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PART XXVIII: HORN DRIVE UNITS

9.1 INTRODUCTION
Horn loudspeakers usually consist of an electrodynamic drive unit coupled to a horn. When well
designed, the large end of the horn, called the “mouth,” has an area sufficiently large to radiate sound
efficiently at the lowest frequency desired. The small end of the horn, called the “throat,” has an area
selected to match the acoustic impedance of the drive unit and to produce as little nonlinear distortion
of the acoustic signal as possible.

Horn loudspeakers are in widespread use in cinemas, theaters, concert halls, stadiums, and arenas
where large acoustic powers must be radiated and where control of the direction of sound radiation is
desired. The efficiency of radiation of sound from one side of a well-designed direct-radiator loud-
speaker was shown in Chapters 6 and 7 to be typically less than 1%. By comparison, the efficiency of
radiation from a horn loudspeaker usually lies between 10% and 50%.
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408 CHAPTER 9 Horn loudspeakers
The principal disadvantages of horn loudspeakers compared with the direct-radiator loudspeakers
are higher cost and larger size.

Before proceeding with an analysis of the horn loudspeaker, it should be mentioned again that the
radiating efficiency of a direct-radiator loudspeaker can be increased at low frequencies by mounting
several units side by side in a single baffle. The mutual interaction among the radiating units serves to
increase the radiation resistance of each unit substantially. For example, two identical direct-radiator
loudspeakers very near each other in an infinitely large plane baffle, and vibrating in phase, will
produce four times the intensity on the principal axis as will one of them alone.

Direct-radiator loudspeakers used in multiple often are not as satisfactory at high frequencies as
one horn loudspeaker because of the difficulty of obtaining uniform phase conditions from different
direct-radiator diaphragms. That is to say, the conditions of vibration of a loudspeaker cone are
complex, so that normal variations in the uniformity of cones result in substantial differences in the
phases of the radiated signals of different cones at high frequencies. Avery irregular and unpredictable
response curve and directivity pattern result.

This problem does not arise with a horn where only a single drive unit is employed. When two or
more drive units are used to drive a single horn, the frequency range in which the response curve is not
adversely affected by the multiplicity of drive units is that where the diaphragms vibrate in one phase.
9.2 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT [1]
The drive unit for a horn loudspeaker is essentially a small direct-radiator loudspeaker that couples to
the throat of a flaring horn as shown in Fig. 9.1. In the next part we shall discuss the characteristics of
the horn itself. In this section we restrict ourselves to that part of the frequency range where the
complex mechanical impedance ZMT looking into the throat of a horn is a pure resistance:

ZMT ¼ 1

YMT
¼ r0cST N$s=m (9.1)

where

r0 is density of air in kg/m3

c is velocity of sound in m/s
Mouth of
the horn  

Throat of
the horn  

FIG. 9.1 Cross section of a simple horn loudspeaker with an exponential cross section.

For this design, the radius of the throat is 0.1, the radius of the mouth 1.7, and the length 5.0 (arbitrary units).



9.2 Electro-mechano-acoustical circuit 409
r0c ¼ 406 rayls at 22�C and 105 Pa ambient pressure
ST is area of the throat in m2

YMT is mechanical admittance at the throat of the horn in m$N�1$s�1

A cross-sectional drawing of a compression drive unit for a horn loudspeaker is shown in Fig. 9.2. It
has a diaphragm and voice coil with a total mass MMD, a mechanical compliance CMS, and
a mechanical resistance RMS ¼ 1/GMS. The quantity GMS is the mechanical conductance of the dia-
phragm in m$N�1$s�1.

Behind the diaphragm is a back cavity that is usually filled with a soft acoustical material. At low
frequencies this space acts as a compliance CMB which can be lumped in with the compliance of the
diaphragm. At high frequencies the reactance of this space becomes small so that the space behind the
diaphragm becomes a mechanical radiation resistance RMB ¼ 1/GMB with a magnitude equal to that
given in Eq. (9.1). This resistance combines with the mechanical radiation resistance of the throat, and
the diaphragm must develop power both to its front and its back. Obviously, any power developed
behind the diaphragm is wasted, and at high frequencies this sometimes becomes as much as one-half
of the total generated acoustic power.

In front of the diaphragm there is an air space or front cavity with compliance CM1. At low
frequencies the air in this space behaves like an incompressible fluid, that is, uCM1 is small, and all the
air displaced by the diaphragm passes into the throat of the horn. At high frequencies the mechanical
reactance of this air space becomes sufficiently low (i.e., the air becomes compressible) so that all the
air displaced by the diaphragm does not pass into the throat of the horn.
FIG. 9.2 Cross section of a horn compression drive unit.

The diaphragm couples to the throat of the horn through a small cavity with a mechanical compliance CM1. Note

that in this design, the annular channels within the phase plug meet the front cavity at nodal points so as to

suppress the normal modes which would otherwise occur [19]. Such modes would produce a somewhat uneven

frequency response.

Courtesy of Celestion.
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FIG. 9.3 Electro-mechano-acoustical analogous circuit of the admittance type for the drive unit.

To derive this, we assume that the mechanical impedance at the horn throat is r0cST, that is, the mechanical

admittance is YMT ¼ 1/(r0cST).

410 CHAPTER 9 Horn loudspeakers
The voice coil has an electrical resistance RE and inductance LE. As stated above, YMT is the
mechanical admittance at the throat of the horn.

By inspection, we draw the admittance-type analogous circuit shown in Fig. 9.3. In this circuit
forces “flow” through the elements, and the velocity “drops” across them. The generator open-circuit
voltage and resistance are ~eg and Rg. The electric current is ~i; the linear velocity of the voice coil and
diaphragm is ~uc; the linear velocity of the air at the throat of the horn is ~uT ; and the force at the throat of
the horn is ~f T . As before, the area of the diaphragm is SD, and that of the throat is ST.
9.3 REFERENCE EFFICIENCY
In the middle-frequency range many approximations usually can be made to simplify the analogous
circuit of Fig. 9.3. Because the drive unit is very small, the mass of the diaphragm and the voice coil
MMD is very small. This in turn usually means that the compliance of the suspension CMS is large in
order to keep the resonance frequency low. Also, the conductance of the suspension GMS usually is
large, and the reactance uCM1 is small. Hence, in this frequency range, the circuit reduces essentially
to that of Fig. 9.4a, where the conductance behind the diaphragm is
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FIG. 9.4 Simplified analogous circuits of the admittance type for the drive unit in the region where the motion of the

diaphragm is resistance-controlled by the horn.
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GMBh
1

r0cSD
m$N�1$s�1 (9.2)

With the area-changing and electromechanical transformers removed, we get Fig. 9.4b, where the
radiation conductance at the throat is

GMTh
ST

r0cS
2
D

m$N�1$s�1 (9.3)

As before, ST is the area of the throat and SD is the area of the diaphragm in m2. We have assumed
here that the cavity behind the diaphragm in this frequency range is nearly perfectly absorbing, which
may not always be true. Usually, however, this circuit is valid over a considerable frequency range
because of the heavy damping provided by the conductance of the horn GMT. Also, GMT usually is
smaller than GMB so that most of the power supplied by the diaphragm goes into the horn.

Solution of Fig. 9.4b gives us

~i2 ¼ GMB

GMB þ GMT

~i (9.4)

Assuming that the output resistance Rg of the generator is small compared with the coil resistance RE

of the drive unit, the total electrical power supplied from the generator is

Total power supplied ¼
�����
~iffiffiffi
2

p
�����
2�

RE þ B2l2
GMBGMT

GMB þ GMT

�
(9.5)

Using the solution of Eq. (9.4), the reference efficiency Eff is equal to the power delivered to the horn,���~i2= ffiffiffi
2

p ���2B2l2GMT ;

times 100 divided by the total power supplied:

Eff ¼ ðGMB=ðGMB þ GMT ÞÞ2B2l2GMT

RE þ B2l2GMBGMT=ðGMB þ GMT Þ � 100 (9.6)

From Eqs. (9.2), (9.3), and (9.6) we get

Eff ¼ 100B2l2ðST=SDÞ
ð1þ ST=SDÞððB2l2 þ SDr0cREÞðST=SDÞ þ SDr0cREÞ (9.7)

or, in terms of Thiele–Small parameters,

Eff ¼ 100ðST=SDÞSDc
ð1þ ST=SDÞððSDcþ uSQESVASÞðST=SDÞ þ uSQESVASÞ (9.8)

where we have used Eqs. (6.27) and (6.30) for the Bl factor. We note that the value of GMT, and hence
the ratio ST /SD would seem to need to be large for high efficiency. However, if ST /SD becomes too
large, reference to Fig. 9.4b shows that too much power will be dissipated in GMB and the efficiency
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will be low. In order to optimize the efficiency, let us now differentiate the above with respect to (ST/
SD) and equate the result to zero. Hence maximum efficiency occurs when

ST
SD

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SDr0cRE

B2l2 þ SDr0cRE

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uSQESVAS

SDcþ uSQESVAS

s
(9.9)

so that the maximum efficiency is

Eff ðmaxÞ ¼ 100B2l2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2l2 þ SDr0cRE

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SDr0cRE
p �2 (9.10)

which can also be given in terms of Thiele–Small parameters:

