)

Impedance - type 

FIG. 3.2 (a) Admittance-type and (b) impedance-type symbols for a mass.
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1

2

1

~u

2

~u

FIG. 3.3 Mechanical symbol for a mechanical compliance.
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Mechanical compliance CM obeys the following physical law:

a ¼ 1

c

Z
b dt or f ðtÞ ¼ 1

CM

Z
uðtÞ dt; (3.4)

where CM is the mechanical compliance in m/N and u(t) is the instantaneous velocity in m/s equal to
~u1 � ~u2, the difference in velocity of the two ends.

In the steady state, with an angular frequency u, equal to 2p times the frequency of vibration, we
have

~f ¼ ~u

juCM
; (3.5)

where ~f and ~u are taken to be complex quantities.
The admittance-type analogous symbol used as a replacement for the mechanical symbol in our

circuits is an inductance. It is shown in Fig. 3.4a. The invariant mathematical operation that this
symbol represents is given in Table 3.1. In the steady state we have

~u ¼ juCM
~f : (3.6)

In electrical circuits the time integral of the voltage across an inductance is flux-turns. The analogous
quantity here is the time integral of velocity, which is displacement.

This equation satisfies the physical law given in Eq. (3.5). Note the similarity in appearance of the
mechanical and analogous symbols in Fig. 3.3 and Fig. 3.4a.
CMu~

f
~

CMf
~

u~

Admittance - type 

(a) (b)

Impedance - type 

FIG. 3.4 (a) Admittance-type and (b) impedance-type symbols for a mechanical compliance.
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The impedance-type analogous symbol for a mechanical compliance is a capacitance. It is shown
in Fig. 3.4b. The invariant operation for steady state is ~a ¼ ~b=juc, or ~f ¼ ~u=juCM. It also satisfies
Eq. (3.5). In electrical circuits the time integral of the current through a capacitor is the charge. The
analogous quantity here is the displacement.
Mechanical resistance RM, and mechanical conductance GM. A physical structure is said to be
a mechanical resistance RM if, when it is acted on by a force, it moves with a velocity directly
proportional to the force. The unit is N$s/m or rayls$m2.

We also define here a quantity GM, the mechanical conductance, that is the reciprocal of RM. The
unit of conductance is m$N�1$s�1 or rayls�1$m�2.

The above representation for mechanical resistance is usually limited to viscous resistance. Fric-
tional resistance is excluded because, for it, the ratio of force to velocity is not a constant. Both
terminals of resistive elements can usually be located by visual inspection.

The mechanical element used to represent viscous resistance is the fluid dashpot shown sche-
matically in Fig. 3.5. The upper end of the element moves with a velocity ~u1 and the lower with
a velocity ~u2. The force required to produce the difference between the two velocities ~u1 and ~u2 may be
measured by breaking into the machine at either point 1 or point 2.

Mechanical resistance RM obeys the following physical law:

~f ¼ RM~u ¼ 1

GM
~u; (3.7)

where ~f is the force in N, ~u is the difference between the velocities ~u1 and ~u2 of the two ends, RM is the
mechanical resistance in N$s/m, and GM is the mechanical conductance in m$N�1$s�1.

The admittance-type analogous symbol used to replace the mechanical symbol in our circuits is
a resistance. It is shown in Fig. 3.6a. The invariant mathematical operation that this symbol represents
is given in Table 3.1. In either the steady or transient state we have

~u ¼ GM
~f ¼ 1

RM

~f : (3.8)

In the steady state ~u and ~f are taken to be complex quantities. This equation satisfies the physical law
given in Eq. (3.7).

The impedance-type analogous symbol for a mechanical resistance is shown in Fig. 3.6b. It also
satisfies Eq. (3.7).
1

~u

2

~u

1

2

RM

FIG. 3.5 Mechanical symbol for mechanical (viscous) resistance.
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f~

u~ RM
f~

u~

Admittance-type Impedance-type 

(a) (b)

FIG. 3.6 (a) Admittance-type and (b) impedance-type symbols for a mechanical resistance.

3.3 Mechanical elements 75
Mechanical generators. The mechanical generators considered will be one of two types: constant-
velocity or constant-force. A constant-velocity generator is represented as a very strong motor
attached to a shuttle mechanism in the manner shown in Fig.3.7. The opposite ends of the generator
have velocities ~u1 and ~u2. One of these velocities, either ~u1 or ~u2, is determined by factors external to
the generator. The difference between the velocities ~u1 and ~u2, however, is a velocity ~u that is inde-
pendent of the external load connected to the generator.

The symbols that we used in the two analogies to replace the mechanical symbol for a constant-
velocity generator are shown in Fig. 3.8. The invariant mathematical operations that these symbols
represent are also given in Table 3.1. The tips of the arrows point to the “positive” terminals of
the generators. The wave inside the circle in Fig. 3.8a indicates that the internal admittance of the
generator is zero. The arrow inside the circle of Fig. 3.8b indicates that the internal impedance of the
generator is infinite.

A constant-force generator is represented here by an electromagnetic transducer (e.g., a moving-
coil loudspeaker) in the primary of which an electric current of constant amplitude is maintained. Such
a generator produces a force equal to the product of the current ~i, the flux density B, and the effective
length of the wire l cutting the flux ð ~f ¼ Bl~iÞ. This device is shown schematically in Fig. 3.9. The
opposite ends of the generator have velocities ~u1 and ~u2 that are determined by factors external to the
1

~u1

2 2

~u

u~

FIG. 3.7 Mechanical symbol for a constant-velocity generator.



f~
f~ u~

u~ u~

Admittance - type 

(a) (b)

Impedance - type 

FIG. 3.8 (a) Admittance-type and (b) impedance-type symbols for a constant-velocity generator.

1
~u1

2
~u

2

f~

FIG. 3.9 Mechanical symbol for a constant-force generator.
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generator. The force that the generator produces and that may be measured by breaking into the device
at either point 1 or point 2 is a constant force, independent of what is connected to the generator.

The symbols used in the two analogies to replace the mechanical symbol for a constant-force
generator are given in Fig. 3.10. The invariant mathematical operations that these symbols represent
are also given in Table 3.1. The arrows point in the direction of positive flow. Here the arrow inside the
circle indicates infinite admittance and the wave inside the circle zero impedance.

Levers.

Simple lever It is apparent that the lever is a device closely analogous to a transformer. The lever in its
simplest form consists of a weightless bar resting on an immovable fulcrum, so arranged that
a downward force on one end causes an upward force on the other end (see Fig. 3.11). From
elementary physics we may write the equation of balance of moments around the fulcrum:

~f 1l1 ¼ ~f 2l2
f~u~

Admittance - type Impedance - type 

u~f~

f~
(a) (b)

FIG. 3.10 (a) Admittance-type and (b) impedance-type symbols for a constant-force generator.



1

~f

2

~u
2

~f
1

~u

3

~f

YM2

l1l2

FIG. 3.11 Simple lever.
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or, if not balanced, assuming small displacements,

~u1l2 ¼ ~u2l1: (3.9)

Also,

YM1 ¼ ~u1
~f 1

¼
�
l1
l2

�2

YM2;

ZM1 ¼
~f 1
~u1

¼
�
l2
l1

�2

ZM2:

(3.10)

The above equations may be represented by the ideal transformers of Fig. 3.12, having a trans-
formation ratio of ðl1=l2Þ : 1 for the admittance type and ðl2=l1Þ : 1 for the impedance type.

Floating lever As an example of a simple floating lever, consider a weightless bar resting on
a fulcrum that yields under force. The bar is so arranged that a downward force on one end tends to
produce an upward force on the other end. An example is shown in Fig. 3.13.

To solve this type of problem, we first write the equations of moments. Summing the moments
about the center support gives

l1 ~f 1 ¼ l2 ~f 2
1

~f

2

~u

2

~f

1

~u

Admittance-type Impedance-type 

1:

2

1

l
l

YM2
1

~f

2

~u

2

~f

1

~u 1:

1

2

l
l

ZM2

(a) (b)

FIG. 3.12 (a) Admittance-type and (b) impedance-type symbols for a simple lever.
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YM2
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1

2
3

YM3

Admittances constrained 
to move up and down only 

3
~u

FIG. 3.13 Floating lever.
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and summing the moments about the end support gives

ðl1 þ l2Þ ~f 1 ¼ l2 ~f 3: (3.11)

When the forces are not balanced, and if we assume infinitesimal displacements, the velocities are
related to the forces through the admittances, so that

~u3 ¼ YM3
~f 3 ¼ YM3

l1 þ l2
l2

~f 1;

~u2 ¼ YM2
~f 2 ¼ YM2

l1
l2
~f 1:

(3.12)

Also, by superposition, it is seen from simple geometry that

~u01 ¼ ~u3
l1 þ l2
l2

for ~u2 ¼ 0;

~u001 ¼ ~u2
l1
l2

for ~u3 ¼ 0;

so that

~u1 ¼ ~u01 þ ~u001 ¼ l1 þ l2
l2

~u3 þ l1
l2
~u2 (3.13)

and, finally,

~u1
~f 1

¼ YM1 ¼ YM3

�
l1 þ l2
l2

�2

þYM2

�
l1
l2

�2

: (3.14)

This equation may be represented by the analogous circuit of Fig. 3.14. The lever loads the
generator with two admittances connected in series, each of which behaves as a simple lever when the
other is equal to zero. It will be seen that this is a way of obtaining the equivalent of two series masses
without a common zero-velocity (ground) point. This will be illustrated in Example 3.3.
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FIG. 3.14 Admittance-type symbol for a floating lever.
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Example 3.1. The mechanical device of Fig. 3.15 consists of a piston of massMM1 sliding on an oil
surface inside a cylinder of massMM2. This cylinder in turn slides in an oiled groove cut in a rigid body.
The sliding (viscous) resistances are RM1 and RM2, respectively. The cylinder is held by a spring of
compliance CM. The mechanical generator maintains a constant sinusoidal velocity of angular
frequency u, whose magnitude is ~u m/s. Solve for the force ~f produced by the generator.

