ECE/TAM 473

Homework Assignment #4 Due: Friday, September 28, 2018

- 1. Problem 5.6.1 in Kinsler et al.
- 2. Problem 5.7.3 in Kinsler et al.

3. Calculate the missing values for the three gases.

	Gas 1	Gas 2	Gas 3
frequency (Hz)	3000		
angular frequency (rad/s)			2000
propagation speed (m/s)	300	343	1000
wavenumber (1/m)		110	
wavelength (m)			
equilibrium density (kg/m³)	1.21	1.40	0.090
ratio of specific heats (γ)	1.40	1.30	1.20
equilibrium pressure (kPa)			
isothermal bulk modulus (kPa)			
adiabatic bulk modulus (kPa)			
peak particle displacement amplitude (mm)			
peak particle velocity amplitude (cm/s)			220
peak particle acceleration amplitude (m/s²)			
peak condensation amplitude			
peak acoustic pressure amplitude (kPa)	0.03		
peak excess density amplitude (kg/m³)			
SPL (re: 20 µPa _{rms})		93	
characteristic acoustic impedance (rayl)			

- 4. The atmosphere on some distant body consists of 30% CO2, 30% N2 and 40% O₂ with a temperature of -10°C and equilibrium pressure of 500 Pa. At an acoustic frequency of 2000 Hz for a plane wave that has a peak acoustic pressure of 3.56e-3 Pa and ratio of specific heats 1.35. Determine:
 - a) the speed of sound (in m/s).
 - b) the equilibrium density (in kg/m³).
 - c) the rms acoustic pressure amplitude (in Pa).
 - d) the rms excess density amplitude (in kg/m³).
 - e) the rms adiabatic temperature rise (in °K).
 - f) the rms particle displacement amplitude (in µm).
 - g) the rms particle velocity amplitude (in µm/s).
 - h) the rms particle acceleration amplitude (in m/s²).
 - i) the rms condensation amplitude.
 - j) the characteristic acoustic impedance (in rayl).
- 5. Problem 5.7.5 in Kinsler et al.