Eff ðmaxÞ ¼ 100SDc

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDcþ uSQESVAS

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uSQESVAS

p Þ2
(9.11)

To increase the efficiency further, it is seen from Eq. (9.10) that the length l of the wire on the voice coil
should be increased as much as possible without altering electrical resistance RE. Within given space
limitations, this can be done by winding the voice coil from wire with a rectangular cross section rather
than with a circular cross section. This means that the voice-coil mass will be increased. Increasing l
further will demand wire of larger cross section which will require a larger air gap, with a corre-
sponding reduction in B or increase in magnet size. Also, the voice coil must not become too large as
its mass will limit the high-frequency response.
9.4 FREQUENCY RESPONSE
The frequency response of a complete horn loudspeaker, in the range where the throat impedance of
the horn is a resistance as given by Eq. (9.1), is determined by solution of the circuit of Fig. 9.3. A
horn-loaded drive unit behaves very differently from a direct radiator. The diaphragm of a direct-
radiator loudspeaker is mass-controlled because a flat on-axis response is given at frequencies where
the acceleration of the diaphragm is constant. Because the velocity decreases with frequency, so does
the radiated power for u > c/a, but this is compensated for by an increasingly narrow directivity
pattern, which is how the flat on-axis response is maintained. By contrast, a horn has a fairly constant
directivity pattern over its operating frequency range. Hence, for a flat frequency response, the radiated
power must also be constant, which can only be achieved if the velocity is constant. Hence the dia-
phragm of horn-loaded drive unit is resistance-controlled. For purposes of analysis, we shall divide the
frequency range into three parts, A, B, and C, as shown in Fig. 9.5.
Mid-frequency range. In the mid-frequency range, designated as B in Fig. 9.5, the response is equal to
the reference efficiency given by Eq. (9.8). Here, the response is “flat” with frequency, and, for the
usual high-frequency units used in auditoriums with 300 Hz cutoff frequencies, the flat region extends
from a little above 500 to a little below 3000 Hz. In this region the velocity of the diaphragm is constant
with frequency, rather than decreasing in inverse proportion to frequency as was the case for a direct-
radiator loudspeaker.



FIG. 9.5 Normalized frequency response of the mechanical force ~fT or velocity ~uT at the throat of a horn drive unit,

in the frequency region where the mechanical impedance at the throat is a pure resistance r0cST.

The ordinate is a logarithmic scale, proportional to decibels.

9.4 Frequency response 413
Resonance frequency. It is apparent from Fig. 9.3 that since uCM1 is small, zero reactance will occur
at the frequency where

f0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMDðCMSCMB=ðCMS þ CMBÞÞ

p (9.12)

In practice, this resonance usually is located in the middle of region B of Fig. 9.5 and is heavily damped
by the conductance GMT, so that the velocity of the diaphragm is resistance-controlled.
Low frequencies. At frequencies well below the resonance frequency the response will drop off 6 dB
for each octave decrease in frequency if the throat impedance is a resistance as given by Eq. (9.1). This
case is shown as region A in Fig. 9.5.

Let us simplify Fig. 9.3 so that it is valid only for the low-frequency region, well below the
resonance of the diaphragm. Then the inductance LE, the mass MMD, the compliance CM1 and the
conductances GMS and GMB may all be dropped from the circuit, giving us Fig. 9.6.
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FIG. 9.6 Analogous circuit for a horn drive unit in the region where the diaphragm would be stiffness-controlled if

the horn admittance were infinite.

The actual value of the mechanical admittance of the horn at the throat is zMT.
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Assuming the throat admittance of the horn is a pure conductance as given by Eq. (9.3), the
frequency at which the frequency response is 3 dB down is given in terms of the Thiele–Small
parameters by

uL ¼
�
1þ VAS

VB

�
uSQESSDc

SDcþ ð1þ SD=STÞuSQESVAS
(9.13)

where VB is the volume of the back cavity. In practice, however, the throat impedance ZMT of the horn
near the lowest frequency at which one wishes to radiate sound is not a pure resistance. Hence, region
A needs more careful study. Solving for the mechanical admittance at the diaphragm of the drive unit
yields

YMc ¼ ~uc
~f c

¼ juCM2ðST=SDÞ2YMT

juCM2 þ ðST=SDÞ2YMT

(9.14)

where

CM2 ¼ CMSCMB

CMS þ CMB
(9.15)

and YMT is mechanical admittance at the throat of the horn with area ST. The mechanical impedance at
the diaphragm of the drive unit is the reciprocal of YMc,

ZMc ¼
~f c
~uc

¼
�
SD
ST

�2

ZMT � j
1

uCM2
(9.16)

where ZMT ¼ 1/YMT is mechanical impedance at the throat of the horn with area ST.
As we shall show in the next part, the mechanical impedance at the throat of ordinary types of horn

at the lower end of the useful frequency range is equal to a mechanical resistance in series with
a negative compliance. That is to say,

ZMThRMT þ j
1

uCMT
(9.17)

The bold RMT indicates that this resistance varies with frequency. Usually, its variation is between zero
at very low frequencies and r0cST [as given by Eq. (9.1)] at some frequency in region A of Fig. 9.5.
Hence, the admittance YMT ¼ l/ZMT is a resistance in series with a negative mass reactance. In the
frequency range where this is true, therefore, the reactive part of the impedance ZMc can be canceled
out by letting [see Eqs. (9.16) and (9.17)]

S2D
S2T

1

CMT
¼ 1

CM2
¼
�

1

CMB
þ 1

CMS

�
(9.18)

Then,

ZMc ¼ RMT

�
SD
ST

�2

h
1

GMc
(9.19)
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where GMc is the acoustic conductance of the throat of the horn at low frequencies transformed to the
diaphragm.

The efficiency for frequencies where the approximate circuit of Fig. 9.6 holds, and where the
conditions of Eq. (9.18) are met, is

Eff ¼ 100B2l2GMc

RE þ B2l2GMc
(9.20)

assuming Rg>> RE. The conductanceGMc usually varies from “infinity” at very low frequencies down
to ST/(SD

2 r0c) at some frequency in region A of Fig. 9.5.
High frequencies. At very high frequencies, the response is limited principally by the combined
mass of the diaphragm and the voice coil MMD. If the compliance CM1 of the front cavity were zero,
the response would drop off at the rate of 6 dB per octave (see region C of Fig. 9.5). It is possible to
choose CM1 to resonate with MMD at a frequency that extends the response upward beyond where it
would extend if it were limited by MMD alone. We can understand this situation by deriving a circuit
valid for the higher frequencies as shown in Fig. 9.7. It is seen that a damped anti-resonance occurs
at a selected high frequency uU, which is given in terms of the Thiele–Small parameters of the drive
unit by

uU ¼ uS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAS

VF

�
1þ ST

SD

�
1þ SDc

uSQESVAS

�	s
(9.21)

with a QU value of

QU ¼ uU

�
STc

VF
þ uS

�
1

QES
þ uSVAS

SDc

�	�1

(9.22)

where VF is the volume of the front cavity. Above this resonance frequency, the response drops off
12 dB for each octave increase in frequency (see region C of Fig. 9.5).

Because the principal diaphragm resonance [Eq. (9.12)] is highly damped by the throat resistance
of the horn, it is possible to extend the region of flat response of a drive unit over a range of four octaves
by proper choice of CM1 at higher frequencies and by meeting the conditions of Eq. (9.18) at lower
frequencies.
ge~

LERg

22lB

M MD

i
~

B2l2GMB

RE

B2l2GMT

B2l2CM1

FIG. 9.7 Analogous circuit for a horn drive unit at high frequencies where the diaphragm mass reactance is much

larger than its compliance reactance.
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9.5 EXAMPLES OF HORN CALCULATIONS
Example 9.1. Find the maximum efficiency of a 2-inch theater horn drive unit designed to operate in
the frequency range above 500 Hz with the following Thiele–Small parameters:

RE ¼ 6.4 U
QES ¼ 0.8
fS ¼ 250 Hz
SD ¼ 13.2 cm2

VAS ¼ 0.1 L.

Solution. From Eq. (9.9) the optimum throat area is
ST ¼ 13:2� 10�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 3:14� 250� 0:8� 0:1� 10�3

13:2� 10�4 � 348:8þ 2� 3:14� 250� 0:8� 0:1� 10�3

r
¼ 6:11 cm2

which from Eq. (9.11) gives a maximum efficiency of

Eff ðmaxÞ ¼ 100SDc� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13:2� 10�4 � 348:8þ 2� 3:14� 250� 0:8� 0:1� 10�3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3:14� 250� 0:8� 0:1� 10�3

p �2
¼ 36:7%

Example 9.2. In order to extend the high-frequency response of the previous example, reduce the
throat area to ST ¼ 0.66 cm2 (ST/SD ¼ 0.05) and recalculate the efficiency. Also determine the
upper resonance frequency and the Q of the resonance, as well as the theoretical lower cutoff
frequency that would be obtained with an infinite horn of low cutoff frequency and a 0.1 L back cavity
(i.e., VB ¼ VAS).