Solution. Although the force will be determined ultimately from an analysis of the admittance-type
analogous circuit for this mechanical device, it is frequently useful to draw a mechanical-circuit
diagram. This interim step to the desired circuit will be especially helpful to the student who is
inexperienced in the use of analogies. Its use virtually eliminates errors from the final circuit.

To draw the mechanical circuit, note first the junction points of two or more elements. This locates
all element terminals which move with the same velocity. There are in this example two velocities, ~u
and ~u2, in addition to “ground,” or zero velocity. These two velocities are represented in the
mechanical-circuit diagram by the velocities of two imaginary rigid bars, 1 and 2 of Fig. 3.16, which
oscillate in a vertical direction. The circuit drawing is made by attaching all element terminals with
velocity ~u to the first bar and all terminals with velocity ~u2 to the second bar. All terminals with zero
velocity are drawn to a ground bar. Note that a mass always has one terminal on ground. [8] Three
elements of Fig. 3.15 have one terminal with the velocity ~u: the generator, the mass MM1, and the
MM22

~u

RM1

MM1

u~ CM

RM2

FIG. 3.15 Six-element mechanical device.



MM2
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~u
RM1

MM1

u~

CM

RM2

1 2 

FIG. 3.16 Mechanical circuit for the device of Fig. 3.15.
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viscous resistance RM1. These are attached to bar 1. Four elements have one terminal with the velocity
~u2: the viscous resistances RM1 and RM2, the mass MM2, and the compliance CM. These are attached to
bar 2. Five elements have one terminal with zero velocity: the generator, both masses, the viscous
resistance RM2, and the compliance CM.

We are now in a position to transform the mechanical circuit into an admittance-type analogous
circuit. This is accomplished simply by replacing the mechanical elements with the analogous
admittance-type elements. The circuit becomes that shown in Fig. 3.17. Remember that, in the
admittance-type analogy, force “flows” through the elements and velocity is the drop across them. The
resistors must have G’s written alongside them. As defined above, GM¼ 1/RM, and the unit is
m$N�1$s�1 or mechanical siemens.

The equations for this circuit are found in the usual manner, using the rules of Table 3.1. Let us
determine YM ¼ ~u=~f , the mechanical admittance presented to the generator. The mechanical
admittance of the three elements in parallel on the right-hand side of the schematic diagram is

~u2
~f 2

¼ 1

1

1=juMM2
þ 1

GM2
þ 1

juCM

¼ 1

juMM2 þ RM2 þ 1

juCM

:

Including the element GM1 the mechanical admittance for that part of the circuit through which ~f 2
flows is, then,

~u
~f 2

¼ GM1 þ 1

juMM2 þ RM2 þ 1

juCM

:

f~

u~

GM1

2

~u

2

~f

1

~f
CM

MM2MM1

GM2

FIG. 3.17 Admittance-type analogous circuit for the device of Fig. 3.15.
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Note that the input mechanical admittance YM is given by

YM ¼ ~u

~f
þ ~u

~f 1 þ ~f 2
:

and

~f 1 ¼ ~u

1=juMM1
¼ juMM1~u:

Substituting ~f 1, and ~f 2 into the second equation preceding gives us the input admittance:

YM ¼ ~u

~f
¼ 1

juMM1 þ 1

GM1 þ 1

juMM2 þ RM2 þ 1

juCM

: (3.15a)

The mechanical impedance is the reciprocal of Eq. (3.15a):

ZM ¼
~f

~u
¼ juMM1 þ 1

GM1 þ 1

juMM2 þ RM2 þ 1

juCM

: (3.15b)

The result is

~f ¼ ZM~u N: (3.16)

Example 3.2. As a further example of a mechanical circuit, let us consider the two masses of 2 and
4 kg shown in Fig. 3.18. They are assumed to rest on a frictionless plane surface and to be connected
together through a generator of constant velocity that is also free to slide on the frictionless plane
surface.

Let its velocity be

u0ðtÞ ¼ 2 cos 1000t cm=s
0

~u

MM1

Free to slide on 
flat frictionless 
surface 

MM2

1 2 

FIG. 3.18 Three-element mechanical device.
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so that

~u0 ¼ 2e j1000t cm=s

or ���~u0��� ¼ 2 cm=s at u ¼ 1000 Hz:

Draw the admittance-type analogous circuit, and determine the force ~f produced by the generator.
Also, determine the admittance presented to the generator.

Solution. The masses do not have the same velocity with respect to ground. The difference between
the velocities of the two masses is ~u0. The element representing a mass is that shown in Fig. 3.2a with
one end grounded and the other moving at the velocity of the mass.

The admittance-type circuit for this example is shown in Fig. 3.19. The velocity ~u0 equals ~u1 þ ~u2,
where ~u1 is the velocity with respect to ground of M1, and ~u2 is that for MM3. The force ~f is

~f ¼ 1

ð1=juMM1Þ þ ð1=juMM2Þ
���~u0���e j1000t

¼ juMM1MM2

MM1 þMM2

���~u0���e j1000t

¼ j1000� 2� 4� 0:02

2þ 4
e j1000t ¼ j26:7e j1000t N:

(3.17)

The j indicates that the time phase of the force is 90� leading with respect to that of the velocity of the
generator. Hence the rms force is

frms ¼

��� ~f ���ffiffiffi
2

p :90o ¼ 18:9 N:90o (3.18)

Obviously, when one mass is large compared with the other, the force is that necessary to move the
smaller one alone. This example reveals the only type of case in which masses can be in series without
the introduction of floating levers. At most, only two masses can be in series because a common
ground is necessary.
f~

0

~u
MM2

MM1

FIG. 3.19 Admittance-type analogous circuit for the device of Fig. 3.18.
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The admittance presented to the generator is

YM ¼ ~u0
~f
¼ MM1 þMM2

juMM1MM2

¼ 6

j1000� 8
¼ �j7:5� 10�4 m � N�1 � s�1

(3.19)

Example 3.3.An example of a mechanical device embodying a floating lever is shown in Fig. 3.20.
The masses attached at points 2 and 3 may be assumed to be resting on very compliant springs. The
driving force ~f 1 will be assumed to have a frequency well above the resonance frequencies of the
masses and their spring supports so that

YM2z
1

juMM2

YM3z
1

juMM3

Also, assume that a mass is attached to the weightless lever bar at point 1, with an admittance

YM1 ¼ 1

juMM1
:

Solve for the total admittance presented to the constant-force generator ~f 1.
Pivot
points

1

~f

l1

1 2
3

MM1

l2

MM2MM3

Pivot
points

l1
23

MM1

l2
2

~f

MM3 MM2

3

~f
2

~u3

~u
1

~u
1

~f
1

(a)

(b)

FIG. 3.20 (a) Mechanical device embodying a floating lever. (b) Mechanical diagram of (a).

The compliances of the springs are very large so that all of f2 and f3 go to move MM2 and MM3.



(a)

(b)

FIG. 3.21 (a) Admittance-type analogous circuit for the device of Fig. 3.20. (b) Same as (a) but with transformers

removed.
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Solution. By inspection, the admittance-type analogous circuit is drawn as shown in Fig. 3.21a and
Fig. 3.21b. Solving for YM ¼ ~u1=~f 1, we get

YM ¼ 1

ju

"
MM2MM3l

2
2

MM3l
2
1 þMM2ðl1 þ l2Þ2

þMM1

# (3.20)

Note that if l2 / 0, the admittance is simply that of the mass MM1. Also, if l1 / 0, the admittance is
that of MM1 and MM3, that is,

YM ¼ 1

juðMM3 þMM1Þ (3.21)

In an admittance-type circuit (with transformers eliminated), it is possible with one or more floating
levers to have one or more MM’s with no ground terminal (s).
PART VII: ACOUSTICAL CIRCUITS

3.4 ACOUSTICAL ELEMENTS
Acoustical circuits are frequently more difficult to draw than mechanical ones because the elements
are less easy to identify. As was the case for mechanical circuits, the more obvious forms of the
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elements will be useful as an intermediate step toward drawing the analogous circuit diagram. When
the student is more familiar with acoustical circuits, he or she will be able to pass directly from the
acoustic device to the final form of the equivalent circuit.

In acoustic devices, the quantity we are able to measure most easily without modification of the
device is sound pressure. Such a measurement is made by inserting a small hollow probe tube into
the sound field at the desired point. This probe tube leads to one side of a microphone diaphragm. The
other side of the diaphragm is exposed to atmospheric pressure. A movement of the diaphragm takes
place when there is a difference in pressure across it. This difference between atmospheric pressure
and the incremental pressure created by the sound field is the sound pressure ~p.

Because we can measure sound pressure by such a probe-tube arrangement without disturbing the
device, it seems that sound pressure is analogous to voltage in electrical circuits. Such a choice
requires us to consider current as being analogous to some quantity which is proportional to velocity.
As we shall show shortly, a good choice is to make current analogous to volume velocity, the volume of
gas displaced per second.

A strong argument can be made for this choice of analogy when one considers the relations
governing the flow of air inside such acoustic devices as loudspeakers, microphones, and noise filters.
Inside a certain type of microphone, for example, there is an air cavity that connects to the outside air
through a small tube (see Fig. 3.22). Assume, now, that the outer end of this tube is placed in a sound
wave. The wave will cause a movement of the air particles in the tube. Obviously, there is a junction
between the tube and the cavity at the inner end of the tube at point A. Let us ask ourselves the
question, “What physical quantities are continuous at this junction point?”.

First, the sound pressure just inside the tube at A is the same as that in the cavity just outside A. That
is to say, we have continuity of sound pressure. Second, the quantity of air leaving the inner end of the
small tube in a given interval of time is the quantity that enters the cavity in the same interval of time.
That is, the mass per second of gas leaving the small tube equals the mass per second of gas entering
the volume. Because the pressure is the same at both places, the density of the gas must also be the
same, and it follows that there is continuity of volume velocity (cubic meters per second or m3/s) at this
junction. Analogously, in the case of electricity, there is continuity of electric current at a junction.
Continuity of volume velocity must exist even if there are several tubes or cavities joining near one
point. A violation of the law of conservation of mass otherwise would occur.