Solution. Then we obtain the efficiency from Eq. (9.8), which gives

Eff ¼ 100� 0:05� 13:2� 10�1 � 348:8

ð1þ 0:05Þðð13:2� 10�1 � 348:8þ 2� 3:14� 250� 0:8� 0:1Þ � 0:05þ 2� 3:14� 250� 0:8� 0:1Þ
¼ 14:2%

which is still quite good. If we set the depth d of the front cavity to d¼ 1 mm so that VF z dSD ¼ 1.32
cm3, we obtain the high-frequency resonance from Eq. (9.21), which gives

fU ¼ 250

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� 10�3

1� 10�3 � 13:2� 10�4

�
1þ 0:05�

�
1þ 13:2� 10�4 � 348:8

2� 3:14� 250� 0:8� 0:1� 10�3

�	s

¼ 2:42 kHz
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Using Eq. (9.22) we obtain a Q value of

QU ¼ 2� 3:14� 2420�
�
0:66� 10�4 � 348:8

10�3 � 13:2� 10�4
þ 2� 3:14� 250

�
1

0:8
þ 2� 3:14� 250� 0:1� 10�3

13:2� 10�4 � 348:8

�	�1

¼ 0:762

which is fairly optimal for a flat frequency-response with a smooth roll-off. Finally, from Eq. (9.13) we
obtain the following lower cut-off frequency with an ideal infinite horn:

fL ¼ 1

2� 3:14
ð1þ 1Þ 2� 3:14� 250� 0:8� 13:2� 10�4 � 348:8

13:2� 10�4 � 348:8þ ð1þ 20Þ � 2� 3:14� 250� 0:8� 0:1� 10�3

¼ 59:4 Hz

Of course this is unrealistic in practice as the lower cutoff frequency is more likely to be determined by
the characteristics of the horn, which we shall examine in the next section. The full frequency response
is plotted in Fig. 9.5.
PART XXIX: HORNS

9.6 GENERAL DESCRIPTION
A horn is in effect an acoustic transformer. It transforms a small-area diaphragm into a large-area
diaphragm without the difficulties of cone resonances discussed in Part XX. A large-area diaphragm
has a radiation impedance that is more nearly resistive over the desired frequency range than is the
radiation impedance for a small-area diaphragm (see Fig. 4.35). As a result, more power is radiated at
low frequencies for a given volume velocity of air. A horn is also a directivity controlling device, which
radiates over an angle defined by the flare angle of the mouth.

In designing a horn for a particular application we usually wish to select the parameters so as to
radiate the maximum amount of acoustic power over the desired frequency range with suitably low
nonlinear distortion. Once we have stated the frequency range, tolerable distortion, and desired
radiated power, we can choose the drive unit and then proceed to calculate the throat and the mouth
diameters and the length and shape of the horn.
9.7 POSSIBLE PROFILES [2]
When it comes to considering various horn profiles, there are only a limited number with exact
solutions. For a start, an exact solution relies upon a coordinate system which leads to a separable wave
equation. In other words, the coordinate system must be orthogonal, having coordinate surfaces which
all meet at right angles. In Part V we presented solutions to the three-dimensional Helmholtz wave
equation in three such coordinate systems, namely, rectangular, cylindrical, and spherical. Generally,
cylindrical coordinates lead to parabolic horns (with two parallel and two non-parallel side walls),
while spherical coordinates lead to conical horns.
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There only a few other three-dimensional orthogonal coordinate systems which lead to practical
horn profiles. Of these are spheroidal coordinates, which come in two flavors: prolate and oblate.
Although they are too complicated to deal with in this text, they are worth mentioning. Spheroidal
coordinates are constructed from overlapping families of ellipses and hyperbolas, which share two focal
points. If the ellipses are rotated about an axis passing through the focal points, they become prolate
spheroids (cigar shaped) and we have a prolate-spheroidal coordinate system. Then any one of the
rotated hyperbolas can be chosen as a horn profile. Such a profile looks parabolic near the throat but
becomes more conical as the distance from the throat increases. Similarly, if the ellipses are rotated
about an axis passing between the two focal points, they become oblate spheroids (flying saucer shaped)
and we have an oblate-spheroidal coordinate system. Again, any one of the rotated hyperbolas can be
chosen as a horn profile [3]. In this case, however, the profile looks hyperbolic near the throat but
becomes more conical as the distance from the throat increases. However, spheroidal wave functions,
[4,20] unlike Bessel and Legendre functions, are not frequency independent. The fact that a whole series
of harmonics must be calculated at each frequency step somewhat complicates the analysis. Ellipsoidal
coordinates lead to similar horn profiles, but with cross-sections that are not circular.

Some other three-dimensional coordinate systems are simply two-dimensional systems translated
through parallel planes. For example, elliptical-cylindrical coordinates are formed by translating the
ellipses and hyperbolas of the spheroidal system. From this we can form horn profiles having two
straight parallel walls and two curved walls which are hyperbolas. Again, we have the problem that the
resulting Mathieu functions [4] are not frequency independent.

A rigorous treatement of a horn profile would involve solving thewave equation in three-dimensions
with the correct boundary conditions at the throat, walls and mouth, but the analysis would be somewhat
complicated. It is much simpler if we can reduce thewave equation down to one dimension by assuming
that pressure variations over the cross-section of the horn are minimal. In practice, the errors produced
by such an assumption are fairly small. We have already introducedWebster’s equation, [21] Eq. (2.27),
which is one-dimensional, but allows for a number of different functions S(x) to describe the variation of
cross-sectional area S with distance x along its length. However, this equation assumes that the wave
front does not change shape as it progresses along the length of the horn, otherwise it is not truly one-
dimensional. In the case of a parabolic horn (with two parallel walls and two non-parallel) or conical
horn, this assumption is generally true. However, we shall also consider exponential and hyperbolic
horns in which case the wave front starts off substantially planar near the throat and becomes more
curved as it progresses along the length of the horn. As a result, the infinite horn exhibits an abrupt
cutoff frequency below which no power is transmitted. However, for a finite horn, the errors produced
by this one-dimensional assumption are not too bad. It should be noted that there is no orthogonal
coordinate system for an exponential or hyperbolic horn that leads to a separable wave equation with an
exact solution, but proposals have been made to improve Webster’s one-dimensional theory which
include recasting it [5], applying expansions [6] or correction factors [7,8], and smoothing the cutoff
discontinuity with a complex wave number [9].

First we shall consider infinite horns, as these provide the simplest solutions for the throat impedance
and hence radiated power under idealized conditions. If the horn is a number of wavelengths long and if
the mouth circumference is larger than the wavelength, we may call it “infinite” in length. This simpli-
fication leads to equations that are easy to understand and are generally useful in design. Then we shall
develop 2-port transmissionmatrices for finite horns, which can be used as part of an overall loudspeaker
system design. Our analysis will be limited to parabolic, conical, exponential, and hyperbolic horns.
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For a horn to be a satisfactory transformer, its cross-sectional area near the throat end should
increase gradually with axial distance x. If it does, the transformation ratio remains reasonably
constant with frequency over a wide range. Exponential and hyperbolic horns are closer to this ideal,
but the more gradual cutoff of a conical horn makes it easier to integrate into a loudspeaker system
when used as a high-frequency unit or tweeter. The parabolic horn is often used in reverse as
a transmission line because it is the easiest to construct.

We already mentioned that the directivity is largely defined by the flare angle at the mouth. This is
certainly the case for parabolic and conical horns when the wavelength is smaller than the diameter of
the mouth. The mouth of a conical horn behaves somewhat like a spherical cap in a sphere because it
produces spherical waves which are largely confined within the angle of the apex of the cone at high
frequencies. A conical horn may not necessarily have a circular cross-section though. A rectangular
cross-section enables different angles of dispersion in the horizontal and vertical planes. It also
produces a smoother on-axis response. Pulsating spherical and rectangular caps in spheres are dis-
cussed in Example 9.4 and covered in detail in Sec. 12.7. The high-frequency directivity factor is

Qð f Þ ¼ 4pR2

SM
(9.23)

where R is the radius at the mouth and SM is the area of the mouth. In the case of a rectangular cone, the
area is given by Eq. (12.69). Unfortunately, exponential and hyperbolic horns produce a more planar
wave in the middle of the flare at high frequencies, resulting in a somewhat narrower directivity
pattern. Multiple horns, or “multi-cell” horns are often used to mitigate this effect. They may either
comprise multiple horns with each having its own drive unit or horns with a common drive unit.
Another option is to use a hybrid exponential/conical horn [10].
9.8 MOUTH SIZE
The large end (mouth) of the horn should have a circumference large enough so that the radiation
impedance is nearly resistive over the desired frequency range. Reference to Fig. 4.35 shows that this
will be true for ka > 1: that is, C/l> 1, where C is the circumference of the mouth of the horn and l is
the wavelength of the lowest tone that it is desired to radiate. If the mouth of the horn is not circular but
square, it will behave in nearly the same way, as far as radiated power is concerned, for equal mouth
areas. Hence, for good design, the mouth circumference C or mouth area SM,

C ¼ 2
ffiffiffiffiffiffiffiffiffi
pSM

p
> l (9.24)

where l is the longest wavelength of sound that is to be radiated efficiently.
9.9 INFINITE PARABOLIC HORN [11]
Theoretical considerations. A parabolic horn can either have a rectangular cross section with two
parallel straight walls and two non-parallel straight walls, or a circular cross section with a curved wall
following a parabola. The former gives more accurate results using the one-dimensional wave equation
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and is easier to construct, but in the figures we shall use the latter for convenience. The equation
describing the cross-sectional area S(x) as a function of the distance x along the axis is

SðxÞ ¼ STx=xT (9.25)

where ST is the area of the throat, which is located at a distance x ¼ xT ahead of the apex at x ¼ 0.
In the steady state, the Helmholtz equation for the parabolic horn is

�
v2

vx2
þ 1

x

v

vx
þ k2

�
~pðxÞ ¼ 0 (9.26)

where

k ¼ 2p

l
¼ u

c
(9.27)

and

~p is harmonically varying sound pressure at a point along the length of the horn in Pa. (It is assumed
that the pressure is uniform across the cross section of the horn.)
c is speed of sound in m/s.
x is distance along the length of the horn from the apex in m.
xT is distance from the apex to the throat in m.
ST is cross-sectional area of the throat in m2.
S is cross-sectional area at x in m2.