We conclude that the quantity that flows through our acoustical elements must be the volume
velocity U in m3/s and the drop across our acoustical elements must be the pressure p in Pa. This
Spherical 
closed cavity 

Tube

c

A

FIG. 3.22 Closed cavity connecting to the outside air through a tube of cross-sectional area S.

The junction plane between the tube and the cavity occurs at A.
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conclusion indicates that the impedance type of analogy is the preferred analogy for acoustical circuits.
The product of the effective sound pressure p times the in-phase component of the effective volume
velocity U gives the acoustic power in W.

In this part, we shall discuss the more general aspects of acoustical circuits. In Chapter 4 of this
book, we explain fully the approximations involved and the rules for using the concepts enunciated
here in practical problems.
Acoustic mass MA. Acoustic mass is a quantity proportional to mass but having the dimensions of kg/
m4. It is associated with a mass of air accelerated by a net force which acts to displace the gas without
appreciably compressing it. The concept of acceleration without compression is an important one to
remember. It will assist you in distinguishing acoustic masses from other elements.

The acoustical element that is used to represent an acoustic mass is a tube filled with the gas as
shown in Fig. 3.23.

The physical law governing the motion of a mass that is acted on by a force is Newton’s second law,
f(t)¼MM du(t)/dt. This law may be expressed in acoustical terms as follows:

f ðtÞ
S

¼ MM

S

d½uðtÞS�
dt S

¼ pðtÞ ¼ MM

S2
dUðtÞ
dt

pðtÞ ¼ MA
dUðtÞ
dt

(3.22)

where

p(t) is the instantaneous difference between pressures in Pa existing at each end of a mass of gas of
MM kg undergoing acceleration.
MA¼MM/S

2 is the acoustic mass in kg/m4 of the gas undergoing acceleration. This quantity is
nearly equal to the mass of the gas inside the containing tube divided by the square of the
cross-sectional area. To be more exact we must note that the gas in the immediate vicinity of
the ends of the tube also adds to the mass. Hence, there are “end corrections” which must be
considered. These corrections are discussed in Chapter 4 (page 121).
U(t) is the instantaneous volume velocity of the gas in m3/s across any cross-sectional plane in the
tube. The volume velocity U(t) is equal to the linear velocity u(t) multiplied by the cross-sectional
area S.

In the steady state, with an angular frequency u, we have

~p ¼ juMA ~U (3.23)

where ~p and ~U are taken to be complex quantities.
l

FIG. 3.23 Tube of length l and cross-sectional area S.
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The impedance-type analogous symbol for acoustic mass is shown in Fig. 3.24a, and the admittance-
type is given in Fig. 3.24b. In the steady state, for either, we get Eq. (3.23). The arrows point in the
direction of positive flow or positive drop.
Acoustic compliance CA. Acoustic compliance is a constant quantity having the dimensions of m5/N.
It is associated with a volume of air that is compressed by a net force without an appreciable average
displacement of the center of gravity of air in the volume. In other words, compression without
acceleration identifies an acoustic compliance.

The acoustical element that is used to represent an acoustic compliance is a volume of air drawn as
shown in Fig. 3.25.

The physical law governing the compression of a volume of air being acted on by a net force was
given as

f ðtÞ ¼ ð1=CMÞ
Z

uðtÞ dt:

Converting from mechanical to acoustical terms,

f ðtÞ
S

¼ 1

CMS

Z
uðtÞS

S
dt or pðtÞ ¼ 1

CMS2

Z
UðtÞdt

or

pðtÞ ¼ 1

CA

Z
UðtÞdt: (3.24)
U~

p~

Impedance-type 

MA

Admittance-type 

U~

p~MA(a) (b)

FIG. 3.24 (a) Impedance-type and (b) admittance-type symbols for an acoustic mass.

Volume 
of air 

V

FIG. 3.25 Enclosed volume of air V with opening for entrance of pressure variations.
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where

p(t) is instantaneous pressure in Pa acting to compress the volume V of the air.
CA¼CMS

2 is acoustic compliance in m5/N of the volume of the air undergoing compression.
The acoustic compliance is nearly equal to the volume of air divided by gP0, as we shall see in
Chapter 4 (page 121 to 125).
U(t) is instantaneous volume velocity in m3/s of the air flowing into the volume that is undergoing
compression. The volume velocity U(t) is equal to the linear velocity u(t) multiplied by the cross-
sectional area S.

In the steady state with an angular frequency u, we have

~p ¼
~U

juCA
; (3.25)

where ~p and ~U are taken to be complex quantities.
The impedance-type analogous element for acoustic compliance is shown in Fig. 3.26a and the

admittance-type in Fig. 3.26b. In the steady state for either, Eq. (3.25) applies.
Acoustic resistance RA, and acoustic conductance GA. Acoustic resistance RA is associated with the
dissipative losses occurring when there is a viscous movement of a quantity of gas through a fine-mesh
screen or through a capillary tube. The unit is N$s/m5 or rayls/m2.

The acoustic element used to represent an acoustic resistance is a fine-mesh screen drawn as shown
in Fig. 3.27.
CA CA

Admittance - type Impedance - type 

U~ p~

p~ U~

(a) (b)

FIG. 3.26 (a) Impedance- type and (b) admittance-type symbols for an acoustic compliance.

FIG. 3.27 Fine-mesh screen which serves as an acoustical symbol for acoustic resistance.
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The reciprocal of acoustic resistance is the acoustic conductance GA. The unit is m5$N�1$s�1 or
acoustic siemens.

The physical law governing dissipative effects in a mechanical system was given by f(t)¼ RM u(t),
or, in terms of acoustical quantities,

pðtÞ ¼ RAUðtÞ ¼ 1

GA
UðtÞ; (3.26)

where

p(t) is the difference between instantaneous pressures in Pa across the dissipative element.
RA¼ RM/S

2 is acoustic resistance in N$s/m5.
GA¼GMS

2 is acoustic conductance in m5$N�1$s�1.
U(t) is instantaneous volume velocity in m3/s of the gas through the cross-sectional area of
resistance.

The impedance-type analogous symbol for acoustic resistance is shown in Fig. 3.28a and the
admittance-type in Fig. 3.28b.
Acoustic generators. Acoustic generators can be of either the constant-volume velocity or the
constant-pressure type. The prime movers in our acoustical circuits will be exactly like those shown in
Fig. 3.7 and Fig. 3.9 except that ~u2 often will be zero and ~u1 will be the velocity of a small piston of
area S. Remembering that ~u ¼ ~u1 � ~u2, we see that the generator of Fig. 3.7 has a constant-volume
velocity ~U ¼ ~uS and that of Fig. 3.9 a constant pressure of ~p ¼ ~f=S.

The two types of analogous symbols for acoustic generators are given in Fig. 3.29 and Fig. 3.30 The
arrows point in the direction of the positive terminal or the positive flow. As before, a wave inside the
RM

U
~

p
~

GM
U
~

p
~

Impedance-type Admittance-type 

(a) (b)

FIG. 3.28 (a) Impedance-type symbol for acoustic resistance and (b) admittance-type symbol for acoustic

conductance.

U~

U~ p~

p~ p~

Impedance - type Admittance - type 

(a) (b)

FIG. 3.29 (a) Impedance-type and (b) admittance-type symbols for a constant pressure generator.



U~p~

Impedance - type Admittance - type 

p~U~

U~

(a) (b)

FIG. 3.30 (a) Impedance-type and (b) admittance-type symbols for a constant-volume velocity generator.
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circle indicates zero impedance or admittance and an arrow inside the circle indicates infinite
impedance or admittance.

Example 3.4. The acoustic device of Fig. 3.31 consists of three cavities V1, V2 and V3, two fine-
mesh screens RA1 and RA2, four short lengths of tube T1, T2, T3, and T4, and a constant-pressure
generator. Because the air in the tubes is not confined, it experiences negligible compression. Because
the air in each of the cavities is confined, it experiences little average movement. Let the force of the
generator be

f ðtÞ ¼ 10�5 cos ut N

so that

~f ¼ 10�5e jut N

or ��� ~f ��� ¼ 10�5 N at u ¼ 1000 Hz:

Also, let the radius of the tube a¼ 0.5 cm; the length of each of the four tubes l¼ 5 cm; the volume of
each of the three cavities V¼ 10 cm3; and the magnitude of the two acoustic resistances RA¼ 10 N$s
/m5. Neglecting end corrections, solve for the volume velocity ~U0 at the end of the tube T4.

Solution. Remembering that there is continuity of volume velocity and pressure at the junctions, we
can draw the impedance-type analogous circuit from inspection. It is shown in Fig. 3.32. The bottom
line of the schematic diagram represents atmospheric pressure, which means that here the variational
pressure ~p is equal to zero. At each of the junctions of the elements 1 to 4, a different variational
pressure can be observed. The end of the fourth tube (T4) opens to the atmosphere, which requires that
MA4 be connected directly to the bottom line of Fig. 3.32.

Note that the volume velocity of the gas leaving the tube T1 is equal to the sum of the volume
velocities of the gas entering V1 and T2. The volume velocity of the gas leaving T2 is the same as that
flowing through the screen RA1 and is equal to the sum of the volume velocities of the gas entering V2

and T3.
One test of the validity of an analogous circuit is its behavior for direct current. If one removes the

piston and blows into the end of the tube T1 (Fig. 3.31), a steady flow of air from T4 is observed. Some
resistance to this flow will be offered by the two screens RA1 and RA2. Similarly in the schematic
diagram of Fig. 3.32, a steady pressure ~p will produce a steady flow ~U through MA4, resisted only by
RA1 and RA2.

As an aside, let us note that an acoustic compliance can occur in a circuit without one of the
terminals being at ground potential only if it is produced by an elastic diaphragm. For example, if the



Piston

f~

T1 T2 T3 T4

V1 V2 V3

RA1 RA2

FIG. 3.31 Acoustic device consisting of four tubes, three cavities, and two screens driven by a constant-pressure

generator.
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resistance in Fig. 3.31 were replaced by an impervious but elastic diaphragm, the element RA1 in
Fig. 3.32 would be replaced by a compliance-type element with both terminals above ground potential.
In this case a steady flow of air could not be maintained through the device of Fig. 3.31 as can also be
seen from the circuit of Fig. 3.32, with RA1 replaced by a compliance.

Determine the element sizes of Fig. 3.32:

~p ¼
~f

S
¼ 10�5e j1000t

pð5� 10�3Þ2 ¼ 0:1273ej1000t Pa;

MA1 ¼ MA2 ¼ MA3 ¼ MA4 ¼ r0l

S
¼ 1:18� 0:05

7:85� 10�5
¼ 750 kg=m4;

CA1 ¼ CA2 ¼ CA3 ¼ V

gP0
¼ 10�5

1:4� 105
¼ 7:15� 10�11 m5=N;

RA1 ¼ RA2 ¼ 10 N$s=m5:

We now determine the ratio ~p= ~U0.

~p4 ¼ juMA4 ~U0 ¼ j7:5� 105 � ~U0 Pa

~U5 ¼ juCA3~p4 ¼ �5:36� 10�2 � ~U0 m
3=s

~U4 ¼ ~U5 þ ~U0 ¼ 0:946 ~U0
U~

p~ CA1

1

~U

MA11 2 

CA2

3

~U

MA4

2

~U 4

~U

RA1
MA2 RA2

MA33

5

~U

4

CA3

0

~U

FIG. 3.32 Impedance-type analogous circuit for the acoustic device of Fig. 3.31.
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~p3 ¼ ðRA2 þ juMA3Þ ~U4 þ ~p4 ¼ ð9:46þ j14:6� 105Þ ~U0

~U3 ¼ juCA2~p3 ¼ ð�0:1043þ j6:77� 10�7Þ ~U0

~U2 ¼ ~U3 þ ~U4 ¼ ð0:842þ j6:77� 10�7Þ ~U0

~p2 ¼ ðRA1 þ juMA2Þ ~U2 þ ~p3 ¼ ð17:37þ j2:091� 106Þ ~U0

~U1 ¼ juCA1~p2 ¼ ð�0:1496þ j1:242� 10�6Þ ~U0

~U ¼ ~U2 þ ~U1 ¼ ð0:692þ j1:919� 10�6Þ ~U0

~p ¼ juMA1 ~U þ ~p2 ¼ ð15:93þ j2:61� 106Þ ~U0:

The desired value of ~U0 is

~U0 ¼ 0:1273e j1000t

15:93þ j2:61� 106

or

UðtÞz 4:88� 10�8 cosð1000t � 900Þ
z 4:88� 10�8 sin 1000t:

In other words, the impedance is principally that of the four acoustic masses in series so that ~U0 lags ~p
by nearly 90�.

Example 3.5. A Helmholtz resonator is frequently used as a means for eliminating an undesired
frequency component from an acoustic system. An example is given in Fig. 3.33a. A constant-force
generator G produces a series of tones, among which is one that is not wanted. These tones actuate
a microphone M whose acoustic impedance is 500 N$s/m5. If the tube T has a cross-sectional area of
5 cm2, l1¼ l2¼ 5 cm, l3¼ 1 cm, V¼ 1000 cm3, and the cross-sectional area of l3 is 2 cm2, what
frequency is eliminated from the system?

Solution. By inspection we may draw the impedance-type analogous circuit of Fig. 3.33b. The
element sizes are

MA1 ¼ MA2 ¼ r0l1
ST

¼ 1:18� 0:05

5� 10�4
¼ 118 kg=m4;

MA3 ¼ r0l3
SR

¼ 1:18� 0:01

2� 10�4
¼ 59 kg=m4;



p~

CA3

1

~U

MA1

2

~U
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MA3 RA1
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(a)

(b)

FIG. 3.33 (a) Acoustic device consisting of a constant-force generator G, piston P, tube T with length l1D l2,

microphone M, and Helmholtz resonator R with volume V and connecting tube as shown. (b) Impedance-type

analogous circuit for the device of (a).
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CA3 ¼ V

gP0
¼ 10�3

1:4� 105
¼ 7:15� 10�9 m5=N;

RA1 ¼ 500 N$s=m5:

It is obvious that the volume velocity ~U2 of the transducerM will be zero when the shunt branch is
at resonance. Hence,

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA3CA3

p ¼ 104ffiffiffiffiffiffiffiffiffi
42:2

p ¼ 1540 rad=s;

f ¼ 245 Hz:

Mechanical rotational systems. Mechanical rotational systems are handled in the same manner as
mechanical rectilineal systems. Table 3.4 shows quantities analogous in the two systems.



Table 3.4 Analogous quantities in rectilineal and rotational systems

Rectilineal systems Rotational systems

Symbol Quantity Unit Symbol Quantity Unit

~f Force N ~T Torque N$m

~u Velocity m/s ~q Angular velocity rad/s
~x Displacement m ~f Angular

displacement
rad

ZM¼ ~f=~u Mechanical
impedance

N$s/m ZR¼ ~T=~q Rotational
impedance

N$m$s/rad

YM¼ ~u=~f Mechanical
admittance

m$N�1$s�1 YR¼ ~q= ~T Rotational
admittance

rad$N�1$m�1$s�1

RM Mechanical
resistance

N$s/m RR Rotational
resistance

N$m$s/rad

GM Mechanical
conductance

m$N�1$s�1 GR Rotational
conductance

rad$N�1$m�1$s�1

MM Mass kg IR Moment of inertia kg$m2

CM Mechanical
compliance

m/N CR Rotational
compliance

rad/N$m

WM Mechanical power W WR Rotational power W
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PART VIII: TRANSDUCERS

A transducer is defined as a device for converting energy from one form to another. Of importance in
this text is the electromechanical transducer for converting electrical energy into mechanical energy,
and vice versa. There are many types of such transducers. In acoustics we are concerned with
microphones, earphones, loudspeakers, and vibration pickups and vibration producers which are
generally linear passive reversible networks.

The type of electromechanical transducer chosen for each of these instruments depends upon such
factors as the desired electrical and mechanical impedances, durability, and cost. It will not be possible
here to discuss all means for electromechanical transduction. Instead we shall limit the discussion to
electromagnetic and electrostatic types. Also, we shall deal with mechano-acoustic transducers for
converting mechanical energy into acoustic energy.
3.5 ELECTROMECHANICAL TRANSDUCERS
Two types of electromechanical transducers, electromagnetic and electrostatic, are commonly
employed in loudspeakers and microphones. Both may be represented by transformers with properties
that permit the joining of mechanical and electrical circuits into one schematic diagram.

3.5.1 Electromagnetic-mechanical transducer

This type of transducer can be characterized by four terminals. Two have voltage and current asso-
ciated with them. The other two have velocity and force as the measurable properties. Familiar
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examples are the moving-coil loudspeaker or microphone and the variable-reluctance earphone or
microphone.

The simplest type of moving-coil transducer is a single length of wire in a uniform magnetic field
as shown in Fig. 3.34. When a wire is moved upward with a velocity ~u as shown in Fig. 3.34a,
a potential difference ~e will be produced in the wire such that terminal 2 is positive. If, on the other
hand, the wire is fixed in the magnetic field (Fig. 3.34b) and a current ~i is caused to flow into terminal 2
(therefore, 2 is positive), a force ~f will be produced that acts on the wire upward in the same direction
as that indicated previously for the velocity.

The basic equations applicable to the moving-coil type of transducer are

~f ¼ Bl ~i; (3.27a)

~e ¼ Bl ~u; (3.27b)

where

~i is electrical current in A,
~f is “open-circuit” force in N produced on the mechanical circuit by the current ~i,
B is magnetic-flux density in T,
l is effective length in m of the electrical conductor that moves at right angles across the lines of
force of flux density B
~u is velocity in m/s
~e is “open-circuit” electrical voltage in V produced by a velocity ~u.

The right-hand sides of Eqs. (3.27) have the same sign because when ~u and ~f are in the same
direction the electrical terminals have the same sign.
N
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FIG. 3.34 Simplified form of moving-coil transducer consisting of a single length of wire cutting a magnetic field

of flux density B.

(a) The conductor is moving vertically at constant velocity so as to generate an open-circuit voltage across

terminals 1 and 2. (b) A constant current is entering terminal 2 to produce a force on the conductor in a vertical

direction.



i~

u~

f~

e~

1:Bl(a)

i~

f~

u~

e~

Blmg 1=(b)

FIG. 3.35 Analogous symbols for the electromagnetic-transducer of Fig. 3.34.

(a) The mechanical side is of the admittance type. (b) The mechanical side is of the impedance type.
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One analogous symbol for this type of transducer is the “ideal” transformer given in
Fig. 3.35a. The “windings” on this ideal transformer have infinite impedance, and the transformer
obeys Eqs. (3.27) at all frequencies, including steady flow. The mechanical side of this symbol
necessarily is of the admittance type if current flows in the primary. The other analogous symbol
is the “ideal” gyrator given in Fig. 3.35b. It is customary to define the mutual conductance gm of
a gyrator, which is the same in both directions, as the ratio of the flow on one side to the drop on
the other. The mechanical side of this symbol necessarily is of the impedance type if current
flows in the primary. The invariant mathematical operations which these symbols represent are
given in Table 3.1. They lead directly to Eqs. (3.27). The arrows point in the directions of
positive flow or positive potential.
3.5.2 Electrostatic-mechanical transducer

This type of transducer may also be characterized by four terminals. At two of them, voltages and
currents can be measured. At the other two, forces and velocities can be measured.