The general solution for the pressure in a parabolic horn of any length is

~pðxÞ ¼ ~pþH
ð2Þ
0 ðkxÞ þ ~p�H

ð1Þ
0 ðkxÞ (9.28)

where ~pþ denotes the pressure amplitude of the forward traveling wave and ~p� that of the backwards
traveling wave. The tilde replaces the factor e jut. Using Eq. (2.87), the velocity is given by

~uðxÞ ¼ � 1

jkr0c

v

vx
~pðxÞ

¼ 1

jr0c

�
~pþH

ð2Þ
1 ðkxÞ þ ~p�H

ð1Þ
1 ðkxÞ

� (9.29)

Throat impedance. Noting that in an infinite horn there are no reflections from the mouth, we set
~p� ¼ 0 in order to obtain the acoustic throat impedance, which is the ratio of the pressure ~p to the
volume velocity ~U at x ¼ xT, so that

ZAT ¼ ~pðxTÞ
~UðxTÞ

¼ ~pðxTÞ
ST ~uðxTÞ ¼ j

r0c

ST

H
ð2Þ
0 ðkxTÞ

H
ð2Þ
1 ðkxTÞ

¼ r0c

ST

 
2

pkxTðJ21ðkxTÞ þ Y2
1 ðkxTÞÞ

þ j
J0ðkxTÞJ1ðkxTÞ þ Y0ðkxTÞY1ðkxTÞ

J21ðkxTÞ þ Y2
1 ðkxTÞ

!
N$s=m5

(9.30)
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where we have used the relationships of Eqs. (75) and (111) from Appendix II. This is the same as the
radiation impedance of an infinitely long pulsating cylinder of radius xT. If we equate the real and
imaginary parts of the impedance, we find that the cutoff frequency occurs at kxT ¼ 0.268, which we
shall designate fc, where

fc ¼ 0:268c

2pxT
(9.31)

The throat impedance of an infinite parabolic horn is plotted in Fig. 9.9.

9.10 INFINITE CONICAL HORN
Theoretical considerations. The equation describing the cross-sectional area S(x) as a function of the
distance x along the axis is

SðxÞ ¼ STðx=xTÞ2 (9.32)

where ST is the area of the throat, which is located at a distance x¼ xT ahead of the apex at x¼ 0. In the
steady state, the Helmholtz equation for the conical horn is�

v2

vx2
þ 2

x

v

vx
þ k2

�
~pðxÞ ¼ 0 (9.33)

where

k ¼ 2p

l
¼ u

c
(9.34)

and

~p is harmonically varying sound pressure at a point along the length of the horn in Pa. (It is assumed
that the pressure is uniform across the cross section of the horn.)
c is speed of sound in m/s.
x is distance along the length of the horn from the apex in m.
xT is distance from the apex to the throat in m.
ST is cross-sectional area of the throat in m2.
S is cross-sectional area at x in m2.

The general solution for the pressure in a conical horn of any length is

~pðxÞ ¼ ~pþ
e�jkx

x
þ ~p�

e jkx

x
(9.35)

where ~pþ denotes the pressure amplitude of the forward traveling wave and ~p� that of the backwards
traveling wave. The tilde replaces the factor e jut. Using Eq. (2.87), the velocity is given by

~uðxÞ ¼ � 1

jkr0c

v

vx
~pðxÞ

¼ 1

r0c

�
~pþ

�
1� j

kx

�
e�jkx

x
� ~p�

�
1þ j

kx

�
e jkx

x

	 (9.36)
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Throat impedance. Noting that in an infinite horn there are no reflections from the mouth, we set
~p� ¼ 0 in order to obtain the acoustic throat impedance, which is the ratio of the pressure ~p to the
volume velocity ~U at x ¼ xT, so that

ZAT ¼ ~pðxTÞ
~UðxTÞ

¼ ~pðxTÞ
ST ~uðxTÞ ¼ r0c

ST

jkxT
1þ jkxT

¼ r0c

ST

�
k2x2T

1þ k2x2T
þ j

kxT

1þ k2x2T

�
N$s=m5

(9.37)

This is the same as the radiation impedance of a pulsating sphere of radius xT. The special case of
kxT ¼ 1 occurs at the cutoff frequency, which we shall designate fc, where

fc ¼ c

2px1
(9.38)

The throat impedance of an infinite conical horn is plotted in Fig. 9.9.
9.11 INFINITE EXPONENTIAL HORN
Theoretical considerations. The equation describing the cross-sectional area S(x) as a function of the
distance x along the axis is

SðxÞ ¼ STe
mx (9.39)

where ST is the area of the throat, which is located at x¼ 0. In the steady state, the Helmholtz equation
for the exponential horn is �

v2

vx2
þ m

v

vx
þ k2

�
~pðxÞ ¼ 0 (9.40)

where

k ¼ 2p

l
¼ u

c
(9.41)

and

~p is harmonically varying sound pressure at a point along the length of the horn in Pa. (It is assumed
that the pressure is uniform across the cross section of the horn.)
c is speed of sound in m/s.
x is distance along the length of the horn from the throat in m.
m is flare constant in m�1. Obviously, m determines the magnitude of the second term of the
equation above, which expresses the rate at which the sound pressure changes with distance
down the horn. If m ¼ 0, Eq. (9.40) becomes the equation for propagation in a cylindrical tube,
i.e., a horn with zero flare.
ST is cross-sectional area of the throat in m2.
S is cross-sectional area at x in m2.
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The general solution for the pressure in an exponential horn of any length is

~pðxÞ ¼ e�mx=2

 
~pþe

�jkx

ffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2
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1� m2

4k2

q !
(9.42)

where ~pþ denotes the pressure amplitude of the forward traveling wave and ~p� that of the backwards
traveling wave. The tilde replaces the factor e jut. Using Eq. (2.87), the velocity is given by
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(9.43)

Throat impedance. Noting that in an infinite horn there are no reflections from the mouth, we set
~p� ¼ 0 in order to obtain the acoustic throat admittance, which is the ratio of the volume velocity ~U to
the pressure ~p at x ¼ xT, so that

YAT ¼
~UðxTÞ
~pðxTÞ ¼ ST ~uðxTÞ

~pðxTÞ ¼ ST
r0c

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s
� j

m

2k

1
Am5$N�1$S�1

¼ GAT þ jBAT

(9.44)

The acoustic impedance ZAT ¼ 1/YAT at the throat is

ZAT ¼ r0c

ST

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s
þ j

m

2k

1
A

¼ RAT þ jXAT N$s=m5

(9.45)

The real and imaginary parts of ZAT and YAT behave alike with frequency and differ only by the
magnitude (S/r0c)

2 and the sign of the imaginary part. Note also that, unlike with the parabolic or
conical horns, this impedance is independent of the distance x along the axis of the horn. Let us see
next how varying the flare constant m affects the acoustic impedance ZAT.
Flare constant and throat impedance. When the flare constant m is greater than 4p divided by the
wavelength (m > 2k, low frequencies), the acoustic resistance RAT and the acoustic reactance XAT, at
the throat of the horn where the area is ST, are

RAT ¼ 0

XAT ¼ r0c

ST

0
@m

2k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

4k2
� 1

s 1
A (9.46)
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When the flare constant m equals 4p divided by the wavelength, the acoustic resistance and
reactance are

RAT ¼ 0

XAT ¼ r0cm

2kST
¼ r0c

ST

(9.47)

For all cases where m is less than 4p divided by the wavelength (m < 2k, high frequencies),
the acoustic resistance and reactance at any point x along the horn where the cross-sectional area is
S are

RAT ¼ r0c

ST

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s

XAT ¼ r0cm

2kST
¼ r0c

2m

2uST
h

1

uCAT

(9.48)

where CAT ¼ 2ST/r0c
2m.

For very high frequencies, the reactance approaches zero and the resistance approaches r0c/ST or
r0c/S in general. This is also the impedance for a plane progressive sound wave in a tube of uniform
cross section S.
Cutoff frequency. The special case of m ¼ 4p/l occurs at a frequency which we shall designate fc,
where

fc ¼ mc

4p
(9.49)

This frequency fc is called the cutoff frequency because, for frequencies lower than this, no power will
be transmitted down the horn, i.e., the impedance at all positions along the horn is purely reactive [see
Eq. (9.46)]. The throat impedance of an infinite exponential horn is plotted in Fig. 9.9.

To obtain the acoustic impedance at the throat of the horn in terms of the cutoff frequency, we
observe that fc /f ¼ m/2k. Substituting in Eq. (9.45) yields

ZAT ¼ r0c

ST

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
fc
f

�2
s

þ j
fc
f

!
¼ RAT þ jXAT (9.50)

where

ST is throat area in m2.
r0c is characteristic impedance of air in rayls.
fc is cutoff frequency.
f is driving frequency.

Graphs of two quantities A and B that are directly proportional to the resistive and reactive parts of
the acoustic impedance at the throat of an infinitely long exponential horn are shown in Fig. 9.8. The



FIG. 9.8 Plot of the quantities A and B, which are defined by the relations given on the graph.
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quantities A and B also are directly proportional to the real and imaginary parts of the acoustic
admittance at the throat. The relations among A, B, RAT, XAT,GAT, and BATare given on the graph. When
the frequency is greater than approximately double the cutoff frequency fc, the throat impedance is
substantially resistive and very near its maximum value in magnitude.
9.12 INFINITE HYPERBOLIC HORN (HYPEX) [12]
Theoretical considerations. The equation describing the cross-sectional area S(x) as a function of the
distance x along the axis is

SðxÞ ¼ ST

�
cosh

x

xT
þ a sinh

x

xT

�2

(9.51)

where ST is the area of the throat, which is located at x ¼ 0 and 0 � a � 1. We can vary the parameter
a in order to create any profile between hyperbolic (a¼ 0) and exponential (a¼ 1) In the steady state,
the Helmholtz equation for the hyperbolic horn is

�
v2

vx2
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$
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coshðx=xTÞ þ a sinhðx=xTÞ$

v
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þ k2

�
~pðxÞ ¼ 0 (9.52)

where

k ¼ 2p

l
¼ u

c
(9.53)

and

~p is harmonically varying sound pressure at a point along the length of the horn in Pa. (It is assumed
that the pressure is uniform across the cross section of the horn.)
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c is speed of sound in m/s.
xT is reference axial distance from the throat in m.
x is distance along the length of the horn from the throat in m.
a is parameter which never exceeds unity.
ST is cross-sectional area of the throat in m2.
S is cross-sectional area at x in m2.
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The general solution for the pressure in an hyperbolic horn of any length is

~pðxÞ ¼ 1

coshðx=xTÞ þ a sinhðx=xTÞ
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where ~pþ denotes the pressure amplitude of the forward traveling wave and ~p� that of the backwards
traveling wave. The tilde replaces the factor e jut. Using Eq. (2.87), the velocity is given by

~uðxÞ ¼ � 1

jkr0c

v

vx
~pðxÞ (9.55)

Throat impedance. Noting that in an infinite horn there are no reflections from the mouth, we set
~p� ¼ 0 in order to obtain the acoustic throat admittance, which is the ratio of the volume velocity
~U to the pressure ~p at x ¼ xT, so that

YAT ¼
~UðxTÞ
~pðxTÞ ¼ ST ~uðxTÞ

~pðxTÞ ¼ ST
r0c
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The acoustic impedance ZAT ¼ 1/YAT at the throat is

ZAT ¼ r0c

ST
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The real and imaginary parts of ZAT and YAT behave alike with frequency and differ only by the
magnitude (S/r0c)

2 and the sign of the imaginary part. Note also that like with an exponential horn, but
unlike the parabolic or conical horns, this impedance is independent of the distance x along the axis of
the horn.
Cutoff frequency. The special case of xT ¼ l/2p occurs at a frequency which we shall designate fc,
where

fc ¼ c

2pxT
(9.58)

This frequency fc is called the cutoff frequency because, for frequencies lower than this, no power will
be transmitted down the horn, i.e., the impedance at all positions along the horn is purely reactive. The
throat impedance of an infinite hyperbolic horn is plotted in Fig. 9.9.

In Fig. 9.9, the throat impedances for the parabolic, conical, exponential, and hyperbolic horn types
are shown. At very high frequencies, all these types behave about alike. At low frequencies, however,
there are considerable differences. These differences can be shown by comparison of the throat
impedances for the conical and hyperbolic horns with that for the exponential horn.

For all horns, the throat resistance is very low, or zero, below the cutoff frequency. Above the cutoff
frequency, the specific throat resistance rises rapidly to its ultimate value of r0c for those cases where
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the rate of taper is small near the throat of the horn. For example, the specific throat resistance for the
hyperbolic horn reaches r0c at about one-twentieth the frequency at which the specific throat resis-
tance for the conical horn reaches this value. Similarly for the hyperbolic horn, the specific throat
resistance approaches unity at about one-third the frequency for the exponential horn.

It would seem that for best loading conditions on the horn drive unit over the frequency range above
the cutoff frequency, one should use the hyperbolic horn. However, it should also be remembered that the
nonlinear distortion will be higher for the hyperbolic horn because the wave travels further in the horn
before the pressure drops off owing to area increase than is the case for the other horns. For minimum
distortion at given power per unit area, the conical horn is obviously the best of the three. The exponential
horn is usually a satisfactory compromise in design because it falls between these two extremes.
9.13 FINITE HORNS
Transmission parameters. A horn can be represented as a 2-port network, which is described by the
following transmission-parameter matrix:

"
~pT
~UT

#
¼
"
a11 a12

a21 a22

#
$

"
~pM
~UM

#
¼ A$

"
~pM
~UM

#
(9.59)

where ~pT and ~UT are the pressure and volume velocity respectively at the throat and ~pM and ~UM are the
pressure and volume velocity respectively at the mouth. The matrix elements are given by

a11 ¼ ~pT
~pM

�����
~UM¼0

(9.60)

a12 ¼ ~pT
~UM

�����
~pM¼0

(9.61)

a21 ¼
~UT

~pM

�����
~UM¼0

(9.62)

a22 ¼
~UT

~UM

�����
~pM¼0

(9.63)

Throat impedance. The acoustic impedance at the throat of the horn is given by

ZAT ¼ a11ZAM þ a12
a21ZAM þ a22

(9.64)

where ZAM is the acoustic radiation impedance at the mouth.
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Reverse horn. If the horn is used in reverse, as a tapered transmission line for example, we write"
~pM
~UM

#
¼ 1

DetðAÞ$
"
a22 a12

a21 a11

#
$

"
~pT
~UT

#
(9.65)

If no energy is added or dissipated within the horn

DetðAÞ ¼ a11a22 � a12a21 ¼ 1 (9.66)

However, this does not apply in the case of a transmission line filled with absorbent material.
Finite parabolic horn. The matrix elements are given by

a11 ¼ �p

2
kxMðJ0ðkxTÞY1ðkxMÞ � J1ðkxMÞY0ðkxTÞÞ (9.67)

a12 ¼ j
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SM
$
p

2
kxMðJ0ðkxTÞY0ðkxMÞ � J0ðkxMÞY0ðkxTÞÞ (9.68)

a21 ¼ j
ST
r0c

$
p

2
kxMðJ1ðkxTÞY1ðkxMÞ � J1ðkxMÞY1ðkxTÞÞ (9.69)

a22 ¼ ST
SM

$
p

2
kxMðJ1ðkxTÞY0ðkxMÞ � J0ðkxMÞY1ðkxTÞÞ (9.70)

where ST is the area of the throat, SM is the area of the mouth, and the length l of the horn from the
throat to the mouth is given by l¼ xM� xT. The throat impedance of a finite parabolic horn is plotted in
Fig. 9.10.
Finite conical horn. The matrix elements are given by
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ffiffiffiffiffiffi
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ST
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cos kl� 1
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�
(9.71)
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(9.73)

a22 ¼
ffiffiffiffiffiffi
ST
SM

r �
cos klþ 1

kxT
sin kl

�
(9.74)

where ST is the area of the throat, SM is the area of the mouth, and the length l of the horn from the
throat to the mouth is given by l ¼ xM� xT. The throat impedance of a finite conical horn is plotted in
Fig. 9.10.
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represented by dashed curves. The value of a for the hyperbolic horn is ½. The cutoff frequencies of the

parabolic, conical, exponential, and hyperbolic horns are 1182 Hz, 792 Hz, 337 Hz, and 399 Hz respectively.
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Finite exponential horn [13]. The matrix elements are given by

a11 ¼
ffiffiffiffiffiffi
SM
ST

r
ðcosðkl cosqÞ � tanq sinðkl cosqÞÞ (9.75)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffi
STSM

p secq sinðkl cosqÞ (9.76)

a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

sec q sinðkl cosqÞ (9.77)

a22 ¼
ffiffiffiffiffiffi
ST
SM

r
ðcosðkl cosqÞ þ tan qsinðkl cosqÞÞ (9.78)
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where ST is the area of the throat, SM¼ STe
ml is the area of the mouth, l is the length of the horn from the

throat to the mouth, and q ¼ arcsin(m/2k). The throat impedance of a finite exponential horn is plotted
in Fig. 9.10.
Finite hyperbolic horn. The matrix elements are given by

a11 ¼
ffiffiffiffiffiffi
SM
ST

r
ðcosðkl cosqÞ � btan qsinðkl cosqÞÞ (9.79)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffi
STSM

p sec qsinðkl cosqÞ (9.80)

a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

ððb� aÞsin qcosðkl cosqÞ

þ
1þ ðab� 1Þsin2q�sec qsinðkl cosqÞ�
(9.81)

a22 ¼
ffiffiffiffiffiffi
ST
SM

r
ðcosðkl cosqÞ þ a tan qsinðkl cosqÞÞ (9.82)

where ST is the area of the throat,

SM ¼ STðcoshðl=xTÞ þ a sinhðl=xTÞÞ2

is the area of the mouth, l is the length of the horn from the throat to the mouth, and q ¼ arcsin(1/kxT).
The quantity b is given by

b ¼
ffiffiffiffiffiffi
ST
SM

r
ðsinhðl=xTÞ þ a coshðl=xTÞÞ (9.83)

The throat impedance of a finite hyperbolic horn is plotted in Fig. 9.10.
Truncation effects. Whenever the bell diameter is not large or when the horn length is short, it is not
possible to use the infinite approximation for the throat impedance. Instead we must use the exact
equation of Eq. (9.64). However, we see from Fig. 9.10 that, for a given size horn, the parabolic and
conical horns are closer to the infinite ideal of Fig. 9.9 than are the exponential and hyperbolic types.
To illustrate what the words “large bell diameter” and “long length” mean, let us refer to Fig. 9.11 for
a finite exponential horn of various sizes.