An example is a piezoelectric crystal microphone such as is shown in Fig. 3.36. A force ~f
applied uniformly over the face of the crystal causes an inward displacement of magnitude ~x in
meters. As a result of this displacement, a voltage ~e appears across the electrical terminals 1 and
2. Let us assume that a positive displacement (inward) of the crystal causes terminal 1 to become
positive. For small displacements, the induced voltage is proportional to displacement. The
inverse of this effect occurs when no external force acts on the crystal face but an electrical
generator is connected to the terminals 1 and 2. If the external generator is connected so that
terminal 1 is positive, an internal force ~f is produced which acts to expand the crystal. For small
displacements, the developed force ~f is proportional to the electric charge ~q stored in the
electrodes.

Using the above relationships, we can write

~q ¼ CE~e� d31 ~f (3.28a)
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FIG. 3.36 Piezoelectric crystal transducer mounted on a rigid wall.
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~x ¼ d31~e� CM
~f (3.28b)

where

~q is electrical charge in C stored in the electrodes of the piezoelectric device,
~e is “open-circuit” electrical voltage in V produced by a displacement ~x,
~f is “open-circuit” force in N produced by an electrical charge ~q,
~x is displacement in m of a dimension of the piezoelectric device in m,
d31 is piezoelectric strain coefficient with dimensions of C/N or m/V. It is a real number when the
network is linear, passive, and reversible. (The subscripts denote the relative directions of the
applied field and resulting movement or vice versa. In this case, the two are at right-angles. If
they were in the same direction, for example, we would use d11, d22, or d33, where 1, 2, and 3
can be regarded as denoting the x, y, or z directions.)

and the electrical capacitance CE and mechanical compliance CM are given by

CE ¼ ε0εrhw

d
(3.29)

CM ¼ h

Ydw
(3.30)

where

ε0 is permittivity of free space in F/m,
εr is relative permittivity of the piezoelectric dielectric (dimensionless),
Y is Young’s modulus of elasticity in N/m2.

In reality, CE and CM vary with displacement ~x, but it is assumed that the displacement is very small, so
these are linearized equations. If the material shows no piezoelectric effect, applying an external force
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~f simply leads to a deflection ~x according to Hooke’s law. Due to the piezoelectric effect, the
displacement also leads to an induced charge ~q on the electrodes, which in turn leads to a voltage
(electrical force) ~e. Conversely, applying an electrical voltage leads to a mechanical force. Solving
Eqs. (3.28a) and (3.28b) for ~e and ~f gives

~e ¼ 1

1� k231

�
1

CE
~q� d31

CECM

~x

�
(3.31a)

~f ¼ 1

1� k231

�
d31

CECM
~q� 1

CM

~x

�
(3.31b)

where k31 is the dimensionless piezoelectric coupling coefficient which is related to the piezoelectric
strain coefficient d31 by

k31 ¼ d31ffiffiffiffiffiffiffiffiffiffiffiffiffi
CECM

p ¼ d31

ffiffiffiffiffiffiffiffi
Y

ε0εr

r
; 0 < k31 < 1 (3.32)

Another commonly used parameter is the piezoelectric stress coefficient g31 in Vm/N or m2/C, which is
defined by

g31 ¼ d31
ε0εr

¼ k31ffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrY

p (3.33)

Equations (3.31) are often inconvenient to use because they contain charge and displacement. One
prefers to deal with current and velocity, which appear directly in the equation for power. Conversion
to current and velocity may be made by the relations

~u ¼ dx

dt
¼ ju~x; (3.34a)

~i ¼ dq

dt
¼ ju~q; (3.34b)

so that Eqs. (3.31) become, in z-parameter matrix form,

"
~e

~f

#
¼

2
664

1

juC0
E

d31
juC0

ECM

d31
juC0

ECM

1

juC0
M

3
775
"

~i

�~u

#
: (3.35)

The elements of Eq. (3.35) are related by the equations

C0
E ¼ ð1� k231ÞCE (3.36)
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C0
M ¼ ð1� k231ÞCM (3.37)

Note in particular that

C0
E is electrical capacitance measured with the mechanical “terminals” blocked so that no motion

occurs (~u¼ 0).
CE is electrical capacitance measured with the mechanical “terminals” operating into zero
mechanical impedance so that no force is built up ( ~f ¼ 0).
C0

M is mechanical compliance measured with the electrical terminals open-circuited (~i¼ 0).
CM is mechanical compliance measured with the electrical terminals short-circuited (~e¼ 0).

The equivalent circuit shown in Fig. 3.37a is essentially a two-port network defined by the z-
parameters in the matrix of Eq. (3.35), although z-parameter matrices will be discussed in greater detail
in Sec. 3.10. Noting from Eqs. (3.36) and (3.37) that C0

ECM ¼ CEC
0
M , Eqs. (3.31) can alternatively be

written

"
~e

~f

#
¼

2
664

1

juC0
E

d31
juCEC

0
M

d31
juCEC

0
M

1

juC0
M

3
775
"

~i

�~u

#
(3.38)

which is represented by the equivalent circuit shown in Fig. 3.37b. The mechanical sides of Fig. 3.37a
and Fig. 3.37b are of the impedance-type analogy. Let us discuss Fig. 3.37a first.

Looking into the electrical terminals 1 and 2, the element C0
E is the electrical capacitance of the

transducer. In order to measure C0
E, a sinusoidal driving voltage ~e is applied to the transducer terminals

1 and 2, and the resulting sinusoidal current is measured. During this measurement, the mechanical
terminals 3 and 4 are open-circuited (driving force blocked, ~u¼ 0). A very low driving frequency is
used so that the mass reactance and mechanical resistance can be neglected. The negative capacitance
�C0

E represents the force of attraction between the electrodes which varies with the displacement.
e~

2

C′E f~

4

)/(:1
31 MCd

e~

i~

2

1

C′M

u~
3

f~

C′E

4

1:)/(
31 ECd(b)

(a) i~
1

u~
3

C′M− C′E

− C′M

FIG. 3.37 Two forms of analogous symbols for piezoelectric transducers.

The mechanical sides are of the impedance type.
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Hence, it can be thought of as a negative stiffness which can be subtracted from the natural stiffness of
the material.

Looking into the mechanical terminals 3 and 4 of Fig. 3.37b, C0
M is the mechanical compliance of

the transducer measured at low frequencies with the electrical terminals 1 and 2 open-circuited (~i¼ 0).
A sinusoidal driving force ~f is applied to terminals 3 and 4 of the transducer and the resulting sinu-
soidal displacement is measured. Again, the negative compliance�C0

M is due to the force of attraction
between the electrodes. Eliminating ~q and ~x between Eqs. (3.31) leads to the following simplified
equations

~f ¼ d33
CM

~e� 1

CM

~x (3.39a)

~e ¼ d33
CE

~f þ 1

CE
~q (3.39b)

In the steady state ~u ¼ ju~x and ~i ¼ ju~q so that

~f ¼ d33
CM

~e� 1

juCM
~u (3.40a)

~e ¼ d33
CE

~f þ 1

juCE

~i (3.40b)

from which we obtain the two simplified equivalent electrical circuits shown in Fig. 3.38.
Looking into the mechanical terminals 3 and 4 of Fig. 3.38a, the element CM is the mechanical

compliance of the transducer but measured in a different way. A sinusoidal driving force ~f is
applied to terminals 3 and 4 of the transducer at a very low frequency so that the mass reactance
and mechanical resistance can be neglected, and the resulting sinusoidal displacement is
measured. During this measurement the electrical terminals 1 and 2 are short-circuited (~e¼ 0).
Looking into the electrical terminals 1 and 2 of Fig. 3.38b, the element CE is the electrical
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FIG. 3.38 Two simplified forms of analogous symbols for piezoelectric transducers.

The mechanical sides are of the impedance type.
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capacitance measured at low frequencies with the mechanical terminals 3 and 4 short-circuited
(~f ¼ 0).

A sinusoidal driving voltage e applied to the terminals 1 and 2 of Fig. 3.38a produces an open-
circuit force

~f ¼ d31
CM

~e: (3.41)

A sinusoidal driving force ~f applied to the terminals 3 and 4 of Fig. 3.38b produces an open-circuit
voltage

~e ¼ d31
CE

~f : (3.42)

The choice between the alternative analogous symbols of Fig. 3.38 is usually made on the basis of
the use to which the transducer will be put. If the electrostatic transducer is a microphone, it usually is
operated into the gate of a field-effect transistor (FET) so that the electrical terminals are essentially
open-circuited. In this case the circuit of Fig. 3.38b is the better one to use, because CE can be
neglected in the analysis when ~i¼ 0. On the other hand, if the transducer is a loudspeaker, it usually is
operated from a low-impedance amplifier so that the electrical terminals are essentially short-circuited.
In this case the circuit of Fig. 3.38a is the one to use, because C0

Eu is small in comparison with the
output admittance of the amplifier.

The circuit of Fig. 3.38a corresponds more closely to the physical facts than does that of Fig. 3.38b.
If the device could be held motionless (~u¼ 0) when a voltage was impressed across terminals 1 and 2,
there would be no stored mechanical energy. All the stored energy would be electrical. This is the case
for circuit (a), but not for (b). In other respects the two circuits are identical.

At higher frequencies, the mass MM and the resistance RM of the crystal must be considered in the
circuit. These elements can be added in series with terminal 3 of Fig. 3.38.

These analogous symbols indicate an important difference between electromagnetic and electro-
static types of coupling. For the electro-magnetic case, we ordinarily use an admittance-type analogy,
but for the electrostatic case we usually employ the impedance-type analogy.

In the next part we shall introduce a different method for handling electrostatic transducers. It
involves the use of the admittance-type analog in place of the impedance-type analog. The simplifi-
cation in analysis that results will be immediately apparent. By this new method it will also be possible
to use the impedance-type analog for the electromagnetic case.
3.6 MECHANO-ACOUSTIC TRANSDUCER
This type of transducer occurs at a junction point between the mechanical and acoustical parts of an
analogous circuit. An example is the plane at which a loudspeaker diaphragm acts against the air. This
transducer may also be characterized by four terminals. At two of the terminals, forces and velocities
can be measured. At the other two, pressures and volume velocities can be measured. The basic
equations applicable to the mechano-acoustic transducer are:

~f ¼ S~p; (3.43a)
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~U ¼ S~u; (3.43b)

where

~f is force in N,
~p is pressure in Pa,
~U is volume velocity in m3/s,
~u is velocity in m/s,
S is area in m2.

The analogous symbols for this type of transducer are given at the bottom of Table 3.3 (page 70). They
are seen to lead directly to Eqs. (3.43).
3.7 EXAMPLES OF TRANSDUCER CALCULATIONS
Example 3.6. An ideal moving-coil loudspeaker produces 2 Wof acoustic power into an acoustic load
of 4� 104 N$s/m5 when driven from an amplifier with a constant-voltage output of 1.0 V rms. The area
of the diaphragm is 100 cm2. What open-circuit voltage will it produce when operated as a microphone
with an rms diaphragm velocity of 10 cm/s?

Solution. From Fig. 3.35 we see that, always,

~e ¼ Bl~u:

The power dissipated W gives us the rms volume velocity of the diaphragm Urms:

Urms ¼
ffiffiffiffiffiffi
W

RA

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

4� 104

r
¼ 7:07� 10�3 m3=s

or

urms ¼ 0:707 m=s;

Bl ¼ erms

urms
¼ 1

0:707
¼ 1:414 T

Hence, the open-circuit voltage for an rms velocity of 0.1 m/s is

erms ¼ 1:414� 0:1 ¼ 0:1414 V:

Example 3.7. A lead magnesium niobate-lead titanate (PMN-PT) crystal as shown in Fig. 3.36 with
w¼ 0.5 mm, d¼ 2 mm h¼ 2 mm has the following mechanical and electrical properties:

d31¼ 750� 10�12 C/N, or m/V
Y¼ 20� 109 N/m2

r¼ 8000 kg/m3

ε0¼ 8.85� 10�12 F/m
εr¼ 6500
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k31 ¼ d31

ffiffiffiffiffiffiffiffi
Y

ε0εr

r
¼ 0:442

This crystal is to be used in a microphone with a circular (weightless) diaphragm. Determine the
diameter of the diaphragm if the microphone is to yield an open-circuit voltage of �70 dB re 1 V rms
for a sound pressure level of 74 dB re 20 mPa at 100 kHz.

Solution. The circuit for this transducer with the transformer removed is shown in Fig. 3.39, where
the circuit elements are defined by

C0
M ¼ ð1� k231Þ

h

Ywd
¼ 1� 0:4422

20� 0:5� 106
¼ 8� 10�8 m=N;

MM ¼ 4

p2
rwdh ¼ 4� 8� 0:5� 2� 2� 10�6

p2
¼ 6:5� 10�6 kg=m3;

CE ¼ ε0εrwh

d
¼ 8:85� 10�12 � 6:5� 0:5 ¼ 28:8� 10�12 F;

RM ¼ negligibly small:

Because only the open-circuit voltage is desired, CE may be neglected in the calculations. frms is the
total force applied to the crystal by the diaphragm. Solving for erms yields

erms ¼ frmsðd31=CEÞ
1� u2MMC

0
M

:

The force f equals the area of the diaphragm S times the sound pressure p. Solving for p,

prms ¼ 20� 10�6 � 1074=20

¼ 0:1N=m2

Solving for e,

1

erms
¼ 1070=20 ¼ 3:16� 103;

or

erms ¼ 3:16� 10�4 V:
u~f~
C′M 31

~

d
eCE

MM

FIG. 3.39 Analogous circuit of the impedance type for a crystal microphone.
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The acousticimpedance of a horn (at terminals 3 and 4) loads the diaphragm with a mechanical impedance

SD
2(300þ j 300) N$s/m.
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Hence,

S ¼ frms

prms
¼ 3:16� 10�4ð1� 6:282 � 1010 � 6:5� 8� 10�14Þ

0:1� ð750=28:8Þ

¼ 9:65� 10 �5m2

S ¼ 0:965 cm2:

This corresponds to a diaphragm with a diameter of about 1.1 cm.
Example 3.8. A loudspeaker diaphragm couples to the throat of an exponential horn that has an

acoustic impedance of 300þ j300 N$s/m5. If the area of the loudspeaker diaphragm SD is 0.08 m2,
determine the mechanical-impedance load on the diaphragm due to the horn.

Solution. The analogous circuit is shown in Fig. 3.40. The mechanical impedance at terminals 1 and
2 represent the load on the diaphragm:

ZM ¼ ~f

~u
¼ SD

2ð300þ j300Þ

¼ 6:4� 10�3ð300þ j300Þ
¼ 1:92þ 1:92 Ns=m:
PART IX: CIRCUIT THEOREMS, ENERGY, AND POWER

In this part we discuss conversions from one type of analogy to the other, Thévenin’s theorem, energy
and power relations, transducer impedances, and combinations of transducers.
3.8 CONVERSION FROM ADMITTANCE-TYPE ANALOGIES TO IMPEDANCE-
TYPE ANALOGIES
In the preceding parts we showed that electromagnetic and electrostatic transducers require two
different types of analogy if they are to be represented by the networks shown in Table 3.1. A further
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need for two types of analogy is apparent from the standpoint of ease of drawing an analogous circuit
by inspection. The admittance type of analogy is better for mechanical systems and the impedance
type for acoustic systems. The circuits we shall use, however, will frequently contain electrical,
mechanical, and acoustical elements. Since analogies cannot be mixed in a given circuit, we must have
a simple means for converting from one to the other.

We may readily derive one analogy from the other if we recognize that:

Elements in series in the circuit of one analogy correspond to elements in parallel in the other.
Resistance-type elements become conductance-type elements, capacitance-type elements
become inductance-type elements, and inductance-type elements become capacitance-type
elements.
The sum of the drops across the series elements in a mesh of one analogy corresponds to the sum of
the currents at a branch point of the other analogy.

This is equivalent to saying that one analogy is the dual of the other. In electrical-circuit theory one
learns that the quantities that “flow” in one circuit are the same as the “drops” in the dual of that circuit.
This is also true here.

To facilitate the conversion from one type of analogy to another, a method that we shall dub the
“dot” method is used. [9] Assume that we have the admittance-type analog of Fig. 3.17 and that we
wish to convert it to an impedance-type analog. The procedure is as follows (see Fig. 3.41):

Place a dot at the center of each mesh of the circuit and one dot outside all meshes. Number these
dots consecutively.
Connect the dots together with lines so that there is a line through each element and so that no line
passes through more than one element.
Draw a new circuit such that each line connecting two dots now contains an element that is the
inverse of that in the original circuit. The inverse of any given element may be seen by
comparing corresponding columns for admittance-type analogies and impedance-type analogies
of Table 3.3. The complete inversion (dual) of Fig. 3.41 is shown in Fig. 3.42.
Solving for the velocities or the forces in the two circuits using the rules of Table 3.1 will readily
reveal that they give the same results.

After completing the formation of an analogous circuit, it is always profitable to ask concerning
each element, If this element becomes very small or very large, does the circuit behave in the same
way the device itself would behave? If the circuit behaves properly in the extremes, it is probably
correct.
CMGM2

MM2MM1

GM1
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4 5 2

~u

FIG. 3.41 Preparation by the “dot” method for taking the dual of Fig. 3.17.
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FIG. 3.42 Dual of the circuit of Fig. 3.40.

Solving for the forces or velocities in this circuit using the rules of Table 3.1 yields the same values as solving for

the forces or velocities in Fig. 3.41.
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3.9 THÉVENIN’S THEOREM
It appears possible, from the foregoing discussions, to represent the operation of a transducer as
a combination of electrical, mechanical, and acoustical elements. The connection between the elec-
trical and mechanical circuit takes place through an electromechanical transducer. Similarly, the
connection between the mechanical and acoustical circuit takes place through a mechano-acoustic
transducer. A Thévenin’s theorem may be written for the combined circuits, just as is written for
electrical circuits only.

The requirements which must be satisfied in the proper statement and use of Thévenin’s theorem
are that all the elements be linear and there be no hysteresis effects.

In the next few paragraphs we shall demonstrate the application of Thévenin’s theorem to
a loudspeaker problem. The mechanical-radiation impedance presented by the air to the vibrating
diaphragm of a loudspeaker or microphone will be represented simply as ZMR in the impedance-type
analogy or YMR¼ l/ZMR in the admittance-type analogy. The exact physical nature of ZMR will be
discussed in Chapters 4, 12, and 13.

Assume a simple electrodynamic (moving-coil) loudspeaker with a diaphragm that has only mass
and a voice coil that has only electrical resistance (see Fig. 3.43a). Let this loudspeaker be driven by
a constant-voltage generator. By making use of Thévenin’s theorem, we wish to find the equivalent
mechanical generator ~u0 and the equivalent mechanical admittance YMS of the loudspeaker, as seen in
the interface between the diaphragm and the air. The circuit of Fig. 3.43awith the transformer removed
is shown in Fig. 3.43b. The Thévenin’s equivalent circuit is shown in Fig. 3.43c.

We arrive at the values of ~u0 and YMS in two steps.
Step 1. Determine the open-circuit velocity ~u0 by terminating the loudspeaker in an infinite

admittance, YMA¼N (that is, ZMA¼ 0) and then measuring the velocity of the diaphragm ~u0. As we
discussed in Part II, ZMA¼ 0 can be obtained by acoustically connecting the diaphragm to a tube whose
length is equal to one-fourth wavelength. This is possible at low frequencies. Inspection of Fig. 3.43b
shows that

~u0 ¼ ~eBl

juMMDRE þ ðBlÞ2: (3.44)

Step 2. Short-circuit the generator e without changing the mesh impedance in that part of the
electrical circuit. Then determine the admittance YMS looking back into the output terminals of the
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FIG. 3.43 Analogous circuits for a simplified moving-coil loudspeaker radiating sound into air.