If the circumference of the mouth of the horn divided by the wavelength is less than about 0.5 (i.e.,
the diameter of the mouth divided by the wavelength is less than about 0.16), the horn will resonate like
a cylindrical tube, i.e., at multiples of that frequency where the length is equal to a half wavelength.
This condition is shown clearly by the two lower-frequency resonances in Fig. 9.11a.

When the circumference of the mouth of the horn divided by the wavelength is greater than
about 3 (i.e., diameter divided by wavelength greater than about 1.0), the horn acts nearly like
an infinite horn. This is shown clearly by comparison of c and d of Fig. 9.11, for the region where
f/fc is greater than about 2, which is the case where the ratio of mouth diameter to wavelength
exceeds 0.5.
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FIG. 9.11 Graphs showing the variation in specific acoustic impedance at the throat of four exponential horns as

a function of frequency with bell diameter as the parameter.

The cutoff frequency fc ¼ mc/4p and the throat diameter ¼ 0.03 c/fc; both are held constant. Bell circumfer-

ences are (a) C¼ 0.314lc, (b) C¼ 0.628lc, (c) C¼ 0.942lc, and (d) C¼N. The mouth of the horn is assumed

to be terminated in an infinite baffle.
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In the frequency region where the circumference of the mouth to wavelength ratio lies between
about 1 and 3, the exact equation for a finite exponential horn [Eq. (3.49)] must be used, or the results
may be estimated from a and b of Fig. 9.11.

When the length of the horn becomes less than one-quarter wavelength, it may be treated as
a simple discontinuity of area such as was discussed in Sec. 4.8(pp. 131 to 133).

Obviously, if one chooses a certain mouth area and a throat area to obtain maximum efficiency, the
length of the horn is automatically set by the flare constant m, which is in turn directly dependent upon
the desired cutoff frequency.
Nonlinear distortion. A sound wave produces an expansion and a compression of the air in which it is
traveling. We find from Eq. (2.6) that the relation between the pressure and the volume of a small
“box” of the air at 20�C through which a sound wave is passing is

P ¼ 0:726

V1:4
(9.84)

where

V is specific volume of air in m3/kg ¼ 1/r0
P is absolute pressure in bars, where 1 bar ¼ 105 Pa

This equation is plotted as curve AB in Fig. 9.12
Assuming that the displacement of the diaphragm of the drive unit is sinusoidal, it acts to change

the volume of air near it sinusoidally. For large changes in volume, the pressure built up in the throat of
the horn is no longer sinusoidal, as can be seen from Fig. 9.12. The pressure wave so generated travels
away from the throat toward the mouth.

If the horn were simply a long cylindrical pipe, the distortion would increase the farther the wave
progressed according to the formula (air assumed) [14,15]

p2
p1

¼ gþ 1

2
ffiffiffi
2

p
g
k
p1
P0

x ¼ 1:21k
p1
P0

x (9.85)

where

p1 is rms sound pressure of the fundamental frequency in Pa.
p2 is rms sound pressure of the second harmonic in Pa.
P0 is atmospheric pressure in Pa.
k ¼ u/c ¼ 2p/l is wave number in m�1.
g ¼ 1.4 for air.
x is distance the wave has traveled along the cylindrical tube in m.

Equation (9.85) breaks down when the second-harmonic distortion becomes large, and a more
complicated expression, not given here, must be used.

In the case of an exponential horn, the amplitude of the fundamental decreases as the wave travels
away from the throat, so that the second-harmonic distortion does not increase linearly with distance.
Near the throat it increases about that given by Eq. (9.85), but near the mouth the pressure amplitude of
the fundamental is usually so low that very little additional distortion occurs.

The distortion introduced into a sound wave after it has traveled a distance x down an exponential
horn for the case of a constant power supplied to unit area of the throat is found as follows.

Differentiate both sides of Eq. (9.85) with respect to x, so as to obtain the rate of change in p2 with x
for a constant p1. Call this equation (9.85a).



P = Absolute pressure in bars 
V = Specific volume 
    = 1/ρ0 in m3/kg 
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FIG. 9.12 Plot of the gas equation PV g [ 1.26 3 104, valid at 20�C.

Normal atmospheric pressure (0.76 mHg) is shown as P0 ¼ 1 bar.
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In Eq. (9.85a), substitute for p1 the pressure pTe
�mx/2, where pT is the rms pressure of the

fundamental at the throat of the horn in Pa and m is the flare constant.
Then let pT ¼

ffiffiffiffiffiffiffiffiffiffiffi
ITr0c

p
, where IT is the intensity of the sound at the throat in W/m2 and r0c is the

characteristic acoustic impedance of air in rayls.
Integrate both sides of the resulting equation with respect to x.

This yields:

per cent second-harmonic distortion

¼ 50ðgþ 1Þ
gP0

ffiffiffiffiffiffiffiffiffiffiffi
ITr0c

2

r
f

fc
ð1� e�mx=2Þ

(9.86)



FIG. 9.13 Percentage second-harmonic distortion in an exponential born as a function of the intensity at the horn

throat with the ratio of the frequency to the cutoff frequency as parameter.

9.14 Bends in horns 435
For an infinitely long exponential horn, at normal atmospheric pressure and temperature, the equation
for the total distortion introduced into a wave that starts off sinusoidally at the throat is

Per cent second-harmonic distortion ¼ 1:22
f

fc

ffiffiffiffiffi
IT

p � 10�2 (9.87)

where

f is driving frequency in Hz.
fc is cutoff frequency in Hz.
IT is intensity in W/m2 at the throat of the horn

Equation (9.87) is shown plotted in Fig. 9.13. Actually, this equation is nearly correct for finite
horns because most of the distortion occurs near the throat.

Equation (9.87) reveals that, for minimum distortion, the cutoff frequency fc should be as large as
possible, which in turn means as large a flare constant as possible. In other words, the horn should flare
out rapidly in order to reduce the intensity rapidly as one travels along the horn toward the mouth.

Unfortunately, a high cutoff frequency is not a feasible solution for horns that are designed to
operate over a wide frequency range. In this case, it is necessary to operate the horn at low power at the
higher frequencies if the distortion is to be low at these frequencies. This goal is achieved automat-
ically to some extent in reproducing speech and music, because above 1000 Hz the intensity for these
sounds decreases by about a factor of 10 for each doubling of frequency.
9.14 BENDS IN HORNS
A horn loudspeaker for use at low frequencies is very large and long, because the flare rate m must be
small for a low cutoff frequency and the area of the mouth must be large to radiate sound properly. As
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a consequence, it has become popular to “fold” the horn so that it will fit conveniently into a cabinet of
reasonable size.

Many types of folded horns have been devised that are more or less successful in reproducing music
and speech with satisfactory frequency response. In order to be successful, the bends in folded horns
must not be sharp when their lateral dimensions approach a half wavelength, or they will change the
spectrum of the radiated sound.

Good data on the comparative performance of folded horns are not available. This is partly because
it is difficult to measure the response of large folded horns in an anechoic chamber and partly because
commercial companies guard their data. To get some idea of the effect of an abrupt 180� bend as shown
in Fig. 9.14, we can use the the 2-port model for a cavity developed in Sec. 7.18. The 2-port model
is shown in Fig. 9.15. The volume velocity entering the bend is ~Uin and the volume velocity leaving
the bend is ~Uout. We assume that the two ducts which are joined at the bend are both infinitely long
so that the acoustic source and termination impedances, zS and zT respectively, of the network are
given by

zS ¼ zT ¼ r0c

lxl
: (9.88)
z11 − z12 outU
~

z22 − z21

z12 = z21 zTzSinU
~

2

FIG. 9.15 Equivalent electrical circuit for a 180� bend.

FIG. 9.14 Geometry of 180� bend.
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The self impedances of the network are

z11 ¼ z22 ¼ �j
r0c

lxl

0
BBB@cot klz

2
þ kl

XN
n¼ 0

cot

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
lz=l

!

�
nþ 1

2

�2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
1
CCCA (9.89)

and the mutual impedances are

z12 ¼ z21 ¼ �j
r0c

lxl

0
BBB@cot klz

2
� kl

XN
n¼ 0

cot

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
lz=l

!