(a) Analogous circuit. (b) Same with transformer removed. (c) Same, reduced to its Thévenin’s equivalent.
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loudspeaker. For example, YMS for the circuit of Fig. 3.43b is equal to the parallel combination of
1/juMMD and RE/(Bl)

2, that is,

YMS ¼ RE

juMMDRE þ ðBlÞ2: (3.45)

The Thévenin’s equivalent circuit for the loudspeaker (looking into the diaphragm) is shown
schematically in Fig. 3.43c, where ~u0 and the admittance YMS are given by Eqs. (3.44) and (3.45),
respectively.

The application of Thévenin’s theorem as discussed above is an example of how general theorems
originally applying to linear passive electrical networks can be applied to great advantage to the
analogs of mechanical and acoustic systems, including transducers.
3.10 TRANSDUCER IMPEDANCES
Let us look a little closer at the impedances at the terminals of electromechanical transducers. It
has become popular over the years for electrical-circuit specialists to express the equations for their
circuits in matrix form. The matrix notation is a condensed manner of writing systems of linear
equations. [10,11] We shall express the properties of transducers in matrix form for those who are
familiar with this concept. An explanation of the various mathematical operations to be performed
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with matrices is beyond the scope of this book. The student not familiar with matrix theory is
advised to deal directly with the simultaneous equations from which the matrix is derived. A
knowledge of matrix theory is not necessary, however, for an understanding of any material in
this text.
Transmission matrix for an electrical 2-port network. As we shall see, transmission matrices are
particularly useful because an overall transmission matrix M can be easily obtained by multiplying
together the individual transmission matrices for each circuit element. The general 2-port network
shown in Fig. 3.44 can be represented by the following matrix equation:"

~ein
~iin

#
¼ A$

"
~eout
~iout

#
¼
"
a11 a12

a21 a22

#
$

"
~eout
~iout

#
; (3.46)

where the transmission-parameters are given by

a11 ¼ ~ein
~eout

���~iout ¼ 0; (3.47)

a12 ¼ ~ein
~iout

���~eout ¼ 0; (3.48)

a21 ¼
~iin
~eout

���~iout ¼ 0; (3.49)

a22 ¼
~iin
~iout

���~eout ¼ 0; (3.50)

In other words:

a11 is ratio of applied input voltage to output voltage measured with the output terminals open-
circuited.
a12 is ratio of applied input voltage to output current measured with the output terminals short-
circuited.
a21 is ratio of applied input current to output voltage measured with the output terminals open-
circuited.
a22 is ratio of applied input current to output current measured with the output terminals short-
circuited.
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FIG. 3.44 Electrical 2-port network.
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Transmission matrix for an electromagnetic-mechanical transducer. Let us determine the trans-
mission matrix for the electromagnetic-mechanical transducer of Fig. 3.45. In that circuit ZE is the
electrical impedance measured with the mechanical terminals “blocked,” that is, ~u¼ 0; ZM is the
mechanical impedance of the mechanical elements in the transducer measured with the electrical
circuit “open-circuited”; and ZL is the mechanical impedance of the acoustic load on the diaphragm.
The quantity Bl is the product of the flux density times the effective length of the wire cutting the lines
of force perpendicularly. The individual transmission matrices for each element can be written from
inspection

"
~e0
~i0

#
¼
"
1 ZE

0 1

#
$

"
~e1
~i1

#
¼ M0$

"
~e1
~i1

#
; (3.51)

"
~e1
~i1

#
¼
"

0 Bl

1=Bl 0

#
$

"
~f

~u

#
¼ M1$

"
~f

~u

#
; (3.52)

"
~f

~u

#
¼
"
1 ZM

0 1

#
$

"
~f L

~uL

#
¼ M2$

"
~f L

~uL

#
; (3.53)

"
~f L

~uL

#
¼
"

1 0

1=ZL 1

#
$

"
~f 0

~u0

#
¼ M3$

"
~f 0

~u0

#
: (3.54)

The overall transmission matrix is then obtained as follows

M ¼ M0$M1$M2$M3

¼
"
1 ZE

0 1

#
$

"
0 Bl

1=Bl 0

#
$

"
1 ZM

0 1

#
$

"
1 0

1=ZL 1

#

¼
"
A11 A12

A21 A22

#
;

(3.55)
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FIG. 3.45 Analogous circuit for an electromagnetic-mechanical transducer.

The mechanical side is of the impedance type.
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where

A11 ¼ Bl

ZL
þ ZE

Bl

�
1þ ZM

ZL

�
; (3.56)

A12 ¼ Blþ ZEZM
Bl

; (3.57)

A21 ¼ 1

Bl

�
1þ ZM

ZL

�
; (3.58)

A22 ¼ ZM
Bl

: (3.59)

We see from Fig. 3.45 that ~u0 ¼ 0 so that"
~e0
~i0

#
¼
"
A11 A12

A21 A22

#
$

"
~f 0

0

#
(3.60)

From this matrix, we can gather everything we need to know about the transducer. For example, the
parameters at the interfaces between the circuit elements (voltages, currents, forces and velocities,
etc.) can be obtained through a combination of the overall transmission matrix and elemental matrices.
Straight away we obtain the force exerted upon the load

~f L ¼ ~f 0 ¼ ~e0
A11

¼ ZLBl~e0

ZEðZM þ ZLÞ þ ðBlÞ2 (3.61)

and hence also the load velocity

~uL ¼ ~e0
A11ZL

¼ Bl~e0

ZEðZM þ ZLÞ þ ðBlÞ2 (3.62)

The latter is important for evaluating the radiated sound pressure, as will be explained in Chapters 4,
12, and 13. The total electrical impedance ZET as viewed from the voltage generator is found to be

ZET ¼ ~e0
~i0

¼ A11
~f 0

A21
~f 0

¼ ZE þ ðBlÞ2
ZM þ ZL

(3.63)

The second term on the right-hand side is usually called the motional impedance because, if the
mechanical side is blocked so there is no movement (that is, ZL / N), then ZET¼ ZE, which is the
static impedance. This equation illustrates a striking fact, viz., that the electromagnetic transducer is an
impedance inverter. By an inverter we mean that a mass reactance on the mechanical side becomes
a capacitance reactance when referred to the electrical side of the transformer, and vice versa.
Similarly, an inductance on the electrical side reflects through the transformer as a mechanical
compliance.
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Impedance matrix for an electromagnetic-mechanical transducer. Refer to Fig. 3.44. Another type
of matrix in common usage is the impedance matrix based upon z-parameters:"

~ein

~eout

#
¼ Z$

"
~iin

�~iout

#
¼
"
z11 z12

z21 z22

#
$

"
~iin

�~iout

#
; (3.64)

where the z-parameters are given by

z11 ¼ ~ein
~iin

���~iout ¼ 0; (3.65)

z12 ¼ ~ein

�~iout

���~iin ¼ 0; (3.66)

z21 ¼ ~eout
~iin

���~iout ¼ 0; (3.67)

z22 ¼ ~eout

�~iout

���~iin ¼ 0 (3.68)

In other words:

z11 is ratio of input voltage to applied input current measured with the output terminals open-
circuited.
z12 is ratio of input voltage to applied output current measured with the input terminals open-
circuited.
z21 is ratio of output voltage to applied input current measured with the output terminals open-
circuited.
z22 is ratio of output voltage to applied output current measured with the input terminals open-
circuited.

Comparing Eq. (3.64) with Eq. (3.46), we can solve for the following transmission-parameter to
z-parameter transformation equations

z11 ¼ a11=a21; (3.69)

z12 ¼ detðAÞ=a21; (3.70)

z21 ¼ 1=a21; (3.71)

z22 ¼ a22=a21; (3.72)

where

detðAÞ ¼ a11a22 � a12a21: (3.73)
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Many passive networks, especially ones in which no energy is created or lost, have a determinant
whose magnitude is unity, in which case the z-parameter matrix is symmetrical about the diagonal.
That is, z12¼ z21. However, we shall see that in the case of an electromagnetic-mechanical transducer,
it turns out to be skew-symmetrical, that is with z12¼�z21, because det(A)¼�1, which in turn is due
to the fact that the current flow in a wire resulting from movement through a magnetic field is in the
opposite direction to that producing the same movement (Fleming’s generator rule versus motor rule).
The reverse transformation equations are of the same form:

a11 ¼ z11=z21; (3.74)

a12 ¼ detðZÞ=z21; (3.75)

a21 ¼ 1=z21; (3.76)

a22 ¼ z22=z21; (3.77)

where

detðZÞ ¼ z11z22 � z12z21: (3.78)

Applying the transformations of Eqs. (3.69) to (3.72) to the transmission-parameters of Eqs. (3.56) to
(3.59), while noting that in this instance ~u0 ¼ 0 and ~f 0 ¼ ~f L, yields the following z-parameter
impedance matrix:

"
~e0
~f L

#
¼

2
6664
ZE þ ðBlÞ2

ZM þ ZL

�BlZL
ZM þ ZL

BlZL
ZM þ ZL

ZMZL
ZM þ ZL

3
7775$
"
~i0

0

#
; (3.79)

Not surprisingly, z11¼ ZET as given by Eq. (3.63). If we remove the load impedance by letting ZL /
N, we obtain the following simple z-parameter impedance matrix for just the transducer without any
external load: "

~e0
~f L

#
¼
"
ZE �Bl

Bl ZM

#
$

"
~i0

�~uL

#
(3.80)

Transmission matrix for an electrostatic-mechanical transducer. For the electrostatic-mechanical
transducer of the type shown in Fig. 3.46: ZE ¼ the electrical impedance with the mechanical motion
free ( ~f ¼ 0),

Z 0
E h ZE þ 1

juC0
E

is the electrical impedance with the mechanical motion blocked (~u ¼ 0).
ZL is the mechanical impedance of the acoustical load on the diaphragm.
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ZM h RM þ juMM þ 1

juCM

is the mechanical impedance of the mechanical elements in the transducer measured with the
electrical terminals short-circuited (~e1 ¼ 0). ZM

0 is the mechanical impedance of the mechanical
elements measured with the electrical terminals open-circuit (~i1 ¼ 0). It is defined by the same
expression as that for ZM above except that CM is replaced by

C0
M ¼

�
1� d231

CECM

�
CM

which is the mechanical compliance in the transducer with ~i1 ¼ 0.

The individual transmission matrices for each element can be written from inspection:

"
~e0
~i0

#
¼
"
1 ZE

0 1

#
$

"
~e1
~i1

#
¼ M0$

"
~e1
~i1

#
; (3.81)

"
~e1
~i1

#
¼
"

1 0

juC0
E 1

#
$

"
~e2
~i2

#
¼ M1$

"
~e2
~i2

#
; (3.82)

"
~e2
~i2

#
¼
"
CM=d31 0

0 d31=CM

#
$

"
~f

~u

#
¼ M2$

"
~f

~u

#
; (3.83)

"
~f

~u

#
¼
"
1 ZM

0 1

#
$

"
~f L

~uL

#
¼ M3$

"
~f L

~uL

#
; (3.84)

"
~f L

~uL

#
¼
"

1 0

1=ZL 1

#
$

"
~f 0

~u0

#
¼ M4$

"
~f 0

~u0

#
: (3.85)

The mechanical side is of the impedance type.
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Using the relationship C0
ECM ¼ CEC

0
M from Eqs. (3.36) and (3.37), the overall transmission matrix is

then obtained as follows:

M ¼ M0$M1$M2$M3$M4

¼
"
1 ZE

0 1

#
$

"
1 0

juC0
E 1

#
$

"
CM=d31 0

0 d31=CM

#
$

"
1 ZM

0 1

#
$

"
1 0

1=ZL 1

#

¼
"
A11 A12

A21 A22

#
;

(3.86)

where

A11 ¼ juC0
ECM

d31

�
1þ Z 0

M

ZL

� 
Z 0
E þ d231

u2C02
E C2

M

�
Z 0
M þ ZL

�
!
; (3.87)

A12 ¼ juC0
ECM

d31
Z 0
M

 
Z 0
E þ d231

u2C02
E C2

MZ
0
M

!
; (3.88)

A21 ¼ juC0
ECM

d31

�
1þ Z 0

M

ZL

�
; (3.89)

A22 ¼ juC0
ECM

d31
Z 0
M: (3.90)

Impedance matrix for an electrostatic-mechanical transducer. Applying the transformations of Eqs.
(3.69) to (3.72) to the transmission-parameters of Eqs. (3.87) to (3.90), while noting that in this
instance ~u0 ¼ 0 and ~f 0 ¼ ~f L, yields the following z-parameter impedance matrix:

"
~e0
~f L

#
¼

2
664
Z 0
E þ

�
d31

uC0
ECM

�2 1

Z 0
M þ ZL

d31
juC0

ECM

ZL
Z 0
M þ ZL

d31
juC0

ECM

ZL
Z 0
M þ ZL

Z 0
MZL

Z 0
M þ ZL

3
775$
"
~i0

0

#
; (3.91)

If we remove the load impedance by letting ZL / N, we obtain the following simple z-parameter
impedance matrix for just the transducer without any external load:

"
~e0
~f L

#
¼

2
664

Z 0
E

d31
juC0

ECM

d31
juC0

ECM
Z 0
M

3
775$
"

~i0

�~uL

#
: (3.92)

This matrix is symmetrical about the main diagonal, as for any ordinary electrical passive network. By
contrast matrix (3.80) is skew-symmetrical because the off-diagonal elements have opposite signs. For
transient problems, replace ju by the operator s¼ d/dt [9].



3.10 Transducer impedances 115
The impedance matrix for the electrostatic transducer is almost identical in form to that for the
electromagnetic transducer, the difference being that the mutual terms have the same sign, as con-
trasted to opposite signs for the electromagnetic case. This means that whereas electrostatic trans-
ducers are reciprocal, electromagnetic transducers are anti-reciprocal. For the electrostatic transducer
the total impedance is given from Eq. (3.91) as

ZET ¼ z11 ¼ Z 0
E þ

�
d31

uC0
ECM

�2 1

Z 0
M þ ZL

: (3.93)

The first and second terms on the right-hand side are called the static and motional impedances
respectively as before.

Again we see that the transducer acts as a sort of impedance inverter. An added positive mechanical
reactance (þXM) comes through the transducer as a negative electrical reactance.

Some interesting facts can be illustrated by assuming that we have an electrostatic and an elec-
tromagnetic transducer, each stiffness controlled on the mechanical side so that

ZM þ ZL ¼ 1

juCM1
: (3.94)

Substitution of Eq. (3.94) into (3.63) yields

ZET ¼ ZE þ ju
�
B2l2CM1

�
: (3.95)

The mechanical compliance CM appears from the electrical side to be an inductance with a magnitude
B2l2CM1. We now substitute Eq. (3.94) into (3.93) to obtain

ZET ¼ z11 ¼ Z 0
E þ j

�
d31

C0
ECM

�2C0
M1

u
: (3.96)

The mechanical compliance C0
M of this transducer appears from the electrical side to be a negative

capacitance (see Fig. 3.37b), that is to say, C0
M1 appears to be an inductance with a magnitude that

varies inversely with u2. The effect of this is simply to reduce the value of C0
M. Another way of looking

at this is to note from Fig. 3.46 that with RM¼MM¼ 0 and ZL¼ 1/juC0
ML, the total compliance is less

than C0
M because of the added compliance C0

ML.
Example 3.9. A moving-coil earphone which is driven at frequencies above its first resonance

frequency, may be represented by the circuit of Fig. 3.43a. Its mechanical and electrical characteristics
are:

RE¼ 8 U
B¼ 1 T (104 gauss)
l¼ 3/4 m
MMD¼ 60 mg
YMR¼ ju2.7� 10�3 m$N�1$s�1

where YMR is the admittance that the diaphragm sees when the earphone is on the ear (due to the
stiffness of the air trapped in the ear cavity), MMD is the mass of the diaphragm, RE and l are the
resistance and the length of wire wound on the voice coil, and B is the flux density cut by the moving
coil. Determine the sound pressure level produced at the ear at 1000 Hz when the earphone is operated



8 ¾:1 2

~~ fp =

2.7 × 10-3 

2.7 × 10-3

60 × 10-6 

60 × 10-6 

14.22 

1 e~

f~

u~

Df~

e~

Df~

2

~~ fp =

(a)

(b) 10-4

10-4

FIG. 3.47 Analogous circuits for Example 3.9.

116 CHAPTER 3 Electro-mechano-acoustical circuits
from a very low impedance amplifier with an output voltage of erms¼ 1 V. Assume that the area of the
diaphragm is 1 cm2.

Solution. The circuit diagram for the earphone with the element sizes given in SI units is shown in
Fig. 3.47a. Eliminating the transformer gives the circuit of Fig. 3.47b. Solving, we get

~u ¼ ~f 2YMR ¼ ð10�4~pÞj6280ð2:7� 10�3Þ
¼ ð j1:7� 10�3Þ~p;

~f D ¼ juMMD~u ¼ ð�6:4� 10�4Þ~p;
~f ¼ ~f D þ ~f 2 ¼ ð�5:4� 10�4Þ~p;

11
3
~e ¼ ~uþ 14:22~f ¼ ð j1:7� 10�3 � 7:67� 10�3Þ~p;

jprmsj ¼ 1:33� 103ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:72 þ 7:672

p z 170 Pa;

SPL ¼ 20 log
170

2� 10�5
¼ 138:6 dB re 20 mPa:

Example 3.10. Two transducers, one a piezoelectric crystal and the other a moving coil in
a magnetic field, are connected to a mass MM2 of 6.27 g as shown in Fig. 3.48a. Determine the total
stored mechanical energy in the masses MM1 and MM2 at 10 kHz for the following constants:

erms¼ 1 V
RE¼ 10 U
B¼ 1 T
l¼ 20 m
CE¼ 1.3� 10�9 F
MM1¼ 6.4� 10�3 kg
MM2¼ 6.27� 10�3 kg
CM¼ 2� 10�8 m/N
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d33¼ 10�9 C/N
u¼ 62800 rad/s

Solution. The transducers are shown schematically in (b) of Fig. 3.48. A further simplification of
this diagram is shown in (c). Let us determine the value of ZM first.

ZM1 ¼ juðMM1 þMM2Þ � j
1

CMu

¼ jð402þ 394Þ � j796 ¼ 0:
e~

Bl
1RE

2
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FIG. 3.48 Combined electrostatic-electromagnetic transducers.

(a) Block mechanical diagram of the device. (b) Analogous circuit with impedances on mechanical side.

(c) Same as (b), except that the electrical elements are referred to the mechanical side. (d) Because the

mechanical part of circuit (c) has zero impedance, (c) simplifies to this form.
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In other words, the impedance is zero at 10 kHz. Hence, circuit (c) simplifies to that shown in (d). Then
the velocity ~u0 of the two masses MM1 and MM2 is

~u0 ¼
�
Bl

RE
þ CE

d33

�
RE

ðBlÞ2 ~e

¼
 
1

Bl
þ RECE

ðBlÞ2d33

!
~e

¼
�
1

20
þ 10� 1:3

202

�
~e ¼ ð82:5� 10�3Þ~e

so that u0rms¼ 82.5� 10�3 m/s. The total mechanical stored energy in the two massesMM1 andMM2 is

1

2
ðMM1 þMM2Þu20rms ¼ 0:5� ð6:4þ 6:27Þ � 82:52 � 10�9 ¼ 4:31� 10�5 W$s:
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