�
nþ 1

2

�2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
1
CCCA: (9.90)

We define the transmission coefficient a by

a ¼ 20 log10
~Uout

2 ~Uin

¼ 20 log10
z12zS

z211 � z212 þ z11ðzS þ zTÞ þ zSzT

(9.91)

This is plotted in Fig. 9.16 as a function of kl.
FIG. 9.16 Transmission of sound through a 180� bend as a function of kl.
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We see that there are strong transverse modes when

kl ¼ ðnþ 1=2Þp; n ¼ 0; 1; 2; . (9.92)

or 2l ¼ (n þ ½)l. Such modes of vibration may be reduced by curving the bend or simply by
chamfering the corners. If possible, the wavelength should be long compared with the width of the duct
at the bend. Then the attenuation will be very small.

We note that this model of the bend does not take into account normal modes resulting from sound
reflected back from the bend into the preceding duct because we do not know its length, so we just
assume it to be infinite. Supposing we let zS ¼ N, we then have a rigid piston with a volume velocity
~Uin where the sound enters the bend at z ¼ lz. This would produce strong normal modes at

klz ¼ np; n ¼ 1; 2;. (9.93)

However, such reflections are also reduced by curving the bend or chamfering the corners.
9.15 CROSS-SECTIONAL SHAPES
Earlier it was stated that the cross-sectional shape of a horn is not too important. This is true provided
the lateral dimensions of the horn are not comparable with a wavelength. When the lateral dimensions
are large enough, standing waves exist across the duct, similar to the standing waves in a closed end
tube. These waves are usually not important in an exponential horn that is circular or square in cross
section because, generally, only that section of the horn near the mouth is greater than a half
wavelength.

In a rectangular horn that is constructed with two sides parallel and the other two sides varying
according to the exponential or hyperbolic law, standing waves may exist between the two parallel
walls. These resonances occur at wavelengths that are submultiples of the width of the duct, i.e., at
frequencies equal to

f ¼ nc

2lx
(9.94)

or wavelengths equal to

l ¼ 2lx
n

(9.95)

where n is an integer, that is, 1, 2, 3, 4, . . . .
For example, suppose that the width of the horn were 0.5 m. Then resonances (standing waves)

would occur at 345, 690, 1034, etc., Hz. At these frequencies, reduced power output generally occurs.
In general, the upper frequency limit for operation of a horn should be chosen sufficiently low so that
troubles from transverse standing waves are avoided.
9.16 MATERIALS
The material from which a horn is constructed is very important. If the side walls of the horn resonate
mechanically at one or more frequencies in the range of operation, “dips” in the power-output curve
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will occur. Undamped thin metal is the least desirable material because the horn from which it is made
will resonate violently at fairly low frequencies. Heavy metals, covered on the outside with thick
mastic material so that mechanical resonances are damped, are much better. A concrete or plaster horn
1 or 2 inch in thickness is best because of its weight and internal damping.

Plywood is commonly used in the construction of large horns. Although it is not as satisfactory as
concrete, it gives satisfactory results if its thickness exceeds 3/4 inch and if it is braced with wooden
pieces glued on at frequent, irregular intervals.

Example 9.3. Low-frequency horn design. A horn for radiating low frequencies is required. It is
desired that the frequency response be flat between 40 and 600 Hz and that the horn be designed to be
heard throughout a 500-seat auditorium with a volume of 5000 m3. Therefore, from Fig. 10.17, we see
that we need to radiate an acoustic power of 3.6 W if we wish to reproduce the sound of a large
orchestra. We shall select the exponential horn as the best compromise shape of horn for our use.
Because the lowest frequency at which good radiation is desired is 40 Hz, we choose the mouth area
from Eq. (9.24).

Mouth area SM ¼ l2

4p
¼ c2

4pf 2
¼ 6:05 m2

This is probably too large a mouth area for most applications, so that a compromise in design is
necessary.

Let us choose arbitrarily a mouth area of 2.4 m2. This corresponds to the bell opening shown in
Fig. 9.11b, We see from this chart that below f ¼ 3fc, there will be two resonances that are not
desirable, but they are fairly well damped.

Let us design for a cutoff frequency of

fc ¼ 40 Hz

The flare constant m equals [see Eq. (9.49)]

m ¼ 4pfc
c

¼ 4p� 40

344:8
¼ 1:44 m�1
0.156 m

1.55 m 

2.71 m
0.19 m

0.22 m

1.55 m 

0.22 m 0.156 m 

0.22 m 

0.156 m 

End view

FIG. 9.17 Plans for a simple straight exponential horn with a cutoff frequency of 40 Hz, a throat area of 0.0243 m2,

and a mouth area of 2.4 m2.
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Let us choose a 12-inch direct-radiator unit with the following Thiele–Small parameters:

RE ¼ 6 U
QES ¼ 0.2
QMS ¼ 4.4
fS ¼ 20 Hz
SD ¼ 0.0486 m2

VAS ¼ 0.368 m3.

From Eq. (9.9), it appears that for maximum efficiency SD/ST should equal 12/3 . However, to keep the
length down, let us make

SD
ST

¼ 1

Then,

GMT ¼ ST

r0cS
2
D

¼ 1

1:18� 348:8� 0:0486
¼ 0:05 m$N�1$s�1

Let us calculate the reference efficiency. From Eq. (9.8),

Eff ¼ 100� 0:05� 348:8

2� ð0:05� 348:8þ 2� 2p� 20� 0:2� 0:368Þ ¼ 23:9%

As a trial, let us make SD/ST ¼ 2.0. Then GMT ¼ 0.025, and Eff ¼ 25.3%. Finally, let ST/SD ¼ 2. Then,
GMT ¼ 0.1, and Eff ¼ 18.3%.

It is seen that the ratio of the throat and diaphragm areas may be made equal with little loss of
efficiency, thereby making our horn of reasonably short length. However, for good high frequency
response, it is desirable to have as small a throat area as possible. In order to reconcile this, we shall
employ a “rubber neck” [16] which is a short section of horn with a higher flare rate than the rest of the
horn (see Fig. 4.10). At low frequencies it behaves as a simple discontinuity so that the throat area is
that of the mouth of the neck, but at high frequencies it is that of the throat of the neck. Hence we shall
make the area of the mouth of the neck equal to SD, but the throat area of the neck will be equal to SD/2.
Let the neck have a cut-off frequency of 100 Hz. Then its flare constant is

mn ¼ 4pfn
c

¼ 4p� 100

344:8
¼ 3:65 m�1

The length of the neck xn is found from Eq. (9.39):

emnxn ¼ 2

or

mnxn ¼ lnð2Þ ¼ 0:693

xn ¼ 0:693

3:65
¼ 0:19 m
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The length of the rest of our horn is found from Eq. (9.39):

emx ¼ 2:4

0:0486
¼ 49:4

or

mx ¼ lnð49:4Þ ¼ 3:90

x ¼ 3:90

1:44
¼ 2:71 m

The intensity for a horn with a throat area of 0.5 � 0.0486 m2 radiating 3.6 Wof acoustic power is
0.015 W/cm2, assuming uniform pressure distribution. Let us set the upper limit of operation at 600
Hz. Then f/fc ¼ 10. The line for 10 in Fig. 9.13 at 0.015 W/cm2 shows that the per cent second-
harmonic distortion in the horn will be about 1.5%, which, bearing in mind that this is for peaks of
short duration, will hardly be audible.

This calculation would seem to indicate that the low-frequency unit could be operated successfully
above 600 Hz. However, it seems from experience that for psychological reasons the crossover from
the low-frequency to the high-frequency horn should occur at a frequency below 600 Hz for best
auditory results.

Let us see what back enclosure volume VB the drive-unit circuit ought to have if the total
compliance CM2 is to balance out the mass reactance of the horn at frequencies below the diaphragm
resonance frequency. The quantity CM2 includes the combined compliance of the loudspeaker CMS and
that of the enclosure behind it CMB. From Eqs. (9.17), (9.18), and (9.45), we have the condition

1

CM2
¼ S2D

S2TCMT
¼ S2Dr0c

2m

2ST

where

1

CM2
¼ 1

CMB
þ 1

CMS
¼ S2Dr0c

2

VB
þ S2Dr0c

2

VAS

so that after canceling all the SD
2 r0c

2 terms we have

VB ¼
�

m

2ST
� 1

VAS

��1

¼
�

1:44

2� 0:0486
� 1

0:368

��1

¼ 0:0826 m3 or 82:6 L

Two possible horns for our design are the straight square horn shown in Fig. 9.17 or the folded horn
of the Klipsch type [17] shown in Fig. 9.18, which has the dimensions given in Table 9.1.

By placing the Klipsch horn in the corner of the room, the three adjoining walls form the final part
of the horn flare. Of course, this is not the only way to fold a horn [18]. If the straight horn is used, it
will probably be necessary to put it partially above the ceiling or below the floor in order to make its
presence non-objectionable in the room.

Example 9.4. High-frequency horn design. In this example we shall design a horn loaded tweeter
for usewith the bass-reflex loudspeaker design of Example 7.3. The tweeter will be the same type as that
used for the closed-box design of Example 7.2 and for which a crossover is designed in Example 7.4.



FIG. 9.18 Horizontal section for a Klipsch type of folded exponential horn.

This particular horn is about 1 m high and has smooth response below 600 Hz. There are two 12-inch drive units,

one above the other.

Table 9.1 Dimensions of horn in Example 9.3

Location Length (m) Area of horn (m2) Flare rate (Hz)

Point A
Point B
Point C
Point C

0
0.209
0.741
1.402

0.029
0.061
0.075
0.232

0
97
35
40
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However, because the bass-reflex design uses two bass drive units, we shall design a horn for the tweeter
in order to increase its sensitivity. The horn,which is shown in Fig. 9.19, ismounted in a sphere so thatwe
canmodel the radiation from themouth as a rectangular cap in a sphere, which will be described in detail
in Chapter 12. The horn has conical profile in order to give a smooth response with a gentle roll-off (see
Fig. 9.10). This makes it easier to design a simple crossover than in the case of exponential or hyperbolic
types, which have more abrupt transitions. Also, its cross-section is rectangular in order to smooth out
any deep nulls which would otherwise appear in its on-axis response if it were circular (see Fig. 12.21).

From the manufacturer’s data we have

RE ¼ 4.9 U
LE ¼ 50 mH
fC ¼ 750 Hz
MMS ¼ 0.32 g
SD ¼ 7 cm2



150 mm 

21 mm 

15º

38.25º

VF

19.4 mm 

19.4 mm 

5.44 mm 

13 mm 
38.8 mm 

75 mm 

21 mm 

10.88 mm 

FIG. 9.19 Example of high-frequency horn design. For clarity, only the diaphragm of the drive unit is shown. The

front plate, coil and magnet etc. are omitted.
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Because the tweeter is supplied with its own integral closed-box enclosure, the resonance frequency fC
is the closed-box resonance frequency. From this we shall deduce the total mechanical compliance
CMC, which combines the compliance of the suspension with that of the air in the enclosure. Similarly,
the total resistance RMC combines the resistance of the suspension with that of the enclosure. From
actual measurements we deduce that

QEC ¼ 0:75

QMC ¼ 1:64

Also

CMC ¼ 1

ð2pfcÞ2MMS

¼ 103

ð2p� 750Þ2 � 0:32
¼ 0:141 mm=N

Hence from Eqs. (6.10), (6.11), and (6.12) we obtain

QTC ¼ QECQMC

QEC þ QMC
¼ 0:515

RMC ¼ 1

QMC

ffiffiffiffiffiffiffiffiffiffi
MMS

CMC

r
¼ 1

1:64

ffiffiffiffiffiffiffiffiffiffiffi
0:32

0:141

r
¼ 0:92 N$s=m

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RE

QEC

ffiffiffiffiffiffiffiffiffiffi
MMS

CMC

rs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:9

0:75

ffiffiffiffiffiffiffiffiffiffiffi
0:32

0:141

rs
¼ 3:14 T$m
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Let us now create a semi-analytical simulation model of the design of Fig. 9.19 using 2-port
networks and transmission matrices, as introduced in Sec. 3.10 and Fig. 4.43. The schematic is shown
in Fig. 9.20. Although the drive unit part is based on the circuit of Fig. 9.3, a gyrator has been inserted
between the electrical elements and the mechanical ones so that the whole circuit is written using the
impedance analogy. Also, we have added the horn and horn mouth impedance to the circuit. We are
ignoring the generator impedance Rg since in the experimental setup this is negligible compared with
RE. The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones.
From the schematic we create the transmission matrices required to represent each 2-port network as
follows.

1. Coil. "
~eg
~ig

#
¼
"
1 ZE

0 1

#
$

"
~e1
~i1

#
¼ C$

"
~e1
~i1

#

where ZE ¼ RE þ juLE.
2. Electro-Mechanical Transduction."

~e1
~i1

#
¼
"

0 Bl

ðBlÞ�1 0

#
$

"
~f 2

~u2

#
¼ E$

"
~f 2

~u2

#

LERE

CA1

Horn mouth 
radiation 

ge~

CMCMMD RMC

Coil

1

gi
~

1
~e

E-M

1

~i

2

2
~u

2

~f

Diaphragm and box 

3 4 

M-A

SD:1Bl

3

~f 4
~p

3
~u

CUU ~~
4 =

X

Y
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X

Y
765

7
~p6

~p5
~p4

~p

TUU ~~
5 = MUU ~~

6 = 0
~

7 =UCUU ~~
4 =

ZAM

FIG. 9.20 Semi-analytical model of example high-frequency horn design shown in Fig. 9.19 using transmission

matrices.

The dashed boxes are lumped-element 2-port networks and the solid boxes are analytical ones.
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3. Diaphragm.

"
~f 2

~u2

#
¼
"
1 ZM

0 1

#
$

"
~f 3

~u3

#
¼ D$

"
~f 3

~u3

#

where ZM ¼ juMMD þ RMC þ 1/(juCMC). We must exclude the radiation mass from the diaphragm so
that

MMD ¼ MMS � 16r0a
3=3; where a ¼

ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
:

4. Mechano-acoustical transduction."
~f 3

~u3

#
¼
"
SD 0

0 S�1
D

#
$

"
~p4
~U4

#
¼ M$

"
~p4
~U4

#

5. Front cavity. "
~p4
~U4

#
¼
"

1 0

juCA1 1

#
$

"
~p5
~U5

#
¼ F$

"
~p5
~U5

#

where the acoustic compliance of the front cavity, which has a total volume of 1.4 cm3, is given by

CA1 ¼ VF

r0c
2
¼ 1:4� 10�6

1:18� 344:82
¼ 4:99� 10�12 m5=N

6. Horn. "
~p5
~U5

#
¼
"
b11 b12

b21 b22

#
$

"
~p6
~U6

#
¼ H$

"
~p6
~U6

#

where

b11 ¼
ffiffiffiffiffiffi
SM
ST

r �
cos kl� 1

krM
sin kl

�
;

b12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffi
STSM

p sin kl;

b21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

��
1

krM
� 1

krT

�
cos klþ

�
1þ 1

k2rMrT

�
sin kl

	
;

b22 ¼
ffiffiffiffiffiffi
ST
SM

r �
cos klþ 1

krT
sin kl

�
;
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and l ¼ rM � rT. We see from Fig. 9.19 that rT ¼ 22 mm and rM ¼ 75 mm. The horn is defined by the
angles a¼ 15� in the vertical direction and b¼ 30� in the horizontal direction. Hence from Eq. (12.69)
we can calculate the throat area ST and mouth area SM as follows:

ST ¼ 4R2
T

8>><
>>:arctan

0
BB@ sin

p

12
sin

p

6

1þ cos
p

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2

p

6

r
1
CCAþ arctan

0
BB@ sin

p

12
sin

p

6

1þ cos
p

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2

p

12

r
1
CCA
9>>=
>>;

¼ 4� 0:0222 � 0:13 ¼ 2:52 cm2

SM ¼ 4� 0:0752 � 0:13 ¼ 29:3 cm2

7. Horn Mouth Radiation."
~p6
~U6

#
¼
"

1 0

Z�1
AM 1

#
$

"
~p7
~U7

#
¼ R$

"
~p7
~U7

#

The horn mouth radiation impedance ZAM is reasonably well approximated by that of a rectangular cap
in a sphere using Eqs. (12.87) and (12.88), where

ZAM ¼ ðRs þ jXsÞ=S:
First we evaluate ~p7 at the end of the chain"

~eg
~ig

#
¼ A$

"
~p7

0

#

where

A ¼ C$E$D$M$F$H$R ¼
"
a11 a12

a21 a22

#

Hence ~p7 ¼ ~eg=a11. Then we work backwards to obtain the volume velocities we wish to evaluate. In
particular, we are interested in the far-field pressure which according to Eq. (12.82) is a function of
~UM ¼ ~U6. This procedure is fairly straightforward and does not involve any matrix inversion. From
the mouth radiation matrix (7), we obtain

~UM ¼ ~U6 ¼ ~p7=ZAM

In order to plot the normalized far-field on-axis pressure, we simply divide ~UM by a reference volume
velocity

~Uref ¼ ~egBlSD
uMMDRE

and multiply it by the on-axis response D(0,f) of the spherical cap from Eq. (12.85). A plot of

20log10

���Dð0;fÞ ~UM= ~Uref

���
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is shown in Fig. 9.21. The maximum gain we may expect to see from the horn is 20log10(SM/ST)¼ 21.3
dB. However, the actual gain is usually less than this and we see that in this example the combined gain
of the horn and baffle effect of the sphere is 14–20 dB between 1.5 kHz and 11 kHz. Finally, we can
obtain the input impedance from ~eg=~ig where ~ig ¼ a21~p7 and from above ~p7 ¼ ~eg=a11. Therefore the
input impedance is simply ZE ¼ a11/a21, as plotted in Fig. 9.22.
FIG. 9.22 Graphs of the electrical input impedance of the high-frequency horn design shown in Fig. 9.19.

The dashed curves are calculated from ZE ¼ j~eg=~ig j ¼ a11/a21. Solid curves are measured.

FIG. 9.21 Graphs of the on-axis sound pressure level produced by the high-frequency horn design shown in

Fig. 9.19.

The dashed curves are calculated from 20log10jDð0;fÞ ~UM= ~Uref j. Solid curves are measured. During testing it

was found that placing a small sphere of about 1 cm in diameter in front of the diaphragm improved the

correlation between the measured and calculated responses at high frequencies.
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